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Abstract

Large Language Models (LLMs) have emerged001
as a transformative force in artificial intelli-002
gence, demonstrating exceptional proficiency003
across various tasks. However, their deploy-004
ment in resource-constrained environments and005
concerns over user data privacy pose signifi-006
cant challenges. In contrast, Small Language007
Models (SLMs) offer computational efficiency008
but often lag in performance. To address these009
issues, we propose FedCoT, a federated frame-010
work designed for the Chain-of-Thought (CoT)011
distillation of knowledge from LLMs to SLMs,012
while ensuring the preservation of clients’ data013
privacy. FedCoT ensures secure and efficient014
knowledge transfer from an LLM on a high-015
powered server to an SLM on a resource-016
constrained client, while adhering to privacy re-017
quirements. Leveraging perturbed prompts and018
rationales generated through the CoT approach,019
the framework enhances the performance of020
the client’s SLM without compromising user021
data privacy within a multi-task learning frame-022
work. We propose two privacy protection strate-023
gies: the Exponential Mechanism Strategy and024
the Adaptive Exponential Mechanism Strat-025
egy, which balance user prompt privacy and026
the usability of rationales. Empirical evalua-027
tion on various text generation tasks demon-028
strates the effectiveness of FedCoT in training029
task-specific SLMs with enhanced performance030
while prioritizing data privacy protection.031

1 Introduction032

Large Language Models (LLMs) have risen as a033

revolutionary force in artificial intelligence. Promi-034

nent LLMs, such as GPT-4 (OpenAI, 2023),035

LLaMA (Touvron et al., 2023), and Qwen (Bai036

et al., 2023), have garnered the attention of re-037

searchers and practitioners alike, demonstrating038

unparalleled proficiency across numerous tasks.039

Nevertheless, the sheer size of these models040

presents significant obstacles for real-world de-041

ployment, particularly in environments with lim-042

ited resources (Kang et al., 2023; Fan et al., 2025). 043

Meanwhile, as LLMs gain escalating popularity 044

and widespread utilization, privacy concerns have 045

moved to the forefront, especially when it comes to 046

user data and LLMs inference. In contrast, Small 047

Language Models (SLMs) often exhibit superior 048

computational efficiency and faster convergence 049

rates, rendering them perfectly suited for real-time 050

applications or resource-constrained environments. 051

Nonetheless, SLMs also possess certain drawbacks 052

stemming from their performance limitations. The 053

question then arises: How can we effectively com- 054

bine the predictive prowess of LLMs with the nim- 055

bleness of SLMs, all while adhering to privacy 056

requirements? 057

To address these challenges, we propose FedCoT, 058

a federated framework designed for the Chain-of- 059

Thought (CoT) (Wei et al., 2022) distillation of 060

knowledge from LLMs to SLMs, while ensuring 061

the preservation of clients’ data privacy. FedCoT 062

ensures secure and efficient knowledge transfer 063

from an LLM on a high-powered server to an SLM 064

on a resource-constrained client. The challenge 065

lies in maintaining the privacy of client data while 066

leveraging the server’s LLM to aid in training the 067

client’s SLM for text generation tasks, thereby el- 068

evating its performance. FedCoT aims to bridge 069

this gap, enabling secure and efficient knowledge 070

transfer between LLM and SLM, and ultimately 071

enhancing the capabilities of the SLM without com- 072

promising privacy. 073

As illustrated in Figure 1(a), within our frame- 074

work, the process works as follows. Initially, the 075

client transmits perturbed prompts to the server’s 076

LLM. These prompts are protected by the FedCoT 077

prompt encoder, which employs Differential Pri- 078

vacy (DP) principles (Dwork, 2006; McSherry and 079

Talwar, 2007), ensuring privacy protection. Sub- 080

sequently, the server’s LLM generates perturbed 081

rationales from these prompts through the CoT ap- 082

proach and relays them back to the client. Upon 083
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receiving these perturbed rationales, the client’s084

rationales decoder reconstructs them into their orig-085

inal, aligned form corresponding to the raw prompt.086

Ultimately, the client utilizes CoT knowledge dis-087

tillation (Hsieh et al., 2023; Li et al., 2023) to train088

its Task-Specific SLM. This process leverages both089

label data and rationales within a multi-task learn-090

ing paradigm (Wei et al., 2022; Hsieh et al., 2023;091

Zhang and Yang, 2021). These rationales justify the092

predicted labels and serve as insightful guidance093

for training smaller and domain-specific models.094

Previous endeavors to incorporate DP into lan-095

guage models, specifically through DP-SGD (Song096

et al., 2013), have primarily centered on navigating097

the delicate balance between utility and privacy.098

This is achieved by introducing calibrated noise099

into gradients or text representations during the100

model training process. Nonetheless, these meth-101

ods inherently rely on a trusted server to gather102

data from data owners for model training (Chen103

et al., 2023), significantly limiting their applicabil-104

ity in scenarios where such trusted servers are not105

available, as is the case in our research context.106

Within the FedCoT framework, to achieve a107

balance between preserving the privacy of user108

prompts and enhancing the usability of rationales,109

we introduce two privacy protection strategies: the110

Exponential Mechanism Strategy and the Adaptive111

Exponential Mechanism Strategy. In the Exponen-112

tial Mechanism Strategy, we utilize an exponential113

mechanism to obfuscate the prompts (McSherry114

and Talwar, 2007; Yue et al., 2021; Chen et al.,115

2023), followed by decoding the perturbed ratio-116

nales through In-Context Learning (ICL) (Dong117

et al., 2024; Tong et al., 2025). In the Adaptive118

Exponential Mechanism Strategy, we utilize an119

Encoder-Decoder SLM specifically designed to en-120

code original prompts into perturbed prompts and121

subsequently decode perturbed rationales back into122

their original form. To effectively train this uni-123

fied Encoder-Decoder SLM, we utilize a multi-task124

learning paradigm (Zhang and Yang, 2021), encom-125

passing both the encoding and decoding training126

processes.127

Our contributions are summarized as follows:128

• Federated Framework for CoT Distillation129

in LLMs. We propose FedCoT, a novel feder-130

ated framework that facilitates secure and effi-131

cient knowledge transfer from LLM to SLM132

in resource-constrained environments. Fed-133

CoT leverages CoT knowledge distillation to134

enhance Task-Specific SLM within the client. 135

This process leverages rationales produced by 136

the LLM on the server, thereby enriching the 137

client-side SLMs with valuable task-related 138

knowledge. 139

• Privacy as a Priority. FedCoT leverages an 140

Adaptive Exponential Mechanism Strategy tai- 141

lored for encoding prompt to ensure their ob- 142

fuscation and decoding perturbed rationales. 143

The strategies effectively balance user prompt 144

privacy and the usability of rationales. 145

• Empirical Evaluation and Enhanced Per- 146

formance of Task-Specific SLM. Through 147

experiments on various text generation tasks, 148

FedCoT demonstrates the effectiveness of 149

its framework in training task-specific SLM 150

with enhanced performance. By harnessing 151

the rationales generated by the server-side 152

LLM, FedCoT provides valuable task-specific 153

knowledge to the SLM. 154

2 Related Work 155

2.1 Differential Privacy 156

In this section, We briefly revisit two important 157

definitions of differential privacy: ϵ-Differential 158

Privacy and Exponential Mechanism (EM). 159

ϵ-Differential Privacy. Differential privacy 160

(DP) (Dwork, 2006) is a rigorous mathematical 161

framework that provides strong privacy guarantees 162

for data analysis. It ensures that the output of an 163

algorithm remains statistically indistinguishable 164

whether a particular individual’s data is included 165

or excluded from the dataset. Formally, a random- 166

ized mechanism M provides ϵ-differential privacy 167

if for all neighboring datasets D and D′ (differing 168

in at most one record) and for all sets S of possible 169

outputs: 170

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] (1) 171

where ϵ is the privacy budget that controls the level 172

of indistinguishability. 173

Exponential Mechanism. The Exponential 174

Mechanism (McSherry and Talwar, 2007) allows 175

for the selection of an outcome from a set of possi- 176

ble outcomes with probabilities proportional to the 177

exponential of their utility scores. Formally, given 178

a utility function u : D × R → R that maps each 179

dataset D and possible outcome r to a real-valued 180
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(a) Overview of our proposed FedCoT framework. (b) Privacy-Preserving Rationals Generation.

Figure 1: The overview of our proposed FedCoT. The FedCoT comprises four key components: (1) The Prompt
Encoder, which perturbs user prompts to ensure privacy; (2) The LLM, generating perturbed rationales based on
the perturbed prompts; (3) The Perturbed Rationales Decoder, which decodes the perturbed rationales back into a
usable form; (4) The Task-Specific SLM Enhancing via CoT Knowledge Distillation, utilizing both original labeled
data and filtered rationales data for multi-task learning.

score, the Exponential Mechanism M(D,u,R) sat-181

isfies ϵ-differential privacy if it selects and outputs182

an r ∈ R with probability:183

Pr[M(D) = r] ∝ exp

(
ϵu(D, r)

2∆u

)
(2)184

where ∆u is the sensitivity of the utility function185

(in our work, we use cosine similarity as the utility186

function), defined as the maximum change in utility187

score when a single record is added or removed188

from the dataset:189

∆u = max
D,D′,r

|u(D, r)− u(D′, r)| (3)190

2.2 Chain of Thought in Large Language191

Models192

The Chain of Thought (CoT) approach has recently193

garnered significant attention in the realm of LLMs,194

thanks primarily to its remarkable ability to en-195

hance the reasoning capabilities of these models.196

This innovative concept was first introduced by197

(Wei et al., 2022). Their research demonstrated198

that by prompting LLMs to produce a sequence of199

intermediary reasoning steps (rationales), the mod-200

els’ performance in handling intricate reasoning201

tasks could be notably boosted. Since the intro-202

duction of CoT, several studies have delved into203

its extensions and variations. For example, (Ko-204

jima et al., 2022) proposed the use of zero-shot205

CoT, where the model is prompted to generate ra- 206

tionales without relying on prior examples. CoT 207

has also been applied to various domains, including 208

arithmetic reasoning (Cobbe et al., 2021), common- 209

sense reasoning (Klein and Nabi, 2020). Recent 210

studies by (Hsieh et al., 2023; Ho et al., 2023; Li 211

et al., 2023), have capitalized on the generated ra- 212

tionales as a form of insightful supervision to train 213

smaller and domain-specific models. However, 214

previous studies have not addressed the domain- 215

specific data privacy issue that arises when LLMs 216

and domain-specific smaller models are deployed 217

across different parties. In our work, we endeavor 218

to address this significant challenge. 219

3 The Proposed FedCoT Framework 220

In this section, we introduce FedCoT, a federated 221

framework designed for the CoT distillation of 222

knowledge from LLMs hosted on a high-powered 223

server to SLMs deployed on a resource-constrained 224

client. The FedCoT framework can enhance the 225

performance of SLMs while maintaining client 226

data’s privacy, leveraging the capabilities of LLM. 227

We assume the server to be semi-honest, implying 228

that it may attempt to recover the private data of the 229

client from the information it observes. We illus- 230

trate the FedCoT in Figure 1(a), outline its training 231

algorithm in Algorithm 1 (Appendix A), and detail 232

its resource requirements in Appendix B. 233
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3.1 Privacy Preserving Prompt Encoder234

Before the client transmits its raw prompts to the235

server-side LLM, we need the privacy protection236

strategy to protect the raw prompts. In this section,237

we propose two privacy protection strategies:238

1. Exponential Mechanism Encoder Strategy.239

In the first strategy, we utilize an exponen-240

tial mechanism (McSherry and Talwar, 2007),241

which satisfies the criteria for the ϵ-DP. For de-242

tailed information about the exponential mech-243

anism, please refer to Section 2.1.244

Let us consider an Exponential Mechanism245

M(·). Given a input prompt p = {xi}Si=1246

comprising S tokens, a set X encompassing247

all possible input tokens, and a set Y of all248

potential output tokens, the mechanism M(·)249

is applied to each input token xi ∈ p. If xi250

belongs to X , it is replaced with an output251

token yi from Y . Through this process, we252

obtain a perturbed prompt pp = {yi}Si=1.253

2. Adaptive Exponential Mechanism Encoder254

Strategy. The tokens within a prompt differ255

significantly in terms of their importance and256

degree of privacy. Applying a uniform privacy257

budget ϵ across all tokens may not lead to the258

most optimal solution. To further optimize the259

privacy-utility balance, we propose an Adap-260

tive Exponential Mechanism Encoder strategy.261

This strategy is built upon the first exponen-262

tial mechanism. In the Adaptive Exponential263

Mechanism Encoder strategy, we utilize an264

Encoder-Decoder SLM specifically designed265

to encode raw prompts into perturbed prompts266

and subsequently decode perturbed rationales267

back into their original form. This strategy in-268

volves two training process: encoding training269

process and decoding training process. In this270

section, we mainly focus on encoding training271

process.272

Initially, an encoding training process is re-273

quired for the Encoder-Decoder SLM. For-274

mally, let’s denote a public dataset as P =275

{(pi, pϵi))}
N
i=1, where pi represents raw pri-276

vate prompt, pϵi represents perturbed prompt277

generated using the first exponential mecha-278

nism with a privacy budget of ϵ. In the en-279

coding training process, we train the Encoder-280

Decoder SLM: gϕ(pi) → pϵi . The details of281

encoding training process is illustrated in Al-282

gorithm 1.283

The Prompt Encoder objective can be formu- 284

lated as follows: 285

LEncoder(ϕ;P) = E(p,pϵ)∼PℓCE(gϕ(p), p
ϵ)

(4) 286

where ℓCE is the cross-entropy loss. 287

As illustrated in Figure1(b), we can observe an 288

exemplary comparison between the original prompt 289

and its perturbed prompt in Step 1 and Step 2. 290

This perturbed prompt serves as the new, privacy- 291

enhanced input for further processing. 292

3.2 Generating Perturbed Rationales from 293

LLM 294

When the server-side LLM receives the perturbed 295

prompt, we leverage the Chain-of-Thought (CoT) 296

prompting technique introduced by (Wei et al., 297

2022) to generate rationales from the LLM using 298

this perturbed prompt. These generated rationales, 299

which are also perturbed, are then transmitted to 300

the client. For instance, as illustrated in Figure 1(b), 301

given a perturbed prompt in the Step 2, the LLM 302

generates perturbed rationales in the Step 3. 303

3.3 Perturbed Rationales Decoder 304

Once the client receives the perturbed rationales 305

from the server-side LLM, it must initiate a "de- 306

coder" process to decode the rationales. In this 307

section, we also propose two strategies correspond 308

to the two protection strategy of the prompt encoder 309

module: 310

1. Exponential Mechanism Decoder Strategy. 311

In the first decoding strategy, which corre- 312

sponds to Exponential Mechanism Encoder 313

strategy. Here, we utilize In-Context Learn- 314

ing (ICL) (Dong et al., 2024; Tong et al., 315

2025) with the Encoder-Decoder SLM to de- 316

code the perturbed rationales. we can input 317

a sample xi = (p, pp, rp)i into the Encoder- 318

Decoder SLM to prompt the generation of 319

rationales, where p represents raw private 320

prompt, pp represents perturbed prompt and 321

rp represents perturbed rationales generated 322

from LLM. (pp, rp)i can be viewed as an ex- 323

ample for Encoder-Decoder SLM in ICL. This 324

allows the Encoder-Decoder SLM to generate 325

rationales ri that are aligned with the original, 326

unperturbed prompt. 327

2. Adaptive Exponential Mechanism Decoder 328

Strategy. In the second decoding strategy, 329
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which corresponds to Adaptive Exponential330

Mechanism Encoder strategy. The ratio-331

nales decoder module also use the same the332

Encoder-Decoder SLM with Section 3.1.333

Initially, a decoding training process is re-334

quired for the Encoder-Decoder SLM. For-335

mally, let’s denote a public dataset as R =336

{(xi, ri))}Ni=1, where xi represents an in-337

put, where xi = (p, pp, rp)i , p represents338

raw private prompt, pp represents perturbed339

prompt generated from Encoder-Decoder340

SLM, rp represents perturbed rationales gen-341

erated from LLM. ri represents the raw ratio-342

nale of raw prompt p generated from LLM.343

In the decoding training process, we train the344

Encoder-Decoder SLM: gϕ(xi)→ ri. The de-345

tails of decoding training process is illustrated346

in Algorithm 1.347

The Rationales Decoder objective can be for-348

mulated as follows:349

LDecoder(ϕ;R) = E(x,r)∼RℓCE(gϕ(x), r)

(5)350

Subsequently, once the decoding training pro-351

cess of Encoder-Decoder SLM is finished,352

we can input a sample xi = (p, pp, rp)i into353

the SLM, where rp represents perturbed ratio-354

nales generated from LLM. This allows the355

SLM to generate rationales ri that are aligned356

with the original, unperturbed prompt.357

We approach the training of the Encoder-358

Decoder SLM as a multi-task learning prob-359

lem encompassing both the encoding and de-360

coding training processes. The multi-task361

learning objective for the Encoder-Decoder362

SLM can be formulated as follows:363

L1 = LEncoder + LDecoder (6)364

As illustrated in Figure1(b), we can observe an365

exemplary comparison between the perturbed ra-366

tionales from LLM and its decoded rationales from367

SLM in Step 3 and Step 4. It’s worth noting that al-368

though the SLM has the ability to generate aligned369

rationales independently, the quality often falls370

short due to its limited capabilities. By leverag-371

ing the perturbed rationales, we effectively transfer372

the powerful capabilities of the server-side LLM373

to enhance the Encoder-Decoder SLM, thereby im-374

proving the overall quality of the generated ratio-375

nales.376

3.4 Enhancing Task-Specific SLM via CoT 377

Knowledge Distillation 378

In our work, we undertake the training of the 379

client’s Task-Specific SLM tailored for text gen- 380

eration tasks. Initially, we elaborate on the preva- 381

lent framework for learning task-specific models. 382

Leveraging this established framework, we en- 383

hance it by integrating rationales produced from 384

the rationales decoder module into the training pro- 385

cess. Formally, let’s denote a dataset as D = 386

{(xi, (yi, ri))}Ni=1, where xi represents an input, 387

yi represents the associated expected output label, 388

and ri is the corresponding desired rationale. 389

We conceptualize learning with rationales as a 390

multi-task learning problem. Specifically, we train 391

the model fω(xi)→ (yi, ri) to accomplish not just 392

the prediction of task labels but also the generation 393

of the corresponding rationales based on textual 394

inputs. This multi-task training ensures that our 395

model not only produces accurate predictions but 396

also provides insightful justifications for its deci- 397

sions. By doing so, we enhance the transparency 398

and explainability of the model. The multi-task 399

learning objective for the Task-Specific SLM can 400

be formulated as follows: 401

L2 = LLabel + LRationale (7) 402

where LLabel is the label prediction loss: 403

LLabel(ω;D) = E(x,y)∼DℓCE(fω(x), y) (8) 404

and LRationale is the rationale generation loss: 405

LRationale(ω;D) = E(x,r)∼DℓCE(fω(x), r) (9) 406

where ℓCE is the cross-entropy loss, fω(.) is the 407

Task-Specific SLM model. 408

3.5 Privacy Analysis of FedCoT 409

The privacy-protection strategies in FedCoT im- 410

plement a token-level Exponential Mechanism in 411

feature space, adhering to the ϵ-DP principles. This 412

mechanism provides mathematically provable pri- 413

vacy guarantees at the token-level granularity, as 414

extensively validated in privacy-preserving NLP 415

research (Yue et al., 2021; Chen et al., 2023; Tong 416

et al., 2025). Our experimental results further val- 417

idate this approach: when privacy budget is low, 418

the rationales generated from perturbed prompts 419

show significantly lower similarity to those from 420

original prompts, demonstrating the effectiveness 421

of our privacy protection while acknowledging the 422

inherent privacy-utility trade-off. 423
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4 Experiments424

4.1 Setup425

We have established a scenario to evaluate the per-426

formance of the FedCoT framework across a range427

of text generation tasks. This setup involves a428

client-server architecture, where the client holds429

two downstream SLMs: an Encoder-Decoder SLM,430

which specializes in encoder-decoder functionali-431

ties and a Task-Specific SLM, tailored for specific432

tasks. On the server-side, we host a LLM for more433

general and powerful text generation capabilities.434

Specifically, Table 1 outlines the detailed config-435

urations of both the LLM and the SLMs. In our436

experimental setup, the Encoder-Decoder SLM and437

Task-Specific SLM are the identical architecture.438

SLM

Setting LLM Encoder-Decoder Task-Specific

Setting 1 LLaMa3 70B Pythia-1.4B Pythia-1.4B

Setting 2 Qwen-14B Qwen-0.5B Qwen-0.5B

Table 1: LLM and SLMs Setting of FedCoT.

Datasets and Evaluation Metrics. We conduct439

an evaluation of FedCoT on 4 QA datasets. Specif-440

ically, we include CommonsenseQA (CQA) (Tal-441

mor et al., 2019), OpenBookQA (OBQA) (Mi-442

haylov et al., 2018), BoolQ (Clark et al., 2019),443

ArcE (Clark et al., 2018). For these datasets, we pri-444

marily use Accuracy as the evaluation metric. It’s445

worth noting that in our experiments, all methods446

undergo zero-shot evaluation except FewShot(1-447

shot), and we use the lm-evaluation-harness pack-448

age (Gao et al., 2023).449

Baselines. Since we incorporate two distinct450

strategies in the prompt encoder and perturbed ra-451

tionales decoder, we denote FedCoT method with452

the Exponential Mechanism Strategy as FedCoT-E453

and FedCoT method with the Adaptive Exponen-454

tial Mechanism Strategy as FedCoT-A. We conduct455

a comparative analysis to evaluate the performance456

of our FedCoT framework, which comprises both457

FedCoT-E and FedCoT-A.458

These baselines included:459

• FewShot-LLM, which represents the few-shot460

capabilities of LLM on the server;461

• FewShot-SLM, which represents the few-shot462

performance of SLM on the client;463

• Standalone, where the client fine-tunes its lo-464

cal model using its own private dataset;465

• Non-Private, where the client send its raw lo- 466

cal prompt to server, get rationales from LLM 467

and fine-tunes its local model like FedCoT, 468

but without privacy-preserving. 469

4.2 Main Results 470

In this section, we undertake a comparative anal- 471

ysis of the task performance of FedCoT. We as- 472

sess both the FedCoT-E and FedCoT-A methods 473

against other baselines on Task-Specific SLM un- 474

der the privacy budget ϵ = 3. Our experiments 475

encompass two model configurations: Setting 1 476

(LLM: LLaMa3-70B, Encoder-Decoder SLM & 477

Task-Specific SLM: Pythia-1.4B) and Setting 2 478

(LLM: Qwen1.5-14B, Encoder-Decoder SLM & 479

Task-Specific SLM: Qwen1.5-0.5B). 480

The results, as presented in Table 2, clearly il- 481

lustrate that both FedCoT-E and FedCoT-A exhibit 482

significantly better performance when compared to 483

FewShot-SLM and Standalone methods. Further- 484

more, FedCoT-A demonstrates notably superior 485

performance compared to FedCoT-E. Specifically, 486

take the model Setting 1 as an example, FedCoT-E 487

surpasses the Standalone method by 4.3%, 3.2%, 488

7.1%, and 5.1% in the CQA, OBQA, BoolQ, and 489

ArcE datasets, respectively. Meanwhile, FedCoT-A 490

demonstrates even greater superiority, exceeding 491

the Standalone method by 5.7%, 4.6%, 6.7%, and 492

6% across the same datasets. 493

4.3 Performance Evaluation on various SLMs 494

In this section, we extend the evaluation of Fed- 495

CoT’s effectiveness to encompass various client- 496

side SLMs. These SLMs include LLaMa2- 497

1.3B (Xia et al., 2024), Qwen1.5-1.8B (Bai et al., 498

2023), and OPT-1.3B (Zhang et al., 2022). We 499

have chosen LLaMa3-70B (Dubey et al., 2024) as 500

LLM. Table 3 provides a clear illustration of how 501

FedCoT(with ϵ = 3) consistently outperforms the 502

Standalone method across various SLMs. 503

4.4 Ablation Study 504

Influence of Privacy Budgets. We delve into the 505

influence of privacy budgets on the performance 506

of FedCoT. To ensure experimental consistency, 507

we fix the model configuration to Setting 1 (as de- 508

tailed in Table 1) for all subsequent ablation ex- 509

periments. Table 4 presents an overview of Fed- 510

CoT’s performance across a range of privacy bud- 511

gets (ϵ = 1, 3, 5, 10). 512

As the privacy budget ϵ increases, the perfor- 513

mance of both FedCoT-E and FedCoT-A exhibits 514
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Model Method CQA OBQA BoolQ ArcE

Setting 1

FewShot-LLM 70.29 80.66 90.08 82.69

FewShot-SLM 21.19 26.60 52.11 28.91

Standalone 42.43 38.73 73.07 40.33

Non-Private 49.22 46.07 80.61 48.01

FedCoT-E 46.70 41.93 80.02 45.42

FedCoT-A 48.10 43.30 79.77 46.34

Setting 2

FewShot-LLM 80.9 82.8 85.2 80.3

FewShot-SLM 25.7 28.6 59.7 40.7

Standalone 55.7 43.4 78.4 50.3

Non-Private 59.3 55.1 80.5 57.6

FedCoT-E 57.6 50.8 79 52.6

FedCoT-A 58.6 53.1 80.2 56.5

Table 2: We compare the performance of Task-Specific
SLM trained with FedCoT-E (ϵ = 3) and FedCoT-A
(ϵ = 3) against the Task-Specific SLM trained using
baseline methods. We consider two model settings: Set-
ting 1 (LLM: LLaMa3-70B, Encoder-Decoder SLM &
Task-Specific SLM: Pythia-1.4B) and Setting 2 (LLM:
Qwen1.5-14B, Encoder-Decoder SLM & Task-Specific
SLM: Qwen1.5-0.5B)

Dataset Method LLaMa2 Qwen1.5 OPT

CQA
Standalone 61.5 57.8 56.42
FedCoT-E 63.03 60.30 57.55
FedCoT-A 64.27 62.21 60.18

OBQA
Standalone 47.53 52.60 40.93
FedCoT-E 51.73 56.40 49.13
FedCoT-A 49.8 57.20 48.4

BoolQ
Standalone 81.65 81.41 72.84
FedCoT-E 83.94 82.59 82.46
FedCoT-A 82.99 82.90 82.68

ArcE
Standalone 40.33 55.58 45.92
FedCoT-E 54.11 61.07 49.67
FedCoT-A 54.66 62.43 50.69

Table 3: We compare the performance of Task-Specific
SLMs, which have been trained with FedCoT-E(ϵ =
3) and FedCoT-A(ϵ = 3), against Standalone across
various SLMs, including LLaMa2-1.3B, Qwen1.5-1.8B
and OPT-1.3B.

a notable uptick. Moreover, FedCoT-A consis-515

tently outperforms FedCoT-E under identical pri-516

vacy budget conditions (ϵ). When compared along-517

side Table 2, it becomes evident that with a privacy518

budget escalated to ϵ = 10, FedCoT-E surpasses519

the Standalone method by 5.6%, 6.1%, 6.3%, and520

6.8% within the CQA, OBQA, BoolQ, and ArcE521

datasets, respectively. Similarly, FedCoT-A outper-522

forms it by 4.3%, 7.1%, 6.8%, and 7%. Notably,523

across all evaluated datasets, at a privacy budget of 524

ϵ = 10, FedCoT attains performance levels compa- 525

rable to Non-Private approaches, underscoring its 526

proficiency and adaptability in striking a balance 527

between privacy and utility. 528

Method ϵ CQA OBQA BoolQ ArcE

FedCoT-E

1 45.63 42.13 78.91 44.84

3 46.70 41.93 80.02 45.42

5 46.50 43.35 80.17 46.70

10 48.03 44.87 79.37 47.14

FedCoT-A

1 47.31 43.20 79.63 46.65

3 48.10 43.30 79.77 46.34

5 47.96 44.20 79.91 48.08

10 47.74 45.81 79.86 47.30

Table 4: Comparison of the performance of Task-
Specific SLM trained with FedCoT-E and FedCoT-A
across different privacy budgets ϵ.

Influence of Perturbed Rationales Decoding. 529

We undertake an analysis to investigate the ef- 530

fects of perturbed rationales decoding on Fed- 531

CoT when ϵ = 3. Table 5 offers a comparison 532

of FedCoT’s performance, contrasting the results 533

when perturbed rationales decoding is employed 534

(FedCoT-E w/ and FedCoT-A w/) versus when it 535

is not (FedCoT-E w/o and FedCoT-A w/o). Specif- 536

ically, FedCoT-E w/ surpasses the FedCoT-E w/o 537

by 2%, 1.3%, 1.5%, and 0.6% in the CQA, OBQA, 538

BoolQ, and ArcE datasets, respectively. Mean- 539

while, FedCoT-A w/ demonstrates even greater su- 540

periority, exceeding the FedCoT-A w/o by 1.8%, 541

1.6%, 0.7%, and 3% across the same datasets. The 542

findings unequivocally demonstrate that FedCoT 543

exhibits superior performance when perturbed ra- 544

tionales decoding is utilized, as compared to when 545

it is absent. 546

Perturbed Rationales vs Original Rationales. 547

We focus on analyzing the quality of the per- 548

turbed rationales (rp) generated from the perturbed 549

prompt of LLM based on FedCoT-E and FedCoT- 550

A methods and compare them with the rationales 551

(r) generated from raw prompt of the LLM. To 552

evaluate the similarity between rp and r, we use 553

TokenRatio metric. A higher TokenRatio indicates a 554

greater degree of similarity between the perturbed 555

and original rationales. For more details about To- 556

kenRatio, please refer to Appendix E. 557

As shown in Table 6, with an increase in the 558

privacy budget ϵ and a corresponding decrease in 559

7



Decoding

Method Dataset w/ w/o

FedCoT-E

CQA 46.70 44.79

OBQA 41.93 40.6

BoolQ 80.02 78.5

ArcE 45.42 44.78

FedCoT-A

CQA 48.10 46.26

OBQA 43.30 41.7

BoolQ 79.77 79.06

ArcE 48.08 45.13

Table 5: Comparison of Task-Specific SLM Perfor-
mance in FedCoT: With vs. Without perturbed ratio-
nales decoding.

perturbation, both the TokenRatio of FedCoT-E560

and FedCoT-A have risen notably. Furthermore,561

in most of tasks, the TokenRatio of FedCoT-A is562

higher than that of FedCoT-E in the same level of563

privacy budget ϵ. The experimental results confirm564

that the TokenRatio observed in the perturbed ratio-565

nales produced by both FedCoT-E and FedCoT-A,566

positively correlate with the privacy budget ϵ. This567

suggests that as the privacy constraints are relaxed568

(higher ϵ values), the perturbed rationales become569

more similar to the original rationales.570

Method ϵ CQA OBQA BoolQ ArcE

FedCoT-E

1 23.8 33 34.5 26.7

3 30.8 45.26 48.5 44.7

5 43.2 66.3 72.8 67.4

10 48.5 75.8 85.4 74.5

FedCoT-A

1 34.5 37.9 47.1 20.7

3 34.5 49.5 59.6 30

5 45.2 69.6 77.4 36.2

10 48.6 76.12 84.2 38.6

Table 6: We conduct a comparative analysis to assess
the perturbed rationales produced by FedCoT-E and
FedCoT-A methods against the original rationales that
are directly generated from the raw prompt of the LLM.
Metric used: TokenRatio.

Decoded Rationales vs Original Rationales.571

We delve into the quality analysis of the decoded572

rationales produced by the rationales decoder mod-573

ule based on FedCoT-E and FedCoT-A methods.574

We compare these decoded rationales against those575

generated directly from raw prompt of the LLM.576

We utilize the TokenRatio metric to assess their577

similarities. 578

As shown in Table 7, in contrast to FewShot- 579

SLM, it becomes apparent that the decoded ratio- 580

nales’ quality based on FedCoT-E and FedCoT-A 581

methods isn’t solely reliant on the locally decoded 582

SLM. The perturbed rationales crafted by the LLM 583

indeed fulfill their intended purpose. When juxta- 584

posed with Table 6, it’s clear that at comparable ϵ 585

levels, the TokenRatio for the decoded rationales 586

surpass those of the perturbed rationales in the 587

FedCoT-E and FedCoT-A methods. This under- 588

scores the effectiveness of the rationales decoder 589

module in the FedCoT-E and FedCoT-A methods. 590

Method ϵ CQA OBQA BoolQ ArcE

FewShot-SLM - 42.9 54.5 35.8 28.6

FedCoT-E

1 36 46.33 44.13 32.7

3 39 53.77 53.1 46

5 44.8 67.9 73.9 60.1

10 48.4 75.1 85.4 66.7

FedCoT-A

1 41.1 60.36 62.8 42.19

3 45.8 65.35 64.7 42.99

5 50 75.5 72.9 44.3

10 53.3 78.9 76.6 45.3

Table 7: We conduct a comparative analysis to assess
the decoded rationales produced by FedCoT-E and
FedCoT-A methods against the original rationales that
are directly generated from the raw prompt of the LLM.
Metric used: TokenRatio.

5 Conclusions 591

In this study, we introduce FedCoT, a federated 592

framework designed to distill knowledge from 593

LLMs to SLMs in resource-constrained environ- 594

ments. FedCoT facilitates secure knowledge trans- 595

fer from LLMs to SLMs by leveraging perturbed 596

prompts and rationales, thereby enhancing the per- 597

formance of SLMs without compromising user 598

privacy. We present two innovative privacy pro- 599

tection strategies, including an Adaptive Expo- 600

nential Mechanism strategy, which effectively bal- 601

ance privacy preservation and the usability of ratio- 602

nales. Experiments on various text generation tasks 603

demonstrate FedCoT’s ability to enhance SLM per- 604

formance with LLM support while prioritizing data 605

privacy. 606
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Limitations607

While our proposed FeCoT framework demon-608

strates promising results in privacy-preserving609

knowledge transfer from LLMs to SLMs, it is im-610

portant to acknowledge several considerations that611

could be addressed in future work. Firstly, the612

framework’s performance benefits are contingent613

upon the server-side LLM’s CoT reasoning capa-614

bilities. Although contemporary LLMs like GPT-4615

and LLaMA exhibit strong reasoning skills, frame-616

works such as FedCoT may encounter limitations617

when deployed with less sophisticated LLMs. This618

suggests an opportunity for further research to en-619

hance FedCoT’s robustness against variability in620

LLM reasoning abilities. Secondly, our evalua-621

tion primarily focused on LLaMa and Qwen as the622

server-side LLMs, with client-side SLMs includ-623

ing Pythia, LLaMa, Qwen, and OPT. While these624

models are representative of current state-of-the-art625

architectures, extending testing to a more diverse626

set of LLMs could provide deeper insights into627

FedCoT’s generalizability.628
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resource-constrained environments. The commu- 803

nication overhead is minimal, with costs compara- 804

ble to plaintext data transmission. Computational 805

requirements are equivalent to standard SLM fine- 806

tuning (SFT) on local tasks. Our experimental vali- 807

dation was conducted using NVIDIA V100 GPUs, 808

demonstrating practical deployment feasibility. 809

C Rationales Generation through CoT 810

We utilize the rationales data generated by server- 811

side LLM through chain-of-thought (CoT)(Wei 812

et al., 2022)(Hsieh et al., 2023) technique to en- 813

hance the performance of the client’s task-specific 814

SLM. These rationales justify the predicted labels 815

and serve as insightful guidance for training smaller 816

and domain-specific models. Consider the follow- 817

ing example: when asked “Question:A beaver is 818

know for building prowess, their supplies come 819
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Algorithm 1 FedCoT
Input:
T : total number of rounds;
P: encoding training datasets;
R: decoding training datasets;
D: task-specific training datasets;
ηϕ: learning rate of Encoder-Decoder SLM;
ηω: learning rate of Task-Specific SLM.
Output: gϕ, fω.

1: ▷ Multi-Task Training for Encoder-Decoder
SLM based on Public Datasets P andR.

2: for each epoch t ∈ [T ] do
3: ϕt+1 ← ϕt − ηϕ∇L1.
4: end for
5: ▷ Generate pp using the updated Encoder.
6: pp = SLMEncoder(p).
7: ▷ Generate perturbed rationales from LLM on

the server.
8: rp = LLM(pp).
9: ▷ Decode perturbed rationales using the up-

dated Encoder-Decoder SLM.
10: r = SLMDecoder(r

p).
11: ▷ Multi-Task Training for Task-Specific SLM

based on Datasets D.
12: for each epoch t ∈ [T ] do
13: ωt+1 ← ωt − ηω∇L2.
14: end for

from where? Answer Choices: (a) british columbia820

(b) body of water (c) wooded area (d) pay debts (e)821

zoo”. Utilizing the chain-of-thought (CoT) tech-822

nique, the LLM can generate intermediate ratio-823

nales like, "The answer must be the place where824

beavers get their supplies. Of the above choices,825

only wooded areas have the supplies that beavers826

need.” Such rationales bridge the gap between827

the input and the final answer, often encapsulat-828

ing valuable task-related knowledge. This knowl-829

edge would traditionally require extensive data for830

smaller and task-specific models to acquire. There-831

fore, we harness these rationales as enriched train-832

ing material for small language models, employing833

a multi-task training paradigm that encompasses834

both label prediction task and rationale prediction835

task.836

D More on Experimental Details837

D.1 Hyperparameter Settings838

SLM Parameters. During the training process839

for both the Encoder-Decoder SLM and the Task-840

Specific SLM, we specifically configured the pa- 841

rameters. We set the batch size to 32 and employed 842

the AdamW optimizer. The maximum number of 843

training steps ranged from 400 to 1500. Addition- 844

ally, we assigned the values of 0.5 to both α and β. 845

Furthermore, the learning rates for ηϕ and ηω were 846

established at 5e-5. 847

D.2 Data Splitting 848

For the datasets CQA/OBQA/BoolQ//ArcE/, all 849

splits (training, validation, and test) were down- 850

loaded from HuggingFace (Lhoest et al., 2021). 851

During the training of the Encoder-Decoder SLM, 852

we randomly divided the training data into two 853

equal parts. One part was designated as the public 854

dataset, while the other part was allocated as the 855

private dataset for the client. 856

D.3 Dataset Licenses 857

For the datasets CQA/OBQA/BoolQ//ARC-E/ 858

were downloaded from HuggingFace(Lhoest et al., 859

2021) and under Apache License, Version 2.0. 860

D.4 Machine Configuration 861

The experiments were conducted on machines 862

equipped with 4 and 8 NVIDIA V100 32G. 863

E The Definition of TokenRatio Metric 864

TokenRatio(r′
, r). This metric calculates the 865

unique words(u) in r
′

and counts how many of 866

these words are also present in r, denoted as i. The 867

TokenRatio is then calculated as i divided by the 868

total number of unique words in r
′

(|u|). 869

F Outperforming Standalone with 50% 870

Data 871

In this section, we conduct an in-depth analysis 872

to explore the influence of training data size on 873

model performance. We compare the FedCoT 874

method with the Standalone approach, varying the 875

amount of training data used. Table 8 provides 876

a clear illustration of how FedCoT(with ϵ = 3) 877

achieves superior performance even with signifi- 878

cantly fewer training samples compared to Stan- 879

dalone. More specifically, when trained on merely 880

50% of the complete CQA, OBQA, BoolQ, and 881

ArcE datasets, both FedCoT-E and FedCoT-A ei- 882

ther surpass or closely match the performance of 883

Standalone method. 884
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Dataset Method 25% 50% 75% 100%

CQA
FedCoT-E 37.74 42.63 44.56 46.7
FedCoT-A 39.28 44.77 44.00 48.1
Standalone - - - 42.43

OBQA
FedCoT-E 32.4 38.27 40.67 41.93
FedCoT-A 34.07 38.08 42.00 43.3
Standalone - - - 38.73

BoolQ
FedCoT-E 69.96 72.26 77.67 80.02
FedCoT-A 69.61 73.73 77.82 79.77
Standalone - - - 73.07

ArcE
FedCoT-E 37.79 41.42 42.22 45.42
FedCoT-A 37.64 41.86 45.28 46.34
Standalone - - - 40.33

Table 8: We compare the performance of Task-Specific
SLM trained with FedCoT-E(ϵ = 3) and FedCoT-A(ϵ =
3) against Standalone, across a range of dataset sizes
from 25% to 100%. The ’-’ indicates a method does not
apply to the corresponding dataset sizes.
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