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Abstract

Repetitions occur frequently in dialogue. This001
study focuses on the repetition of lexi-002
calised constructions—i.e., recurring multi-003
word units—in English open domain spoken004
dialogues. We hypothesise that construction005
repetition is an efficient communication strat-006
egy that reduces processing effort, and make007
three predictions based on this hypothesis. Our008
three predictions are confirmed: repetitions fa-009
cilitate the processing of constructions and of010
their linguistic context; facilitating effects are011
higher when repetitions accumulate, and lower012
when repetitions are less locally distributed.013
We measure reduction in processing effort us-014
ing two surprisal-based measures and estimate015
surprisal with an adaptive neural language016
model. Our findings suggest that human-like017
patterns of repetitions can be learned implic-018
itly by utterance generation models equipped019
with psycholinguistically motivated surprisal-020
based objectives and adaptation mechanisms.021

1 Introduction022

In language production, speakers select—among a023

set of possible realisations—the lexical, syntactic,024

and semantic alternatives that they deem most ap-025

propriate to verbalise their communicative intents.026

For instance, speakers can choose to precede re-027

ported speech with ‘I said’ or ‘I was like’: ‘I was028

like where is this going?’, ‘I said you don’t have to029

love each other’. Speakers’ choices given such sets030

of alternatives are influenced, among other things,031

by their recent linguistic experience. In a dialogue,032

a speaker may be more prone to choose ‘I was like’033

if they or their conversational partner have already034

used it. This is an example of priming: ‘I was like’035

is repeated more often than expected by chance due036

to the presence of previous mentions.037

Most studies on priming have targeted the repeti-038

tion of syntactic structures (Levelt and Kelter, 1982;039

Bock, 1986; Branigan et al., 2000; Reitter et al.,040

2006b, 2011), explaining repetitions as the result041

SYXU S7ZG SVPK

had a few if you look at I think it was just
it I was yes of course like this is
i’d be like look at what like you’re not
were like oh if you give so I didn’t
do you get and all of that that I know
and I went it doesn’t have to it’s not even
I don’t like right okay so and I was kind of
a bit more something out of and it was like oh
I know i that in itself think of it like
I was like yeah that’s fine kind of thing where

Table 1: Top 10 constructions from three dialogues of
the Spoken British National Corpus (Love et al., 2017).
Constructions are sorted according to the pointwise mu-
tual information between construction and its respec-
tive dialogue (see Section 5 for extraction procedure).

of automatic processing mechanisms (Pickering 042

and Garrod, 2004). Lexical repetitions have also 043

been investigated (e.g., Giles et al., 1979; Brennan, 044

1996; Niederhoffer and Pennebaker, 2002) and they 045

have been typically explained as the result of social 046

and communicative pressures (Danescu-Niculescu- 047

Mizil et al., 2012; Noble and Fernández, 2015; 048

Doyle and Frank, 2016; Xu et al., 2018) within 049

the framework of communication accommodation 050

theory (Giles et al., 1991). Less is known about 051

the mechanisms underlying speakers’ repetition 052

of particular configurations of structures and lex- 053

emes, constructions, a pervasive phenomenon in 054

conversational language use (Tomasello, 2003; By- 055

bee, 2006; Goldberg, 2006; Sinclair and Fernández, 056

2021). In this study, we investigate whether conver- 057

sational partners repeat lexicalised constructions 058

(such as ‘I was like’) throughout a dialogue as a re- 059

sult of two information processing mechanisms tra- 060

ditionally argued to affect priming: 1) residual acti- 061

vations due to exposure to local context (Pickering 062

and Branigan, 1998; Cleland and Pickering, 2003) 063

and 2) implicit learning of the global statistics of 064

expressions and structures (Bock and Griffin, 2000; 065

Chang et al., 2006; Fine and Florian Jaeger, 2013). 066

1



We model the interplay between these two mech-067

anisms, hypothesising that, if they are in place,068

construction repetition becomes a rational strategy069

of information transmission (Gibson, 1998; Hale,070

2001; Levy, 2008): processing effort is reduced071

when speakers follow this strategy.072

We use surprisal to operationalise the process-073

ing advantage of construction repetition. Surprisal074

measures the unpredictability of a linguistic signal,075

which can be taken as an estimate of the amount of076

effort required to process the signal (e.g., Jelinek077

et al., 1975; Keller, 2004; Levy, 2008). We predict078

that construction repetition has a facilitating effect079

on processing, observable in the form of a surprisal080

reduction both for the construction itself and for081

its linguistic context. To further understand the082

nature of the processing advantage, we study how083

it varies across different types of repetition. We084

predict that the processing advantage of construc-085

tion repetition increases with the total number of086

repetitions made in a dialogue, and that it decreases087

with the distance between repetitions. Our exper-088

iments confirm these three predictions, providing089

new empirical evidence that dialogue partners use090

repetitions as a communication strategy due to it091

leading to higher information processing efficiency.092

Our findings inform the development of better093

dialogue models. They indicate that avoiding rep-094

etitions in utterance generation (Li et al., 2016;095

Welleck et al., 2019) may not be the most appropri-096

ate strategy. Instead, models should be encouraged097

to follow human-like patterns of repetitions to be098

successfully deployed in conversational settings.099

2 Background100

2.1 Constructions101

This work focuses on constructions, seen as par-102

ticular configurations of structures and lexemes103

in usage-based accounts of natural language (Lan-104

gacker, 1999; Tomasello, 2003; Bybee, 2006, 2010;105

Goldberg, 2006). According to these accounts,106

models of language processing must consider107

not only individual lexical elements according to108

their syntactic roles, but also more complex form-109

function units, which can break regular phrasal110

structures (Bybee and Scheibman, 1999)111

We further focus on fully lexicalised construc-112

tions (sometimes called formulaic expressions, or113

multi-word expressions). These can be classified114

based on multiple criteria (Titone and Connine,115

1994; Wray, 2002; Columbus, 2013), including116

transparency, degree of conventionalisation, and 117

communicative function (further distinguishing cri- 118

teria are presented in Appendix A). Commonly 119

studied types of constructions are idioms (‘break 120

the ice’), collocations (‘pay attention to’), phrasal 121

verbs (‘make up’), binomials, and lexical bundles 122

(‘a lot of the’). In Section 5, we explain how the 123

notion of lexicalised construction is operationalised 124

in the current study; Table 1 shows some examples. 125

A common property of constructions is their 126

frequent occurrence in natural language (Bybee, 127

2006; Carrol and Conklin, 2020). As such, in 128

line with usage-based accounts, they possess a pro- 129

cessing advantage (Conklin and Schmitt, 2012). 130

Evidence for this processing advantage has been 131

found in reading (Arnon and Snider, 2010; Trem- 132

blay et al., 2011), naming latency (Bannard and 133

Matthews, 2008; Janssen and Barber, 2012), eye- 134

tracking (Underwood, 2004; Siyanova-Chanturia 135

et al., 2011), and electrophysiology (Tremblay and 136

Baayen, 2010; Siyanova-Chanturia et al., 2017). In 137

this paper, we study the processing advantage of 138

the repetition of lexicalised constructions. 139

2.2 Surprisal and Processing Effort 140

Estimates of surprisal have been shown to be good 141

predictors of processing effort in perception (Je- 142

linek et al., 1975; Clayards et al., 2008), reading 143

(Keller, 2004; Demberg and Keller, 2008; Levy 144

et al., 2009), and sentence interpretation (Levy, 145

2008; Gibson et al., 2013). Because speakers take 146

into consideration their addressee’s processing ef- 147

fort (Clark and Wilkes-Gibbs, 1986; Clark and 148

Schaefer, 1989), their linguistic choices can often 149

be explained as an optimal strategy to manage the 150

fluctuations of surprisal levels over time. Surprisal- 151

based accounts have indeed been successful at ex- 152

plaining various aspects of language production: 153

speakers tend to reduce the duration of less surpris- 154

ing sounds (Aylett and Turk, 2004, 2006; Bell et al., 155

2003; Demberg et al., 2012); they are more likely 156

to drop sentential material within less surprising 157

scenarios (Jaeger and Levy, 2007; Jaeger, 2010; 158

Frank and Jaeger, 2008); they tend to overlap at 159

low-surprisal dialogue turn transitions (Dethlefs 160

et al., 2016); they produce sentences at a uniform 161

surprisal rate in texts (Genzel and Charniak, 2002, 162

2003; Qian and Jaeger, 2011; Giulianelli and Fer- 163

nández, 2021); and they keep utterance surprisal 164

uniform in certain contextual units of conversations 165

(Vega and Ward, 2009; Doyle and Frank, 2015a,b; 166
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Xu and Reitter, 2018; Giulianelli et al., 2021). To167

estimate surprisal, we use GPT-2 (Radford et al.,168

2019) as a model of next word prediction.169

2.3 Priming mechanisms170

Priming has been widely studied through the anal-171

ysis of structural repetitions (Levelt and Kelter,172

1982; Bock, 1986), whether densely clustered173

(Branigan et al., 1999; Wheeldon and Smith, 2003;174

Reitter et al., 2006b), or occurring across multiple175

utterances and interactions (Hartsuiker and Kolk,176

1998; Bock and Griffin, 2000; Branigan et al., 2000;177

Kaschak et al., 2014).178

These two types of priming (often called short-179

term priming and long-term priming, respectively)180

are thought to be the result of different underly-181

ing mechanisms (for a review see, e.g., Hartsuiker182

et al., 2008). Quickly decaying, short-term priming183

effects rely on an activation-based mechanism de-184

pendent on residual traces left by lexical material185

(Pickering and Branigan, 1998; Cleland and Picker-186

ing, 2003). Slowly decaying, long-term priming ef-187

fects are independent of lexical material and rely on188

an implicit learning mechanism (Bock and Griffin,189

2000; Chang et al., 2006; Fine and Florian Jaeger,190

2013). In the current study, we model both mech-191

anisms in order not to constrain a priori the set of192

possible processes underlying priming.193

3 Hypotheses194

Does construction repetition come with a process-195

ing advantage? Is this advantage due to the mecha-196

nisms underlying priming? To answer these ques-197

tions, we formulate the following three hypotheses.198

H1 Repetition facilitates processing. We predict199

1) repetitions of a construction (i.e., the oc-200

currences that follow its first mention) have201

a stronger reduction effect on the surprisal of202

the dialogue turn (i.e., a stronger facilitating203

effect) than first mentions, and 2) a construc-204

tion has lower surprisal when repeated than205

when first produced.206

H2 The processing advantage of repetition is cu-207

mulative. We predict multiple repetitions of a208

construction contribute 1) to a stronger facili-209

tating effect and 2) to a stronger reduction in210

the surprisal of the construction itself.211

H3 The processing advantage of repetition decays.212

We predict that a larger distance between a213

construction repetition and its previous men- 214

tion results 1) in a weaker facilitating effect, 215

and 2) in a weaker reduction in the surprisal 216

of the construction. 217

H1 tests whether repeating a construction re- 218

duces processing effort. Comprehenders are known 219

to process written and spoken words more rapidly 220

when they are repeated (for a review, see Bigand 221

et al., 2005), suggesting increased expectation for 222

these words. An increase in expectation (hence 223

reduction in surprisal) due to repetition is compat- 224

ible with the implicit learning account of priming 225

(Kaschak et al., 2006; Reitter et al., 2011; Fine 226

et al., 2013). However, if repetitions are closely 227

clustered, any surprisal reduction could also be 228

the result of residual activations from previous 229

mentions (Branigan et al., 1999; Wheeldon and 230

Smith, 2003; Reitter et al., 2006b), in line with the 231

activation-based account. 232

Because H1 does not distinguish between differ- 233

ent repetitions of a construction and their distribu- 234

tion across time, H2 tests how surprisal reduction 235

effects vary along chains of repetitions in terms of 236

cumulation. Changes in the magnitude of the pro- 237

cessing advantage of construction repetition may 238

interact with the number of times the construction 239

has already been repeated (Jaeger and Snider, 2008; 240

Fine and Jaeger, 2016). Cumulative effects propa- 241

gating over distant repetitions would be evidence in 242

favour of the implicit learning account, whereas cu- 243

mulative effects taking place locally are compatible 244

with the activation-based account. 245

The processing advantage of construction rep- 246

etition may also be determined by the distance 247

between mentions. Inspired by earlier analyses 248

conducted for lexical and syntactic priming with 249

varying results (Reitter et al., 2011; Howes et al., 250

2010; Healey et al., 2014), H3 investigates the in- 251

fluence of recency of previous mention on a rep- 252

etition’s processing advantage. Fast decay effects 253

could be taken in support of the activation-based 254

account, whereas slow decay effects would suggest 255

reduction in surprisal is due to sensitivity to the 256

global statistics of expressions and structures in a 257

dialogue, in line with the implicit learning account. 258

4 Data 259

We test our hypotheses on the Spoken British Na- 260

tional Corpus1 (Love et al., 2017), a dataset of tran- 261

scribed spoken open domain dialogues containing 262

1http://www.natcorp.ox.ac.uk.
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1,251 contemporary British English conversations,263

collected in a range of real-life contexts. We focus264

on the 622 dialogues that feature only two speakers,265

and randomly split them into a 70% finetuning set266

(to be used as described in Section 6) and a 30%267

analysis set. Table 2 shows basic statistics for the268

dialogues used in this study.269

Mean ± Std Median Min Max

Dialogue length (# turns) 736 ± 599 541.5 67 4859
Dialogue length (# words) 7753 ± 5596 6102 819 39575
Turn length (# words) 11 ± 15 6 1 982

Table 2: Two-speaker dialogue statistics, Spoken BNC.

5 Extracting Repeated Constructions270

We define constructions as multi-word sequences271

that are repeated within a dialogue. We analyse272

constructions produced by only one of the dialogue273

participants as well as those produced by both274

speakers. To extract a set of constructions from275

each dialogue, we use the sequential pattern min-276

ing method proposed by Duplessis et al. (2017a,b,277

2021), which treats the extraction task as an in-278

stance of the longest common subsequence prob-279

lem (Hirschberg, 1977; Bergroth et al., 2000).2 We280

modify it to not discard multiple repetitions of a281

construction that occur in the same dialogue turn.282

We focus on constructions of at least three tokens,283

uttered at least three times in a dialogue. Repeated284

sequences that mostly appear as a sub-part of a285

larger repeated construction are discarded.3286

We apply the following further constraints. First,287

we exclude topic-determined constructions and ref-288

erential expressions in order to disentangle priming289

effects from topic coherence effects. To this end,290

we filter out constructions that include nouns, un-291

less the nouns are highly generic.4 For example,292

we discard sequences such as ‘playing table ten-293

nis’ and ‘a woolly jumper’ and retain constructions294

such as ‘a lot of’ and ‘the thing is’. Second, we295

filter out repetitions that are simply due to a high296

base frequency rate and not to the speakers’ self297

and mutual priming effects. We measure the as-298

sociation strength between a construction c and299

a dialogue d as the pointwise mutual information300

2Their code is freely available at https://github.
com/GuillaumeDD/dialig.

3We discard constructions that appear less than twice out-
side of a larger repeated construction in a given dialogue.

4We define a limited specific vocabulary of generic nouns
(e.g., ‘thing’, ‘fact’, ’time’); full vocabulary in Appendix B.

(PMI) between the two: 301

PMI(c, d) = log2
P (c|d)
P (c)

[1] 302

which measures how unusually frequent a construc- 303

tion is in a given dialogue, compared to the rest of 304

the corpus. We discard all constructions that have a 305

PMI score lower than 1 in their respective dialogue. 306

The probabilities in Eq. 1 are obtained using maxi- 307

mum likelihood estimation over the analysis split 308

of the Spoken BNC. Finally, we exclude sequences 309

containing punctuation marks or which consist of 310

more than 50% filled pauses (e.g., ‘mm’, ‘erm’).5 311

Applying the described extraction procedure to 312

the 187 dialogues in the analysis split of the Spoken 313

BNC, we obtain a total of 3,676 unique construc- 314

tions and 33,103 occurrences. Further statistics on 315

the extracted constructions are presented in Table 3. 316

Table 1 shows examples of the top 10 constructions 317

extracted from three dialogues, ranked according 318

to their PMI score. 319

Mean ± Std Median Min Max

Construction length 3.23 ± 0.52 3 3 7
Construction frequency 3.87 ± 1.93 3 3 58
Constructions per dialogue 206 ± 307 100 3 2023
Words per dialogue turn 31 ± 37 21 3 959

Table 3: Construction statistics extracted from the anal-
ysis split of the Spoken BNC. Construction frequency
is the number of occurrences of a given construction in
a dialogue, Constructions per dialogue is the number
of occurrences of all constructions in a dialogue.

6 Experimental Setup 320

In this section, we present two surprisal-based mea- 321

sures of processing advantage, the language model 322

that produces surprisal estimates, and statistical 323

tests used to confirm our hypotheses. 324

6.1 Measures of processing advantage 325

The surprisal of a word choice wi is the negative 326

logarithm of the corresponding word probability, 327

conditioned on the dialogue turn context t (i.e., the 328

words that precede wi in the dialogue turn) and on 329

the local dialogue context l: 330

H(wi|t, l) = − log2 P (wi|t, l) [2] 331

We define the local dialogue context l as the 50 332

tokens that precede the first word in the dialogue 333

5The full list of filled pauses can be found in Appendix B.
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turn.6 We use tokens as a unit of context size, rather334

than dialogue turns, since they more closely corre-335

spond to the temporal units used in previous work336

(e.g., Reitter et al., 2006a), and since the length of337

dialogue turns can vary significantly (see Table 2).338

To measure the surprisal of a construction c, we339

average over word-level surprisal values:340

S(c; t, l) =
1

|c|
∑
wi∈c

H(wi|t, l) [3]341

Surprisal estimates provide an approximation342

of the effort required to process a construction in343

context. We also measure the surprisal change (in-344

crease or reduction in processing effort) contributed345

by a construction c to its dialogue turn context,346

which we call the facilitating effect of a construc-347

tion. The facilitating effect is positive when the348

construction has lower surprisal than its context,349

and negative when it has higher surprisal:350

FE (c; t, l) = log2

1
|s|−|c|

∑
wj∈s,wj /∈cH(wj |t, l)

1
|c|

∑
wi∈cH(wi|t, l)

[4]

351

The facilitating effect of constructions is more352

likely to affect the processing of words that are353

produced immediately before and after the con-354

struction itself.7 We define the locus of the facili-355

tating effect (s in Eq. 4) as the 10 tokens preceding356

and the 10 tokens following the construction.8 The357

tokens exceeding the limits of the current dialogue358

turn are discarded.9359

6.2 Estimates of surprisal360

To produce surprisal estimates, we use a computa-361

tional model of next word prediction which imple-362

ments approximations of both the activation-based363

and the implicit learning mechanism: it is con-364

ditioned on local contextual cues while it learns365

from exposure to the global dialogue context. We366

use GPT-2 (Radford et al., 2019), a pre-trained367

6Building on prior work (Reitter et al., 2006a) that uses
a window of 15 seconds of spoken dialogue as the locus of
local priming effects, we compute the average speech rate in
the Spoken BNC (3.16 tokens/second) and multiply it by 15;
we then round up the result (47.4) to 50 tokens.

7Due to human memory constraints, it is unlikely that
the processing of words which are, e.g., 100 tokens (or 30
seconds) away from the construction will still be affected.

8This is motivated by the fact that the average length of
turns containing a construction is 31 tokens (median length is
21), with constructions being 3 to 7 tokens long—see Table 3.

9When the locus s corresponds to the construction itself,
the facilitating effect is set to 0.

autoregressive Transformer language model. We 368

take GPT-2’s attention mechanism (Vaswani et al., 369

2017) over the preceding context of a word as a 370

proxy for the local activation-based mechanism: 371

words in the more proximate dialogue context 372

shape the model’s expectations for next words, and 373

thus their contextualised surprisal. As an implicit 374

learning mechanism, we use the Transformer’s stan- 375

dard learning rule, back-propagation on the cross- 376

entropy next word prediction error, which has been 377

successful at modelling a wide range of linguistic 378

phenomena (Rumelhart and McClelland, 1986; El- 379

man, 1991; Cleeremans and Elman, 1993; Plaut 380

et al., 1996; Oppenheim et al., 2010; van Schijn- 381

del and Linzen, 2018). We rely on HuggingFace’s 382

implementation of GPT-2 with default tokenizers 383

and parameters (Wolf et al., 2020), and finetune 384

the pre-trained model on a 70% training split of 385

the Spoken BNC in order to adapt it to the idiosyn- 386

crasies of spoken dialogic data.10 We refer to this 387

finetuned version as the frozen model. We use an 388

attention window of length 50, i.e., the size of the 389

local dialogue context, which may span over multi- 390

ple dialogue turns (see Section 6.1). 391

Adaptive learning rate When estimating sur- 392

prisal for a dialogue, we begin by processing the 393

first turn using the frozen language model and then 394

gradually update the model parameters after each 395

turn, using back-propagation with cross-entropy 396

loss. The magnitude of the learning rate is impor- 397

tant for these updates to have the desired effect. 398

The learning rate should be sufficiently high for the 399

language model to adapt during a single dialogue, 400

yet an excessively high learning rate can cause the 401

language model to lose its ability to generalise 402

across dialogues. To find the appropriate learn- 403

ing rate, we randomly select 18 dialogues from 404

the analysis split of the Spoken BNC11 and run an 405

18-fold cross-validation for a set of six candidate 406

learning rates: 1e−5, 1e−4, . . ., 1. We finetune the 407

model on each dialogue using one of these learning 408

rates, and compute perplexity reduction 1) on the 409

dialogue itself (adaptation) as well as 2) on the 410

remaining 17 dialogues (generalisation). We select 411

the learning rate yielding the best adaptation over 412

cross-validaton folds (1e−3), while still improving 413

the model’s generalisation ability.12 414

10More details on finetuning can be found in Appendix C.1.
11This amounts to ca. 10% of the analysis split. We use

the analysis split because there is no risk of “overfitting” with
respect to our main analyses.

12The cross-validation result can be found in Appendix C.2.
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6.3 Statistical modelling415

To test H1, we split all occurrences of construc-416

tions by whether they are the first mention of a con-417

struction in a dialogue or a repetition. Our dataset418

consists of 8,562 first mentions and 24,541 repeti-419

tions. Using a Two Sample Bayesian t-test,13 we420

compare the distribution of the facilitating effect421

of first mentions to that of repetitions. We perform422

the same analysis for construction surprisal values.423

H2 and H3 focus on analysing repetitions only.424

We label each occurrence with a repetition index425

(the first repetition of a construction has an index426

of 1, the second, 2, etc.), and with the distance from427

the previous mention in a dialogue, measured as the428

number of words between the first word of the cur-429

rent occurrence and the first word of the previous430

occurrence. We fit two linear mixed effect models431

using FE and S as response variables, and include432

multilevel random effects grouped by dialogue and433

individual speakers.14 To select the fixed effects of434

the models, we start with a collection of motivated435

features—including repetition index and distance436

from previous mention—and perform an ablation437

selection procedure, iteratively removing features438

with the lowest significance, keeping only those439

that yield a p-value lower than 0.05.15440

7 Results441

We now present the results of our experiments, test-442

ing three hypotheses on the processing advantage443

(facilitating effect and surprisal reduction) of con-444

struction repetition. The final linear mixed effect445

models for both facilitating effect FE and construc-446

tion surprisal S include repetition index and dis-447

tance from the previous mention, which are directly448

related to our hypotheses, as well as construction449

length and repetition index within the current turn.450

The full specification of the best models, with fixed451

and random effect coefficients, is in Appendix D.452

Repetition facilitates processing (H1) Fig-453

ures 1a and 1b show the posterior distributions of454

the mean FE and S do not overlap between groups.455

For both metrics, highest density intervals of differ-456

ence between means do not include 0. In sum, we457

13We use the t-test implemented in the ‘Bayesian First Aid’
R-JAGS package (https://github.com/rasmusab/
bayesian_first_aid) with the default uninformative
priors and a credible interval of 95%.

14We also try grouping observations only by dialogue and
only by individual speakers. The amount of variance explained
decreases, so we keep the two-level random effects.

15The full list of features can be found in Appendix D.

(a) Facilitating effect (FE)

(b) Construction surprisal (S)

Figure 1: Posterior predictive distributions for the
mean FE and S according to the Bayesian t-test be-
tween first mentions and repetitions.

find construction repetitions have a stronger facil- 458

itating effect than first mentions, and surprisal of 459

repetitions is lower than that of first mentions. Our 460

first two predictions are thus confirmed. 461

The processing advantage of repetition is cumu- 462

lative (H2) The effect of repetition index is pos- 463

itive on FE (7.57e−2, p < 2e−16) and negative 464

on S (−24.85e−2, p < 2e−16). Figures 2a and 465

2b show the opposite trajectories of our two met- 466

rics, with a stronger effect of repetition index on 467

construction surprisal. In sum, we find that the fa- 468

cilitating effect of constructions increases, and that 469

surprisal decreases, as previous mentions accumu- 470

late. This confirms our second pair of predictions. 471

The processing advantage of repetition decays 472

(H3) The distance of a construction from its 473

previous mention has a negative effect on FE 474

(−4.29e−2, p < 2e−16) and a positive effect on S 475

(9.66e−2, p < 2e−16), also shown in Figures 2c 476

and 2d. Facilitating effect decreases, and surprisal 477

increases, as the current usage of a construction 478

gets further away from its previous mention. Our 479

third pair of predictions is thus confirmed. 480

8 Analysis 481

Having confirmed our three hypotheses, we now 482

further analyse the distribution of FE and S es- 483

timates, the relationship between them, and how 484

their values across repetitions are influenced by 485

additional factors. 486

6
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Figure 2: Facilitating effect (FE) and construction surprisal (S, bits) vs. repetition index and distance from previous
mention (number of words). The first distance bin is the mean length of a turn containing a construction (Table 3).

8.1 Measures of processing advantage487

Our first observation is that not only construction488

repetition but also construction usage comes with489

a processing advantage, as measured with both490

FE and S—a finding in line with prior work (e.g.,491

Arnon and Snider, 2010; Bannard and Matthews,492

2008; Tremblay et al., 2011; Janssen and Barber,493

2012). On the one hand, as shown in Figure 1a,494

the posterior distribution of the mean FE spans495

over positive values for both first mentions and496

repetitions. The estimated mean FE of construc-497

tions (Figure 1a) is higher than the mean (0.07 ±498

0.82) and median (0.01) FE of non-construction499

sequences in the Spoken BNC dialogues.16 On the500

other hand, the posterior predictive mean value of501

S for constructions (Figure 1b) does not include502

the mean (5.59 ± 2.36) nor the median (5.36) S of503

non-construction sequences.504

Our second observation is that the two metrics505

show similar but opposite patterns in our results.506

Theoretically—i.e., based on the definition of507

the two metrics (Section 6.1)—these trends508

can be predicted a priori: it is more likely for509

a construction to have a facilitating effect if510

its surprisal is low; if construction surprisal is511

high, the context of the construction must be512

even more surprising for facilitating effect to513

occur. Empirically, we find that the Kendall’s514

rank-correlation between facilitating effect and515

surprisal is −0.569 (p < 2e−16): although this is516

a rather strong correlation, the fact that the score is517

not closer to 1 indicates that there are cases where518

16We calculate FE and S of all 3- to 7-grams in our analysis
split of the Spoken BNC, excluding all n-grams that are equal
to extracted constructions. We then sample, for each length
n from 3 to 7, sn non-construction sequence occurrences—
where sn is the number of occurrences of n-tokens-long con-
structions. The length distributions should match because
length has an effect on FE and S (see Section 8.2).

the two values do not follow the predicted pattern. 519

Some constructions have high facilitating effect 520

and high surprisal: 521

A So what have you got? what have you got going on with enrichments?
B I have to do drama enrichment (FE = 1.32 S = 5.46) 522

While there are cases where construction surprisal 523

is low and facilitating effect is low or negative:17 524

A But like I always really love strawberries but hate strawberry-flavoured
things so I don’t

B I don’t like strawberries but I like strawberry-flavoured things
(FE = −0.70 S = 2.24)

525

These examples show that our measures capture 526

different types of context-dependent processing 527

advantage.18 528

8.2 Other predictors of processing advantage 529

Other factors that influence facilitating effect and 530

surprisal beyond those directly related to our hy- 531

potheses are construction length and repetition in- 532

dex within a dialogue turn. Construction length 533

has the strongest effect on both metrics (FE: 534

30.16e−2, p < 2e−16; S: −110.90e−2, p < 535

2e−16): the longer the construction the stronger 536

its facilitating effect and the lower its surprisal. Ta- 537

ble 4 shows a full repetition chain for a construction 538

of length 3; Table 5 (Appendix B) shows a chain 539

for one of length 6. Because constructions, per se, 540

have a processing advantage, and their repetitions 541

facilitate processing (see Section 7), construction 542

repetition is advantageous when constructions oc- 543

cupy a larger portion of processing time (which is 544

proportional to the number of words). 545

The repetition index of a construction men- 546

tion within a dialogue turn also has an effect 547

on both metrics of processing advantage (FE: 548

14.38e−2, p < 2e−16; S: −29.48e−2, p < 0.05). 549

17A negative facilitating effect indicates that the surprisal
of the construction is higher than the surprisal of its context.

18The examples have been selected among occurrences with
FE and S higher or lower than the mean FE / S ± std.
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Speaker RI RI Turn Dist Turn FE S

A 0 0 - Drink? that was what he did yeah just just to just to know that 0.40 4.73
I he might not be a complete twat but just a fyi

B 1 0 1586 Especially for my birthday mind you I might not be here for 0.53 4.01
2 1 14 mine and I went what do you mean you might not be here? 0.90 2.70

Table 4: Repetition chain for the construction ‘might not be’ in dialogue SXWH, Spoken BNC, annotated with
repetition index (RI), RI within dialogue turn (RI Turn), and distance from previous mention (Dist; in tokens).

Although the identity of the speaker producing pre-550

vious mentions of a construction does not influence551

facilitating effect or surprisal,19 we find strong cu-552

mulativity effects for self-repetitions within the553

current dialogue turn. Only 6.46% of the total con-554

struction occurrences have at least one previous555

mention in the same dialogue turn; yet when this556

is the case, the magnitude of FE and S increases557

with the number of previous local mentions. This558

interaction between cumulativity and recency (me-559

dian distance between repetitions in the same turn560

is 7 words; across turns is 1208 words) indicates561

that processing advantage increases faster when562

repetitions are densely clustered.20563

9 Conclusion564

We have hypothesised that speakers repeat lexi-565

calised constructions in dialogues because repeti-566

tion eases information processing, and have for-567

mulated concrete predictions that follow from this568

hypothesis. To quantify the processing advantage569

of constructions we have proposed two surprisal-570

based measures, facilitating effect and construction571

surprisal, and have analysed how the values of these572

measures vary as constructions are repeated.573

Our experiments on English spoken open do-574

main dialogues confirmed our three predictions: 1)575

construction repetition reduces processing effort;576

2) the effort reduction increases with the frequency577

of repetitions and 3) decreases with the distance578

between repetitions. These empirical results pro-579

vide new evidence that construction repetition in580

dialogue is an efficient communication strategy.581

They thus complement prior work on the process-582

ing advantage of construction usage (Tremblay and583

Baayen, 2010; Tremblay et al., 2011; Janssen and584

Barber, 2012; Siyanova-Chanturia et al., 2017) and585

contribute to an understudied type of priming, with586

priming research traditionally focusing on repeti-587

19All factors related to speaker identity are discarded during
the ablation procedure; see Section 6.3 and Appendix D.

20Further details can be found in Appendix E.

tions of syntactic structures (Bock, 1986; Branigan 588

et al., 2000; Reitter et al., 2006b, 2011) and lexical 589

elements (Brennan, 1996; Doyle and Frank, 2016; 590

Xu et al., 2018). Our findings reveal that the infor- 591

mation processing efficiency of construction repe- 592

tition results from a combination of the activation- 593

based and implicit learning priming mechanisms. 594

In line with activation-based accounts of priming, 595

we find that the processing advantage of repetitions 596

accumulates faster when repetitions are densely 597

clustered, and it decays faster within more local 598

distances. However, implicit learning is necessary 599

to explain the fact that both cumulativity and decay 600

effects are still present across distant repetitions. 601

Besides contributing new empirical evidence 602

on construction usage and repetition in dialogue, 603

this study highlights the importance of a few key 604

desiderata for the design of human-compatible 605

computational dialogue models. First, models 606

should both attend to the local dialogue context 607

and use the global statistics collected throughout 608

a dialogue for on-the-fly adaptation. This would 609

have the natural effect of models being more likely 610

to repeat constructions established as part of the 611

dialogue lexicon. Second, although excessive and 612

unnatural repetitions should be avoided in machine- 613

generated utterances (Li et al., 2016; Holtzman 614

et al., 2019), a certain degree of repetition makes 615

a dialogue sound more natural. Human-like repeti- 616

tion patterns can be explicitly learned by auxiliary 617

modules (Holtzman et al., 2018) or, as our study 618

suggests, they may be implicitly acquired if next- 619

word surprisal training and decoding objectives are 620

complemented with context-dependent surprisal- 621

based objectives. Simple techniques such as those 622

proposed by Wei et al. (2021) and Meister et al. 623

(2020) could be used to operationalise facilitating 624

effect as a psycholinguistically motivated inductive 625

bias to be used in training, and as a word choice 626

criterion in decoding. 627
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Appendix1085

A Possible Criteria to Distinguish MWEs1086

Lexicalised constructions can be classified accord-1087

ing to multiple criteria (Titone and Connine, 1994;1088

Wray, 2002; Columbus, 2013), including those1089

listed below.1090

• Compositionality This criterion is typically1091

used to separate idioms from other formulaic1092

expressions, although it is sometimes referred1093

to as transparency to underline its graded,1094

rather than binary, nature. There is no evi-1095

dence, however, that the processing advantage1096

of idioms differs from that of compositional1097

phrases (Tabossi et al., 2009; Jolsvai et al.,1098

2013; Carrol and Conklin, 2020). Therefore1099

we ignore this criterion in the current study.1100

• Literal plausibility This criterion is typically 1101

used to discriminate among different types 1102

of idioms (Titone and Connine, 1994; Titone 1103

and Libben, 2014)—as compositional phrases 1104

are literally plausible by definition. Because 1105

we ignore distinctions made on the basis of 1106

compositionality, we do not use this criterion. 1107

• Meaningfulness Meaningful expressions are 1108

idioms and compositional phrases (e.g. ‘on 1109

my mind’, ‘had a dream’) whereas sentence 1110

fragments that break constituency boundaries 1111

(e.g., ‘of a heavy’, ’by the postal’) are consid- 1112

ered less meaningful (as measured in norming 1113

studies, e.g., by Jolsvai et al., 2013). There 1114

is some evidence that the meaningfulness of 1115

multi-word expressions correlates with their 1116

processing advantage even more than their 1117

frequency (Jolsvai et al., 2013); yet expres- 1118

sions are particularly frequent, they present 1119

processing advantages even if they break reg- 1120

ular phrasal structures (Bybee and Scheibman, 1121

1999; Tremblay et al., 2011). Moreover, ut- 1122

terances that break regular constituency rules 1123

are particularly frequent in spoken dialogue 1124

data (e.g., ‘if you could search for job and 1125

that’s not’, ‘you don’t wanna damage your 1126

relationship with’). For these reasons, we do 1127

not exclude constructions that span multiple 1128

constituents from our analysis. 1129

• Schematicity This criterion distinguishes ex- 1130

pressions where all the lexical elements are 1131

fixed from expressions “with slots” that can be 1132

filled by varying lexical elements.In this study, 1133

we focus on fully lexicalised constructions. 1134

• Familiarity This is a subjective criterion that 1135

strongly correlates with objective frequency 1136

(Carrol and Conklin, 2020). Human experi- 1137

ments would be required to obtain familiarity 1138

norms for our target data, and the resulting 1139

norms would only be an approximation of the 1140

familiarity judgements of the true speakers we 1141

analyse the language of. Therefore, we ignore 1142

this criterion in the current study. 1143

• Communicative function Formulaic expres- 1144

sions can fulfil a variety of discourse and 1145

communicative functions. Biber et al. (2004), 1146

e.g., distinguish between stance expressions 1147

(attitude, certainty with respect to a proposi- 1148

tion), discourse organisers (connecting prior 1149
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and forthcoming discourse), and referential1150

expressions; and for each of these three pri-1151

mary discourse functions, more specific sub-1152

categories are defined. This type of classi-1153

fication is typically done a posteriori—i.e.,1154

after a manual analysis of the expressions re-1155

trieved from a corpus according to other cri-1156

teria (Biber and Barbieri, 2007). In the BNC,1157

for example, we find epistemic lexical bun-1158

dles (‘I don’t know’, ‘I don’t think’), desire1159

bundles (‘do you want to’, ’I don’t want to’),1160

obligation/directive bundles (‘you don’t have1161

to’), and intention/prediction bundles (‘I’m1162

going to’, ‘it’s gonna be’). We do not use this1163

criterion to avoid an a priori selection of the1164

constructions.1165

B Extraction of Repeated Constructions1166

We define a limited specific vocabulary of generic1167

nouns to filter out topical and referential construc-1168

tion. The vocabulary includes: bit, bunch, day,1169

days, fact, god, idea, ideas, kind, kinds, loads, lot,1170

lots, middle, ones, part, problem, problems, reason,1171

reasons, rest, side, sort, sorts, stuff, thanks, thing,1172

things, time, times, way, ways, week, weeks, year,1173

years.1174

We also find all the filled pauses and exclude1175

word sequences that consist for more than 50% of1176

filled pauses. Filled pauses in the Spoken BNC are1177

transcribed as: huh, uh, erm, hm, mm, er.1178

Table 5 shows a whole construction chain (from1179

the first mention to the last repetition) for a con-1180

struction of length 6.1181

C Language Model1182

C.1 Finetuning1183

We finetune the ‘small’ variant of GPT-2 (Radford1184

et al., 2019) and DialoGPT (Zhang et al., 2020)1185

on our finetuning split of the Spoken BNC (see1186

Section 4) using HuggingFace’s implementation1187

of the models with default tokenizers and param-1188

eters (Wolf et al., 2020). The finetuning results1189

for both models are presented in Table 6. We fine-1190

tune the models and measure their perplexity using1191

Huggingface’s finetuning script. We use early stop-1192

ping over 5 epochs.21 Sequence length and batch1193

21The number of epochs (5) has been selected in prelimi-
nary experiments together with the learning rate (1e−4). In
these preliminary experiments—which we ran for 40 epochs—
we noticed that the 1e−4 learning rate offers the best tradeoff
of training time and perplexity out of four possible values:

size vary together because they together determine 1194

the amount of memory required; more expensive 1195

combinations (e.g., 256 tokens with batch size 16) 1196

require an exceedingly high amount of GPU mem- 1197

ory. Reducing the maximum sequence length has 1198

limited impact: 99.90% of dialogue turns have at 1199

most 128 words. 1200

DialoGPT starts from extremely high perplexity 1201

values but catches up quickly with finetuning. GPT- 1202

2 starts from much lower perplexity values and 1203

reaches virtually the same perplexity as DialoGPT 1204

after finetuning. For the pre-trained DialoGPT per- 1205

plexity is extremely high, and the perplexity trend 1206

against maximum sequence length is surprisingly 1207

upward. These two behaviours indicate that the pre- 1208

trained DialoGPT is less accustomed than GPT-2 to 1209

the characteristics of our dialogue data. DialoGPT 1210

is trained on written online group conversations, 1211

while we use a corpus of transcribed spoken conver- 1212

sations between two speakers. In contrast, GPT-2 1213

has been exposed to the genre of fiction, which con- 1214

tains scripted dialogues, and thus to a sufficiently 1215

similar language use. We select GPT-2 finetuned 1216

with a maximum sequence length of 128 and 512 1217

as our best two models; these two models (which 1218

we now refer to as frozen) are used for the adaptive 1219

learning rate selection (Section C.2). 1220

C.2 Learning rate selection 1221

To find the appropriate learning rate for on-the-fly 1222

adaptation (see Section 6.2), we randomly select 1223

18 dialogues D from the analysis split of the Spo- 1224

ken BNC and run an 18-fold cross-validation for 1225

a set of six candidate learning rates: 1e−5, 1e−4, 1226

. . ., 1. We finetune the model on each dialogue 1227

using one of these learning rate values, and com- 1228

pute perplexity change 1) on the dialogue itself (to 1229

measure adaptation) as well as 2) on the remain- 1230

ing 17 dialogues (to measure generalisation). We 1231

set the Transformer’s context window to 50 to re- 1232

produce the experimental conditions presented in 1233

Section 6.1. 1234

More precisely, for each dialogue d ∈ D, we 1235

calculate the perplexity of our two frozen mod- 1236

els (Section C.1) on d and D d (pplbefore(d) and 1237

pplbefore(D), respectively). Then, we finetune 1238

the models on d using the six candidate learning 1239

rates, and measure again the perplexity over d and 1240

1e−2, 1e−3, 1e−4, 1e−5. We obtained insignificantly lower
perplexity values with a learning rate of 1e−5, with signif-
icantly longer training time: 20 epochs for GPT-2 and 28
epochs for DialoGPT.
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Speaker RI RI Turn Dist Turn FE S

A 0 0 - [...] I think that everyone should have the same opportunities
and I don’t think you should be proud or ashamed of what 1.21 1.90
your you know what your situation is whether you what your
what your race is whether you’re a woman or a man whether
you live from this pl whether you’re in this place [...]

A 1 0 80 I well I th I don’t think it should I don’t think you should be 1.40 1.73

A 2 0 19 Well yes perhaps but I don’t think you should be like um 2.48 1.06
embarrassed about it or I think I think you should just sort of

Table 5: A chain of repetitions of the construction ‘I don’t think you should be’ in dialogue S2AX of the Spoken
BNC, annotated with repetition index (RI), RI within dialogue turn (RI Turn), and distance from previous mention
(Dist; in tokens).

Model Learning rate Max sequence length Batch size Best epoch Perplexity finetuned Perplexity pretrained

DialoGPT 0.0001 128 16 3 23.211 7091.380
DialoGPT 0.0001 256 8 4 22.262 12886.921
DialoGPT 0.0001 512 4 4 21.728 21408.316
GPT-2 0.0001 128 16 4 23.320 173.761
GPT-2 0.0001 256 8 3 22.212 159.227
GPT-2 0.0001 512 4 3 21.553 149.822

Table 6: Finetuning results for GPT-2 and DialoGPT on our finetuning split of the Spoken BNC.

D d (pplafter(d) and pplafter(D)). The change in1241

performance is evaluated according to two met-1242

rics: pplafter(d)−pplbefore(d)
pplbefore(d)

measures the degree1243

to which the model has successfully adapted to1244

the target dialogue; pplafter(D)−pplbefore(D)
pplbefore(D) mea-1245

sures whether finetuning on the target dialogue has1246

caused any loss of generalisation.1247

The learning rate selection results are presented1248

in Figure 3. We select 1e−3 as the best learning1249

rate and pick the model finetuned with a maximum1250

sequence length of 512 as our best model. The1251

difference in perplexity reduction (both adaptation1252

and generalisation) is minimal with respect to the1253

model finetuned with a maximum sequence length1254

of 128, but since the analysis split of the Spoken1255

BNC contains turns longer than 128 tokens, we1256

select the 512 version. Similarly to van Schijndel1257

and Linzen (2018), we find that finetuning on a1258

dialogue does not cause a loss in generalisation1259

but instead helps the model generalise to other dia-1260

logues. Unlike (2018), who used LSTM language1261

models, we find that learning rates larger than 1e−11262

cause backpropagation to overshoot, even within a1263

single dialogue. In Figure 3, the bars for 1e−1 and1264

1 are not plotted because the corresponding data1265

contains infinite perplexity values (due to numeri-1266

cal overflow). The selected learning rate, 1e−3, is1267

a relatively low learning rate for on-the-fly adapta- 1268

tion but it is still higher than the best learning rate 1269

for the entire dataset by a factor of 10. 1270
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Figure 3: The adaptation and generalisation perfor-
mance (defined in Section C.2) with varying learning
rate.

D Linear Mixed Effect Models 1271

As explained in Section 6.3 of the main paper, we 1272

fit linear mixed effect models using facilitating ef- 1273

fect and construction surprisal as response variables 1274

and including multilevel random effects grouped 1275
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by dialogues and individual speakers.22 To select1276

the fixed effects of the models, we start with a1277

collection of motivated features and perform an1278

ablation selection procedure, iteratively removing1279

features with the lowest significance, and keeping1280

only those that yield a p-value lower than 0.05. We1281

start with the following features: the logarithm of1282

the repetition index, the logarithm of the repeti-1283

tion index within the current turn, the logarithm of1284

the distance from the previous mention (computed1285

in three ways: with respect to the previous men-1286

tion of any speaker, of the current speaker, and of1287

the other speaker), the logarithm of construction1288

length (measures as the number of tokens in a con-1289

struction), the logarithm of the number of tokens1290

between the current occurrence and the first men-1291

tion of a construction, and binary features indicat-1292

ing whether the previous mention is by the current1293

speaker, whether it is produced by the initiator of1294

the construction, whether the construction has been1295

already uttered by both speakers, and whether the1296

previous mention is in the current dialogue turn.1297

The ablation selection procedure yields two mod-1298

els with the following fixed effects: log repetition1299

index, log repetition index within the current dia-1300

logue turn, log distance from the previous mention1301

(of any speaker), and log construction length. The1302

best model for facilitating effect is summarised1303

in Listing 1 and the best model for construction1304

surprisal in Listing 2.1305

E Local Effects of Processing Advantage1306

Table 7 shows the distribution of repetition indices1307

within the dialogue turn. An index of n indicates1308

that n previous mentions of the construction take1309

place in the current dialogue turn. Figures 4a

Previous mentions in the current dialogue turn

Tot 0 1 2 3 4 5 6 7 8
33103 30965 1872 188 46 16 11 3 1 1

Table 7: The distribution of repetition indices within
the dialogue turn.

1310
and 4b show how facilitating effect and construc-1311

tion surprisal vary locally, for repetitions occurring1312

within the same dialogue turn.1313

22We also try grouping observations only by dialogue and
only by individual speakers. The amount of variance (unac-
counted for by the fixed effects) explained decreases, so we
keep the two-level random effects.
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Figure 4: Facilitating effect and construction surprisal
(bits) against repetition index within the current dia-
logue turn.
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Listing 1: Best linear mixed effect model for Facilitating Effect

Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
lmerModLmerTest]
Formula:
logFE10 ~ 1 + logLength + logRepIndexInTurn + logRepetitionIndex +

logDistance + (1 | ‘Dialogue ID‘/Speaker)
Data: data

REML criterion at convergence: 51869.1

Scaled residuals:
Min 1Q Median 3Q Max

-7.3884 -0.6125 -0.0438 0.5574 8.4443

Random effects:
Groups Name Variance Std.Dev.
Speaker:‘Dialogue ID‘ (Intercept) 0.006503 0.08064
Dialogue ID (Intercept) 0.006100 0.07810
Residual 0.478766 0.69193

Number of obs: 24540, groups:
Speaker:‘Dialogue ID‘, 364; Dialogue ID, 185

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 4.056e-01 5.335e-02 2.036e+04 7.603 3.02e-14
logLength 3.016e-01 2.901e-02 2.452e+04 10.394 < 2e-16
logRepIndexInTurn 1.438e-01 1.709e-02 2.451e+04 8.416 < 2e-16
logRepetitionIndex 7.569e-02 6.902e-03 2.360e+04 10.965 < 2e-16
logDistance -4.290e-02 1.741e-03 2.309e+04 -24.638 < 2e-16

(Intercept) ***
logLength ***
logRepIndexInTurn ***
logRepetitionIndex ***
logDistance ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Correlation of Fixed Effects:
(Intr) lgLngt lgRIIT lgRptI

logLength -0.909
lgRpIndxInT -0.177 -0.008
lgRpttnIndx -0.291 0.067 -0.031
logDistance -0.342 0.030 0.563 0.095
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Listing 2: Best linear mixed effect model for Construction Surprisal

Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
lmerModLmerTest]
Formula: S ~ 1 + logLength + logRepIndexInTurn + logRepetitionIndex +

logDistance + (1 | ‘Dialogue ID‘/Speaker)
Data: data

REML criterion at convergence: 78900.3

Scaled residuals:
Min 1Q Median 3Q Max

-3.0885 -0.6807 -0.0779 0.6062 6.5359

Random effects:
Groups Name Variance Std.Dev.
Speaker:‘Dialogue ID‘ (Intercept) 0.01282 0.1132
Dialogue ID (Intercept) 0.04292 0.2072
Residual 1.43852 1.1994

Number of obs: 24540, groups:
Speaker:‘Dialogue ID‘, 364; Dialogue ID, 185

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 4.866e+00 9.319e-02 1.810e+04 52.215 <2e-16
logLength -1.109e+00 5.033e-02 2.451e+04 -22.042 <2e-16
logRepIndexInTurn -2.948e-01 2.964e-02 2.452e+04 -9.943 <2e-16
logRepetitionIndex -2.485e-01 1.197e-02 2.346e+04 -20.761 <2e-16
logDistance 9.657e-02 3.028e-03 2.408e+04 31.889 <2e-16

(Intercept) ***
logLength ***
logRepIndexInTurn ***
logRepetitionIndex ***
logDistance ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Correlation of Fixed Effects:
(Intr) lgLngt lgRIIT lgRptI

logLength -0.903
lgRpIndxInT -0.176 -0.007
lgRpttnIndx -0.289 0.068 -0.030
logDistance -0.339 0.031 0.563 0.096
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