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Abstract

Models trained on different datasets can be merged by a weighted-averaging of
their parameters, but why does it work and when can it fail? Here, we connect
the inaccuracy of weighted-averaging to mismatches in the gradients and propose
a new uncertainty-based scheme to improve the performance by reducing the
mismatch. The connection also reveals implicit assumptions in other schemes such
as averaging, task arithmetic, and Fisher-weighted averaging.

1 Introduction

Merging models through a weighted averaging of their parameters has recently found many applica-
tions in deep learning. For example, averaging checkpoints generated during various training runs
can improve out-of-distribution generalization (Izmailov et al., 2018; Wortsman et al., 2022b, inter
alia), while averaging models trained on different datasets can borrow knowledge from “donor tasks”
(Matena & Raffel, 2022) and enforce specific fine-grained behaviors in models (Ilharco et al., 2023).

The reasons behind the effectiveness of these methods are not well understood, and many schemes
have been proposed, including arithmetic mean (Wortsman et al., 2022b,a), linear interpolation
(Ilharco et al., 2023; Ortiz-Jimenez et al., 2023; Yadav et al., 2023), or individual parameter weighing
(Matena & Raffel, 2022; Daheim et al., 2023). A prominent hypothesis, ‘linear mode connectivity’,
is that when the models land in relatively few low-loss basins their interpolation again lies in them
(Frankle et al., 2020; Neyshabur et al., 2020; Wortsman et al., 2022a; Ainsworth et al., 2023), but it
does not tell us why one merging scheme should be preferred over the others or how to improve them.

In this abstract, we make two contributions: we first connect the inaccuracy of weighted-averaging
to mismatches in the gradients and then improve its performance by reducing the mismatch with a
second-order approximation; see an illustration in Fig. 1.

2 Model Merging by Parameter Averaging

We consider merging T > 1 models θt ∈ Rd with the same architecture that are trained on different
datasets, for example, by fine-tuning a large pretrained model, such as θLLM. We focus on the fol-
lowing weighted-averaging scheme: θ̄ = S0 θLLM +

∑T
t=1 St θt, with scaling matrices St ∈ Rd×d.

Since d is often large, simple choices of St are used in practice, for example, scalars αt > 0 (Worts-
man et al., 2022b,a), often tuned on held-out data. For large models, different parameters have
different scaling and it is better to take this into account, for example, by using the Fisher Ft in
‘Fisher Averaging’: θ̄FA =

∑T
t=1 Stθt, where St = αtF̄

−1
Ft with F̄ =

∑T
t=1 αtFt, for all t ≥ 1

In practice, to reduce the computation cost, we may only use the diagonal of the Fisher estimated in
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Figure 1: The left panel illustrates our approach. We connect the error ∆ of the merged model θmerged
to the gradient mismatch over losses ℓ̄t and propose a new method that reduces the mismatch by
using the Hessian Ht and error ∆t of the individual models θt. The right panel shows an example of
adding datasets to RoBERTa trained on IMDB. We clearly see that reducing mismatch also reduces
test error of task arithmetic. We consider 5 datasets, each indicated by a number on the markers.

an online fashion (Matena & Raffel, 2022). However, it is unclear how FA takes care of the common-
alities of the Ft and θLLM. A recent work by Jin et al. (2023) uses insights from linear models to
justify some choices, but may not hold for nonlinear models. Ilharco et al. (2023) proposed to subtract
θLLM with ‘task arithmetic’: θ̄TA = θLLM +

∑T
t=1 αt(θt − θLLM), which reduces double-counting

the information by using θt − θLLM, but it is unclear how to combine it with Fisher-style scaling.

We investigate the following: (1) how to choose scaling matrices; (2) what is the effect of these choices
on the merged models’ accuracy; and (3) how to obtain a new method that reduces inaccuracies.

3 Model Merging and Connections to Gradient Mismatches

To understand the inaccuracies of parameter averaging, we introduce the idea of a target model: it is
the model that model merging methods want to estimate. Consider two models θ1 and θ2 trained on
two datasets D1 and D2, respectively, for example, as follows,

θ1 = argmin
θ

ℓ̄1(θ) +
1
2∥θ∥

2, θ2 = argmin
θ

ℓ̄2(θ) +
1
2∥θ∥

2. (1)

Here, the loss functions on D1 and D2 are denoted by ℓ̄1(θ) and ℓ̄2(θ) respectively and the regularizer
is an L2 regularizer (what follows also holds for other explicit regularizers, also implicit ones). The
target model in this case could be a model θ1+2 that is trained jointly on the two datasets:

θ1+2 = argmin
θ

α1ℓ̄1(θ) + α2ℓ̄2(θ1) +
1
2∥θ∥

2. (2)

We will now connect gradient mismatch to the error between the target θ1+2 and a parameter-average
α1θ1 + α2θ2, but the approach is general and applies to different types of targets and averages.

We start with the first-order stationarity conditions of the models in Eqs. 1 and 2,

θ1 = −∇ℓ̄1(θ1), θ2 = −∇ℓ̄2(θ2), θ1+2 = −α1∇ℓ̄1(θ1+2)− α2∇ℓ̄2(θ1+2). (3)

Using these, we can express θ1+2 in terms of α1θ1 + α2θ2 and quantify the error made. To do so,
we multiply the first and second equations above by α1 and α2 respectively, and add them together.
Then, we subtract the resultant from the third equation to get the following expression:

θ1+2 − (α1θ1 + α2θ2)︸ ︷︷ ︸
=∆, Error of the merged model

= −α1

[
∇ℓ̄1(θ1+2)−∇ℓ̄1(θ1)

]︸ ︷︷ ︸
Gradient mismatch for θ1 on ℓ̄1

−α2

[
∇ℓ̄2(θ1+2)−∇ℓ̄2(θ2)

]︸ ︷︷ ︸
Gradient mismatch for θ2 on ℓ̄2

. (4)

The left-hand side is the error ∆ = θ1+2 − (α1θ1 + α2θ2) which is equal to the weighted-sum of
the two gradient-mismatch terms on the individual losses ℓ̄1(θ1) and ℓ̄2(θ2). It shows that if the
individual models are already close to the target model, parameter averaging should be reasonably
accurate. It also shows us room for improvement and mismatch reduction may lead to better schemes.
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Figure 2: Our method is more robust to scaling than TA for task addition in CV (left) and NLP (right).

The method is generic and can be used to analyze errors of generic parameter-averaging schemes,
for example, data removal (cf. Appendix). Test accuracy can also be analyzed. For example, given
test loss ℓ̄Test(θ) and weighted-average θ̄, we have: ℓ̄Test(θ1+2)− ℓ̄Test(θ̄) ≈ ∇ℓ̄Test(θ̄)

⊤(θ1+2 − θ̄).
Large gradient mismatch therefore is expected to correlate with large differences in test performance.

Sources of errors can be analyzed, too. For example, when the test data is more correlated to D1,
then model merging would be effective if gradient mismatch due to θ1 is also small. This is similar to
linear mode connectivity: when both the target and merged models lie in low-loss basins, we expect
gradient mismatch to be low due to flatness. However, gradient-mismatch does not require this and is
more general and constructive by allowing us to improve models by actively reducing the mismatch.

3.1 Analyzing the Inaccuracy of Task Arithmetic on Large Language Models

We will demonstrate the use of the gradient-mismatch principle to analyze the inaccuracy of ‘task
arithmetic’ (Ilharco et al., 2023) for θLLM trained on a large dataset DLarge.

θLLM = argmin
θ

ℓ̄LLM(θ) + 1
2δ∥θ∥

2, where ℓ̄LLM(θ) =
∑

i∈DLarge

ℓi(θ). (5)

Here, ℓi(θ) denotes the loss on the i’th example. For simplicity, we use an L2 regularization with
parameter δ > 0 but the choice is not crucial. The loss function can also be normalized. Our goal is
to merge models θt that are finetuned on different datasets Dt for t = 1, 2, . . . , T using:

θt = argmin
θ

ℓ̄t(θ) +
1
2∥θ − θLLM∥2H0

, (6)

where ∥θ∥2H0
= θ⊤H0θ is the Mahalanobis distance with a scaling matrix H0 which controls how

different θ is from θLLM. We will discuss how to set H0 later. The derivation can be easily adopted
to other fine-tuning procedures as long as we can express the dependence on θLLM explicitly.

Task arithmetic (TA) uses θ̄TA = θLLM +
∑

t αt(θt − θLLM) to merge models. There are two natural
questions: what is the target model that such a scheme is trying to approximate and what are the
errors made by TA in approximating it? As before, a reasonable choice of the target model is the one
obtained by fine-tuning using a similar procedure as Eq. 6 but on all Dt at once,

θ1:T = argmin
θ

T∑
t=1

αtℓt(θ) +
1
2∥θ − θLLM∥2H0

. (7)

Following the same derivation as Eq. 4, we can quantify the error between θ1:T and θ̄TA (a full
derivation is given in Appendix):

θ1:T = θLLM +

T∑
t=1

αt(θt − θLLM)︸ ︷︷ ︸
=θ̄TA

−
T∑

t=1

αtH
−1
0

[
∇ℓ̄t(θ1:T )−∇ℓ̄t(θt)

]︸ ︷︷ ︸
Gradient mismatch for θt on ℓ̄t

. (8)

The derivation can be used to understand the implicit assumptions made in task arithmetic. The
increments θt − θLLM arise above due to the quadratic regularizer ∥θ − θLLM∥2 used in Eqs. 6 and 7
and avoid double counting. More importantly, the error between θ1:T and θ̄TA is attributed to gradient
mismatch between θt and θ1:T . The expression suggests that by reducing the mismatch we could
improve task arithmetic. We will now show that a simple method that uses Taylor’s approximation to
reduce the gradient mismatch justifies combining TA with a Fisher-like weighting schemes.
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IMDB Yelp RT SST2 Amazon Avg.
All-data 94.8 97.6 91.2 94.7 96.9 95.0
Averaging 94.4 97.0 89.1 93.6 96.2 94.1
Fisher Averaging 94.8 97.2 89.9 93.1 96.6 94.3
Task Arithmetic (tuned αt)† 94.3 97.2 89.6 94.5 96.4 94.4
Ours 94.7 (↑0.4) 97.3 (↑0.1) 90.2 (↑0.6) 93.7 (↓0.8) 96.7 (↑0.3) 94.5 (↑0.1)

Table 1: We merge four tasks with RoBERTa trained on IMDB. Our merging function shows that
reducing gradient mismatch improves performance over previously proposed functions.

3.2 A New Method to Reduce the Gradient Mismatch

We now derive a new parameter-averaging method by reducing the gradient mismatch in Eq. 8.
Explicit minimization of the mismatch is non-trivial because ∇ℓ̄t(θ1:T ) depends non-linearly on
θ1:T but we can get rid of the term by using a first-order Taylor approximation,

∇ℓ̄t(θ) ≈ ∇ℓ̄t(θt) +Ht(θ − θt) (9)

where Ht = ∇2ℓ̄t(θt) is the Hessian of the loss ℓ̄t at θt. Using this in Eq. 8 and after some
rearrangement, we get the following merging scheme (a full derivation is given in Appendix),

θ̂1:T = θLLM +

T∑
t=1

αt (H̄
−1

H0+t) (θt − θLLM), (10)

where H̄ = H0+
∑T

t=1 αtHt and H0+t = H0+Ht is the Hessian plus a regularization matrix. The
new merging scheme adds preconditioners H̄−1

H0+t to task arithmetic. The preconditioners depend
on the Hessians Ht, which is similar to Fisher averaging, but here the choice naturally emerges as a
consequence of the gradient-mismatch reduction. Nevertheless, replacing Ht by the diagonal Fisher
Ft of θt is often easier to compute and easier numerically because positive-definiteness is ensured.
The matrix H0 can be set in a similar way, for example, to the Hessian/Fisher of Eq. 5 at θLLM.

Choosing different setting of αt, H0, and Ht, can recover many existing schemes as special cases of
Eq. 10. This helps us to understand not only their inaccuracies but also their implicit assumptions.
AM and TA can be seen as special cases where the preconditioner Ht = 0. This implies that the
gradient mismatch term in Eq. 8 is left as is and the error will be high when there gradient mismatch
is high. In contrast, Fisher averaging can be seen as a special cases where H0 = 0 which implies that
the quadratic regularizer in Eqs. 6 and 7 vanishes, ignoring the dependence of θt on θLLM.

4 Experiments & Results

We use a pretrained ViT (Dosovitskiy et al., 2021) for image classification and add eight datasets to
it: Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2018), GTSRB
(Houben et al., 2013), MNIST (LeCun, 1998), RESISC45 (Cheng et al., 2017), SUN397 (Xiao et al.,
2010), and SVHN (Yuval, 2011), replicating Ilharco et al. (2023). We use identity to approximate the
Hessian of the ViT and all task models are trained by fine-tuning it. The results are outlined in the
leftmost panel of Fig. 2. Our proposed merging function is much more robust to the choice of scaling
factors. For larger factors, task arithmetic even falls below the zero-shot baseline.

We repeat a similar experiment with RoBERTa (Liu et al., 2019) for sentiment classification, which
we first train on IMDB (Maas et al., 2011) (arbitrarily chosen). We approximate H0 using squared
gradients on the training data. We then use this model to initialize all θt which we train on Amazon
(Zhang et al., 2015), RottenTomatoes (Pang & Lee, 2005), SST2 (Socher et al., 2013), and Yelp
(Zhang et al., 2015). Table 1 shows that our new method gets closer to the “all-data” target model
than other merging functions, indicating that reducing gradient mismatch is crucial, as outlined also
in Fig. 1. Furthermore, it improves over TA even when we tune scaling factors on the test set for
TA and not at all for our method. Fig. 2 (right) shows a plot over scaling factors where our method
dominates TA which also falls below the zero-shot baseline of the IMDB model.
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5 Conclusion

We have connected the error of the merged model to the gradient mismatch between the individual
models that are merged and the ‘target model’ that merging aims to recover. We have used this to
reveal implicit assumptions in related methods and propose an improved merging scheme that is more
robust in terms of scaling factors and improves downstream performance.
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