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Abstract

Large Language Models have achieved remark-
able success in natural language processing
tasks, with Reinforcement Learning playing
a key role in adapting them to specific applica-
tions. However, obtaining ground truth answers
for training LLMs in mathematical problem-
solving is often challenging, costly, and some-
times unfeasible. This research delves into
the utilization of format and length as surro-
gate signals to train LLMs for mathematical
problem-solving, bypassing the need for tradi-
tional ground truth answers. Our study shows
that a reward function centered on format cor-
rectness alone can yield performance improve-
ments comparable to the standard GRPO al-
gorithm in this phase. Recognizing the limita-
tions of format-only rewards, we incorporate
length-based rewards. The resulting GRPO ap-
proach, leveraging format-length surrogate sig-
nals, not only matches but surpasses the perfor-
mance of the standard GRPO algorithm relying
on ground truth answers in certain scenarios,
achieving 40.0% accuracy on AIME2024 with
a 7B base model. Through systematic explo-
ration and experimentation, this research offers
a practical solution for training LLMs to solve
mathematical problems and reducing the depen-
dence on extensive ground truth data collection.

1 Introduction

In the dynamic landscape of artificial intelligence,
Large Language Models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2023; Yang et al., 2023;
Wang et al., 2025a; Grattafiori et al., 2024) have
emerged as a transformative force, with mod-
els like GPT-01 (Jaech et al., 2024), DeepSeek-
R1 (DeepSeek-Al et al., 2025), and Qwen3 (Yang
et al., 2025) leading the charge. Pre-trained on
massive text corpora, these models have demon-
strated remarkable proficiency in diverse natural
language processing tasks, ranging from text gener-
ation and question-answering to language transla-
tion and code writing. Their success largely stems

from unsupervised pre-training, which empowers
LLMs to capture complex semantic and syntactic
patterns, enabling effective generalization across
various scenarios.

Reinforcement Learning (RL) plays a crucial
role in adapting pre-trained LLMs to specific down-
stream tasks. Among RL techniques, Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017)
and its advanced variant, Group Relative Policy
Optimization (GRPO) (Shao et al., 2024), are com-
monly employed to optimize LLMs. These meth-
ods typically rely on ground truth answers to de-
fine rewards, serving as explicit feedback for the
model to iteratively refine its solutions. However,
obtaining accurate ground truth answers, partic-
ularly in the domain of mathematical problem-
solving, presents significant challenges. It often
demands substantial human effort, time, and re-
sources, and in certain cases, such answers may
be scarce or even nonexistent. This limitation has
spurred the exploration of alternative training strate-
gies to enable effective RL without relying on ex-
plicit ground truth information.

Motivated by these challenges, our research en-
deavors to explore the possibility of training LLMs
for mathematical problem-solving using alternative
signals instead of ground truth answers. Through
systematic experiments and in-depth analysis, we
have made several significant discoveries. During
the initial 15 steps of RL training, the model pre-
dominantly focuses on learning the format of math-
ematical solutions. This early phase is crucial, con-
tributing approximately 85% of the overall perfor-
mance improvement during the entire RL training
process. Notably, during this period, we observed a
significant reduction in response length, indicating
that the model rapidly eliminates redundant infor-
mation and converges towards a more structured
and efficient representation. Experiments revealed
that a reward function solely considering format
correctness achieved the same performance gains



as the standard GRPO algorithm, underscoring the
potency of format correctness as a key signal in the
early learning stage.

Nevertheless, relying solely on format-based re-
wards has limitations, causing performance im-
provement to stall after the initial gains. To over-
come this hurdle, we integrated a length-based re-
ward into the format-based reward function. Strik-
ingly, our GRPO approach leveraging format-
length surrogate signals not only matched but in
some cases outperformed the standard GRPO algo-
rithm that relies on ground truth answer informa-
tion. This is because format and length together
act as powerful “surrogate signals” highly corre-
lated with answer correctness. Format correctness
provides a necessary optimization target, while the
length-based reward penalizes overly long or short
responses, prompting the model to refine its content
by eliminating incorrect or redundant derivations.

Through these findings, our work effectively
challenges the necessity of ground truth answers
for RL in mathematical problem solving, provides
a detailed analysis of GRPO training dynamics to
reveal the importance of the early format-learning
phase and complementary role of length-based re-
wards, and opens up new possibilities for training
LLMs in scenarios where ground truth answers are
scarce or unavailable, offering an efficient approach
applicable to mathematical reasoning tasks.

2 Related Work

RL has been proven effective in enhancing LLM
performance. PPO (Schulman et al., 2017) and
GRPO (Shao et al., 2024) are widely used in RL
frameworks for LLLMs, with detailed introductions
provided in Appendix A. Recent research uses
scaled-up RL training to enable LL.Ms to explore
reasoning paths for complex problems. For exam-
ple, DeepSeek-Al et al. (2025) achieved excellent
results in math and coding tasks through large-scale
RL on an unsupervised base model, without relying
on pre-trained reward models or MCTS. Team et al.
(2025) enhances general reasoning via RL, focus-
ing on multimodal reasoning and controlling think-
ing length. Format reward in RL. DeepSeek-Al
et al. (2025) uses format rewards to structure model
outputs. Liu et al. (2025a) noted format rewards
dominate early training. Our study isolates the in-
fluence of answer rewards and designs a format for
math reasoning tasks. Experiments show using our
format in early RL training matches performance

of answer reward training. Length Control in RL.
DeepSeek-Al et al. (2025) found response length
and evaluation metrics increase with RL training
steps until an "Aha moment". Other studies ex-
plore length reward functions’ impacts. Yeo et al.
(2025) observed response lengths decline due to
model size and KL divergence penalties. Chen et al.
(2025) argued direct length extension training may
harm performance. In contrast, our length reward
penalizes overly long responses, guiding concise
outputs. Experiments show combining length and
format rewards outperforms answer rewards.

3 Method: Format and Length as
Surrogate Signals for Answer

To mitigate the issue of label scarcity in real-world
environments, we explore the potential of format
and length as powerful "surrogate signals" highly
correlated with answer correctness. Format cor-
rectness in mathematical problem-solving offers
a necessary but insufficient condition for answer
accuracy, providing a clear structural optimization
target for the model. Meanwhile, the length of the
response serves as an indicator of content efficiency
and logical compactness, reflecting the quality of
the solution’s reasoning process. Based on these in-
sights, we develop a novel learning framework that
integrates format and length rewards into the GRPO
algorithm. This framework, centered around opti-
mizing LL.Ms without relying on explicit ground
truth answers, aims to enable effective training by
leveraging these surrogate signals to approximate
the optimization direction of ground truth answer
rewards.

3.1 Format Reward

In the context of mathematical problem-solving,
a correct format is crucial for ensuring the clarity
and comprehensibility of the solution. Our for-
mat reward mechanism is designed to encourage
the model to generate responses that adhere to the
standard presentation conventions of mathemati-
cal solutions (details in Appendix D). The format
reward Ry is defined as a binary function:

1 if the format is right.
f = (1)
0 else.

This reward serves as a fundamental signal for the
model to learn the structural aspects of mathemati-
cal problem-solving in the early stages of training.



3.2 Length Reward

To complement the format reward and further refine
the content of the model’s responses, we introduce
a length reward function. The length of a response
is a critical factor that reflects the efficiency and
logical compactness of the solution. An overly
short response may lack essential reasoning steps,
while an excessively long response might contain
redundant or incorrect derivations.

Our length reward function is designed to strike a
balance between promoting comprehensive reason-
ing and preventing overly long responses that could
exceed the model’s context limits. It is formulated
as a piecewise function:

2
1-(1-2)% 0<z<p,
R = 2 ()
1—2(%5) L p<a<l,
Let I
T = : (3)
Lmax

where L is the length of the current response and
Lmax is the maximum context length. Let p € (0, 1)
be a tunable parameter that controls the turning
point of the piecewise function, with a default
value of 0.5. This piecewise function is contin-
uous and differentiable at x = p, encouraging re-
sponse lengths that approach the turning point p.
The reward increases smoothly as z grows from 0
to p, reaches a maximum at x = p, and then de-
creases for x > p, thereby penalizing overly long
responses.

A positive length reward can only be obtained
when the format is right. Examples with format
errors are considered severe—no matter how ideal
their length may be, they can receive at most 0.
Therefore, the final format-length reward can be
expressed as:

B {Rf + R if the format is right.

min(0, R + R;) else.

C))
By combining the format reward and length reward,
we provides an "surrogate signals" for the model’s
reinforcement learning, helping to alleviate the is-

sue of label scarcity in real-world environments.

4 Experiments

In this section, we present a comprehensive set of
experiments designed to demonstrate the practical
viability of using format and length as surrogate

signals for answer accuracy in GRPO for mathe-
matical reasoning tasks.

4.1 Experimental Setup

Reward configurations: We designed a series of
experiments with distinct reward configurations to
assess the effectiveness of our proposed approach.
Correctness: This configuration is served as our
baseline, which uses the exact match with ground-
truth answers as the reward criterion. When the
model’s output precisely aligns with the correct
answer, it is assigned a reward score of 1; otherwise,
it receives 0. We utilized the MARIO _EVAL !
library to accurately extract answer content from
the model’s output, ensuring a reliable evaluation
standard. Format-Only: The reward function is as
shown in Eq.(1), which is determined solely by the
format of the model’s output. After normalizing the
content, we employ SymPy 2, a powerful symbolic
mathematics library, to validate its mathematical
format. Format-Length: The reward function is
as shown in Eq.(4), where the format reward is the
same as that of Format-Only RL.

Datasets: We trained models on two mathemati-
cal reasoning datasets: DeepScaleR> and MATH-
train. DeepScaleR (17,000 samples) integrates
problems from the MATH (Hendrycks et al., 2021),
AMC (< 2023), AIME (1984-2023), and oth-
ers, with deduplication and decontamination ap-
plied. MATH-train (7,500 samples) is the MATH
dataset’s training split.

Evaluation: We evaluated the model on three
datasets: MATHS500, AIME2024, and AMC2023
with greedy decoding. In addition to analyzing
each dataset individually, we also calculated the av-
erage scores across all benchmarks to enable direct
comparison.

Implementation details: We trained the Qwen?2.5-
Math-7B base model using the GRPO algorithm
under the ver1* framework. For each case in train-
ing and evaluation, we used Qwen-Math template
(as shown in Appendix C). During training, we
used the following hyperparameters: a learning
rate of 1e-6, a batch size of 128, a temperature of
0.6, 8 responses per prompt, a maximum response
length of 3072, and a KL coefficient of 0.001. All
training was performed on a machine with 8 x H20

"https://github.com/MARIO-Math-Reasoning/
MARIO_EVAL

2https: //github.com/sympy/sympy

3https: //github.com/agentica-project/rllm

*https://github.com/volcengine/verl
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GPUs, and a single training run took 6 hours.

4.2 Impact of Format Reward

The format-only experiment offers critical insights
into the role of format correctness in the training
process. During the initial 15 steps, as depicted
in Figure 1, the performance of the model trained
with format-only reward remarkably aligns with
that of the correctness reward setup on both bench-
marks. This convergence validates our hypothesis
that in the early stages of GRPO, the model predom-
inantly focuses on learning the structural patterns
of mathematical solutions. It suggests that format
serves as a strong initial signal, allowing the model
to quickly grasp the essential presentation conven-
tions of mathematical answers, which accounts for
approximately 85% of the overall performance im-
provement in this early phase.

However, as the training progresses beyond the
15-step mark, a significant divergence emerges.
The performance of the format-only model
plateaus, barely showing any improvement even
after 100 training steps. This stagnation can be at-
tributed to the inherent limitation of relying solely
on format as a reward signal. While format correct-
ness is a necessary condition for answer accuracy,
it is not sufficient. Without additional guidance, the
model lacks the means to refine the content within
the correct format, leading to an inability to further
enhance the accuracy of its solutions. This high-
lights the need for supplementary signals to drive
continuous improvement.

4.3 Effectiveness of Format-Length RL

Our format-length reward demonstrates notable ad-
vantages in mathematical problem-solving without
ground truth answers, as shown in Table 1. By
using format consistency and response length as
surrogate signals, the approach achieves compet-
itive performance against the model trained with
correctness reward.

Numerically, model trained with format-length
reward achieves an average score of 56.8, surpass-
ing the correctness reward’s average score of 53.0
when using the DeepScaleR training dataset. In par-
ticular, model trained with format-length reward
achieved 40 points in AIME2024 using the MATH
training dataset.This indicates that leveraging struc-
tural and length-based rewards alone can guide the
model to generate high-quality solutions compara-
ble to or better than models trained with correctness
reward, even without explicit answer supervision.

Figure 1 shows the average accuracy curves of
GRPO training with different rewards. In Appendix
Figures S1 and S2, we present the accuracy curves
of each benchmark respectively. It can be seen from
these figures that model trained with format-length
reward maintains stable performance comparable
to the correctness reward baseline throughout the
entire training process. The consistent curves vali-
date the reliability of surrogate signals in driving
model improvement without ground truth, high-
lighting the approach’s scalability and data effi-
ciency for mathematical reasoning tasks.

4.4 Response Length Dynamics

In Figures 2, we respectively show the curves of av-
erage response length during GRPO training with
different rewards on the DeepscaleR dataset. The
model trained with format-length reward demon-
strated a distinctive dual-phase evolution in re-
sponse length, which starkly contrasts with the
monotonic decrease observed in the models trained
with correctness reward and format-only reward.

Across all reward configurations, the average re-
sponse length decreases during the initial 30 train-
ing steps. This indicates that the model prioritizes
format adherence during this phase. Driven by the
dominant format reward signal, which penalizes
any deviation from the required answer schema, it
prunes redundant content to meet structural con-
straints.

As training advances from 30 to 100 steps, the
length reward mechanism takes the lead, driving
a strategic expansion of response content. Unlike
simplistic length penalties that encourage brevity
at the cost of depth, GRPO with format-length re-
ward fosters an optimal equilibrium. It encourages
longer thinking processes and discourages unnec-
essary verbosity. This dynamic mirrors the human
problem-solving process, where initial efforts fo-
cus on establishing structure, followed by iterative
refinement of content. During the final stages, the
model’s response length increases by an average of
14.0%, which correlates with a 10.5% improvement
in average accuracy training on DeepScaleR, indi-
cating that length serves as a proxy for reasoning
complexity rather than redundancy.

This dual-phase evolution parallels the human
learning process encapsulated by the adage “Read-
ing thin before reading thick.” In the first stage,
the model, similar to human summarization, com-
presses a single reasoning process, while in the
second stage, it expands and generalizes, exploring
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Figure 1: Average accuracy on evaluation benchmark training on (a) DeepScaleR and (b) Math-train.

Method Label Free AIME2024  MATHS00 AMC2023 AVG.
Qwen-Math-7B - 16.7 50.8 422 36.6
DeepSeek-R1-Distill-7B @3k X 10.0* 60.1* 26.2%* 32.1%
DeepSeek-R1-Distill-7B @8k X 33.3* 88.1* 68.4%* 63.3*
Qwen2.5-Math-7B-Instruct X 16.7 83.2 554 51.8
LIMR-7B Li et al. (2025) X 23.3 (32.5%) 74.8(78.0%) 60.2 (63.8%) 52.8 (58.1%)
SimpleRL-Zero-7B Zeng et al. (2025) X 26.7 (40.0%) 75.4(80.2%¥) 57.8 (70.0%) 53.3 (63.4%)
Oat-Zero-7B Liu et al. (2025b) X 40.0 (43.3*%)  78.2(80.0%) 61.5(62.7%*) 60.0 (62.0%)
Correctness (baseline) X 26.7/26.7 74.6 /73.0 57.8/56.6 53.0/52.1
Format-Only v 26.7/26.7 72.6/72.8 55.4/53.0 51.6/50.8
Format-Length v 33.3/40.0 76.8/73.0 60.2/54.2 56.8 / 55.7

Table 1: Accuracy comparison of different models on benchmark datasets (cyan rows denote our trained models). Results are
separated by a slash for DeepscaleR and MATH-train datasets (DeepscaleR first, MATH-train second). Results without * are
evaluated in our environment (details in Appendix B); * indicates results from Liu et al. (2025b) or the original paper.

more diverse and complex reasoning paths, such as
error correction and branch exploration. In contrast,
the correctness reward baseline and format-only
models, as highlighted by the red box in Figure
2, briefly attempt to explore complex reasoning
but ultimately revert to the “comfort zone” of com-
pressing a single reasoning process.
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Figure 2: Response length during training. The solid lines in
the figure represent the original results, while the dashed lines
represent the results smoothed with a window size of 5.

4.5 Format-Length Rewards’ Impact Across
Difficulty Levels

To explore how format-length rewards affect LLMs’
mathematical problem-solving, we analyzed the
MATHS500 dataset, which has official difficulty rat-
ings and balanced problem distribution. As de-
picted in Figure 3a, by the end of the training pro-
cess, the format-length model outperformed the
correctness reward baseline across all difficulty lev-
els.

The relationship between response length and
reasoning performance further illuminates the
mechanism behind these results. As shown in Fig-
ure 3b, both models generated longer responses
for higher-difficulty problems. The correctness
reward baseline model initially showed a rapid
decrease in output length, which later stabilized,
while the format-length model demonstrated a mid-
stage increase, especially for high-difficulty prob-
lems. This increase in length was positively corre-
lated with improved accuracy, indicating that the



length reward encourages the model to adopt more
comprehensive reasoning strategies, particularly
when tackling complex tasks.

We delved deeper into the model’s reason-
ing process by analyzing the frequency of
reflective words in the generated responses
(Figure 3c). Reflective words, including those
related to verification (wait/verify/check),
retrospection (recall/recheck), branch ex-
ploration (alternatively), logical turn or
contrast (however/but/since), and problem
decomposition and step-by-step reasoning
(step/step-by-step), represent complex reason-
ing behaviors. The correctness reward baseline
model showed an initial increase in reflective
words, which plateaued in the later stages, aligning
with its limited performance gains. In contrast, the
format-length model exhibited a significant rise
in reflective words, especially for high-difficulty
problems. This indicates that the length signal
helps increase the depth of thinking, enabling
the model to engage more in complex reasoning
behaviors such as verification, retrospection, and
problem decomposition. Such enhanced reflective
thinking allows the model to better explore
different solution paths and logical turns, thereby
improving its ability to handle high-difficulty
problems.

To further validate these findings, we conducted
a case study by comparing the outputs of the
correctness model and format-length model on
challenging questions (Appendix Table S1). The
format-length model had learned a "step-by-step
problem-solving and verification" pattern, which
confirmed the effectiveness of our format-length
reward mechanism in balancing response length,
reasoning depth, and content quality.

Similar to (Wang et al., 2025b), we observed
that increasing the frequency of reflective language
does not necessarily correlate with better model
performance. Specifically, models can exhibit over-
reflection, characterized by repeatedly switching
reasoning paths on complex problems, often lead-
ing to failed solutions. This over-reflection is some-
times accompanied by phrase repetition (Appendix
Table S2), where models may exploit length re-
wards through redundancy.

Method AIME2024 MATH500 AMC2023
Qwen-Math-7B 63.3 94.0 92.8
Correctness 73.3 94.4 90.4
Format-Only 66.7 94.0 91.6
Format-Length 66.7 94.4 92.8

Table 2: Pass@64 results across different methods.

5 Discussion

5.1 Rethinking Ground Truth Dependency in
Mathematical Reasoning

The remarkable performance of our ground truth-
free RL approach begs the question: how can RL
without explicit answer supervision match the effec-
tiveness of traditional ground truth-based methods?
The answer lies in the latent knowledge already
encoded within pre-trained language models. Prior
to RL fine-tuning, these models have assimilated
vast amounts of knowledge from diverse corpora,
enabling them to potentially generate correct an-
swers—RL merely serves as a catalyst to activate
this dormant capacity.

Our pass@N experiments provide compelling
evidence for this mechanism. By generating N dis-
tinct responses per prompt and assessing the pres-
ence of correct answers among them, we observe
comparable pass@N scores across four conditions:
the pre-trained model, the model fine-tuned by
GRPO with correctness, format-only, and format-
length rewards. As presented in Table 2, which
showcases the pass@64 results, we can see that the
performance differences between thes methods are
relatively minor. This parity indicates that all RL
variants fail to confer new knowledge; instead, they
optimize how the model retrieves and structures
existing knowledge.

In essence, our findings demonstrate that with
the right reward design—such as leveraging format
and length cues—RL can effectively stimulate the
model’s internal reasoning processes. As long as
the training mechanism activates the model’s latent
cognitive abilities, explicit ground truth answers
become an optional component rather than an es-
sential requirement for high-performance RL in
mathematical reasoning tasks.

5.2 Format Learning in RL and SFT

Since both traditional RL with ground truth rewards
and our format-based RL mainly learn answer for-
matting in the first 15 training steps, a key question
arises: how does format learning through RL com-
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Figure 3: The curves of (a) accuracy, (b) response length, and (c) reflective keyword frequency for cases of different difficulty

levels in MATHS500 during training.

pare with supervised fine-tuning (SFT)? To answer
this question, we carried out a series of compara-
tive experiments, comparing three different train-
ing methods: 1) GRPO training with format-based
rewards, 2) offline SFT using ground truth chain-of-
thought (CoT) examples, and 3) online SFT. Online
SFT serves as a middle ground between offline SFT
and RL, connecting static supervised learning and
the dynamic, feedback-driven RL, which helps us
figure out how different training methods affect
format learning.

We used Qwen2.5-Math-7B as the original
model, which we didn’t train, to provide a base-
line for comparison. The GRPO(Correctness) was
used as a reference to measure the performance of
other methods. All experiments were conducted un-
der the setting of sampling from the MATH dataset
with a temperature of 0.6.

In the GRPO training with format-based rewards
and online SFT experiments, we adopted an online
sampling strategy. During training, we constantly
sampled model outputs and applied GRPO or SFT
based on whether the format was correct. Specifi-
cally, online SFT only used format-correct samples
to update parameters. All experiments used a batch
size of 128 and ran for 100 training steps.

As shown in Table 3, the results offer impor-
tant insights. Under the temperature=0.6 setting,
the GRPO training with format-based rewards and
online SFT performed very similarly, achieving
comparable format accuracy rates and scores on
the MATHS500 benchmark. On the other hand, the
offline SFT method didn’t perform as well, show-
ing lower format accuracy and lower MATHS500
scores. These results emphasize the important role
of online sampling in making RL more effective for
format learning. RL and online SFT can adjust to
the quality of real-time outputs, which allows them

Method Answer Acc  Format Acc
Qwen2.5-Math-7B 61.7 87.3
GRPO(Correctness) 74.0 95.0
GRPO(Format-Only) 70.1 96.3
offline SFT 51.3 88.7
online SFT 71.3 95.0

Table 3: Comparison of format accuracy and answer ac-
curacy across different training methods on the MATH500
benchmark.

to optimize answer formatting more efficiently than
the static offline SFT. Clearly, the iterative and
feedback-driven nature of online training is crucial
for quickly improving language models’ ability to
learn formats.

5.3 Mitigating Repetition and Reward
Hacking

A potential concern with length-based rewards is
the risk of reward hacking, where the model gen-
erates repetitive content to increase its length. To
address this, we employed the longest repeated sub-
string analysis to measure repetition. The longest
repeated substring ratio (Figure 4) provides a nor-
malized perspective on repetition. At the start of
training, both the format-length and correctness
models exhibited high levels of repetition, mainly
due to incorrect formatting issues, such as stacked
instances of "\\boxed’. However, this problem was
resolved after just 15 training steps. The repeti-
tion rate then dropped significantly and remained
stable throughout the subsequent training process.
These findings demonstrate that the format-length
reward mechanism effectively balances response
length, reasoning depth, and content quality. By
integrating format and length signals, our approach
not only improves performance on mathematical
reasoning tasks but also mitigates the risks asso-
ciated with traditional length-based rewards, like
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repetition and reward hacking.

5.4 Design Principles of Format-Length RL

In the context of language model training, trun-
cation refers to the situation where the generated
output exceeds the maximum allowable length (e.g.,
the context window size of the model) and has to
be cut off. Truncation is highly undesirable for
several reasons. Firstly, it leads to incomplete re-
sponses, which can result in the loss of crucial
information and logical steps necessary for correct
mathematical reasoning. In the case of mathemati-
cal problem-solving, a truncated answer may omit
key derivations or final conclusions, rendering the
solution incorrect or meaningless. Secondly, trun-
cation can disrupt the coherence and flow of the
reasoning process, making it difficult for the model
to build on its own arguments and reach a valid con-
clusion. Prior studies have explored length-based
rewards, but their applicability to label-free settings
is limited. For example, Yeo et al. (2025) proposed
a cosine-shaped length reward coupled with cor-
rectness, while Chen et al. (2025) introduced a
linear length reward: R = L/Lyax + Reorrectness-
We reproduced this linear reward and the result is
in Appendix Figure S3. However, it led to a rapid
surge in response length, exceeding the model’s
context window and causing a 52.9% truncation
rate by step 54. This high truncation rate severely
degraded performance, as the truncated outputs
were often incomplete and lacked the necessary log-
ical structure for accurate mathematical reasoning.
This outcome underscores the importance of care-
fully designing length rewards to balance explo-

ration and efficiency, ensuring that the model gen-
erates responses of optimal length without incur-
ring excessive truncation. In contrast, our Format-
Length approach maintains a low truncation rate
while achieving superior accuracy. By incorporat-
ing a length reward that penalizes excessive length
before reaching the context limit, our method ef-
fectively guides the model to generate concise yet
comprehensive responses. This not only prevents
reward hacking, where the model might generate
overly long or repetitive content to maximize re-
wards, but also promotes high-quality reasoning,
as the model is encouraged to find the most effi-
cient way to express correct mathematical solutions
within the given length constraints.

6 Conclusion

In this study, we found that format and length
can serve as effective surrogate signals for train-
ing LLMs in mathematical problem-solving, elim-
inating the need for ground truth answers. Dur-
ing early RL training, LLMs focus on learning
solution formats; a format-based reward function
alone yields performance gains similar to standard
GRPO. Integrating length-based rewards enables
the GRPO approach with format-length signals to
outperform traditional methods relying on ground
truth in some cases. This finding challenges the
notion that ground truth answers are essential for
LLM training. The format-length signals offer a
practical, efficient alternative, reducing data col-
lection costs. Applicable across mathematical and
logical tasks, this approach opens new avenues for
LLM training. Future work will optimize signal
utilization and expand application to enhance LLM
training efficiency and generalization.

7 Limitations

There are aspects of our study that merit further
exploration. The evaluation of format and length
as surrogate signals was predominantly focused on
mathematical problem-solving, leaving open the
question of their effectiveness in other complex
reasoning domains, such as scientific hypothesis
testing or advanced programming challenges. Ad-
ditionally, our experiments were conducted with
specific LLM architectures and training configura-
tions, and the performance of this approach may
differ when applied to models with varying pre-
training paradigms and scale.
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A Introducion of PPO and GRPO

A.1 Proximal Policy Optimization

PPO is a widely-used and highly effective algo-
rithm in the field of RL. At its core, PPO aims to
optimize the policy of an agent to maximize the ex-
pected cumulative reward over time. The algorithm
is based on the policy gradient method, which up-
dates the policy by computing the gradient of the
expected reward with respect to the policy param-
eters. The key idea behind PPO is to balance the
trade-off between exploration and exploitation dur-
ing the policy update process. It does this by intro-
ducing a clipped surrogate objective function. Let
7 be the policy parameterized by 0, and 7y, , be
the old policy. Given a set of trajectories collected
from the environment, the objective of PPO is to
maximize the following clipped objective function:

Ery,,, [min (r¢(0) Az, clip(re(0), 1 — €, 1 4 €) Ay)]
)
where
uy:l (at | St)
010 (t|5t)
is the probability ratio of the new policy 7y to the
old policy g, for taking action a; in state s;, A;
is the advantage function that estimates how much
better an action is compared to the average action
in state s;, and € is a hyperparameter that controls
the clipping range. The clipping operation ensures
that the policy update is not too drastic, preventing
the policy from diverging significantly from the old
policy in a single update step.

To compute the advantage function A;, PPO typ-
ically relies on value function estimation combined
with Generalized Advantage Estimation (GAE).
The value function V' (s) parameterized by ¢, pre-
dicts the expected cumulative reward from state s.
It is trained via temporal difference (TD) learning
to minimize the squared error:

Tt(Q) = (6)

LY (6) = B [(Vy(si) = (Re +2Vi(s41)))?]

(7
where R; is the reward given by a reward model or
a reward function and ~y is the discount factor. The
advantage A; is then calculated using GAE, which
generalizes multi-step TD errors with a tunable
parameter A € [0, 1] to balance bias and variance:

o

ASAE(%A) _ 2(7)‘)15“#’
=0 (®)

5t =R; + ’7V(8t+1) — V(St).

Here, A\ = 0 reduces to single-step TD error, while
A = 1 recovers Monte Carlo advantage estimation.
By integrating GAE, PPO efficiently utilizes trajec-
tory data while maintaining stable policy updates.

A.2  Group Relative Policy Optimization

GRPO is an efficient reinforcement learning algo-
rithm that improves upon PPO by eliminating the
need for a separate value function. GRPO estimates
advantages through group-relative normalization:
for a given input query g, the behavior policy 7y, ,
samples G responses {0;}$ ,, then calculates each
response’s advantage as:

R(0i) — mean({R(0;)}§-1)

GRPO
A Sd({R(0))%)

, 9

Oi) =
where R(o;) is the reward of response 0;.

B Evaluation Details

We used v11m for inference with greedy decoding
(temperature = 0) to ensure reproducibility. Since
VLLM'’s batched inference produces different out-
puts for the same input under different batch sizes,
we set the validation batch size to 128 and evaluate
each dataset independently to ensure consistency
in evaluation. Because we used the Qwen2.5-Math
base models with a context length of 4k, we set the
generation budget for all compared baselines to 3k.

C Template

Qwen-Math Template

<|im_start|>system

Please reason step by step, and put your fi-
nal answer within \boxed{}. <|im_end|>
<|im_start|>user

{question}

<|im_end|>

<|im_start|>assistant




Deepseek-R1 Template

A conversation between User and Assistant.
The User asks a question, and the Assis-
tant solves it. The Assistant first thinks
about the reasoning process in the mind
and then provides the User with the answer.
The reasoning process is enclosed within
<think> </think> and the answer is en-
closed within <answer> </answer> tags,
respectively, i.e., <think> reasoning pro-
cess here </think> <answer> answer here
</answer>.

User: {question}

Assistant:

D Detailed Form of Format Reward

DeepSeek-Al et al. (2025) introduced a format re-
ward to assess whether the model’s output aligns
with the Deepseek-R1 template(Appendix C) for-
mat (i.e., writing the reasoning process within
<think> </think> tags and placing the answer
within <answer></answer> tags). Our format re-
ward is designed based on Qwen-Math template(in
Appendix C), which evaluates whether the model’s
output contains \boxed{} and checks whether the
content inside the \boxed{} is valid mathematical
content. A specific example is shown below:

Right case:
\boxed{1}
\boxed{\frac{3}{2}}
\boxed{x*2 + 12y =1}
\boxed{ (0,\infty)?}
Wrong case:
\boxed{}
\boxed{x +x 2}
\boxed{ (0,1 }

E Performance Curves of Different
Reward Trainings on Benchmarks

See Figure S1 and S2.

F Comparison of Experimental Results
between Linearlength Reward and
Format-Length Reward

See Figure S3.

G Case Study
See Table S1 and S2.



Table S1: Model output on complex mathematical problems after training on format-length reward and correctness reward.
The red boxes in the figure represent step-by-step problem-solving behavior, while the blue boxes indicate verification behavior.
Clearly, both types of behavior occur far more frequently in the format-length model than in the correctness model. As for the
results, the former produces correct answers, whereas the latter produces incorrect ones.

PROMPT: system\nPlease reason step by step, and put your final answer within \boxed{}. \n user \n
You have seven bags of gold coins. Each bag has the same number of gold coins. One day, you find a
bag of 53 coins. You decide to redistribute the number of coins you have so that all eight bags you
hold have the same number of coins. You successfully manage to redistribute all the coins, and you
also note that you have more than 200 coins. What is the smallest number of coins you could have had
before finding the bag of 53 coins?\nassistant\n

RESPONSE_FORMAT-LENGTH: To solve this problem, we need to determine the smallest number
of coins in each of the original seven bags such that when we add the 53 coins from the new bag,
the total number of coins can be evenly distributed among eight bags, and the total number of coins
is more than 200.\n\nLet’s break down the problem :\n\n**[Deﬁne Variables:**\n
- Let x be the number of coins in each of the original seven bags.\n - The total number of coins
in the original seven bags is 7z.\n - After finding the new bag with 53 coins, the total num-
ber of coins becomes 7x + 53.\n\n[2.J**Redistribution Condition:**\n - We need to redistribute
these coins so that each of the eight bags has the same number of coins.\n - (Therefore), 7z + 53
must be divisible by 8.\n\n[3.J**Mathematical Formulation:**\n - We need to find the smallest
such that 7z + 53\\equiv0\\pmod8.\n - This can be rewritten as 7x\\equiv — 53\ \pmod8.\n
- —53\\equiv3\\pmod8 (because —53 + 56 = 3 and 56 is a multiple of 8), we have
7z\\equiv3\\pmod8.\n\n e+ (6.J+*Calculate the Total Number of Coins:**\n - If z = 5, the
total number of coins in the original seven bags is 7\\times5 = 35.\n - Adding the 53 coins from
the new bag, the total number of coins is 35 + 53 = 88.\n\n[7.J** Checklthe Condition:**\n - We
need to ensure that the total number of coins is more than 200.\n - 88 is not more than 200,
we need to find the next smallest x that satisfies z'\ \equiv5\ \pmod8.\n\n[8.J**Next Smallest 2:**\n
- The next smallest x is x = 5+ 8 = 13.\n - If x = 13, the total number of coins in the original
seven bags is 7\\timesl3 = 91.\n - Adding the 53 coins from the new bag, the total number of coins
is 91 + 53 = 144.\n\n[9.}** Continue Checking|:**\n - 144 is still not more than 200, we
continue to the next smallest 2.\n - The next smallest z is x = 13 + 8 = 21.\n - If x = 21, the total
number of coins in the original seven bags is 7\\times21 = 147.\n - Adding the 53 coins from the
new bag, the total number of coins is 147 4+ 53 = 200.\n\n(10.}** Final Check]:**\n - 200 is
not more than 200, we need to find the next smallest x.\n - The next smallest x is z = 21 + 8 = 29.\n
- If « = 29, the total number of coins in the original seven bags is 7\ \times29 = 203.\n - Adding the
53 coins from the new bag, the total number of coins is 203 + 53 = 256.\n\n[11.J**Conclusion:**\n -
The smallest number of coins in each of the original seven bags that satisfies all conditions is x = 29.\n
- [Therefore), the smallest number of coins you could have had before finding the bag of 53 coins is
7\\times29 = 203.\n\nThus, the final answer is:\n\\[\n\\boxed{203} \n\\]. ¥

RESPONSE_CORRECTNESS: To solve this problem, let’s denote the number of coins in each of the
original seven bags as z. [Therefore], the total number of coins you originally had is 7. After finding
the bag of 53 coins, you now have 7x+53 coins. You redistribute these coins into eight bags, so each bag
now has frac7z 4 538 coins. the number of coins in each bag must be an integer, 7z + 53 must
be divisible by 8. Additionally, we know that the total number of coins after redistribution is more than
200, so 7x + 53 > 200. This simplifies to 7z > 147, or z > 21. We need to find the smallest integer =
such that 7z+53 is divisible by 8 and z > 21. Let’s iterate through the possible values of x starting from
22 and [checklthe conditions.\n“‘python\n Iterate through possible values of x starting from 22\nfor x
in range(22, 1000):\n total_coins = 7 * x + 53\n if total_coins % 8 == 0:\n smallest_number_of_coins
=7 * x\n break\n\nprint(smallest_number_of_coins)\n*“‘\n*“‘output\n183\n*“‘\nThe smallest number
of coins you could have had before finding the bag of 53 coins is boxed{183}. X




Table S2: Over-reflection in sentence repetition.The red boxes in the figure indicate reflective words, while the blue boxes
represent repeated phrases (with the numbers indicating the frequency of repetition). It can be observed that reflective words
appear within the repeated phrases.

PROMPT: system\nPlease reason step by step, and put your final answer within \\boxed{ }.\n user
\nDenali and Nate work for a dog walking business and are paid for each dog they walk. Denali is
responsible for 16 dogs and Nate is responsible for 12 dogs. Under the company’s new policy, they
will be assigned or unassigned new dogs in groups of x dogs. The ratio of Denali’s pay to Nate’s pay
would be the same if Denali started walking 4x more dogs and Nate stayed at 12 dogs or if x of Nate’s
dogs were reassigned to Denali. Find x if '\ \neq0.\nassistant\n,

RESPONSE: Let’s denote the payment per dog as \\( p \\). The initial ratio of Denali’s pay to Nate’s
pay is \\(\\frac16p12p = \\frac43\\).\n\nIf Denali starts walking \\(4x\\) more dogs and Nate
stays at 12 dogs, the new ratio of their pays would be \\(\\frac(16 + 4x)p12p = \\frac16 + 4x12\\).
this ratio is equal to \\(\\frac43\\), we can set up the equation:\n\\[\n\\frac16 + 4x12 =
\\frac43.\n\\J\nCross-multiplying gives:\n\\[\n3(16 + 4x) = 4 \\cdot 12,\n\\]\n\\[\n48 + 12x =
48 \n\\\n\\[\n12x = O,\n\\J\N\\[\nx = O.\n\\]\n \\(x \\neq 0\\), we need to consider the
second scenario where \\(x\\) of Nate’s dogs are reassigned to Denali. In this case, the new number
of dogs Denali is responsible for is \\(16 + x\\) and the new number of dogs Nate is responsible for
is \\(12 - x\\). The new ratio of their pays would be \\(\\frac(16 + x)p(12 - x)p = \\frac16 + x12 -
x\\). this ratio is equal to \\(\\frac43\\), we can set up the equation:\n\\[\n\\frac16 + x12
- x = \\frac43.\n\\]\nCross-multiplying gives:\n\\[\n3(16 + x) = 4(12 - x),\n\\]\n\\[\n48 + 3x
=48 - 4x,\n\\]An\\[\n7x = O,\n\\]\n\\[\nx = 0.\n\\]\nAgain, \\(x \\neq 0\\), we need
to the problem constraints. The only way the ratio can remain the same is if the number of
dogs reassigned is such that the ratio of the new number of dogs is the same as the original ratio. Let’s
solve it again by checking the constraints properly.\n\nThe correct approach is to solve the equation
\\(\\frac16 + x12 - x = \\frac43\\) properly.

Let’s solve it again.\n\n\\[\n3(16 + x) = 4(12 - x), \n\\]\n\\[\n48 + 3x =
48 - 4x, \n\\\M\\[\n7x = 0,\m\\]\n\\[\nx = 0.\n\\]\n[Since] \\(x \\neq O\\), we need to
consider the possibility that the problem might have a different interpretation or constraint. Let’s
the problem statement and constraints. The only way the ratio can remain the same is
if the number of dogs reassigned is such that the ratio of the new number of dogs is the same as
the original ratio. Let’s solve it again by checking the constraints properly.

Repeatl: Let’s solve it again.\n\n\\[\n3(16 + x) = 4(12 - x), \n\\]\n\\[\n48 +
3x =48 - 4x,\n\\J\n\\[\n7x = O,\nN\\J\n\\[\nx = O.\n\\]\n \\(x \\neq 0\\), we need
to consider the possibility that the problem might have a different interpretation or constraint.
Let’s the problem statement and constraints. The only way the ratio can remain the
same is if the number of dogs reassigned is such that the ratio of the new number of dogs is the
same as the original ratio. Let’s solve it again by checking the constraints properly.

Repeat2: Let’s solve it again.\n\n\\[\n3(16 + x) = 4(12 - x), \n\\]\n\\[\n48 +
3x =48 - 4x, \n\\]\n\\[\n7x = 0,\n\\]\n\\[\nx = O.\n\\]\n \\(x \\neq 0\\), we need
to consider the possibility that the problem might have a different interpretation or constraint.
Let’s the problem statement and constraints. The only way the ratio can remain the
same is if the number of dogs reassigned is such that the ratio of the new number of dogs is the
same as the original ratio. Let’s solve it again by checking the constraints properly.
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Figure S1: Accuracy curves on (a) MATH500, (b) AIME2024, and (c) AMC2023 benchmarks training on the DeepScaleR-17k.
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Figure S2: Accuracy curves on (a) MATHS00, (b) AIME2024, and (¢) AMC2023 benchmarks training on Math-train dataset.
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Figure S3: (a) Response length, (b) clip ratio, and (c) average accuracy of benchmark during training.
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