Repetition Facilitates Processing: The Processing Advantage of
Construction Repetition in Dialogue

Anonymous ACL submission

Abstract

Repetitions occur frequently in dialogue. This
study focuses on the repetition of lexi-
calised constructions—i.e., recurring multi-
word units—in English open domain spoken
dialogues. We hypothesise that construction
repetition is an efficient communication strat-
egy that reduces processing effort, and make
three predictions based on this hypothesis. Our
three predictions are confirmed: repetitions fa-
cilitate the processing of constructions and of
their linguistic context; facilitating effects are
higher when repetitions accumulate, and lower
when repetitions are less locally distributed.
We measure reduction in processing effort us-
ing two surprisal-based measures and estimate
surprisal with an adaptive neural language
model. Our findings suggest that human-like
patterns of repetitions can be learned implic-
itly by utterance generation models equipped
with psycholinguistically motivated surprisal-
based objectives and adaptation mechanisms.

1 Introduction

In language production, speakers select—among a
set of possible realisations—the lexical, syntactic,
and semantic alternatives that they deem most ap-
propriate to verbalise their communicative intents.
For instance, speakers can choose to precede re-
ported speech with ‘I said’ or ‘I was like’: ‘I was
like where is this going?’, ‘I said you don’t have to
love each other’. Speakers’ choices given such sets
of alternatives are influenced, among other things,
by their recent linguistic experience. In a dialogue,
a speaker may be more prone to choose ‘I was like’
if they or their conversational partner have already
used it. This is an example of priming: ‘I was like’
is repeated more often than expected by chance due
to the presence of previous mentions.

Most studies on priming have targeted the repeti-
tion of syntactic structures (Levelt and Kelter, 1982;
Bock, 1986; Branigan et al., 2000; Reitter et al.,
2006b, 2011), explaining repetitions as the result
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had a few if you look at I think it was just
it I was yes of course like this is

i’d be like look at what like you're not
were like oh if you give so I didn’t

do you get and all of that that I know

and I went it doesn’t have to  it’s not even

1 don’t like right okay so and I was kind of
a bit more something out of  and it was like oh
1 know i that in itself think of it like

I was like yeah that’s fine kind of thing where

Table 1: Top 10 constructions from three dialogues of
the Spoken British National Corpus (Love et al., 2017).
Constructions are sorted according to the pointwise mu-
tual information between construction and its respec-
tive dialogue (see Section 5 for extraction procedure).

of automatic processing mechanisms (Pickering
and Garrod, 2004). Lexical repetitions have also
been investigated (e.g., Giles et al., 1979; Brennan,
1996; Niederhoffer and Pennebaker, 2002) and they
have been typically explained as the result of social
and communicative pressures (Danescu-Niculescu-
Mizil et al., 2012; Noble and Fernandez, 2015;
Doyle and Frank, 2016; Xu et al., 2018) within
the framework of communication accommodation
theory (Giles et al., 1991). Less is known about
the mechanisms underlying speakers’ repetition
of particular configurations of structures and lex-
emes, constructions, a pervasive phenomenon in
conversational language use (Tomasello, 2003; By-
bee, 2006; Goldberg, 2006; Sinclair and Ferndndez,
2021). In this study, we investigate whether conver-
sational partners repeat lexicalised constructions
(such as ‘I was like’) throughout a dialogue as a re-
sult of two information processing mechanisms tra-
ditionally argued to affect priming: 1) residual acti-
vations due to exposure to local context (Pickering
and Branigan, 1998; Cleland and Pickering, 2003)
and 2) implicit learning of the global statistics of
expressions and structures (Bock and Griffin, 2000;
Chang et al., 2006; Fine and Florian Jaeger, 2013).



We model the interplay between these two mech-
anisms, hypothesising that, if they are in place,
construction repetition becomes a rational strategy
of information transmission (Gibson, 1998; Hale,
2001; Levy, 2008): processing effort is reduced
when speakers follow this strategy.

We use surprisal to operationalise the process-
ing advantage of construction repetition. Surprisal
measures the unpredictability of a linguistic signal,
which can be taken as an estimate of the amount of
effort required to process the signal (e.g., Jelinek
et al., 1975; Keller, 2004; Levy, 2008). We predict
that construction repetition has a facilitating effect
on processing, observable in the form of a surprisal
reduction both for the construction itself and for
its linguistic context. To further understand the
nature of the processing advantage, we study how
it varies across different types of repetition. We
predict that the processing advantage of construc-
tion repetition increases with the total number of
repetitions made in a dialogue, and that it decreases
with the distance between repetitions. Our exper-
iments confirm these three predictions, providing
new empirical evidence that dialogue partners use
repetitions as a communication strategy due to it
leading to higher information processing efficiency.

Our findings inform the development of better
dialogue models. They indicate that avoiding rep-
etitions in utterance generation (Li et al., 2016;
Welleck et al., 2019) may not be the most appropri-
ate strategy. Instead, models should be encouraged
to follow human-like patterns of repetitions to be
successfully deployed in conversational settings.

2 Background

2.1 Constructions

This work focuses on constructions, seen as par-
ticular configurations of structures and lexemes
in usage-based accounts of natural language (Lan-
gacker, 1999; Tomasello, 2003; Bybee, 2006, 2010;
Goldberg, 2006). According to these accounts,
models of language processing must consider
not only individual lexical elements according to
their syntactic roles, but also more complex form-
function units, which can break regular phrasal
structures (Bybee and Scheibman, 1999)

We further focus on fully lexicalised construc-
tions (sometimes called formulaic expressions, or
multi-word expressions). These can be classified
based on multiple criteria (Titone and Connine,
1994; Wray, 2002; Columbus, 2013), including

transparency, degree of conventionalisation, and
communicative function (further distinguishing cri-
teria are presented in Appendix A). Commonly
studied types of constructions are idioms (‘break
the ice’), collocations (‘pay attention to’), phrasal
verbs (‘make up’), binomials, and lexical bundles
(‘a lot of the’). In Section 5, we explain how the
notion of lexicalised construction is operationalised
in the current study; Table 1 shows some examples.

A common property of constructions is their
frequent occurrence in natural language (Bybee,
2006; Carrol and Conklin, 2020). As such, in
line with usage-based accounts, they possess a pro-
cessing advantage (Conklin and Schmitt, 2012).
Evidence for this processing advantage has been
found in reading (Arnon and Snider, 2010; Trem-
blay et al., 2011), naming latency (Bannard and
Matthews, 2008; Janssen and Barber, 2012), eye-
tracking (Underwood, 2004; Siyanova-Chanturia
et al., 2011), and electrophysiology (Tremblay and
Baayen, 2010; Siyanova-Chanturia et al., 2017). In
this paper, we study the processing advantage of
the repetition of lexicalised constructions.

2.2 Surprisal and Processing Effort

Estimates of surprisal have been shown to be good
predictors of processing effort in perception (Je-
linek et al., 1975; Clayards et al., 2008), reading
(Keller, 2004; Demberg and Keller, 2008; Levy
et al., 2009), and sentence interpretation (Levy,
2008; Gibson et al., 2013). Because speakers take
into consideration their addressee’s processing ef-
fort (Clark and Wilkes-Gibbs, 1986; Clark and
Schaefer, 1989), their linguistic choices can often
be explained as an optimal strategy to manage the
fluctuations of surprisal levels over time. Surprisal-
based accounts have indeed been successful at ex-
plaining various aspects of language production:
speakers tend to reduce the duration of less surpris-
ing sounds (Aylett and Turk, 2004, 2006; Bell et al.,
2003; Demberg et al., 2012); they are more likely
to drop sentential material within less surprising
scenarios (Jaeger and Levy, 2007; Jaeger, 2010;
Frank and Jaeger, 2008); they tend to overlap at
low-surprisal dialogue turn transitions (Dethlefs
et al., 2016); they produce sentences at a uniform
surprisal rate in texts (Genzel and Charniak, 2002,
2003; Qian and Jaeger, 2011; Giulianelli and Fer-
nandez, 2021); and they keep utterance surprisal
uniform in certain contextual units of conversations
(Vega and Ward, 2009; Doyle and Frank, 2015a,b;



Xu and Reitter, 2018; Giulianelli et al., 2021). To
estimate surprisal, we use GPT-2 (Radford et al.,
2019) as a model of next word prediction.

2.3 Priming mechanisms

Priming has been widely studied through the anal-
ysis of structural repetitions (Levelt and Kelter,
1982; Bock, 1986), whether densely clustered
(Branigan et al., 1999; Wheeldon and Smith, 2003;
Reitter et al., 2006b), or occurring across multiple
utterances and interactions (Hartsuiker and Kolk,
1998; Bock and Griffin, 2000; Branigan et al., 2000;
Kaschak et al., 2014).

These two types of priming (often called short-
term priming and long-term priming, respectively)
are thought to be the result of different underly-
ing mechanisms (for a review see, e.g., Hartsuiker
et al., 2008). Quickly decaying, short-term priming
effects rely on an activation-based mechanism de-
pendent on residual traces left by lexical material
(Pickering and Branigan, 1998; Cleland and Picker-
ing, 2003). Slowly decaying, long-term priming ef-
fects are independent of lexical material and rely on
an implicit learning mechanism (Bock and Griffin,
2000; Chang et al., 2006; Fine and Florian Jaeger,
2013). In the current study, we model both mech-
anisms in order not to constrain a priori the set of
possible processes underlying priming.

3 Hypotheses

Does construction repetition come with a process-
ing advantage? Is this advantage due to the mecha-
nisms underlying priming? To answer these ques-
tions, we formulate the following three hypotheses.

H1 Repetition facilitates processing. We predict
1) repetitions of a construction (i.e., the oc-
currences that follow its first mention) have
a stronger reduction effect on the surprisal of
the dialogue turn (i.e., a stronger facilitating
effect) than first mentions, and 2) a construc-
tion has lower surprisal when repeated than
when first produced.

H2 The processing advantage of repetition is cu-
mulative. We predict multiple repetitions of a
construction contribute 1) to a stronger facili-
tating effect and 2) to a stronger reduction in
the surprisal of the construction itself.

H3 The processing advantage of repetition decays.
We predict that a larger distance between a

construction repetition and its previous men-
tion results 1) in a weaker facilitating effect,
and 2) in a weaker reduction in the surprisal
of the construction.

H1 tests whether repeating a construction re-
duces processing effort. Comprehenders are known
to process written and spoken words more rapidly
when they are repeated (for a review, see Bigand
et al., 2005), suggesting increased expectation for
these words. An increase in expectation (hence
reduction in surprisal) due to repetition is compat-
ible with the implicit learning account of priming
(Kaschak et al., 2006; Reitter et al., 2011; Fine
et al., 2013). However, if repetitions are closely
clustered, any surprisal reduction could also be
the result of residual activations from previous
mentions (Branigan et al., 1999; Wheeldon and
Smith, 2003; Reitter et al., 2006b), in line with the
activation-based account.

Because H1 does not distinguish between differ-
ent repetitions of a construction and their distribu-
tion across time, H2 tests how surprisal reduction
effects vary along chains of repetitions in terms of
cumulation. Changes in the magnitude of the pro-
cessing advantage of construction repetition may
interact with the number of times the construction
has already been repeated (Jaeger and Snider, 2008;
Fine and Jaeger, 2016). Cumulative effects propa-
gating over distant repetitions would be evidence in
favour of the implicit learning account, whereas cu-
mulative effects taking place locally are compatible
with the activation-based account.

The processing advantage of construction rep-
etition may also be determined by the distance
between mentions. Inspired by earlier analyses
conducted for lexical and syntactic priming with
varying results (Reitter et al., 2011; Howes et al.,
2010; Healey et al., 2014), H3 investigates the in-
fluence of recency of previous mention on a rep-
etition’s processing advantage. Fast decay effects
could be taken in support of the activation-based
account, whereas slow decay effects would suggest
reduction in surprisal is due to sensitivity to the
global statistics of expressions and structures in a
dialogue, in line with the implicit learning account.

4 Data

We test our hypotheses on the Spoken British Na-
tional Corpusl (Love et al., 2017), a dataset of tran-
scribed spoken open domain dialogues containing

"http://www.natcorp.ox.ac.uk.
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1,251 contemporary British English conversations,
collected in a range of real-life contexts. We focus
on the 622 dialogues that feature only two speakers,
and randomly split them into a 70% finetuning set
(to be used as described in Section 6) and a 30%
analysis set. Table 2 shows basic statistics for the
dialogues used in this study.

Mean + Std Median Min Max
736 + 599 541.5 67 4859

7753 £5596 6102 819 39575
11£15 6 1 982

Dialogue length (# turns)
Dialogue length (# words)
Turn length (# words)

Table 2: Two-speaker dialogue statistics, Spoken BNC.

5 Extracting Repeated Constructions

We define constructions as multi-word sequences
that are repeated within a dialogue. We analyse
constructions produced by only one of the dialogue
participants as well as those produced by both
speakers. To extract a set of constructions from
each dialogue, we use the sequential pattern min-
ing method proposed by Duplessis et al. (2017a,b,
2021), which treats the extraction task as an in-
stance of the longest common subsequence prob-
lem (Hirschberg, 1977; Bergroth et al., 2000).2 We
modify it to not discard multiple repetitions of a
construction that occur in the same dialogue turn.
‘We focus on constructions of at least three tokens,
uttered at least three times in a dialogue. Repeated
sequences that mostly appear as a sub-part of a
larger repeated construction are discarded.’

We apply the following further constraints. First,
we exclude topic-determined constructions and ref-
erential expressions in order to disentangle priming
effects from topic coherence effects. To this end,
we filter out constructions that include nouns, un-
less the nouns are highly generic.* For example,
we discard sequences such as ‘playing table ten-
nis’ and ‘a woolly jumper’ and retain constructions
such as ‘a lot of” and ‘the thing is’. Second, we
filter out repetitions that are simply due to a high
base frequency rate and not to the speakers’ self
and mutual priming effects. We measure the as-
sociation strength between a construction ¢ and
a dialogue d as the pointwise mutual information

2Their code is freely available at https://github.
com/GuillaumeDD/dialig.

3We discard constructions that appear less than twice out-
side of a larger repeated construction in a given dialogue.

*We define a limited specific vocabulary of generic nouns
(e.g., ‘thing’, ‘fact’, 'time’); full vocabulary in Appendix B.

(PMI) between the two:

P(cld)
2 P(c)

PMI(c,d) =log [1]
which measures how unusually frequent a construc-
tion is in a given dialogue, compared to the rest of
the corpus. We discard all constructions that have a
PMI score lower than 1 in their respective dialogue.
The probabilities in Eq. 1 are obtained using maxi-
mum likelihood estimation over the analysis split
of the Spoken BNC. Finally, we exclude sequences
containing punctuation marks or which consist of
more than 50% filled pauses (e.g., ‘mm’, ‘erm’).

Applying the described extraction procedure to
the 187 dialogues in the analysis split of the Spoken
BNC, we obtain a total of 3,676 unique construc-
tions and 33,103 occurrences. Further statistics on
the extracted constructions are presented in Table 3.
Table 1 shows examples of the top 10 constructions
extracted from three dialogues, ranked according
to their PMI score.

Mean + Std Median Min Max
Construction length 323+0.52 3 3 7
Construction frequency 3.87 +1.93 3 3 58
Constructions per dialogue 206 + 307 100 3 2023
Words per dialogue turn 31 +37 21 3 959

Table 3: Construction statistics extracted from the anal-
ysis split of the Spoken BNC. Construction frequency
is the number of occurrences of a given construction in
a dialogue, Constructions per dialogue is the number
of occurrences of all constructions in a dialogue.

6 Experimental Setup

In this section, we present two surprisal-based mea-
sures of processing advantage, the language model
that produces surprisal estimates, and statistical
tests used to confirm our hypotheses.

6.1 Measures of processing advantage

The surprisal of a word choice w; is the negative
logarithm of the corresponding word probability,
conditioned on the dialogue turn context ¢ (i.e., the
words that precede w; in the dialogue turn) and on
the local dialogue context I:

We define the local dialogue context [ as the 50
tokens that precede the first word in the dialogue

5The full list of filled pauses can be found in Appendix B.
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turn.® We use tokens as a unit of context size, rather
than dialogue turns, since they more closely corre-
spond to the temporal units used in previous work
(e.g., Reitter et al., 2006a), and since the length of
dialogue turns can vary significantly (see Table 2).
To measure the surprisal of a construction ¢, we
average over word-level surprisal values:

1
St =g > H(wilt, 1) [3]

w;EC

Surprisal estimates provide an approximation
of the effort required to process a construction in
context. We also measure the surprisal change (in-
crease or reduction in processing effort) contributed
by a construction c to its dialogue turn context,
which we call the facilitating effect of a construc-
tion. The facilitating effect is positive when the
construction has lower surprisal than its context,
and negative when it has higher surprisal:

Wiw ij €swjéc H(w] ’tv l)
ﬁ Zwiéc H(wl|t7 l)

FE(c;t,l) = log,

[4]

The facilitating effect of constructions is more
likely to affect the processing of words that are
produced immediately before and after the con-
struction itself.” We define the locus of the facili-
tating effect (s in Eq. 4) as the 10 tokens preceding
and the 10 tokens following the construction.® The
tokens exceeding the limits of the current dialogue
turn are discarded.’

6.2 Estimates of surprisal

To produce surprisal estimates, we use a computa-
tional model of next word prediction which imple-
ments approximations of both the activation-based
and the implicit learning mechanism: it is con-
ditioned on local contextual cues while it learns
from exposure to the global dialogue context. We
use GPT-2 (Radford et al., 2019), a pre-trained

SBuilding on prior work (Reitter et al., 2006a) that uses
a window of 15 seconds of spoken dialogue as the locus of
local priming effects, we compute the average speech rate in
the Spoken BNC (3.16 tokens/second) and multiply it by 15;
we then round up the result (47.4) to 50 tokens.

"Due to human memory constraints, it is unlikely that
the processing of words which are, e.g., 100 tokens (or 30
seconds) away from the construction will still be affected.

8This is motivated by the fact that the average length of
turns containing a construction is 31 tokens (median length is
21), with constructions being 3 to 7 tokens long—see Table 3.

“When the locus s corresponds to the construction itself,
the facilitating effect is set to 0.

autoregressive Transformer language model. We
take GPT-2’s attention mechanism (Vaswani et al.,
2017) over the preceding context of a word as a
proxy for the local activation-based mechanism:
words in the more proximate dialogue context
shape the model’s expectations for next words, and
thus their contextualised surprisal. As an implicit
learning mechanism, we use the Transformer’s stan-
dard learning rule, back-propagation on the cross-
entropy next word prediction error, which has been
successful at modelling a wide range of linguistic
phenomena (Rumelhart and McClelland, 1986; El-
man, 1991; Cleeremans and Elman, 1993; Plaut
et al., 1996; Oppenheim et al., 2010; van Schijn-
del and Linzen, 2018). We rely on HuggingFace’s
implementation of GPT-2 with default tokenizers
and parameters (Wolf et al., 2020), and finetune
the pre-trained model on a 70% training split of
the Spoken BNC in order to adapt it to the idiosyn-
crasies of spoken dialogic data.' We refer to this
finetuned version as the frozen model. We use an
attention window of length 50, i.e., the size of the
local dialogue context, which may span over multi-
ple dialogue turns (see Section 6.1).

Adaptive learning rate When estimating sur-
prisal for a dialogue, we begin by processing the
first turn using the frozen language model and then
gradually update the model parameters after each
turn, using back-propagation with cross-entropy
loss. The magnitude of the learning rate is impor-
tant for these updates to have the desired effect.
The learning rate should be sufficiently high for the
language model to adapt during a single dialogue,
yet an excessively high learning rate can cause the
language model to lose its ability to generalise
across dialogues. To find the appropriate learn-
ing rate, we randomly select 18 dialogues from
the analysis split of the Spoken BNC!! and run an
18-fold cross-validation for a set of six candidate
learning rates: le—5, le—4, ..., 1. We finetune the
model on each dialogue using one of these learning
rates, and compute perplexity reduction 1) on the
dialogue itself (adaptation) as well as 2) on the
remaining 17 dialogues (generalisation). We select
the learning rate yielding the best adaptation over
cross-validaton folds (1e—3), while still improving
the model’s generalisation ability.!?

""More details on finetuning can be found in Appendix C.1.

"'This amounts to ca. 10% of the analysis split. We use
the analysis split because there is no risk of “overfitting” with

respect to our main analyses.
2The cross-validation result can be found in Appendix C.2.



6.3 Statistical modelling

To test H1, we split all occurrences of construc-
tions by whether they are the first mention of a con-
struction in a dialogue or a repetition. Our dataset
consists of 8,562 first mentions and 24,541 repeti-
tions. Using a Two Sample Bayesian t-test,'> we
compare the distribution of the facilitating effect
of first mentions to that of repetitions. We perform
the same analysis for construction surprisal values.

H2 and H3 focus on analysing repetitions only.
We label each occurrence with a repetition index
(the first repetition of a construction has an index
of 1, the second, 2, etc.), and with the distance from
the previous mention in a dialogue, measured as the
number of words between the first word of the cur-
rent occurrence and the first word of the previous
occurrence. We fit two linear mixed effect models
using FE and S as response variables, and include
multilevel random effects grouped by dialogue and
individual speakers.!* To select the fixed effects of
the models, we start with a collection of motivated
features—including repetition index and distance
from previous mention—and perform an ablation
selection procedure, iteratively removing features
with the lowest significance, keeping only those
that yield a p-value lower than 0.05.13

7 Results

We now present the results of our experiments, test-
ing three hypotheses on the processing advantage
(facilitating effect and surprisal reduction) of con-
struction repetition. The final linear mixed effect
models for both facilitating effect FE and construc-
tion surprisal S include repetition index and dis-
tance from the previous mention, which are directly
related to our hypotheses, as well as construction
length and repetition index within the current turn.
The full specification of the best models, with fixed
and random effect coefficients, is in Appendix D.

Repetition facilitates processing (H1) Fig-
ures la and 1b show the posterior distributions of
the mean FE and S do not overlap between groups.
For both metrics, highest density intervals of differ-
ence between means do not include 0. In sum, we

3We use the t-test implemented in the ‘Bayesian First Aid’
R-JAGS package (https://github.com/rasmusab/
bayesian_first_aid) with the default uninformative
priors and a credible interval of 95%.

“We also try grouping observations only by dialogue and
only by individual speakers. The amount of variance explained
decreases, so we keep the two-level random effects.

I5The full list of features can be found in Appendix D.

median = 0.44 median = 0.61
First mention Repetition
95% HDI 95% HDI
043 0.45 0.60 0.61
1

I T T
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(a) Facilitating effect (FE)

median = 3.5 median =4.0
Repetition First mention
95% HDI 95% HDI
34 35 40 41
— T T T T e

34 35 36 37 38 39 40 41

(b) Construction surprisal (S)

Figure 1: Posterior predictive distributions for the
mean FE and S according to the Bayesian t-test be-
tween first mentions and repetitions.

find construction repetitions have a stronger facil-
itating effect than first mentions, and surprisal of
repetitions is lower than that of first mentions. Our
first two predictions are thus confirmed.

The processing advantage of repetition is cumu-
lative (H2) The effect of repetition index is pos-
itive on FE (7.57e—2,p < 2e—16) and negative
on S (—24.85e—2,p < 2e—16). Figures 2a and
2b show the opposite trajectories of our two met-
rics, with a stronger effect of repetition index on
construction surprisal. In sum, we find that the fa-
cilitating effect of constructions increases, and that
surprisal decreases, as previous mentions accumu-
late. This confirms our second pair of predictions.

The processing advantage of repetition decays
(H3) The distance of a construction from its
previous mention has a negative effect on FE
(—4.29e—2,p < 2e—16) and a positive effect on S
(9.66e—2,p < 2e—16), also shown in Figures 2c
and 2d. Facilitating effect decreases, and surprisal
increases, as the current usage of a construction
gets further away from its previous mention. Our
third pair of predictions is thus confirmed.

8 Analysis

Having confirmed our three hypotheses, we now
further analyse the distribution of FE and S es-
timates, the relationship between them, and how
their values across repetitions are influenced by
additional factors.
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Figure 2: Facilitating effect (FE) and construction surprisal (S, bits) vs. repetition index and distance from previous
mention (number of words). The first distance bin is the mean length of a turn containing a construction (Table 3).

8.1 Measures of processing advantage

Our first observation is that not only construction
repetition but also construction usage comes with
a processing advantage, as measured with both
FE and S—a finding in line with prior work (e.g.,
Arnon and Snider, 2010; Bannard and Matthews,
2008; Tremblay et al., 2011; Janssen and Barber,
2012). On the one hand, as shown in Figure 1la,
the posterior distribution of the mean FE spans
over positive values for both first mentions and
repetitions. The estimated mean FE of construc-
tions (Figure 1a) is higher than the mean (0.07 £
0.82) and median (0.01) FE of non-construction
sequences in the Spoken BNC dialogues.'® On the
other hand, the posterior predictive mean value of
S for constructions (Figure 1b) does not include
the mean (5.59 4 2.36) nor the median (5.36) S of
non-construction sequences.

Our second observation is that the two metrics
show similar but opposite patterns in our results.
Theoretically—i.e., based on the definition of
the two metrics (Section 6.1)—these trends
can be predicted a priori: it is more likely for
a construction to have a facilitating effect if
its surprisal is low; if construction surprisal is
high, the context of the construction must be
even more surprising for facilitating effect to
occur. Empirically, we find that the Kendall’s
rank-correlation between facilitating effect and
surprisal is —0.569 (p < 2e—16): although this is
a rather strong correlation, the fact that the score is
not closer to 1 indicates that there are cases where

6We calculate FE and S of all 3- to 7-grams in our analysis
split of the Spoken BNC, excluding all n-grams that are equal
to extracted constructions. We then sample, for each length
n from 3 to 7, s, non-construction sequence occurrences—
where s, is the number of occurrences of n-tokens-long con-
structions. The length distributions should match because
length has an effect on FE and S (see Section 8.2).

the two values do not follow the predicted pattern.
Some constructions have high facilitating effect
and high surprisal:

A So what have you got? what have you got going on with enrichments?
B Ihave to do drama enrichment (FE = 1.32 S = 5.46)

While there are cases where construction surprisal
is low and facilitating effect is low or negative:!”

A But like I always really love strawberries but hate strawberry-flavoured
things so I don’t

B Idon’tlike strawberries but I like strawberry-flavoured things
(FE = —0.70 S =2.24)

These examples show that our measures capture
different types of context-dependent processing
advantage.'®

8.2 Other predictors of processing advantage

Other factors that influence facilitating effect and
surprisal beyond those directly related to our hy-
potheses are construction length and repetition in-
dex within a dialogue turn. Construction length
has the strongest effect on both metrics (FE:
30.16e—2,p < 2e—16; S: —110.90e—2,p <
2e—16): the longer the construction the stronger
its facilitating effect and the lower its surprisal. Ta-
ble 4 shows a full repetition chain for a construction
of length 3; Table 5 (Appendix B) shows a chain
for one of length 6. Because constructions, per se,
have a processing advantage, and their repetitions
facilitate processing (see Section 7), construction
repetition is advantageous when constructions oc-
cupy a larger portion of processing time (which is
proportional to the number of words).

The repetition index of a construction men-
tion within a dialogue turn also has an effect
on both metrics of processing advantage (FE:
14.38e—2,p < 2e—16; S: —29.48e—2,p < 0.05).

17 A negative facilitating effect indicates that the surprisal
of the construction is higher than the surprisal of its context.

!3The examples have been selected among occurrences with
FE and S higher or lower than the mean FE / S = std.



Speaker RI RITurn Dist Turn FE S
A 0 0 - Drink? that was what he did yeah just just to just to know that 0.40 4.73
I he might not be a complete twat but just a fyi
B 1 0 1586  Especially for my birthday mind you I might not be here for ~ 0.53  4.01
1 14 mine and [ went what do you mean you might not be here? 090 2.70

Table 4: Repetition chain for the construction ‘might not be’ in dialogue SXWH, Spoken BNC, annotated with
repetition index (RI), RI within dialogue turn (RI Turn), and distance from previous mention (Dist; in tokens).

Although the identity of the speaker producing pre-
vious mentions of a construction does not influence
facilitating effect or surprisal,'® we find strong cu-
mulativity effects for self-repetitions within the
current dialogue turn. Only 6.46% of the total con-
struction occurrences have at least one previous
mention in the same dialogue turn; yet when this
is the case, the magnitude of FE and S increases
with the number of previous local mentions. This
interaction between cumulativity and recency (me-
dian distance between repetitions in the same turn
is 7 words; across turns is 1208 words) indicates
that processing advantage increases faster when
repetitions are densely clustered.?’

9 Conclusion

We have hypothesised that speakers repeat lexi-
calised constructions in dialogues because repeti-
tion eases information processing, and have for-
mulated concrete predictions that follow from this
hypothesis. To quantify the processing advantage
of constructions we have proposed two surprisal-
based measures, facilitating effect and construction
surprisal, and have analysed how the values of these
measures vary as constructions are repeated.

Our experiments on English spoken open do-
main dialogues confirmed our three predictions: 1)
construction repetition reduces processing effort;
2) the effort reduction increases with the frequency
of repetitions and 3) decreases with the distance
between repetitions. These empirical results pro-
vide new evidence that construction repetition in
dialogue is an efficient communication strategy.
They thus complement prior work on the process-
ing advantage of construction usage (Tremblay and
Baayen, 2010; Tremblay et al., 2011; Janssen and
Barber, 2012; Siyanova-Chanturia et al., 2017) and
contribute to an understudied type of priming, with
priming research traditionally focusing on repeti-

19 All factors related to speaker identity are discarded during
the ablation procedure; see Section 6.3 and Appendix D.
2Further details can be found in Appendix E.

tions of syntactic structures (Bock, 1986; Branigan
et al., 2000; Reitter et al., 2006b, 2011) and lexical
elements (Brennan, 1996; Doyle and Frank, 2016;
Xu et al., 2018). Our findings reveal that the infor-
mation processing efficiency of construction repe-
tition results from a combination of the activation-
based and implicit learning priming mechanisms.
In line with activation-based accounts of priming,
we find that the processing advantage of repetitions
accumulates faster when repetitions are densely
clustered, and it decays faster within more local
distances. However, implicit learning is necessary
to explain the fact that both cumulativity and decay
effects are still present across distant repetitions.

Besides contributing new empirical evidence
on construction usage and repetition in dialogue,
this study highlights the importance of a few key
desiderata for the design of human-compatible
computational dialogue models. First, models
should both attend to the local dialogue context
and use the global statistics collected throughout
a dialogue for on-the-fly adaptation. This would
have the natural effect of models being more likely
to repeat constructions established as part of the
dialogue lexicon. Second, although excessive and
unnatural repetitions should be avoided in machine-
generated utterances (Li et al., 2016; Holtzman
et al., 2019), a certain degree of repetition makes
a dialogue sound more natural. Human-like repeti-
tion patterns can be explicitly learned by auxiliary
modules (Holtzman et al., 2018) or, as our study
suggests, they may be implicitly acquired if next-
word surprisal training and decoding objectives are
complemented with context-dependent surprisal-
based objectives. Simple techniques such as those
proposed by Wei et al. (2021) and Meister et al.
(2020) could be used to operationalise facilitating
effect as a psycholinguistically motivated inductive
bias to be used in training, and as a word choice
criterion in decoding.
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Appendix
A Possible Criteria to Distinguish MWEs

Lexicalised constructions can be classified accord-
ing to multiple criteria (Titone and Connine, 1994;
Wray, 2002; Columbus, 2013), including those
listed below.

e Compositionality This criterion is typically
used to separate idioms from other formulaic
expressions, although it is sometimes referred
to as transparency to underline its graded,
rather than binary, nature. There is no evi-
dence, however, that the processing advantage
of idioms differs from that of compositional
phrases (Tabossi et al., 2009; Jolsvai et al.,
2013; Carrol and Conklin, 2020). Therefore
we ignore this criterion in the current study.
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o Literal plausibility This criterion is typically
used to discriminate among different types
of idioms (Titone and Connine, 1994; Titone
and Libben, 2014)—as compositional phrases
are literally plausible by definition. Because
we ignore distinctions made on the basis of
compositionality, we do not use this criterion.

e Meaningfulness Meaningful expressions are
idioms and compositional phrases (e.g. ‘on
my mind’, ‘had a dream’) whereas sentence
fragments that break constituency boundaries
(e.g., ‘of a heavy’, ’by the postal’) are consid-
ered less meaningful (as measured in norming
studies, e.g., by Jolsvai et al., 2013). There
is some evidence that the meaningfulness of
multi-word expressions correlates with their
processing advantage even more than their
frequency (Jolsvai et al., 2013); yet expres-
sions are particularly frequent, they present
processing advantages even if they break reg-
ular phrasal structures (Bybee and Scheibman,
1999; Tremblay et al., 2011). Moreover, ut-
terances that break regular constituency rules
are particularly frequent in spoken dialogue
data (e.g., ‘if you could search for job and
that’s not’, ‘you don’t wanna damage your
relationship with’). For these reasons, we do
not exclude constructions that span multiple
constituents from our analysis.

e Schematicity This criterion distinguishes ex-
pressions where all the lexical elements are
fixed from expressions “with slots” that can be
filled by varying lexical elements.In this study,
we focus on fully lexicalised constructions.

o Familiarity This is a subjective criterion that
strongly correlates with objective frequency
(Carrol and Conklin, 2020). Human experi-
ments would be required to obtain familiarity
norms for our target data, and the resulting
norms would only be an approximation of the
familiarity judgements of the true speakers we
analyse the language of. Therefore, we ignore
this criterion in the current study.

o Communicative function Formulaic expres-
sions can fulfil a variety of discourse and
communicative functions. Biber et al. (2004),
e.g., distinguish between stance expressions
(attitude, certainty with respect to a proposi-
tion), discourse organisers (connecting prior
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and forthcoming discourse), and referential
expressions; and for each of these three pri-
mary discourse functions, more specific sub-
categories are defined. This type of classi-
fication is typically done a posteriori—i.e.,
after a manual analysis of the expressions re-
trieved from a corpus according to other cri-
teria (Biber and Barbieri, 2007). In the BNC,
for example, we find epistemic lexical bun-
dles (‘I don’t know’, ‘I don’t think’), desire
bundles (‘do you want to’, ’I don’t want to’),
obligation/directive bundles (‘you don’t have
to’), and intention/prediction bundles (‘I’m
going to’, ‘it’s gonna be’). We do not use this
criterion to avoid an a priori selection of the
constructions.

B Extraction of Repeated Constructions

We define a limited specific vocabulary of generic
nouns to filter out topical and referential construc-
tion. The vocabulary includes: bit, bunch, day,
days, fact, god, idea, ideas, kind, kinds, loads, lot,
lots, middle, ones, part, problem, problems, reason,
reasons, rest, side, sort, sorts, stuff, thanks, thing,
things, time, times, way, ways, week, weeks, year,
years.

We also find all the filled pauses and exclude
word sequences that consist for more than 50% of
filled pauses. Filled pauses in the Spoken BNC are
transcribed as: huh, uh, erm, hm, mm, er.

Table 5 shows a whole construction chain (from
the first mention to the last repetition) for a con-
struction of length 6.

C Language Model

C.1 Finetuning

We finetune the ‘small’ variant of GPT-2 (Radford
et al., 2019) and DialoGPT (Zhang et al., 2020)
on our finetuning split of the Spoken BNC (see
Section 4) using HuggingFace’s implementation
of the models with default tokenizers and param-
eters (Wolf et al., 2020). The finetuning results
for both models are presented in Table 6. We fine-
tune the models and measure their perplexity using
Huggingface’s finetuning script. We use early stop-
ping over 5 epochs.?! Sequence length and batch

2I'The number of epochs (5) has been selected in prelimi-
nary experiments together with the learning rate (1e—4). In
these preliminary experiments—which we ran for 40 epochs—
we noticed that the 1e—4 learning rate offers the best tradeoff
of training time and perplexity out of four possible values:
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size vary together because they together determine
the amount of memory required; more expensive
combinations (e.g., 256 tokens with batch size 16)
require an exceedingly high amount of GPU mem-
ory. Reducing the maximum sequence length has
limited impact: 99.90% of dialogue turns have at
most 128 words.

DialoGPT starts from extremely high perplexity
values but catches up quickly with finetuning. GPT-
2 starts from much lower perplexity values and
reaches virtually the same perplexity as DialoGPT
after finetuning. For the pre-trained DialoGPT per-
plexity is extremely high, and the perplexity trend
against maximum sequence length is surprisingly
upward. These two behaviours indicate that the pre-
trained DialoGPT is less accustomed than GPT-2 to
the characteristics of our dialogue data. DialoGPT
is trained on written online group conversations,
while we use a corpus of transcribed spoken conver-
sations between two speakers. In contrast, GPT-2
has been exposed to the genre of fiction, which con-
tains scripted dialogues, and thus to a sufficiently
similar language use. We select GPT-2 finetuned
with a maximum sequence length of 128 and 512
as our best two models; these two models (which
we now refer to as frozen) are used for the adaptive
learning rate selection (Section C.2).

C.2 Learning rate selection

To find the appropriate learning rate for on-the-fly
adaptation (see Section 6.2), we randomly select
18 dialogues D from the analysis split of the Spo-
ken BNC and run an 18-fold cross-validation for
a set of six candidate learning rates: le—5, le—4,
..., 1. We finetune the model on each dialogue
using one of these learning rate values, and com-
pute perplexity change 1) on the dialogue itself (to
measure adaptation) as well as 2) on the remain-
ing 17 dialogues (to measure generalisation). We
set the Transformer’s context window to 50 to re-
produce the experimental conditions presented in
Section 6.1.

More precisely, for each dialogue d € D, we
calculate the perplexity of our two frozen mod-
els (Section C.1) on d and D d (pplpe fore(d) and
PPlvefore(D), respectively). Then, we finetune
the models on d using the six candidate learning
rates, and measure again the perplexity over d and

le—2, 1le—3, le—4, 1le—5. We obtained insignificantly lower
perplexity values with a learning rate of 1le—5, with signif-
icantly longer training time: 20 epochs for GPT-2 and 28
epochs for DialoGPT.



Speaker RI RITurn Dist Turn FE S
A 0 0 - [...] I think that everyone should have the same opportunities
and I don’t think you should be proud or ashamed of what  1.21 1.90
your you know what your situation is whether you what your
what your race is whether you’re a woman or a man whether
you live from this pl whether you’re in this place [...]
A 1 80  Iwell I th Idon’t think it should I don’t think you should be 1.40 1.73
A 2 0 19 Well yes perhaps but I don’t think you should be like um 248 1.06

embarrassed about it or I think I think you should just sort of

Table 5: A chain of repetitions of the construction ‘I don’t think you should be’ in dialogue S2AX of the Spoken
BNC, annotated with repetition index (RI), RI within dialogue turn (RI Turn), and distance from previous mention

(Dist; in tokens).

Model Learning rate Max sequence length Batch size Best epoch Perplexity finetuned Perplexity pretrained
DialoGPT 0.0001 128 16 3 23.211 7091.380
DialoGPT 0.0001 256 8 4 22.262 12886.921
DialoGPT 0.0001 512 4 4 21.728 21408.316
GPT-2 0.0001 128 16 4 23.320 173.761

GPT-2 0.0001 256 8 3 22.212 159.227

GPT-2 0.0001 512 4 3 21.553 149.822

Table 6: Finetuning results for GPT-2 and DialoGPT on our finetuning split of the Spoken BNC.

D d (pplafier(d) and pplgpier(D)). The change in

performance is evaluated according to two met-

pplafter(d)fpplbefore (d)
pplbefoTe(d)

to which the model has successfully adapted to

pplafter(D)_pplbefore(D)
pplbefore(D)

sures whether finetuning on the target dialogue has

caused any loss of generalisation.

rics:

measures the degree

the target dialogue; mea-

The learning rate selection results are presented
in Figure 3. We select 1e—3 as the best learning
rate and pick the model finetuned with a maximum
sequence length of 512 as our best model. The
difference in perplexity reduction (both adaptation
and generalisation) is minimal with respect to the
model finetuned with a maximum sequence length
of 128, but since the analysis split of the Spoken
BNC contains turns longer than 128 tokens, we
select the 512 version. Similarly to van Schijndel
and Linzen (2018), we find that finetuning on a
dialogue does not cause a loss in generalisation
but instead helps the model generalise to other dia-
logues. Unlike (2018), who used LSTM language
models, we find that learning rates larger than le—1
cause backpropagation to overshoot, even within a
single dialogue. In Figure 3, the bars for le—1 and
1 are not plotted because the corresponding data
contains infinite perplexity values (due to numeri-
cal overflow). The selected learning rate, le—3, is
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a relatively low learning rate for on-the-fly adapta-
tion but it is still higher than the best learning rate
for the entire dataset by a factor of 10.

GPT-2 finetune d w/ context length 128 and batch size 16 uned w/ context length 512 and batch size 4
oS ¢ 16 ed

@ ®)

Figure 3: The adaptation and generalisation perfor-
mance (defined in Section C.2) with varying learning
rate.

D Linear Mixed Effect Models

As explained in Section 6.3 of the main paper, we
fit linear mixed effect models using facilitating ef-
fect and construction surprisal as response variables
and including multilevel random effects grouped



by dialogues and individual speakers.?? To select
the fixed effects of the models, we start with a
collection of motivated features and perform an
ablation selection procedure, iteratively removing
features with the lowest significance, and keeping
only those that yield a p-value lower than 0.05. We
start with the following features: the logarithm of
the repetition index, the logarithm of the repeti-
tion index within the current turn, the logarithm of
the distance from the previous mention (computed
in three ways: with respect to the previous men-
tion of any speaker, of the current speaker, and of
the other speaker), the logarithm of construction
length (measures as the number of tokens in a con-
struction), the logarithm of the number of tokens
between the current occurrence and the first men-
tion of a construction, and binary features indicat-
ing whether the previous mention is by the current
speaker, whether it is produced by the initiator of
the construction, whether the construction has been
already uttered by both speakers, and whether the
previous mention is in the current dialogue turn.

The ablation selection procedure yields two mod-
els with the following fixed effects: log repetition
index, log repetition index within the current dia-
logue turn, log distance from the previous mention
(of any speaker), and log construction length. The
best model for facilitating effect is summarised
in Listing 1 and the best model for construction
surprisal in Listing 2.

E Local Effects of Processing Advantage

Table 7 shows the distribution of repetition indices
within the dialogue turn. An index of n indicates
that n previous mentions of the construction take
place in the current dialogue turn. Figures 4a

Previous mentions in the current dialogue turn

Tot 0 1 2 3 4 5 6 7 8
33103 30965 1872 188 46 16 11 3 1 1

Table 7: The distribution of repetition indices within
the dialogue turn.

and 4b show how facilitating effect and construc-
tion surprisal vary locally, for repetitions occurring
within the same dialogue turn.

2We also try grouping observations only by dialogue and
only by individual speakers. The amount of variance (unac-
counted for by the fixed effects) explained decreases, so we
keep the two-level random effects.
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Figure 4: Facilitating effect and construction surprisal
(bits) against repetition index within the current dia-
logue turn.



Listing 1: Best linear mixed effect model for Facilitating Effect

Linear mixed model fit by REML. t-tests use Satterthwaite’s method [

lmerModLmerTest ]
Formula:

logFE10 ~ 1 + logLength + logRepIndexInTurn + logRepetitionIndex +
logDistance + (1 | ‘Dialogue ID‘/Speaker)

Data: data
REML criterion at convergence:

Scaled residuals:
Min 10 Median 3Q
-7.3884 -0.6125 -0.0438 0.5574

Random effects:
Groups Name

Dialogue ID
Residual
Number of obs: 24540, groups:

51869.1

Max
8.4443

Variance
Speaker: ‘Dialogue ID' (Intercept) 0.006503

(Intercept) 0.006100

0.478766

Speaker: ‘Dialogue ID', 364; Dialogue ID,

Fixed effects:

Estimate Std. Error

(Intercept) 4.056e-01
logLength 3.016e-01
logRepIndexInTurn 1.438e-01
logRepetitionIndex 7.569e-02
logDistance -4.290e-02
(Intercept) * %k

logLength * ok k

logRepIndexInTurn xxx%
logRepetitionIndex *#*%
logDistance * kK

Signif. codes: 0 ’"%%x’ 0.001 "%x" 0.01 %" 0.05 ".” 0.1 " 7’

Correlation of Fixed Effects:

5.
.901e-02
.709e-02
.902e-03
.741e-03

ooy N

335e-02

(Intr) lgLngt 1gRIIT 1gRptI

logLength -0.909

lgRpIndxInT -0.177 -0.008
lgRpttnIndx -0.291 0.067 -0.03
logDistance -0.342 0.030 0.56

1
3

0.095

185

DN NN

Std.Dev.

0.08064
0.07810
0.69193

df

.036e+04
.452e+04
.451e+04
.360e+04
.309e+04

t value Pr(>|t])
603 3.02e-14

7.
10.
8.
10.
-24.

394
416
965
638

<
<
<
<

2e-16
2e-16
2e-16
2e-16
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Listing 2: Best linear mixed effect model for Construction Surprisal

Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
ImerModLmerTest]
Formula: S ~ 1 + logLength + logRepIndexInTurn + logRepetitionIndex +
logDistance + (1 | ‘Dialogue ID‘/Speaker)
Data: data

REML criterion at convergence: 78900.3
Scaled residuals:

Min 10 Median 30 Max
-3.0885 -0.6807 -0.0779 0.6062 6.5359

Random effects:

Groups Name Variance Std.Dev.
Speaker: ‘Dialogue ID' (Intercept) 0.01282 0.1132
Dialogue ID (Intercept) 0.04292 0.2072
Residual 1.43852 1.1994

Number of obs: 24540, groups:
Speaker: ‘Dialogue ID'‘, 364; Dialogue ID, 185

Fixed effects:

Estimate Std. Error df t value Pr(>|t])
(Intercept) 4.866e+00 9.319e-02 1.810e+04 52.215 <2e-16
logLength -1.109e+00 5.033e-02 2.451e+04 -22.042 <2e-16
logRepIndexInTurn -2.948e-01 2.964e-02 2.452e+04 -9.943 <2e-16
logRepetitionIndex -2.485e-01 1.197e-02 2.346e+04 -20.761 <2e-16
logDistance 9.657e-02 3.028e-03 2.408e+04 31.889 <2e-16
(Intercept) * % *
logLength * ok k

logRepIndexInTurn %%
logRepetitionIndex *x*%
logDistance * kK

Signif. codes: 0 "xxx’ 0.001 "xx’ 0.01 'x" 0.05 ’".” 0.1 " 7 1

Correlation of Fixed Effects:

(Intr) lgLngt 1gRIIT 1lgRptI
logLength -0.903
1gRpIndxInT -0.176 -0.007
l1gRpttnIndx -0.289 0.068 -0.030
loghistance -0.339 0.031 0.563 0.096
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