
Published as a conference paper at ICLR 2024

3D RECONSTRUCTION WITH GENERALIZABLE NEURAL
FIELDS USING SCENE PRIORS

Yang Fu1† Shalini De Mello2 Xueting Li2 Amey Kulkarni2
Jan Kautz2 Xiaolong Wang1 Sifei Liu2

1University of California, San Diego 2NVIDIA

ABSTRACT

High-fidelity 3D scene reconstruction has been substantially advanced by recent
progress in neural fields. However, most existing methods train a separate network
from scratch for each individual scene. This is not scalable, inefficient, and unable
to yield good results given limited views. While learning-based multi-view stereo
methods alleviate this issue to some extent, their multi-view setting makes it less
flexible to scale up and to broad applications. Instead, we introduce training general-
izable Neural Fields incorporating scene Priors (NFPs). The NFP network maps any
single-view RGB-D image into signed distance and radiance values. A complete
scene can be reconstructed by merging individual frames in the volumetric space
WITHOUT a fusion module, which provides better flexibility. The scene priors can
be trained on large-scale datasets, allowing for fast adaptation to the reconstruction
of a new scene with fewer views. NFP not only demonstrates SOTA scene recon-
struction performance and efficiency, but it also supports single-image novel-view
synthesis, which is underexplored in neural fields. More qualitative results are
available at: https://oasisyang.github.io/neural-prior.

1 INTRODUCTION

Reconstructing a large indoor scene has been a long-standing problem in computer vision. A common
approach is to use the Truncated Signed Distance Function (TSDF) (Zhou et al., 2018; Dai et al.,
2017b) with a depth sensor on personal devices. However, the discretized representation with TSDF
limits its ability to model fine-grained details, e.g., thin surfaces in the scene. Recently, a continuous
representation using neural fields and differentiable volume rendering (Guo et al., 2022; Yu et al.,
2022; Azinović et al., 2022; Wang et al., 2022b; Li et al., 2022) has achieved impressive and detailed
3D scene reconstruction.

Although these results are encouraging, all of them require training a distinct network for every scene,
leading to extended training durations with the demand of a substantial number of input views.

To tackle these limitations, several works learn a generalizable neural network so that the representa-
tion can be shared among different scenes (Wang et al., 2021b; Zhang et al., 2022; Chen et al., 2021;
Long et al., 2022; Xu et al., 2022). While these efforts scale up training on large-scale scene datasets,
introduce generalizable intermediate scene representation, and significantly cut down inference time,
they all rely on intricate fusion networks to handle multi-view input images at each iteration. This
adds complexity to the training process and limits flexibility in data preprocessing.

In this paper, we propose to perform 3D reconstruction by learning generalizable Neural Fields using
scene Priors (NFPs). Such priors are largely built upon depth-map inputs (given posed RGB-D
images). By leveraging the priors, our NFPs network allows for a simple and flexible design with
single-view inputs during training, and it can efficiently adapt to each novel scene using fewer input
views. Specifically, full scene reconstruction is achieved by directly merging the posed multi-view
frames and their corresponding fields from NFPs, without the need for learnable fusion blocks.

A direct way to generalize per-scene Nerf optimization is to encode each single-view input image
into an intermediate representation in the volumetric space. Yet, co-learning the encoder and the
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Figure 1: We propose Neural Fields scene Prior (NFP) to enable fast reconstruction of geometry and texture of
indoor scenes. Our method first (a) learns a generalizable network as a scene prior that obtains a coarse scene
reconstruction in a feed-forward manner. Next, we directly fuse the per-view results and (b) perform per-scene
optimization in a more accurate and efficient way leading to high-quality surface reconstruction and realistic
texture reconstruction.

NeRF presents significant challenges. Given that a single-view image captures only a thin segment
of a surface, it becomes considerably harder to discern the geometry compared to understanding
the texture. Thus, to train NFPs, we introduce a two-stage paradigm: (i) We train a geometric
reconstruction network to map depth images to local SDFs; (ii) We adopt this pre-trained network as
a geometric prior to support the training of a separate color reconstruction network, as a texture
prior, in which the radiance function can be easily learned with volumetric rendering (Wang et al.,
2021a; Yariv et al., 2021), given the SDF prediction.

Dense voxel grids are a popular choice in many NeRF-based rendering techniques (Yen-Chen et al.,
2020; Chen et al., 2021; Liu et al., 2020; Huang et al., 2021; Takikawa et al., 2021; Sun et al.,
2022b; Wang et al., 2022b). However, for the single-view input context, they fall short for two
main reasons. First, the single-view image inherently captures just a thin and confined segment
of surfaces, filling only a minuscule fraction of the entire voxel space. Second, dense voxel grids
employ uniform sampling, neglecting surface priors like available depth information. Instead, we
resort to a surface representation: we build a set of projected points in the 3D space as keypoint, from
where a continuous surface can be decoded. The keypoint representation spans a compact 2D surface
representation, allowing dense sampling close to the surface, which significantly enhances scalability.

NFPs can easily facilitate further fine-tuning on large-scale indoor scenes. Given the pretrained
geometry and texture network as the scene prior, the single-scene reconstruction can be performed by
optimizing the aggregated surface representation and the decoders.

With coarse reconstruction from the generalized network and highly compact surface representation,
our approach achieves competitive scene reconstruction and novel view synthesis performance with
substantially fewer views and faster convergence speed. In summary, our contributions include:

• We propose NFPs, a generalizable scene prior that enables fast, large-scale scene reconstruc-
tion.

• NFPs facilitate (a) single-view, across-scene input, (b) direct fusion of local frames, and (c)
efficient per-scene fine-tuning.

• We introduce a continuous surface representation, taking advantage of the depth input and
avoiding redundancy in the uniform sampling of a volume.

• With the limited number of views, we demonstrate competitive performance on both the
scene reconstruction and novel view synthesis tasks, with substantially superior efficiency
than existing approaches.

2 RELATED WORK

Reconstructing and rendering large-scale indoor scenes is crucial for various applications. Depth
sensors, on the other hand, are becoming increasingly common in commercial devices, such as
Kinect (Zhang, 2012; Smisek et al., 2013), iPhone LiDAR (Nowacki & Woda, 2019), etc. Leveraging
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Figure 2: Overview of NFP. Given the RGBD input, we first extract the geometric and texture pixel feature
using two encoders (Sec. 3.1). Then, we construct the continuous surface representation upon the discrete surface
feature (Sec. 3.2). Next, we introduce a two-stage paradigm to learn the generalizable geometric and texture
prior, optimized via multiple objectives (Sec. 3.3).

depth information in implicit neural representations is trending. We discuss both these topics in detail,
in the following.

Multi-view scene reconstruction. Reconstructing 3D scenes from images was dominated by multi-
view stereo (MVS) (Schönberger et al., 2016; Schonberger & Frahm, 2016), which often follows
the single-view depth estimation (e.g., via feature matching) and depth fusion process (Newcombe
et al., 2011; Dai et al., 2017b; Merrell et al., 2007). Recent learning-based MVS methods (Cheng
et al., 2020; Düzçeker et al., 2020; Huang et al., 2018; Luo et al., 2019) substantially outperform the
conventional pipelines. For instance, Yao et al. (2018); Luo et al. (2019) build the cost-volume based
on 2D image features and use 3D CNNs for better depth estimation. Another line of works (Sun
et al., 2021; Bi et al., 2017) fuse multi-view depth and reconstruct surface meshes using techniques
such as TSDF fusion. Instead of fusing the depth, Wei et al. (2021), Wang et al. (2021b), Zhang et al.
(2022), and Xu et al. (2022) directly aggregate multi-view inputs into a radiance field for coherent
reconstruction. The multi-view setting enables learning generalizable implicit representation, however,
their scalability is constrained as they always require multi-view RGB/RGB-D data during training.
Our approach, for the first time, learns generalizable scene priors from single-view images with
substantially improved scalability.

Neural Implicit Scene Representation. A growing number of approaches (Yariv et al., 2020; Wang
et al., 2021a; Yariv et al., 2021; Oechsle et al., 2021; Niemeyer et al., 2020; Sun et al., 2022a) represent
a scene by implicit neural representations. Although these methods achieve impressive reconstruction
of objects and scenes with small-scale and rich textures, they hardly faithfully reconstruct large-scale
scenes due to the shape-radiance ambiguity suggested in (Zhang et al., 2020; Wei et al., 2021). To
address this issue, Guo et al. (2022) and Yu et al. (2022) attempt to build the NeRF upon a given
geometric prior, i.e., sparse depth maps and pretrained depth estimation networks. However, these
methods take a long time to optimize on an individual scene. As mentioned previously, generalizable
NeRF representations with mutli-view feature aggregation are studied (Chen et al., 2021; Wang
et al., 2021b; Zhang et al., 2022; Johari et al., 2022; Xu et al., 2022). However, they still focus on
reconstructing the scene’s appearance, e.g., for novel view synthesis, but cannot guarantee high-quality
surface reconstruction.

Depth-supervised reconstruction and rendering.

With the availability of advanced depth sensors, many approaches seek depth-enhanced supervision
of NeRF (Azinović et al., 2022; Li et al., 2022; Zhu et al., 2022; Sucar et al., 2021; Yu et al.,
2022; Williams et al., 2022; Xu et al., 2022; Deng et al., 2022) since depth information is more
accessible. For instance, Azinović et al. (2022) enables detailed reconstruction of large indoor
scenes by comparing the rendered and input RGB-D images. Unlike most methods that use depth as
supervision, Xu et al. (2022), Williams et al. (2022) and Dong et al. (2023) build the neural field
conditioned on the geometric prior. For example, Point-NeRF pretrains a monocular depth estimation
network and generates a point cloud by lifting the depth prediction. Compared to ours, their geometric
prior is less integrated into the main reconstruction stream since it is separately learned and detached.
Furthermore, these methods only consider performing novel view synthesis (Xu et al., 2022; Deng
et al., 2022), where the geometry is not optimized, or perform pure geometric (Yu et al., 2022; Li
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et al., 2022; Williams et al., 2022; Azinović et al., 2022) reconstruction. In contrast, our approach
makes the scene prior and the per-scene optimization a unified model that enables more faithful and
efficient reconstruction for both color and geometry.

3 METHOD

Given a sequence of RGB-D images and their corresponding camera poses, our goal is to perform fast
and high-quality scene reconstruction. To this end, we learn a generalizable neural scene prior, which
encodes an RGB image and its depth map as continuous neural fields in 3D space and decodes them
into signed distance and radiance values. As illustrated in Fig. 2, we first extract generalizable surface
features from geometry and texture encoders (Sec. 3.1). Then, pixels with depth values are back-
projected to the 3D space as keypoints, from which continuous fields can be built with the proposed
surface representation (Sec. 3.2). Motivated by previous works (Wang et al., 2021a; Yariv et al.,
2021), we utilize two separate MLPs to decode the geometry and texture representations, which are
further rendered into RGB and depth values (Sec. 3.3). To obtain high-quality surface reconstruction,
we further propose to optimize the neural representation on top of the learned geometric and texture
prior for a specific scene (Sec. 3.4).

3.1 CONSTRUCTING SURFACE FEATURE

Given an RGB-D image {I,D}, we first project the depth map into 3D point clouds in the world
coordinate system using its camera pose {R, t} and intrinsic matrix K. We sub-sample M points
via Farthest Point Sampling (FPS), denoted as {pm},m ∈ [0,M − 1], which are used as keypoints
representing the discrete form of surfaces. We extract generalizable point-wise geometry and texture
features, as described below, which are further splatted onto these keypoints. Both encoders are
updated when training the NFP.

Geometry encoder. For each surface point, we apply the K-nearest neighbor (KNN) algorithm to
find K − 1 points and construct a local region with K points. Thus, we obtain a collection of M
local regions, {pm, {pk}k∈Ψm

},∀m ∈ [0,M − 1], where Ψm is the neighbor index set of point pm
and |Ψm| = K − 1. Then, we utilize a stack of PointConv (Wu et al., 2019) layers to extract the
geometry feature from each local region fgeo

m = PointConv({pm, {pk}k∈Nm
}).

Texture encoder. In addition, we extract RGB features for the keypoints via a 2D convolutional
neural network. In particular, we feed an RGB image I into an UNet (Ronneberger et al., 2015) with
ResNet34 (He et al., 2016) as the backbone, which outputs a dense feature map. Then, we splat the
pixel-wise features f tex

m onto the keypoints, according to the projection location of the surface point
pm from the image plane. Thus, each surface point is represented by both a geometry feature and a
texture feature, denoted by f(pm) = [fgeo(pm), ftex(pm)].

3.2 CONTINUOUS SURFACE IMPLICIT REPRESENTATION

Given the lifted keypoints and their projected geometry and texture features, in this section, we
introduce how to construct continuous implicit fields conditioned on such discrete representations.
We follow a spatial interpolation strategy: for any query point x (e.g., in a typical volume rendering
process, it can be a sampled point along any ray), we first find the K nearest surface points {pv}v∈V ,
where V is a set of indices of the neighboring surface points. Then, the query point’s feature can be
obtained via aggregation of its neighboring surface points. In particular, we apply distance-based
spatial interpolation as

f(x) =

∑
v∈V ωvf(pv)∑

v∈V ωv
; ωv = exp (−||x− pv||), (1)

where f(x) represents either the geometry fgeo(x) or the texture ftex(x) feature, and pv is the position
of the v-th neighbouring keypoint. With distance-based spatial interpolation, we establish continuous
implicit fields for any point from the discrete keypoints.

The continuous representation suffers from two drawbacks: First, when a point is far away from the
surface, f(x) is no longer a valid representation, but will still contribute to decoding and rendering.
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Second, the distance ωv is agnostic to the tangent direction and hence is likely to blur the boundaries.
To mitigate the first problem, we incorporate an additional MLP layer that takes into account both
the original surface feature f(pv) and its relative distance to the query point x− pv, and outputs a
distance-aware surface feature f(pxv) = MLP(f(pv), x− pv). Subsequently, this refined surface
feature f(pxv) replaces the original surface feature in Eq. 1 to obtain the feature of query point x. In
addition, we ensure that the sampled points lie near the surface via importance sampling. We resolve
the second issue via providing the predicted normal to the decoders as an input. We refer to Sec. 3.3
and 3.4 for details.

3.3 GENERALIZABLE NEURAL SCENE PRIOR

To reconstruct both geometry and texture, i.e., a textured mesh, a direct way is to decode the geometry
and texture surface representation (Sec. 3.2) into signed distance and radiance values, render them into
RGB and depth pixels (Guo et al., 2022; Yu et al., 2022), and then supervise them by the ground-truth
RGB-D images.

Unlike the multi-view setting that covers a significant portion of the volumetric space, the single-view
input only encompasses a small fraction of it. From our experiments, we found that the joint training
approach struggles to generate accurate geometry.

Hence, we first learn a geometric network that maps any depth input to its corresponding SDF
(Sec. 3.3.1). Once a coarse surface is established, learning the radiance function initialized by it
becomes much easier – we pose it in the second stage where a generalizable texture network is
introduced similarly (Sec. 3.3.2).

3.3.1 GENERALIZABLE GEOMETRIC PRIOR

We represent scene geometry as a signed distance function, where in our case, it is conditioned
on the geometric surface representation fgeo(x) to allow for generalization ability across different
scenes. Specifically, along each back-projected ray with camera center o and ray direction r, we
sample N points as xi = o+ dir, ∀i ∈ [0, N − 1]. For each sampled points xi, its geometry feature
fgeo(xi) can be computed by equation 1. Then, the geometry decoder ϕG, taking the point position
and its geometry feature as inputs, maps each sampled point to a signed distance, which is defined as
s(xi) = ϕG(fgeo(xi), xi). Note that we also apply positional encoding γ(·) to the point position as
suggested in Mildenhall et al. (2020). We omit it for brevity.

Following the formulation of NeuS (Wang et al., 2021a), the estimated depth value d̂ is the expected
values of sampled depth di along the ray:

d̂ =

N∑
i

Tiαidi; Ti =

i−1∏
j=1

(1− αj)

αi = max

(
σs(s(xi))− σs(s(xi+1))

σs(s(xi))
, 0

)
,

(2)

where Ti represents the accumulated transmittance at point xi, αi is the opacity value and σs is a
Sigmoid function modulated by a learnable parameter s.

Geometry objectives. To optimize the generalizable geometric representation, we apply a pixel-wise
rendering loss on the depth map,

Ldepth = |d̂−D(x, y)|. (3)

Inspired by (Azinović et al., 2022; Li et al., 2022), we approximate ground-truth SDF based on the
distance to observed depth values along the ray direction, b(xi) = D(x, y) − di. Thus, for points
that fall in the near-surface region (|b(xi)| ≤ τ , τ is a truncation threshold), we apply the following
approximated SDF loss

Lnear = |s(xi)− b(xi)| (4)

We also adopt a free-space loss (Ortiz et al., 2022) to penalize the negative and large positive
predictions.

Lfree = max
(
0, e−ϵs(xi) − 1, s(xi)− b(xi)

)
, (5)
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where ϵ is the penalty factor. Then, our approximated SDF loss is

Lsdf =

{Lnear if b(xi) ≤ |τ |
Lfree otherwise

(6)

The approximated SDF values provide us with more explicit and direct supervision than the rendering
depth loss (Eq. equation 3).

Surface regularization. To avoid artifacts and invalid predictions, we further use the Eikonal
regularization term (Yariv et al., 2021; Ortiz et al., 2022; Wang et al., 2021a), which aims to
encourage valid SDF values via the following,

Leik = ||∇xi
s(xi)− 1||22, (7)

where ∇xis(xi) is the gradient of predicted SDF w.r.t. the sampled point xi.

Therefore, we update the geometry encoder and decoder with the generalizable geometry loss as
follows,

Lgeo = λdepthLdepth + λsdfLsdf + λeikLeik (8)

3.3.2 GENERALIZABLE TEXTURE PRIOR

We build the 2nd stage – the generalizable texture network following the pretrained geometry network,
as presented in Sec. 3.3.1, which offers the SDF’s prediction as an initialization. Specifically, we
learn pixel-wise RGB features, as described in Sec. 3.1, and project them onto the corresponding
keypoints. Following the spatial interpolation method in Sec. 3.2, we query the texture feature of
any sampled point in 3D space. As aforementioned, the spatial interpolation in Eq. equation 1 is not
aware of the surface tangent directions. For instance, a point at the intersection of two perpendicular
planes will be interpolated with keypoints coming from both planes. Thus, representations at the
boundary regions can be blurred. To deal with it, we further concatenate the surface normal ∇xi

s(xi)
predicted in the first stage with the input to compensate for the missing information.

With a separate texture decoder ϕtex, the color of point xi is estimated, conditioned on the texture
feature ftex(xi) and the surface normal∇xis(xi) ,

c(xi) = ϕtex(ftex(xi), r,∇xis(xi)), (9)

where r is the ray direction. Here we omit the positional encoding of the point’s position and ray
direction for conciseness. Therefore, the predicted pixel color can be expressed as ĉ =

∑N
i Tiαici,

where Ti and αi are defined same as Eq. equation 2. We supervise the network by minimizing the L2
loss between the rendered pixel RGB values and their ground truth values

Lrgb = ||ĉ− I(x, y)||22. (10)

Meanwhile, we jointly learn the geometry network including the PointConv encoder and geometry
decoder introduced in Sec. 3.2, via the same Lgeo. Thus, the total loss function for generalizable
texture representation learning is

Ltex = λdepthLdepth + λsdfLsdf + λeikLeik+

λrgbLrgb.
(11)

During volumetric rendering, to restrict the sampled points from being concentrated on the surface,
we perform importance sampling based on: (i) the predicted surface as presented in Wang et al.
(2021a), and (ii) the input depth map. More details are in the supplementary material.

3.4 PRIOR-GUIDED PER-SCENE OPTIMIZATION

To facilitate large-scale, high-quality scene reconstruction, we can further finetune the pretrained
generalizable geometric and texture prior to individual scenes, with multi-view frames. Specifically,
we first directly fuse the geometry and texture feature of multi-view frames via the scene prior
networks. No further learnable modules are required, in contrast, to (Chen et al., 2021; Zhang et al.,
2022; Li et al., 2022). Then, we design a prior-guided pruning and sampling module, which lets
optimization happen near surfaces. In particular, we initialize the grid in the volumetric space via
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Figure 3: Qualitative comparisons for mesh reconstruction on ScanNet. Our method achieves the most
complete and fine-detailed reconstruction. The prior reconstruction results and the ground-truth are provided as
reference. Better viewed when zoomed in.

learn NSP and estimate the SDF value of each grid by its corresponding feature, and remove the
grids whose SDF values are larger than a threshold. We note that the generalizable scene prior can be
combined with various optimization strategies (Xu et al., 2022; Yu et al., 2022; Wang et al., 2022b).
More details can be found in the supplementary materials.

During the finetuning, we update the scene-prior feature, and the weights of the MLP decoders to fit
the captured images for a specific scene. Besides the objective functions described in Eq. equation 11,
we also introduce the smoothness regularization term to minimize the difference between the gradients
of nearby points

Lsmooth = ||∇xi
s(xi)−∇xi+σs(xi + σ)||2, (12)

where σ is a small perturbation value around point xi. Thus, the total loss function for per-scene
optimization is

Lscene = λdepthLdepth + λsdfLsdf + λeikLeik+

λrgbLrgb + λsmoothLsmooth.
(13)

4 EXPERIMENTS

In this work, we introduce a generalizable network that can be applied to both surface reconstruction
and novel view synthesis from RGB-D images in an offline manner. To our best knowledge, there is
no prior work that aims for both two tasks. To make fair comparisons, we compare our work with the
state-of-the-art (STOA) approaches of each task, respectively.

4.1 BASELINES, DATASETS AND METRICS

Baselines. To evaluate surface reconstruction, we consider the following two groups of methods:
First, we compared our method with RGB-based neural implicit surface reconstruction approaches:
ManhattanSDF (Guo et al., 2022) and MonoSDF (Yu et al., 2022) which involve an additional
network to extract the geometric prior during training. Second, we consider several RGB-D surface
reconstruction approaches that share similar settings with ours: Neural-RGBD (Azinović et al.,
2022) and Go-surf (Wang et al., 2022b). In addition, to have a fair comparison, we finetune
ManhattanSDF and MonoSDF with ground-truth depth maps as two additional baselines and denoted
as ManhattanSDF∗ and MonoSDF∗. We follow the setting in (Guo et al., 2022; Azinović et al., 2022)
and evaluate the quality of the mesh reconstruction in different scenes. We note that all the above
approaches perform per-scene optimization.

To evaluate the performance in novel view synthesis, we compare our method with the latest NeRF-
based methods in novel view synthesis, including NeRF (Mildenhall et al., 2020), NSVF (Liu et al.,
2020), NerfingMVS (Wei et al., 2021), IBRNet (Wang et al., 2021b) and NeRFusion Zhang et al.
(2022). As most of existing works are only optimized with RGB data, we further evaluate the Go-surf
for novel view synthesis from RGB-D images as another baseline. We adopt the evaluation setting in
NerfingMVS, where we evaluate our method on 8 scenes, and for each scene, we pick 40 images
covering a local region and hold out 1/8 of these as the test set for novel view synthesis.

Datasets. We mainly perform experiments on ScanNetV2 (Dai et al., 2017a) for both surface
reconstruction and novel view synthesis tasks. Specifically, we first train the generalizable neural
scene prior on the ScanNetV2 training set and then evaluate its performance in two testing splits
proposed by Guo et al. (2022) and Wei et al. (2021) for surface reconstruction and novel view
synthesis, respectively. The GT of ScanNetV2, produced by BundleFusion Dai et al. (2017b), is
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Method depth opt. (min) Acc↓ Comp↓ Prec↑ Recall↑ F-score↑
ManhattanSDF (Guo et al., 2022) SfM 640 0.072 0.068 0.621 0.586 0.602
MonoSDF (Yu et al., 2022) network 720 0.039 0.044 0.775 0.722 0.747
NeuRIS (Wang et al., 2022a) network 480 0.051 0.048 0.720 0.674 0.696
FastMono (Dong et al., 2023) network 30 0.042 0.056 0.751 0.678 0.710
HelixSurf (Liang et al., 2023) network 30 0.038 0.044 0.786 0.727 0.755
ManhattanSDF∗ (Guo et al., 2022) GT. 640 0.027 0.032 0.915 0.883 0.907
MonoSDF∗ (Yu et al., 2022) GT. 720 0.033 0.026 0.942 0.912 0.926
Neural-RGBD (Azinović et al., 2022) GT. 240 0.055 0.022 0.932 0.918 0.925
Go-surf (Wang et al., 2022b) GT. 35 0.052 0.018 0.946 0.956 0.950
Ours-prior (w/o per-scene opt.) – – 0.084 0.057 0.695 0.764 0.737
Ours (w per-scene opt.) GT. 15 0.049 0.017 0.947 0.962 0.954

Table 1: Quantitative comparisons for mesh reconstruction on ScanNet. We compare with a number of
baselines. “∗” is our re-implementation with dense ground-truth depth map. “opt.” stands for the optimization
time for per-scene fine-tuning.

Method #frame Acc ↓ Comp ↓ C-ℓ1 ↓ NC ↑ F-score↑
BundleFusion (Dai et al., 2017b) 1,000 0.0191 0.0581 0.0386 0.9027 0.8439
COLMAP (Schönberger et al., 2016) 1,000 0.0271 0.0322 0.0296 0.9134 0.8744
ConvOccNets (Peng et al., 2020) 1,000 0.0498 0.0524 0.0511 0.8607 0.6822
SIREN (Sitzmann et al., 2020) 1,000 0.0229 0.0412 0.0320 0.9049 0.8515
Neural RGBD (Azinović et al., 2022) 1,000 0.0151 0.0197 0.0174 0.9316 0.9635
Go-surf (Wang et al., 2022b) 1,000 0.0158 0.0195 0.0177 0.9317 0.9591
Ours 1,000 0.0172 0.0192 0.0177 0.9311 0.9529
Go-surf (Wang et al., 2022b) 30 0.0246 0.0442 0.0336 0.9117 0.9042
Ours 30 0.0177 0.0292 0.0234 0.9207 0.9311

Table 2: Quantitative evaluation of the reconstruction quality on 10 synthetic scenes . Our method show
competitive results when being reconstructed using only 30 frames used per room, in the lower part of the table.

known to be noisy, making accurate evaluations against it challenging. To further validate our method,
we also conduct experiments on 10 synthetic scenes proposed by Azinović et al. (2022).

Evaluation Metrics. For 3D reconstruction, we evaluate our method in terms of mesh reconstruction
quality used in Guo et al. (2022). Meanwhile, we measure the PSNR, SSIM, and LPIPS for novel
view synthesis quality.

4.2 COMPARISONS WITH THE STATE-OF-THE-ART METHODS

Surface reconstruction. Table 1 provides a quantitative comparison of our methods against STOA
approaches for surface reconstruction (Guo et al., 2022; Yu et al., 2022; Wang et al., 2022a; Liang
et al., 2023). Within our methods, the feed-forward NFPs are denoted as Ours-prior, while the
per-scene optimized networks are labeled as Ours. We list the RGB- and RGB-D-based approaches
as in the top and the middle rows, whereas ours are placed in the bottom section. While we include
ManhattanSDF (Guo et al., 2022) and MonoSDF (Yu et al., 2022) that are supervised by predicted
or sparse depth information as in the top row, to ensure fair comparisons, we re-implement them by
replacing the original supervision with ground-truth depth, as in the middle row (denoted by ‘*‘).
Generally, using ground-truth depths can always enhance the reconstruction performance.

Comparison with NFPs on ScanNet. In contrast to all the other approaches that all require time-
consuming per-scene optimization, the NPFs can extract the geometry structure through a single
forward pass. The results in Table 1 demonstrate that, even without per-scene optimization, the
NFPs network not only achieves performance on par with RGB-based approaches but also operates
hundreds of times faster. Note in contrast to all the other approaches in Table 1 that use around 400
frames to optimize the scene-specific neural fields, Ours-prior only takes around 40 frames per scene
as inputs to achieve comparable mesh reconstruction results without per-scene optimization.

Comparison with optimized NFPs on ScanNet. We further perform per-scene optimization on
top of the NFPs network. Compared with methods using additional supervision or ground truth
depth maps, our method demonstrates more accurate results on the majority of the metrics. More
importantly, our method is either much faster, compared with the SOTA approaches. Some qualitative
results are shown in Fig. 3 and more results can be found in the supplementary materials.

Comparison on synthetic scenes. Table 2 compares our approach with the most recent works on
neural surface reconstruction from RGB-D images. The results demonstrate that our method achieves

8



Published as a conference paper at ICLR 2024

Ground-truth NerfingMVS Go-surf Ours

Figure 4: Qualitative comparison for novel view synthesis on ScanNet. We compare our method with
baselines which achieves the competitive geometry reconstruction performance. Our approach produces more
realistic rendering results than two other baselines.

comparable performance with most existing works, even when optimizing with a limited number of
frames, such as 1,000 vs 30.

Method PSNR↑ SSIM↑ LPIPS↓
NeRF (Mildenhall et al., 2020) 24.04 0.860 0.334
NSVF (Liu et al., 2020) 26.01 0.881 –
NeRFingMVS (Wei et al., 2021) 26.37 0.903 0.245
IBRNet (Wang et al., 2021b) 25.14 0.871 0.266
NeRFusion (Zhang et al., 2022) 26.49 0.915 0.209
Go-surf (Wang et al., 2022b) 25.47 0.894 0.420
Ours 26.88 0.909 0.244
Table 3: Quantitative comparisons for novel view
synthesis on ScanNet. The best two results of different
metrics are highlighted.

Results on novel view synthesis. To validate
the learned radiance representation, we further
conduct experiments on novel view synthesis.
The quantitative results and qualitative results
are shown in Table 3 and Fig. 4. Table 3 shows
that the proposed method achieves comparable
if not better results compared to SOTA novel
view synthesis methods (Wang et al., 2021b;
Zhang et al., 2022; Liu et al., 2020). We note
that our method outperforms Go-surf in this in-
stance, even when both methods achieve com-
parable geometric reconstruction performance. This suggests that our learned prior representation
offers distinct advantages for novel view synthesis. In addition, from Fig. 4, both NerfingMVS (Wei
et al., 2021) and Go-surf (Wang et al., 2022b) fail on scenes with complex geometry and large
camera motion. The generalized representation enables the volumetric rendering to focus on more
informative regions during optimization and improves its performance for rendering RGB images of
novel views.

4.3 ABLATION STUDIES
Geo. prior Acc↓ Comp↓ F-score↑

0.079 0.031 0.851
✓ 0.046 0.030 0.862

Color prior PSNR ↑ SSIM ↑ LPIPS↓
25.87 0.899 0.415

✓ 26.88 0.909 0.246
Table 4: Ablation studies on geomet-
ric and texture prior. We report both
mesh reconstruction metrics and novel
view synthesis metrics.

We further perform the ablation studies to evaluate the effec-
tiveness and the efficiency of the neural prior network. Effec-
tiveness of generalized representation. Table 4 shows the
results with and without the generalized representation. For
the model without generalized representation, we randomly
initialize the parameters of feature grids and decoders while
keeping the other components unchanged. We observe that the
model integrated with geometry prior and/or color prior can
consistently improve the performance on 3D reconstruction
and novel view synthesis.

2000 4000 6000 8000 10000
Number of iterations

65

75

85

F-
sc
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e
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Ours
ManhattanSDF∗
MonoSDF∗

Figure 5: Ablation studies on the number
of training iterations for per-scene opti-
mization.

Fast optimization. Our approach can achieve high-quality
reconstruction at approximately 1.5K iterations within 15
minutes. As illustrated in Fig. 5, our method achieves a
high F-score at the very early training stage, while Man-
hattan SDF∗ (Guo et al., 2022) and MonoSDF∗ (Yu et al.,
2022) take much more iterations to reach a similar perfor-
mance.

5 CONCLUSION

In this work, we present a generalizable scene prior that enables fast, large-scale scene reconstruction
of geometry and texture. Our model follows a single-view RGB-D input setting and allows non-
learnable direct fusion of images. We design a two-stage paradigm to learn the generalizable
geometric and texture networks. Large-scale, high-fidelity scene reconstruction can be obtained with
efficient fine-tuning on the pretrained scene priors, even with limited views. We demonstrate that
our approach can achieve state-of-the-art quality of indoor scene reconstruction with fine geometric
details and realistic texture.
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A APPENDIX

In the supplementary document, we introduce more implementation details (Sec. A), a comparison
with RGB-D surface reconstruction on ScanNet.(Sec. B.1, Sec. B.2 and Sec. B.3), single-view novel
view synthesis (Sec. B.4) and qualitative results (Sec. B.5 and Sec. B.6). We specifically discussed
the importance of sampling methods w.r.t the two-stage generalizable prior training, which plays an
important role in the surface representation, as described in Sec. 3.2 in the main paper. We provide
additional experiments including (i) quantitative results of the neural scene prior, i.e., without per-
scene optimization, (ii) quantitative comparisons with state-of-the-art RGB-D surface reconstruction
approaches, (iii) quantitative comparisons to the MVS-based approaches, (iv) single-view novel view
synthesis, and (v) qualitative results on ScanNet and self-collected data. Videos of full-size room
reconstruction are included and recommended to watch.

A IMPLEMENTATION DETAILS

A.1 GENERALIZABLE NEURAL SCENE PRIOR

The generalizable neural scene prior is trained on the training split of ScanNet Dai et al. (2017a).
We discuss some details of every component including the geometry encoder, texture encoder,
generalizable geometric prior module, and generalizable texture prior in this section.

Geometry and Texture Encoder. For the geometry encoder, we first sample 512 keypoints from
all the points projected from 2D pixels, via Farthest Point Sampling (FPS) for each frame. For each
surface point, we apply the K-Nearest-Neighbor algorithm to select 16 adjacent points. Then, we
adopt two PointConv Wu et al. (2019) layers, to extract the geometry feature whose output channels
are set to 64. To extract the RGB feature we use a U-Net Ronneberger et al. (2015) with ResNet34 He
et al. (2016) as the backbone network. We further use an additional convolutional layer to output
a per-point feature with the dimension as 32. All the encoder modules are jointly trained with the
whole pipeline.

Generalizable Geometric Prior. Given an RGB-D image and its corresponding camera pose, we
first randomly sample 256 rays from regions where depth values are valid, e.g., non-zero. Then for
each ray, we define a small truncation region near the ground-truth depth where 32 points are sampled
uniformly. We then use two MLPs to map the geometry features to SDF values. The hyperparameters
λdepth, λsdf and λeik are set to 1.0, 1.0 and 0.5, respectively.

Generalizable Texture Prior. Initialized with the geometric prior, we learn the texture prior via the
volumetric rendering loss Wang et al. (2021a); Yariv et al. (2021). Different from the sampling strategy
used in geometric prior learning, we restrict the importance sampling to the samples concentrated
on the surface as described in Sec.3.4 of our main paper. In particular, we first sample 2048 rays
from each RGB-D image where we uniformly sample 64 points in the predefined near-far region.
Following Wang et al. (2021a), then, we sample 48 points that are close to the predicted surface. This
sampling strategy is employed during both training and inference. Additionally, during training, for
rays with non-zero depth values, we further sample 16 points within the truncation region around the
ray’s depth. Therefore, 128 points are sampled along each ray. For each point, we utilize 2 MLPs in
the texture decoder to estimate its RGB value. The hyperparamters λdepth, λsdf , λeik and λrgb are set
to 1.0, 1.0, 0.5 and 10.0, respectively.

Scene prior extraction and fusion. To leverage multiple views of RGB-D frames, with the scene
prior networks, we can directly aggregate the keypoints along with their geometry and texture features
from these frames in the volumetric space. Then, the colored surface reconstruction can be decoded
from the fused representation following the same procedure in Sec.3.1 and 3.2. No further learnable
modules are required, in contrast, to Chen et al. (2021); Zhang et al. (2022); Li et al. (2022).

Prior-guided pruning and sampling. To optimize a single scene, we discard the encoders and
treat the volume feature representation as learnable to be optimized together with the decoders. To
further speed up the optimization, we accelerate the feature query process of sampled points, i.e.,
instead of optimizing the unstructured keypoints, from which the feature extraction can be inefficient,
we introduce the prior-guided voxel pruning to leverage the advantage of voxel-grid sampling and
surface representation. Specifically, we initialize uniform grids in the volumetric space and then query
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each grid feature. Instead of optimizing a large number of uniform grids, we remove the redundant
grids adaptively based on the geometric prior using the Algo. 1 described below. To concentrate the
sampled ray points near the surface, we apply an importance sampling strategy, similar to that used in
training the generalizable texture prior, to mask out those far away from the surface. Starting from a
large threshold at the early training stage, we decrease it gradually with more training iterations to
prune more unnecessary grids. A similar procedure is also applied to the coarsely sampled points to
remove some useless points and help more points concentrate around the surface region. Notably,
compared to the voxel-based approach Wang et al. (2022b) having more than 4, 000, 000 uniform
grids to be optimized, the number of learnable keypoints in our case is around 40, 000 – a 100x
reduction in computational complexity.

Algorithm 1: Prior-guided voxel pruning
Input: Grid feature {fi}i=1:N ;
Grid position {xi}i=1:N ;
Positional encoding γ(·);
Geometry decoder s(·);
Number of grids N ;
Number of iterations T
Output: Grid feature after prune {fj}i=1:M

Initialization :τ0 = 0.16
for t = 1: T do

τ = max(0.005, 0.8
20t
T · τ0)

for i = 1 : N do
si ← s(fi, γ(xi));
if |si| ≥ τ then

Prune i-th grid
end

end
end

B ADDITIONAL EXPERIMENTS

B.1 COMPARISON WITH RGB-D SURFACE RECONSTRUCTION ON SCANNET

Computational Resource. The geometric and texture priors network are trained on 8 NVIDIA V100
GPUs for 2 days until convergence. The per-scene optimization step is trained and tested on a single
NVIDIA V100 GPU. All baselines reported in our paper are tested using the same computational
resources.

Clarification of Table 2 in the main paper. Table 2 of the main paper presents the comparison of
our method with ManhanttanSDF (Guo et al., 2022) and MonoSDF (Yu et al., 2022) with the depth
supervision. For fairness, we keep every component of each method by involving an additional depth
loss. Unlike some RGB-D surface reconstruction methods, we did not optimize the camera pose
while during training. In the course of these modifications, both ManhattanSDF and MonoSDF were
observed to have an architecture quite similar to NeuralRGBD Azinović et al. (2022). Given these
circumstances, we are confident that comparing our approach with ManhattanSDF and MonoSDF on
ScanNet is indeed fair and effective.

Comparison with Go-surf (Wang et al., 2022b) and NeuralRGBD (Azinović et al., 2022). We
compare our method with Go-surf and Neural RGB-D in Table 5. To have a fair comparison, instead
of optimizing camera poses and neural scene representation jointly, we fix the original camera poses
as provided by ScanNet Dai et al. (2017a). Follow the same setting in the main paper, we report the
performance of different models training with dense and sparse training views. As shown in Table 5,
our approach achieves better performance over all metrics. More importantly, although Go-surf
achieves similar performance within relatively similar time, it cannot produce any reasonable results
without optimization as demonstrated by our approach.
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Method # frames opt. time Prec↑ Recall↑ F-score↑
Neural-RGBD Azinović et al. (2022) 400 240 0.932 0.918 0.925
Go-surf Wang et al. (2022b) 400 35 0.946 0.956 0.950
Ours 400 15 0.947 0.962 0.954
Neural-RGBD Azinović et al. (2022) 40 240 0.837 0.855 0.846
Go-surf Wang et al. (2022b) 40 35 0.842 0.861 0.851
Ours 40 15 0.858 0.866 0.862

Table 5: Quantitative comparisons for mesh reconstruction on ScanNet.

Method per-scene opt. Acc↓ Comp↓ Prec↑ Recall↑ F-score↑optim (min)
Manhattan SDF (Guo et al., 2022) ✓ 640 0.072 0.068 0.621 0.586 0.602
MonoSDF (Yu et al., 2022) ✓ 720 0.039 0.044 0.775 0.722 0.747
Ours-prior ✗ ≤ 5 0.084 0.057 0.695 0.764 0.737

Table 6: Quantitative comparisons of neural scene prior on ScanNet. Both Manhanttan SDF and MonoSDF
require to optimize on a specific scene for several hours, while the proposed neural scene prior can achieve
comparable performance without any optimizatin.

B.2 MODEL EFFICIENCY

We take Go-surf Wang et al. (2022b), which is so far one of the most efficient offline scene reconstruc-
tion approach, as the reference. Compared to it achieving an average run-time of 35 mins per scene,
our Neural Scene Prior network takes only 5 mins (note that the Neural Scene Prior is a feed-forward
network). The full pipeline leveraging the per-scene optimization stage takes an average run-time
of 15 minutes, which is still obviously more efficient. More importantly, our model takes a surface
representation that facilitates scaling up to larger scenes, compared to dense voxels used in Go-surf.
A comprehensive comparison of running time can be found in Table 1 of the main paper.

B.3 COMPARISON WITH MVS-BASED METHODS

We show quantitative comparisons of our method with the state-of-the-art approaches on surface
reconstruction in Table 7. Different from what Table 1 reported in the main paper, we mainly compare
with the MVS-based methods here. For a fair comparison, we follow the evaluation script used
in Zou et al. (2022) for computing 3D metrics on the ScanNet testing set. The top part of Table 7
includes offline methods while the middle one contains online methods with the fusion strategy. The
bottom part of the table shows the methods that are finetined on individual scenes. Compared to most
MVS-based works that use a fusion strategy, our method achieves much better results in terms of
F-score and normal consistency. Moreover, our method outperforms MonoNeuralFusion Zou et al.
(2022), which also performs finetuning for individual scenes, by a large margin.

B.4 NOVEL VIEW SYNTHESIS

Novel View Synthesis. We show more qualitative results on novel view synthesis on ScanNet Dai
et al. (2017a) in Fig. 6 following the same setting described in the main paper. Both NerfingMVS (Wei
et al., 2021) and Go-surf (Wang et al., 2022b) fail on scenes with complex geometry and large camera
motion (bottom two rows). The generalized representation enables the volumetric rendering to focus
on more informative regions during optimization and improves its performance for rendering RGB
images of novel views.

Single-view Novel View Synthesis. We demonstrate that NFP enables high-quality novel view
synthesis from single-view input (Fig. 7, mid), which has been rarely explored especially at the scene
level, and potentially enables interesting applications, e.g., on mobile devices.

B.5 QUALITATIVE RESULTS OF MESH RECONSTRUCTION

We show qualitative comparisons of our method with other baselines in Fig. 8. It demonstrates that
the reconstructed mesh results of our approach are consistently more coherent and detailed than
others. In addition, we show the qualitative results of textured mesh for different scenes that obtained
via neural scene prior in Fig. 9. More video demos of texture mesh reconstruction can be found
in the supplementary video.
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Ground-truth NerfingMVS Go-surf Ours

Figure 6: Qualitative comparison for novel view synthesis on ScanNet.

Source view Novel View Ground-truth

Figure 7: Qualitative results for single-view novel view synthesis. The left column shows the training source
view, and the appearance reconstruction of the novel view are reported in the second column. The ground-truth
images are listed at the last column as reference. Better viewed when zoomed in.
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Acc ↓ Comp ↓ Chamfer ↓ Precision ↑ Recall ↑ F-score ↑ NC ↑

FastMVSNet Yu & Gao (2020) 0.052 0.103 0.077 0.652 0.538 0.588 0.701
PointMVSNet Chen et al. (2019) 0.048 0.115 0.082 0.677 0.536 0.595 0.695

Atlas Murez et al. (2020) 0.072 0.078 0.075 0.675 0.609 0.638 0.819
GPMVS Hou et al. (2019) 0.058 0.078 0.068 0.621 0.543 0.578 0.715

DeepVideoMVS Duzceker et al. (2021) 0.066 0.082 0.074 0.590 0.535 0.560 0.765
TransformerFusion Azinović et al. (2022) 0.055 0.083 0.069 0.728 0.600 0.655 -

NeuralRecon Sun et al. (2021) 0.038 0.123 0.080 0.769 0.506 0.608 0.816
MonoNeuralFusion Zou et al. (2022) 0.039 0.094 0.067 0.775 0.604 0.677 0.842

Ours 0.086 0.068 0.077 0.917 0.889 0.875 0.878

Table 7: Quantitative comparisons of mesh reconstruction on ScanNet.

B.6 MESH RECONSTRUCTION ON THE LARGE-SCALE SCENE

Our results demonstrate that the neural scene prior we propose can generalize well to large-scale
scenes, as shown in Fig 10. In contrast to the previous four scenes, we selected a larger room from
ScanNet Dai et al. (2017a) and applied our pre-trained model directly. The left figure in Fig 10
displays the mesh reconstruction obtained from the neural scene prior. Remarkably, our approach
successfully recovers the geometry structure of the entire room with very sparse views (60 frames),
without requiring any optimization process. Furthermore, by optimizing the prior on this scene
for only 20 minutes on a single NVIDIA V100 GPU, we were able to achieve high-quality mesh
reconstruction.

B.7 MESH RECONSTRUCTION ON THE SELF-CAPTURED SCENE

To further demonstrate the robustness of the neural scene prior, we evaluate the pretrained model
on a self-captured living room, and the reconstructed mesh w./w.o texture is shown in Fig. 11.
Impressively, even without per-scene optimization, the proposed neural scene prior is capable of
feasibly reconstructing a textured mesh.

C LIMITATION

The proposed neural scene prior could extract the geometric and texture prior for arbitrary scenes,
but it does require the sparse RGB-D images as the input. To adapt this neural scene prior for RGB
images, one possibility would be to initially create a sparse point cloud using Structure from Motion
(SfM) on RGB images. However, as of our submission time, we haven’t yet experimented with this
particular setup. Exploring this pathway in future research could certainly yield intriguing findings.

D REPRODUCIBILITY STATEMENT

All experiments in this paper are reproducible. We are committed to releasing the source codes once
accepted.

E USE OF EXISTING ASSETS.

As mentioned in the NeurIPS 2023 checklist, we describe the existing assets we used in our paper
and the corresponding license of these assets.

F PERSONAL DATA AND HUMAN SUBJECTS

The dataset does not include the facial or other identifiable information of humans.

G ETHICAL CONCERNS.

The datasets used are standard benchmarks proposed in previous works. Despite applying supervised
learning, there may still be potential bias in our model trained with these datasets.
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Manhattan SDF* MonoSDF* Ours GT

Figure 8: Qualitative comparisons of mesh reconstruction on ScanNet. Selected local regions are
highlighted by the orange bounding box. Better viewed when zoomed in.

Datasets Most of the experiments are conducted on ScanNet dataset and 10 synthetic scenes collected
by Dai et al. (2017a) and Azinović et al. (2022) which are released on their official website and public
to everyone for non-commercial use.

Code. Our code is built upon the Pytorch Paszke et al. (2019). And we leverage the code from the
released codes by nerfstudio Tancik et al. (2023) under the Apache License.
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Figure 9: Qualitative results of Neural Scene Prior on ScanNet.

Scene Prior Per-scene Optimization

Figure 10: Mesh reconstruction results on the large-scale scene.

Figure 11: Mesh reconstruction results on the self-collected scene without any optimization.
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