
Surrogate Signals from Format and Length: Reinforcement Learning for
Solving Mathematical Problems without Ground Truth Answers

Anonymous ACL submission

Abstract001

Large Language Models have achieved remark-002
able success in natural language processing003
tasks, with Reinforcement Learning playing004
a key role in adapting them to specific applica-005
tions. However, obtaining ground truth answers006
for training LLMs in mathematical problem-007
solving is often challenging, costly, and some-008
times unfeasible. This research delves into009
the utilization of format and length as surro-010
gate signals to train LLMs for mathematical011
problem-solving, bypassing the need for tradi-012
tional ground truth answers. Our study shows013
that a reward function centered on format cor-014
rectness alone can yield performance improve-015
ments comparable to the standard GRPO al-016
gorithm in this phase. Recognizing the limita-017
tions of format-only rewards, we incorporate018
length-based rewards. The resulting GRPO ap-019
proach, leveraging format-length surrogate sig-020
nals, not only matches but surpasses the perfor-021
mance of the standard GRPO algorithm relying022
on ground truth answers in certain scenarios,023
achieving 40.0% accuracy on AIME2024 with024
a 7B base model. Through systematic explo-025
ration and experimentation, this research offers026
a practical solution for training LLMs to solve027
mathematical problems and reducing the depen-028
dence on extensive ground truth data collection.029

1 Introduction030

In the dynamic landscape of artificial intelligence,031

Large Language Models (LLMs) (Brown et al.,032

2020; Chowdhery et al., 2023; Yang et al., 2023;033

Wang et al., 2025a; Grattafiori et al., 2024) have034

emerged as a transformative force, with mod-035

els like GPT-o1 (Jaech et al., 2024), DeepSeek-036

R1 (DeepSeek-AI et al., 2025), and Qwen3 (Yang037

et al., 2025) leading the charge. Pre-trained on038

massive text corpora, these models have demon-039

strated remarkable proficiency in diverse natural040

language processing tasks, ranging from text gener-041

ation and question-answering to language transla-042

tion and code writing. Their success largely stems043

from unsupervised pre-training, which empowers 044

LLMs to capture complex semantic and syntactic 045

patterns, enabling effective generalization across 046

various scenarios. 047

Reinforcement Learning (RL) plays a crucial 048

role in adapting pre-trained LLMs to specific down- 049

stream tasks. Among RL techniques, Proximal Pol- 050

icy Optimization (PPO) (Schulman et al., 2017) 051

and its advanced variant, Group Relative Policy 052

Optimization (GRPO) (Shao et al., 2024), are com- 053

monly employed to optimize LLMs. These meth- 054

ods typically rely on ground truth answers to de- 055

fine rewards, serving as explicit feedback for the 056

model to iteratively refine its solutions. However, 057

obtaining accurate ground truth answers, partic- 058

ularly in the domain of mathematical problem- 059

solving, presents significant challenges. It often 060

demands substantial human effort, time, and re- 061

sources, and in certain cases, such answers may 062

be scarce or even nonexistent. This limitation has 063

spurred the exploration of alternative training strate- 064

gies to enable effective RL without relying on ex- 065

plicit ground truth information. 066

Motivated by these challenges, our research en- 067

deavors to explore the possibility of training LLMs 068

for mathematical problem-solving using alternative 069

signals instead of ground truth answers. Through 070

systematic experiments and in-depth analysis, we 071

have made several significant discoveries. During 072

the initial 15 steps of RL training, the model pre- 073

dominantly focuses on learning the format of math- 074

ematical solutions. This early phase is crucial, con- 075

tributing approximately 85% of the overall perfor- 076

mance improvement during the entire RL training 077

process. Notably, during this period, we observed a 078

significant reduction in response length, indicating 079

that the model rapidly eliminates redundant infor- 080

mation and converges towards a more structured 081

and efficient representation. Experiments revealed 082

that a reward function solely considering format 083

correctness achieved the same performance gains 084
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as the standard GRPO algorithm, underscoring the085

potency of format correctness as a key signal in the086

early learning stage.087

Nevertheless, relying solely on format-based re-088

wards has limitations, causing performance im-089

provement to stall after the initial gains. To over-090

come this hurdle, we integrated a length-based re-091

ward into the format-based reward function. Strik-092

ingly, our GRPO approach leveraging format-093

length surrogate signals not only matched but in094

some cases outperformed the standard GRPO algo-095

rithm that relies on ground truth answer informa-096

tion. This is because format and length together097

act as powerful “surrogate signals” highly corre-098

lated with answer correctness. Format correctness099

provides a necessary optimization target, while the100

length-based reward penalizes overly long or short101

responses, prompting the model to refine its content102

by eliminating incorrect or redundant derivations.103

Through these findings, our work effectively104

challenges the necessity of ground truth answers105

for RL in mathematical problem solving, provides106

a detailed analysis of GRPO training dynamics to107

reveal the importance of the early format-learning108

phase and complementary role of length-based re-109

wards, and opens up new possibilities for training110

LLMs in scenarios where ground truth answers are111

scarce or unavailable, offering an efficient approach112

applicable to mathematical reasoning tasks.113

2 Related Work114

RL has been proven effective in enhancing LLM115

performance. PPO (Schulman et al., 2017) and116

GRPO (Shao et al., 2024) are widely used in RL117

frameworks for LLMs, with detailed introductions118

provided in Appendix A. Recent research uses119

scaled-up RL training to enable LLMs to explore120

reasoning paths for complex problems. For exam-121

ple, DeepSeek-AI et al. (2025) achieved excellent122

results in math and coding tasks through large-scale123

RL on an unsupervised base model, without relying124

on pre-trained reward models or MCTS. Team et al.125

(2025) enhances general reasoning via RL, focus-126

ing on multimodal reasoning and controlling think-127

ing length. Format reward in RL. DeepSeek-AI128

et al. (2025) uses format rewards to structure model129

outputs. Liu et al. (2025a) noted format rewards130

dominate early training. Our study isolates the in-131

fluence of answer rewards and designs a format for132

math reasoning tasks. Experiments show using our133

format in early RL training matches performance134

of answer reward training. Length Control in RL. 135

DeepSeek-AI et al. (2025) found response length 136

and evaluation metrics increase with RL training 137

steps until an "Aha moment". Other studies ex- 138

plore length reward functions’ impacts. Yeo et al. 139

(2025) observed response lengths decline due to 140

model size and KL divergence penalties. Chen et al. 141

(2025) argued direct length extension training may 142

harm performance. In contrast, our length reward 143

penalizes overly long responses, guiding concise 144

outputs. Experiments show combining length and 145

format rewards outperforms answer rewards. 146

3 Method: Format and Length as 147

Surrogate Signals for Answer 148

To mitigate the issue of label scarcity in real-world 149

environments, we explore the potential of format 150

and length as powerful "surrogate signals" highly 151

correlated with answer correctness. Format cor- 152

rectness in mathematical problem-solving offers 153

a necessary but insufficient condition for answer 154

accuracy, providing a clear structural optimization 155

target for the model. Meanwhile, the length of the 156

response serves as an indicator of content efficiency 157

and logical compactness, reflecting the quality of 158

the solution’s reasoning process. Based on these in- 159

sights, we develop a novel learning framework that 160

integrates format and length rewards into the GRPO 161

algorithm. This framework, centered around opti- 162

mizing LLMs without relying on explicit ground 163

truth answers, aims to enable effective training by 164

leveraging these surrogate signals to approximate 165

the optimization direction of ground truth answer 166

rewards. 167

3.1 Format Reward 168

In the context of mathematical problem-solving, 169

a correct format is crucial for ensuring the clarity 170

and comprehensibility of the solution. Our for- 171

mat reward mechanism is designed to encourage 172

the model to generate responses that adhere to the 173

standard presentation conventions of mathemati- 174

cal solutions (details in Appendix D). The format 175

reward Rf is defined as a binary function: 176

Rf =

{
1 if the format is right.

0 else.
(1) 177

This reward serves as a fundamental signal for the 178

model to learn the structural aspects of mathemati- 179

cal problem-solving in the early stages of training. 180
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3.2 Length Reward181

To complement the format reward and further refine182

the content of the model’s responses, we introduce183

a length reward function. The length of a response184

is a critical factor that reflects the efficiency and185

logical compactness of the solution. An overly186

short response may lack essential reasoning steps,187

while an excessively long response might contain188

redundant or incorrect derivations.189

Our length reward function is designed to strike a190

balance between promoting comprehensive reason-191

ing and preventing overly long responses that could192

exceed the model’s context limits. It is formulated193

as a piecewise function:194

Rl =

1−
(
1− x

p

)2
, 0 ≤ x ≤ p,

1− 2
(
x−p
1−p

)2
, p < x ≤ 1,

(2)195

Let196

x =
L

Lmax
, (3)197

where L is the length of the current response and198

Lmax is the maximum context length. Let p ∈ (0, 1)199

be a tunable parameter that controls the turning200

point of the piecewise function, with a default201

value of 0.5. This piecewise function is contin-202

uous and differentiable at x = p, encouraging re-203

sponse lengths that approach the turning point p.204

The reward increases smoothly as x grows from 0205

to p, reaches a maximum at x = p, and then de-206

creases for x > p, thereby penalizing overly long207

responses.208

A positive length reward can only be obtained209

when the format is right. Examples with format210

errors are considered severe—no matter how ideal211

their length may be, they can receive at most 0.212

Therefore, the final format-length reward can be213

expressed as:214

Rfl =

{
Rf +Rl if the format is right.

min(0, Rf +Rl) else.
(4)215

By combining the format reward and length reward,216

we provides an "surrogate signals" for the model’s217

reinforcement learning, helping to alleviate the is-218

sue of label scarcity in real-world environments.219

4 Experiments220

In this section, we present a comprehensive set of221

experiments designed to demonstrate the practical222

viability of using format and length as surrogate223

signals for answer accuracy in GRPO for mathe- 224

matical reasoning tasks. 225

4.1 Experimental Setup 226

Reward configurations: We designed a series of 227

experiments with distinct reward configurations to 228

assess the effectiveness of our proposed approach. 229

Correctness: This configuration is served as our 230

baseline, which uses the exact match with ground- 231

truth answers as the reward criterion. When the 232

model’s output precisely aligns with the correct 233

answer, it is assigned a reward score of 1; otherwise, 234

it receives 0. We utilized the MARIO_EVAL 1 235

library to accurately extract answer content from 236

the model’s output, ensuring a reliable evaluation 237

standard. Format-Only: The reward function is as 238

shown in Eq.(1), which is determined solely by the 239

format of the model’s output. After normalizing the 240

content, we employ SymPy 2, a powerful symbolic 241

mathematics library, to validate its mathematical 242

format. Format-Length: The reward function is 243

as shown in Eq.(4), where the format reward is the 244

same as that of Format-Only RL. 245

Datasets: We trained models on two mathemati- 246

cal reasoning datasets: DeepScaleR3 and MATH- 247

train. DeepScaleR (17,000 samples) integrates 248

problems from the MATH (Hendrycks et al., 2021), 249

AMC (< 2023), AIME (1984-2023), and oth- 250

ers, with deduplication and decontamination ap- 251

plied. MATH-train (7,500 samples) is the MATH 252

dataset’s training split. 253

Evaluation: We evaluated the model on three 254

datasets: MATH500, AIME2024, and AMC2023 255

with greedy decoding. In addition to analyzing 256

each dataset individually, we also calculated the av- 257

erage scores across all benchmarks to enable direct 258

comparison. 259

Implementation details: We trained the Qwen2.5- 260

Math-7B base model using the GRPO algorithm 261

under the verl4 framework. For each case in train- 262

ing and evaluation, we used Qwen-Math template 263

(as shown in Appendix C). During training, we 264

used the following hyperparameters: a learning 265

rate of 1e-6, a batch size of 128, a temperature of 266

0.6, 8 responses per prompt, a maximum response 267

length of 3072, and a KL coefficient of 0.001. All 268

training was performed on a machine with 8 × H20 269

1https://github.com/MARIO-Math-Reasoning/
MARIO_EVAL

2https://github.com/sympy/sympy
3https://github.com/agentica-project/rllm
4https://github.com/volcengine/verl
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GPUs, and a single training run took 6 hours.270

4.2 Impact of Format Reward271

The format-only experiment offers critical insights272

into the role of format correctness in the training273

process. During the initial 15 steps, as depicted274

in Figure 1, the performance of the model trained275

with format-only reward remarkably aligns with276

that of the correctness reward setup on both bench-277

marks. This convergence validates our hypothesis278

that in the early stages of GRPO, the model predom-279

inantly focuses on learning the structural patterns280

of mathematical solutions. It suggests that format281

serves as a strong initial signal, allowing the model282

to quickly grasp the essential presentation conven-283

tions of mathematical answers, which accounts for284

approximately 85% of the overall performance im-285

provement in this early phase.286

However, as the training progresses beyond the287

15-step mark, a significant divergence emerges.288

The performance of the format-only model289

plateaus, barely showing any improvement even290

after 100 training steps. This stagnation can be at-291

tributed to the inherent limitation of relying solely292

on format as a reward signal. While format correct-293

ness is a necessary condition for answer accuracy,294

it is not sufficient. Without additional guidance, the295

model lacks the means to refine the content within296

the correct format, leading to an inability to further297

enhance the accuracy of its solutions. This high-298

lights the need for supplementary signals to drive299

continuous improvement.300

4.3 Effectiveness of Format-Length RL301

Our format-length reward demonstrates notable ad-302

vantages in mathematical problem-solving without303

ground truth answers, as shown in Table 1. By304

using format consistency and response length as305

surrogate signals, the approach achieves compet-306

itive performance against the model trained with307

correctness reward.308

Numerically, model trained with format-length309

reward achieves an average score of 56.8, surpass-310

ing the correctness reward’s average score of 53.0311

when using the DeepScaleR training dataset. In par-312

ticular, model trained with format-length reward313

achieved 40 points in AIME2024 using the MATH314

training dataset.This indicates that leveraging struc-315

tural and length-based rewards alone can guide the316

model to generate high-quality solutions compara-317

ble to or better than models trained with correctness318

reward, even without explicit answer supervision.319

Figure 1 shows the average accuracy curves of 320

GRPO training with different rewards. In Appendix 321

Figures S1 and S2, we present the accuracy curves 322

of each benchmark respectively. It can be seen from 323

these figures that model trained with format-length 324

reward maintains stable performance comparable 325

to the correctness reward baseline throughout the 326

entire training process. The consistent curves vali- 327

date the reliability of surrogate signals in driving 328

model improvement without ground truth, high- 329

lighting the approach’s scalability and data effi- 330

ciency for mathematical reasoning tasks. 331

4.4 Response Length Dynamics 332

In Figures 2, we respectively show the curves of av- 333

erage response length during GRPO training with 334

different rewards on the DeepscaleR dataset. The 335

model trained with format-length reward demon- 336

strated a distinctive dual-phase evolution in re- 337

sponse length, which starkly contrasts with the 338

monotonic decrease observed in the models trained 339

with correctness reward and format-only reward. 340

Across all reward configurations, the average re- 341

sponse length decreases during the initial 30 train- 342

ing steps. This indicates that the model prioritizes 343

format adherence during this phase. Driven by the 344

dominant format reward signal, which penalizes 345

any deviation from the required answer schema, it 346

prunes redundant content to meet structural con- 347

straints. 348

As training advances from 30 to 100 steps, the 349

length reward mechanism takes the lead, driving 350

a strategic expansion of response content. Unlike 351

simplistic length penalties that encourage brevity 352

at the cost of depth, GRPO with format-length re- 353

ward fosters an optimal equilibrium. It encourages 354

longer thinking processes and discourages unnec- 355

essary verbosity. This dynamic mirrors the human 356

problem-solving process, where initial efforts fo- 357

cus on establishing structure, followed by iterative 358

refinement of content. During the final stages, the 359

model’s response length increases by an average of 360

14.0%, which correlates with a 10.5% improvement 361

in average accuracy training on DeepScaleR, indi- 362

cating that length serves as a proxy for reasoning 363

complexity rather than redundancy. 364

This dual-phase evolution parallels the human 365

learning process encapsulated by the adage “Read- 366

ing thin before reading thick.” In the first stage, 367

the model, similar to human summarization, com- 368

presses a single reasoning process, while in the 369

second stage, it expands and generalizes, exploring 370
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(a) (b)
Figure 1: Average accuracy on evaluation benchmark training on (a) DeepScaleR and (b) Math-train.

Method Label Free AIME2024 MATH500 AMC2023 AVG.

Qwen-Math-7B – 16.7 50.8 42.2 36.6

DeepSeek-R1-Distill-7B@3k ✗ 10.0* 60.1* 26.2* 32.1*
DeepSeek-R1-Distill-7B@8k ✗ 33.3* 88.1* 68.4* 63.3*
Qwen2.5-Math-7B-Instruct ✗ 16.7 83.2 55.4 51.8

LIMR-7B Li et al. (2025) ✗ 23.3 (32.5*) 74.8 (78.0*) 60.2 (63.8*) 52.8 (58.1*)
SimpleRL-Zero-7B Zeng et al. (2025) ✗ 26.7 (40.0*) 75.4 (80.2*) 57.8 (70.0*) 53.3 (63.4*)
Oat-Zero-7B Liu et al. (2025b) ✗ 40.0 (43.3*) 78.2 (80.0*) 61.5 (62.7*) 60.0 (62.0*)

Correctness (baseline) ✗ 26.7 / 26.7 74.6 / 73.0 57.8 / 56.6 53.0 / 52.1
Format-Only ✓ 26.7 / 26.7 72.6 / 72.8 55.4 / 53.0 51.6 / 50.8
Format-Length ✓ 33.3 / 40.0 76.8 / 73.0 60.2 / 54.2 56.8 / 55.7

Table 1: Accuracy comparison of different models on benchmark datasets (cyan rows denote our trained models). Results are
separated by a slash for DeepscaleR and MATH-train datasets (DeepscaleR first, MATH-train second). Results without * are
evaluated in our environment (details in Appendix B); * indicates results from Liu et al. (2025b) or the original paper.

more diverse and complex reasoning paths, such as371

error correction and branch exploration. In contrast,372

the correctness reward baseline and format-only373

models, as highlighted by the red box in Figure374

2, briefly attempt to explore complex reasoning375

but ultimately revert to the “comfort zone” of com-376

pressing a single reasoning process.

Figure 2: Response length during training. The solid lines in
the figure represent the original results, while the dashed lines
represent the results smoothed with a window size of 5.

377

4.5 Format-Length Rewards’ Impact Across 378

Difficulty Levels 379

To explore how format-length rewards affect LLMs’ 380

mathematical problem-solving, we analyzed the 381

MATH500 dataset, which has official difficulty rat- 382

ings and balanced problem distribution. As de- 383

picted in Figure 3a, by the end of the training pro- 384

cess, the format-length model outperformed the 385

correctness reward baseline across all difficulty lev- 386

els. 387

The relationship between response length and 388

reasoning performance further illuminates the 389

mechanism behind these results. As shown in Fig- 390

ure 3b, both models generated longer responses 391

for higher-difficulty problems. The correctness 392

reward baseline model initially showed a rapid 393

decrease in output length, which later stabilized, 394

while the format-length model demonstrated a mid- 395

stage increase, especially for high-difficulty prob- 396

lems. This increase in length was positively corre- 397

lated with improved accuracy, indicating that the 398
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length reward encourages the model to adopt more399

comprehensive reasoning strategies, particularly400

when tackling complex tasks.401

We delved deeper into the model’s reason-402

ing process by analyzing the frequency of403

reflective words in the generated responses404

(Figure 3c). Reflective words, including those405

related to verification (wait/verify/check),406

retrospection (recall/recheck), branch ex-407

ploration (alternatively), logical turn or408

contrast (however/but/since), and problem409

decomposition and step-by-step reasoning410

(step/step-by-step), represent complex reason-411

ing behaviors. The correctness reward baseline412

model showed an initial increase in reflective413

words, which plateaued in the later stages, aligning414

with its limited performance gains. In contrast, the415

format-length model exhibited a significant rise416

in reflective words, especially for high-difficulty417

problems. This indicates that the length signal418

helps increase the depth of thinking, enabling419

the model to engage more in complex reasoning420

behaviors such as verification, retrospection, and421

problem decomposition. Such enhanced reflective422

thinking allows the model to better explore423

different solution paths and logical turns, thereby424

improving its ability to handle high-difficulty425

problems.426

To further validate these findings, we conducted427

a case study by comparing the outputs of the428

correctness model and format-length model on429

challenging questions (Appendix Table S1). The430

format-length model had learned a "step-by-step431

problem-solving and verification" pattern, which432

confirmed the effectiveness of our format-length433

reward mechanism in balancing response length,434

reasoning depth, and content quality.435

Similar to (Wang et al., 2025b), we observed436

that increasing the frequency of reflective language437

does not necessarily correlate with better model438

performance. Specifically, models can exhibit over-439

reflection, characterized by repeatedly switching440

reasoning paths on complex problems, often lead-441

ing to failed solutions. This over-reflection is some-442

times accompanied by phrase repetition (Appendix443

Table S2), where models may exploit length re-444

wards through redundancy.445

Method AIME2024 MATH500 AMC2023

Qwen-Math-7B 63.3 94.0 92.8
Correctness 73.3 94.4 90.4
Format-Only 66.7 94.0 91.6
Format-Length 66.7 94.4 92.8

Table 2: Pass@64 results across different methods.

5 Discussion 446

5.1 Rethinking Ground Truth Dependency in 447

Mathematical Reasoning 448

The remarkable performance of our ground truth- 449

free RL approach begs the question: how can RL 450

without explicit answer supervision match the effec- 451

tiveness of traditional ground truth-based methods? 452

The answer lies in the latent knowledge already 453

encoded within pre-trained language models. Prior 454

to RL fine-tuning, these models have assimilated 455

vast amounts of knowledge from diverse corpora, 456

enabling them to potentially generate correct an- 457

swers—RL merely serves as a catalyst to activate 458

this dormant capacity. 459

Our pass@N experiments provide compelling 460

evidence for this mechanism. By generating N dis- 461

tinct responses per prompt and assessing the pres- 462

ence of correct answers among them, we observe 463

comparable pass@N scores across four conditions: 464

the pre-trained model, the model fine-tuned by 465

GRPO with correctness, format-only, and format- 466

length rewards. As presented in Table 2, which 467

showcases the pass@64 results, we can see that the 468

performance differences between thes methods are 469

relatively minor. This parity indicates that all RL 470

variants fail to confer new knowledge; instead, they 471

optimize how the model retrieves and structures 472

existing knowledge. 473

In essence, our findings demonstrate that with 474

the right reward design—such as leveraging format 475

and length cues—RL can effectively stimulate the 476

model’s internal reasoning processes. As long as 477

the training mechanism activates the model’s latent 478

cognitive abilities, explicit ground truth answers 479

become an optional component rather than an es- 480

sential requirement for high-performance RL in 481

mathematical reasoning tasks. 482

5.2 Format Learning in RL and SFT 483

Since both traditional RL with ground truth rewards 484

and our format-based RL mainly learn answer for- 485

matting in the first 15 training steps, a key question 486

arises: how does format learning through RL com- 487
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(a) (b) (c)
Figure 3: The curves of (a) accuracy, (b) response length, and (c) reflective keyword frequency for cases of different difficulty
levels in MATH500 during training.

pare with supervised fine-tuning (SFT)? To answer488

this question, we carried out a series of compara-489

tive experiments, comparing three different train-490

ing methods: 1) GRPO training with format-based491

rewards, 2) offline SFT using ground truth chain-of-492

thought (CoT) examples, and 3) online SFT. Online493

SFT serves as a middle ground between offline SFT494

and RL, connecting static supervised learning and495

the dynamic, feedback-driven RL, which helps us496

figure out how different training methods affect497

format learning.498

We used Qwen2.5-Math-7B as the original499

model, which we didn’t train, to provide a base-500

line for comparison. The GRPO(Correctness) was501

used as a reference to measure the performance of502

other methods. All experiments were conducted un-503

der the setting of sampling from the MATH dataset504

with a temperature of 0.6.505

In the GRPO training with format-based rewards506

and online SFT experiments, we adopted an online507

sampling strategy. During training, we constantly508

sampled model outputs and applied GRPO or SFT509

based on whether the format was correct. Specifi-510

cally, online SFT only used format-correct samples511

to update parameters. All experiments used a batch512

size of 128 and ran for 100 training steps.513

As shown in Table 3, the results offer impor-514

tant insights. Under the temperature=0.6 setting,515

the GRPO training with format-based rewards and516

online SFT performed very similarly, achieving517

comparable format accuracy rates and scores on518

the MATH500 benchmark. On the other hand, the519

offline SFT method didn’t perform as well, show-520

ing lower format accuracy and lower MATH500521

scores. These results emphasize the important role522

of online sampling in making RL more effective for523

format learning. RL and online SFT can adjust to524

the quality of real-time outputs, which allows them525

Method Answer Acc Format Acc

Qwen2.5-Math-7B 61.7 87.3
GRPO(Correctness) 74.0 95.0
GRPO(Format-Only) 70.1 96.3
offline SFT 51.3 88.7
online SFT 71.3 95.0

Table 3: Comparison of format accuracy and answer ac-
curacy across different training methods on the MATH500
benchmark.

to optimize answer formatting more efficiently than 526

the static offline SFT. Clearly, the iterative and 527

feedback-driven nature of online training is crucial 528

for quickly improving language models’ ability to 529

learn formats. 530

5.3 Mitigating Repetition and Reward 531

Hacking 532

A potential concern with length-based rewards is 533

the risk of reward hacking, where the model gen- 534

erates repetitive content to increase its length. To 535

address this, we employed the longest repeated sub- 536

string analysis to measure repetition. The longest 537

repeated substring ratio (Figure 4) provides a nor- 538

malized perspective on repetition. At the start of 539

training, both the format-length and correctness 540

models exhibited high levels of repetition, mainly 541

due to incorrect formatting issues, such as stacked 542

instances of ’\\boxed’. However, this problem was 543

resolved after just 15 training steps. The repeti- 544

tion rate then dropped significantly and remained 545

stable throughout the subsequent training process. 546

These findings demonstrate that the format-length 547

reward mechanism effectively balances response 548

length, reasoning depth, and content quality. By 549

integrating format and length signals, our approach 550

not only improves performance on mathematical 551

reasoning tasks but also mitigates the risks asso- 552

ciated with traditional length-based rewards, like 553
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Figure 4: Longest duplicate substring ratio of MATH500
evaluation benchmark during training.

repetition and reward hacking.554

5.4 Design Principles of Format-Length RL555

In the context of language model training, trun-556

cation refers to the situation where the generated557

output exceeds the maximum allowable length (e.g.,558

the context window size of the model) and has to559

be cut off. Truncation is highly undesirable for560

several reasons. Firstly, it leads to incomplete re-561

sponses, which can result in the loss of crucial562

information and logical steps necessary for correct563

mathematical reasoning. In the case of mathemati-564

cal problem-solving, a truncated answer may omit565

key derivations or final conclusions, rendering the566

solution incorrect or meaningless. Secondly, trun-567

cation can disrupt the coherence and flow of the568

reasoning process, making it difficult for the model569

to build on its own arguments and reach a valid con-570

clusion. Prior studies have explored length-based571

rewards, but their applicability to label-free settings572

is limited. For example, Yeo et al. (2025) proposed573

a cosine-shaped length reward coupled with cor-574

rectness, while Chen et al. (2025) introduced a575

linear length reward: R = L/LMax + Rcorrectness.576

We reproduced this linear reward and the result is577

in Appendix Figure S3. However, it led to a rapid578

surge in response length, exceeding the model’s579

context window and causing a 52.9% truncation580

rate by step 54. This high truncation rate severely581

degraded performance, as the truncated outputs582

were often incomplete and lacked the necessary log-583

ical structure for accurate mathematical reasoning.584

This outcome underscores the importance of care-585

fully designing length rewards to balance explo-586

ration and efficiency, ensuring that the model gen- 587

erates responses of optimal length without incur- 588

ring excessive truncation. In contrast, our Format- 589

Length approach maintains a low truncation rate 590

while achieving superior accuracy. By incorporat- 591

ing a length reward that penalizes excessive length 592

before reaching the context limit, our method ef- 593

fectively guides the model to generate concise yet 594

comprehensive responses. This not only prevents 595

reward hacking, where the model might generate 596

overly long or repetitive content to maximize re- 597

wards, but also promotes high-quality reasoning, 598

as the model is encouraged to find the most effi- 599

cient way to express correct mathematical solutions 600

within the given length constraints. 601

6 Conclusion 602

In this study, we found that format and length 603

can serve as effective surrogate signals for train- 604

ing LLMs in mathematical problem-solving, elim- 605

inating the need for ground truth answers. Dur- 606

ing early RL training, LLMs focus on learning 607

solution formats; a format-based reward function 608

alone yields performance gains similar to standard 609

GRPO. Integrating length-based rewards enables 610

the GRPO approach with format-length signals to 611

outperform traditional methods relying on ground 612

truth in some cases. This finding challenges the 613

notion that ground truth answers are essential for 614

LLM training. The format-length signals offer a 615

practical, efficient alternative, reducing data col- 616

lection costs. Applicable across mathematical and 617

logical tasks, this approach opens new avenues for 618

LLM training. Future work will optimize signal 619

utilization and expand application to enhance LLM 620

training efficiency and generalization. 621

7 Limitations 622

There are aspects of our study that merit further 623

exploration. The evaluation of format and length 624

as surrogate signals was predominantly focused on 625

mathematical problem-solving, leaving open the 626

question of their effectiveness in other complex 627

reasoning domains, such as scientific hypothesis 628

testing or advanced programming challenges. Ad- 629

ditionally, our experiments were conducted with 630

specific LLM architectures and training configura- 631

tions, and the performance of this approach may 632

differ when applied to models with varying pre- 633

training paradigms and scale. 634
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A Introducion of PPO and GRPO738

A.1 Proximal Policy Optimization739

PPO is a widely-used and highly effective algo-740

rithm in the field of RL. At its core, PPO aims to741

optimize the policy of an agent to maximize the ex-742

pected cumulative reward over time. The algorithm743

is based on the policy gradient method, which up-744

dates the policy by computing the gradient of the745

expected reward with respect to the policy param-746

eters. The key idea behind PPO is to balance the747

trade-off between exploration and exploitation dur-748

ing the policy update process. It does this by intro-749

ducing a clipped surrogate objective function. Let750

πθ be the policy parameterized by θ, and πθold be751

the old policy. Given a set of trajectories collected752

from the environment, the objective of PPO is to753

maximize the following clipped objective function:754

Eπθold
[min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)]

(5)755

where756

rt(θ) =
πθ(at|st)
πθold(at|st)

(6)757

is the probability ratio of the new policy πθ to the758

old policy πθold for taking action at in state st, At759

is the advantage function that estimates how much760

better an action is compared to the average action761

in state st, and ϵ is a hyperparameter that controls762

the clipping range. The clipping operation ensures763

that the policy update is not too drastic, preventing764

the policy from diverging significantly from the old765

policy in a single update step.766

To compute the advantage function At, PPO typ-767

ically relies on value function estimation combined768

with Generalized Advantage Estimation (GAE).769

The value function V (s) parameterized by ϕ, pre-770

dicts the expected cumulative reward from state s.771

It is trained via temporal difference (TD) learning772

to minimize the squared error:773

LValue(ϕ) = E
[
(Vϕ(st)− (Rt + γVϕ(st+1)))

2
]
,

(7)774

where Rt is the reward given by a reward model or775

a reward function and γ is the discount factor. The776

advantage At is then calculated using GAE, which777

generalizes multi-step TD errors with a tunable778

parameter λ ∈ [0, 1] to balance bias and variance:779

A
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδt+l,

δt = Rt + γV (st+1)− V (st).

(8)780

Here, λ = 0 reduces to single-step TD error, while 781

λ = 1 recovers Monte Carlo advantage estimation. 782

By integrating GAE, PPO efficiently utilizes trajec- 783

tory data while maintaining stable policy updates. 784

A.2 Group Relative Policy Optimization 785

GRPO is an efficient reinforcement learning algo- 786

rithm that improves upon PPO by eliminating the 787

need for a separate value function. GRPO estimates 788

advantages through group-relative normalization: 789

for a given input query q, the behavior policy πθold 790

samples G responses {oi}Gi=1, then calculates each 791

response’s advantage as: 792

AGRPO
t (oi) =

R(oi)− mean({R(oj)}Gj=1)

std({R(oj)}Gj=1)
, (9) 793

where R(oi) is the reward of response oi. 794

B Evaluation Details 795

We used vllm for inference with greedy decoding 796

(temperature = 0) to ensure reproducibility. Since 797

VLLM’s batched inference produces different out- 798

puts for the same input under different batch sizes, 799

we set the validation batch size to 128 and evaluate 800

each dataset independently to ensure consistency 801

in evaluation. Because we used the Qwen2.5-Math 802

base models with a context length of 4k, we set the 803

generation budget for all compared baselines to 3k. 804

C Template 805

Qwen-Math Template

<|im_start|>system
Please reason step by step, and put your fi-
nal answer within \boxed{}. <|im_end|>
<|im_start|>user
{question}
<|im_end|>
<|im_start|>assistant

806
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Deepseek-R1 Template

A conversation between User and Assistant.
The User asks a question, and the Assis-
tant solves it. The Assistant first thinks
about the reasoning process in the mind
and then provides the User with the answer.
The reasoning process is enclosed within
<think> </think> and the answer is en-
closed within <answer> </answer> tags,
respectively, i.e., <think> reasoning pro-
cess here </think> <answer> answer here
</answer>.
User: {question}
Assistant:

807

D Detailed Form of Format Reward808

DeepSeek-AI et al. (2025) introduced a format re-809

ward to assess whether the model’s output aligns810

with the Deepseek-R1 template(Appendix C) for-811

mat (i.e., writing the reasoning process within812

<think> </think> tags and placing the answer813

within <answer></answer> tags). Our format re-814

ward is designed based on Qwen-Math template(in815

Appendix C), which evaluates whether the model’s816

output contains \boxed{} and checks whether the817

content inside the \boxed{} is valid mathematical818

content. A specific example is shown below:819

Right case:820

\boxed{1}821

\boxed{\frac{3}{2}}822

\boxed{x^2 + 12y =1}823

\boxed{(0,\infty)}824

Wrong case:825

\boxed{}826

\boxed{x +* 2}827

\boxed{(0,1 }828

E Performance Curves of Different829

Reward Trainings on Benchmarks830

See Figure S1 and S2.831

F Comparison of Experimental Results832

between Linearlength Reward and833

Format-Length Reward834

See Figure S3.835

G Case Study836

See Table S1 and S2.837
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Table S1: Model output on complex mathematical problems after training on format-length reward and correctness reward.
The red boxes in the figure represent step-by-step problem-solving behavior, while the blue boxes indicate verification behavior.
Clearly, both types of behavior occur far more frequently in the format-length model than in the correctness model. As for the
results, the former produces correct answers, whereas the latter produces incorrect ones.

PROMPT: system\nPlease reason step by step, and put your final answer within \\boxed{}. \n user \n
You have seven bags of gold coins. Each bag has the same number of gold coins. One day, you find a
bag of 53 coins. You decide to redistribute the number of coins you have so that all eight bags you
hold have the same number of coins. You successfully manage to redistribute all the coins, and you
also note that you have more than 200 coins. What is the smallest number of coins you could have had
before finding the bag of 53 coins?\nassistant\n

RESPONSE_FORMAT-LENGTH: To solve this problem, we need to determine the smallest number
of coins in each of the original seven bags such that when we add the 53 coins from the new bag,
the total number of coins can be evenly distributed among eight bags, and the total number of coins
is more than 200.\n\nLet’s break down the problem step by step :\n\n 1. ** Define Variables :**\n
- Let x be the number of coins in each of the original seven bags.\n - The total number of coins
in the original seven bags is 7x.\n - After finding the new bag with 53 coins, the total num-
ber of coins becomes 7x + 53.\n\n 2. **Redistribution Condition:**\n - We need to redistribute
these coins so that each of the eight bags has the same number of coins.\n - Therefore , 7x + 53
must be divisible by 8.\n\n 3. **Mathematical Formulation:**\n - We need to find the smallest x
such that 7x + 53\\equiv0\\pmod8.\n - This can be rewritten as 7x\\equiv − 53\\pmod8.\n
- Since −53\\equiv3\\pmod8 (because −53 + 56 = 3 and 56 is a multiple of 8), we have
7x\\equiv3\\pmod8.\n\n ······ 6. **Calculate the Total Number of Coins:**\n - If x = 5, the
total number of coins in the original seven bags is 7\\times5 = 35.\n - Adding the 53 coins from
the new bag, the total number of coins is 35 + 53 = 88.\n\n 7. ** Check the Condition:**\n - We
need to ensure that the total number of coins is more than 200.\n - Since 88 is not more than 200,
we need to find the next smallest x that satisfies x\\equiv5\\pmod8.\n\n 8. **Next Smallest x:**\n
- The next smallest x is x = 5 + 8 = 13.\n - If x = 13, the total number of coins in the original
seven bags is 7\\times13 = 91.\n - Adding the 53 coins from the new bag, the total number of coins
is 91 + 53 = 144.\n\n 9. ** Continue Checking :**\n - Since 144 is still not more than 200, we
continue to the next smallest x.\n - The next smallest x is x = 13 + 8 = 21.\n - If x = 21, the total
number of coins in the original seven bags is 7\\times21 = 147.\n - Adding the 53 coins from the
new bag, the total number of coins is 147 + 53 = 200.\n\n 10. ** Final Check :**\n - Since 200 is
not more than 200, we need to find the next smallest x.\n - The next smallest x is x = 21 + 8 = 29.\n
- If x = 29, the total number of coins in the original seven bags is 7\\times29 = 203.\n - Adding the
53 coins from the new bag, the total number of coins is 203 + 53 = 256.\n\n 11. **Conclusion:**\n -
The smallest number of coins in each of the original seven bags that satisfies all conditions is x = 29.\n
- Therefore , the smallest number of coins you could have had before finding the bag of 53 coins is
7\\times29 = 203.\n\nThus, the final answer is:\n\\[\n\\boxed{203} \n\\]. Ë

RESPONSE_CORRECTNESS: To solve this problem, let’s denote the number of coins in each of the
original seven bags as x. Therefore , the total number of coins you originally had is 7x. After finding
the bag of 53 coins, you now have 7x+53 coins. You redistribute these coins into eight bags, so each bag
now has frac7x+ 538 coins. Since the number of coins in each bag must be an integer, 7x+53 must
be divisible by 8. Additionally, we know that the total number of coins after redistribution is more than
200, so 7x+ 53 > 200. This simplifies to 7x > 147, or x > 21. We need to find the smallest integer x
such that 7x+53 is divisible by 8 and x > 21. Let’s iterate through the possible values of x starting from
22 and check the conditions.\n“‘python\n Iterate through possible values of x starting from 22\nfor x
in range(22, 1000):\n total_coins = 7 * x + 53\n if total_coins % 8 == 0:\n smallest_number_of_coins
= 7 * x\n break\n\nprint(smallest_number_of_coins)\n“‘\n“‘output\n183\n“‘\nThe smallest number
of coins you could have had before finding the bag of 53 coins is boxed{183}. é
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Table S2: Over-reflection in sentence repetition.The red boxes in the figure indicate reflective words, while the blue boxes
represent repeated phrases (with the numbers indicating the frequency of repetition). It can be observed that reflective words
appear within the repeated phrases.

PROMPT: system\nPlease reason step by step, and put your final answer within \\boxed{}.\n user
\nDenali and Nate work for a dog walking business and are paid for each dog they walk. Denali is
responsible for 16 dogs and Nate is responsible for 12 dogs. Under the company’s new policy, they
will be assigned or unassigned new dogs in groups of x dogs. The ratio of Denali’s pay to Nate’s pay
would be the same if Denali started walking 4x more dogs and Nate stayed at 12 dogs or if x of Nate’s
dogs were reassigned to Denali. Find x if x\\neq0.\nassistant\n,

RESPONSE: Let’s denote the payment per dog as \\( p \\). The initial ratio of Denali’s pay to Nate’s
pay is \\(\\frac16p12p = \\frac43\\).\n\nIf Denali starts walking \\(4x\\) more dogs and Nate
stays at 12 dogs, the new ratio of their pays would be \\(\\frac(16 + 4x)p12p = \\frac16 + 4x12\\).
Since this ratio is equal to \\(\\frac43\\), we can set up the equation:\n\\[\n\\frac16 + 4x12 =
\\frac43.\n\\]\nCross-multiplying gives:\n\\[\n3(16 + 4x) = 4 \\cdot 12,\n\\]\n\\[\n48 + 12x =
48,\n\\]\n\\[\n12x = 0,\n\\]\n\\[\nx = 0.\n\\]\n Since \\(x \\neq 0\\), we need to consider the
second scenario where \\(x\\) of Nate’s dogs are reassigned to Denali. In this case, the new number
of dogs Denali is responsible for is \\(16 + x\\) and the new number of dogs Nate is responsible for
is \\(12 - x\\). The new ratio of their pays would be \\(\\frac(16 + x)p(12 - x)p = \\frac16 + x12 -
x\\). Since this ratio is equal to \\(\\frac43\\), we can set up the equation:\n\\[\n\\frac16 + x12
- x = \\frac43.\n\\]\nCross-multiplying gives:\n\\[\n3(16 + x) = 4(12 - x),\n\\]\n\\[\n48 + 3x
= 48 - 4x,\n\\]\n\\[\n7x = 0,\n\\]\n\\[\nx = 0.\n\\]\nAgain, since \\(x \\neq 0\\), we need
to recheck the problem constraints. The only way the ratio can remain the same is if the number of
dogs reassigned is such that the ratio of the new number of dogs is the same as the original ratio. Let’s
solve it again by checking the constraints properly.\n\nThe correct approach is to solve the equation
\\(\\frac16 + x12 - x = \\frac43\\) properly.

Let’s solve it step by step again.\n\n\\[\n3(16 + x) = 4(12 - x), \n\\]\n\\[\n48 + 3x =
48 - 4x,\n\\]\n\\[\n7x = 0,\n\\]\n\\[\nx = 0.\n\\]\n Since \\(x \\neq 0\\), we need to
consider the possibility that the problem might have a different interpretation or constraint. Let’s
recheck the problem statement and constraints. The only way the ratio can remain the same is
if the number of dogs reassigned is such that the ratio of the new number of dogs is the same as
the original ratio. Let’s solve it again by checking the constraints properly.

Repeat1: Let’s solve it step by step again.\n\n\\[\n3(16 + x) = 4(12 - x), \n\\]\n\\[\n48 +
3x = 48 - 4x,\n\\]\n\\[\n7x = 0,\n\\]\n\\[\nx = 0.\n\\]\n Since \\(x \\neq 0\\), we need
to consider the possibility that the problem might have a different interpretation or constraint.
Let’s recheck the problem statement and constraints. The only way the ratio can remain the
same is if the number of dogs reassigned is such that the ratio of the new number of dogs is the
same as the original ratio. Let’s solve it again by checking the constraints properly.

Repeat2: Let’s solve it step by step again.\n\n\\[\n3(16 + x) = 4(12 - x), \n\\]\n\\[\n48 +
3x = 48 - 4x,\n\\]\n\\[\n7x = 0,\n\\]\n\\[\nx = 0.\n\\]\n Since \\(x \\neq 0\\), we need
to consider the possibility that the problem might have a different interpretation or constraint.
Let’s recheck the problem statement and constraints. The only way the ratio can remain the
same is if the number of dogs reassigned is such that the ratio of the new number of dogs is the
same as the original ratio. Let’s solve it again by checking the constraints properly.

······
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(a) (b) (c)
Figure S1: Accuracy curves on (a) MATH500, (b) AIME2024, and (c) AMC2023 benchmarks training on the DeepScaleR-17k.

(a) (b) (c)
Figure S2: Accuracy curves on (a) MATH500, (b) AIME2024, and (c) AMC2023 benchmarks training on Math-train dataset.

(a) (b) (c)
Figure S3: (a) Response length, (b) clip ratio, and (c) average accuracy of benchmark during training.

5


	Introduction
	Related Work
	Method: Format and Length as Surrogate Signals for Answer 
	Format Reward
	Length Reward

	Experiments
	Experimental Setup
	Impact of Format Reward
	Effectiveness of Format-Length RL
	Response Length Dynamics
	Format-Length Rewards' Impact Across Difficulty Levels

	Discussion
	Rethinking Ground Truth Dependency in Mathematical Reasoning
	Format Learning in RL and SFT
	Mitigating Repetition and Reward Hacking
	Design Principles of Format-Length RL

	Conclusion
	Limitations
	Introducion of PPO and GRPO
	Proximal Policy Optimization
	Group Relative Policy Optimization

	Evaluation Details
	Template
	Detailed Form of Format Reward
	Performance Curves of Different Reward Trainings on Benchmarks
	Comparison of Experimental Results between Linearlength Reward and Format-Length Reward
	Case Study

