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ABSTRACT

Cardinality estimation is crucial for enabling high query performance in relational
databases. Recently learned cardinality estimation models have been proposed to
improve accuracy but there is no systematic benchmark or datasets which allows
researchers to evaluate the progress made by new learned approaches and even
systematically develop new learned approaches. In this paper, we are releasing a
benchmark, containing hundreds of thousands of queries over 20 distinct real-world
databases for learned cardinality estimation. In contrast to other initial benchmarks,
our benchmark is much more diverse and can be used for training and testing
learned models systematically. Using this benchmark, we explored whether learned
cardinality estimation can be transferred to an unseen dataset in a zero-shot manner.
We trained GNN-based and transformer-based models to study the problem in three
setups: 1-) instance-based, 2-) zero-shot, and 3-) fine-tuned.
Our results show that while we get promising results for zero-shot cardinality esti-
mation on simple single table queries; as soon as we add joins, the accuracy drops.
However, we show that with fine-tuning, we can still utilize pre-trained models
for cardinality estimation, significantly reducing training overheads compared to
instance specific models. We are open sourcing our scripts to collect statistics,
generate queries and training datasets to foster more extensive research, also from
the ML community on the important problem of cardinality estimation and in
particular improve on recent directions such as pre-trained cardinality estimation.

1 INTRODUCTION

Cardinality estimation (CE), the problem of determining the number of intermediate records that
will be returned by a database query, is one of the key building block in modern databases for
optimizing performance, and has been studied extensively by the database research community. CE
is used by query optimizers to choose between alternative query execution plans. A query plan that
produces the smallest intermediate results and processes the least amount of data usually leads to
better execution times, and hence is preferred. Thus CE is critical for optimization decisions such as
choosing performant join orders, deciding on whether or not to use an index, and picking the best join
method. It has been shown (10) that "bad" cardinality estimates lead to "bad" execution plans that can
have multiple orders of magnitude worse performance. CE is also critical in database recommenders
to choose between alternative indexes, materializes views, and storage layouts.

Traditional CE techniques used in modern database systems have well-known limitations, as they
make simplistic data modeling assumptions, such as data uniformity and independence of columns in
the tables. Learned CE model following an instance-based approach have been shown to improve
upon the state-of-art techniques used by database systems today (9; 7; 22; 8; 19; 15). Despite their
better accuracy, learned CE models have not been adapted in practice, due to their high training
overheads, among other reasons. As a result, pre-trained CE models, which are trained on a corpus
of diverse datasets on transferable features, are highly desirable to alleviate the training costs and
increase adaption.

Our Main Contributions. In this paper we release CardBench, a benchmark containing thousands
of queries on 20 distinct databases, and scripts to compute data summary statistics and generate
queries. We generated three training datasets; one with queries over single tables with multiple filter
predicates, one with queries with a binary join between two tables and multiple filter predicates on
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each table and one with queries with multiple binary joins and multiple filters predicates on each table.
Further, we release a query generator and flexible infrastructure that can be used and extended to
generate even more complex training queries. In comparison to existing CE benchmarks, CardBench
includes a much higher number of datasets and training data (i.e., queries and cardinalities) to
experiment with and compare different types of learned CE approaches.

To show the benchmark in-action, in this paper we have trained GNN-based and transformer-based
CE models, under 3 setups: 1-) instance-based (i.e., a CE model trained only for the particular
dataset), 2-) pre-trained CE model in zero-shot mode, 3-) pre-trained CE model with fine-tuning
on the dataset. Our results show that although CE is harder to learn with a pre-trained model in a
zero-shot setting, but with a small amount of samples fine-tuning a pre-trained model can achieve
high accuracy as good as, if not better than the instance-based methods. We hope that releasing
CardBench to the public community will help to reduce the barrier-of-entry for experimentation with
learned CE models and also foster new research, also from the ML community, and lead to further
advances on this highly important problem.

2 BACKGROUND AND RELATED WORK

Learned Cardinality Estimation. Traditional CE methods rely on heuristics and simple analytical
models (5) (e.g., one-dimensional histograms or sketches). Recently, there have been various
approaches for learned cardinality estimation (9; 7; 22; 8; 19; 15; 14; 26; 21). While early learned
approaches used classical regression models, more recently deep learning based approaches (9; 13)
have been proposed which show highly promising accuracy over traditional approaches. All of these
methods are instance-based: they utilize instances-specific features like names of tables and columns;
they are evaluated and trained on the same database. There are two main approaches: workload
driven and data driven. Workload driven approaches need to run a representative set of queries (10
to 100 thousands) to collect true cardinalities as labels for the training samples, incurring a very
high overhead. These models also need to be re-trained as the representative workloads shift. To
avoid this high overhead of running thousands of queries to collect the true cardinalities per dataset,
more recently so called data-driven learned cardinality estimators have been proposed (7; 23). In
contrast to the workload-driven approaches, data-driven approaches learn the multi-variate data
distribution within and across tables without running any query plan but simply by learning data
distributions of the base tables. Data driven approaches still require one model per dataset and need
to be re-trained as the data gets updates, which still incurs training overheads. As such, very recently
some first generalizable cardinality estimators (12) have been proposed that can be used on datasets
in a zero-shot manner; i.e., the model can be used without the need to learn one instance-specific
model per dataset. Moreover, zero-shot models also promise that they can automatically provide
accurate estimates even if the underlying data of the dataset is updated (i.e., new rows are added or
existing ones are updated or deleted). The core idea is that such zero-shot models are pre-trained on a
broad spectrum of different datasets and use transferable features, such as table sizes, allowing them
to generalize to unseen datasets. We argue that more research is needed on pre-trained models on
more compelx queries. For this purpose, we provide a very first large-scale training corpus to foster
research in this direction.

Cardinality Estimation Benchmarks. To benchmark cardinality estimation models, the early
papers have mainly relied on either home-grown benchmarks with non-public datasets or they have
used some available benchmarks that have been originally designed for other purposes. One central
benchmark that has been used so far extensively by many papers is the Join Order Benchmark (JOB)
(11), which is based on real-world data from IMDb, containing interesting data distributions and
correlations. JOB contains 79 queries, which challenge cardinality estimation. This is in stark contrast
to many other database benchmarks such as the TPC benchmarks which use synthetic data that is
way simpler and thus does not represent a real challenge for cardinality estimation. However, one
benchmark with one dataset is not sufficient to benchmark learned cardinality estimation and show its
robustness towards various different real-world domains. As such, in the recent years, there have been
further efforts to create additional benchmarks that can be used to test cardinality estimation models.
For example, (4) proposes a new benchmark, which contains one new real-world dataset STATS and
a generated query workload that is more diverse in terms of query and data characteristics than JOB.
Another benchmark (13), which aims in a similar direction uses two different datasets - IMDB and
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Table 1: Database Statistics. All statistics consider all tables of a database.
Database Name # Tables # Columns # Rows # Unique Vals # Join Paths Join Type Correlation

accidents 3 43 27.4M 1.8M 2 chain 0.37
airline 19 119 944.2M 123.4K 27 star 0.07

consumer 3 24 105.3M 13.9M 2 chain 0.37
employee 6 24 48.8M 3.8M 5 star 0.02
movielens 13 48 78.9M 5.5M 6 mixed 0.25

(∼)cms_synthetic_patient_data_omop 24 251 32.6B 2.5B 22 star 0.16
(∼)covid19_weathersource_com 4 52 34.6B 11.6M 2 chain 0.41

(∼)crypto_bitcoin_cash 2 27 2.0B 280.4M 2 chain 0.14
(∼)ethereum_blockchain 7 84 5.6B 641.7M 10 mixed 0.23

(∼)geo_openstreetmap 16 81 8.3B 3.2B 15 star 0.11
(∼)github_repos 9 41 1.7B 280.8M 8 mixed 0.00

(∼)human_variant_annotation 26 501 7.2B 1.3B 17 star 0.29
(∼)idc_v10 19 1660 40.0B 455.7M 17 star 0.07

(∼)open_targets_genetics 13 268 17.3B 392.9M 21 mixed 0.06
(∼)samples 8 273 7.0B 470.9M 3 mixed 0.07

(∼)stackoverflow 14 187 3.0B 1.1B 13 star 0.23
(∼)umiami_lincs 7 52 21.8B 2.2M 4 star -0.04

(∼)usfs_fia 11 1042 16.9B 333.5M 18 mixed 0.05
(∼)uspto_oce_claims 12 88 3.5B 428.1M 16 mixed N/A

(∼)wikipedia 25 101 33.7B 514.5M 43 mixed N/A
tpch_10G 8 61 1.2B 118.8M 7 mixed 0.02

StackExchange (SE) - and contains 16K unique queries and true cardinalities. However, these two
benchmarks still mainly target instance-specific models which can be seen by the fact that they only
contain one or two different datasets, which is clearly no sufficient for testing pre-trained models
that require a representative set of different datasets. In this paper, we thus present a benchmark
that targets the pre-trained cardinality estimation and thus includes a much more diverse set of 20
different datasets which can be used for pre-training and testing.

3 CARDBENCH

for CE, that contains 20 distinct datasets and thousands of queries of different complexities. Our goal
is to foster further research in the area of learned CE, with a focus on enabling the training and testing
of pre-trained zero-shot CE models but also instance-specific CE as well as fine-tuning pre-trained
CE models.

Dataset Selection: Table 1 list the CardBench datasets. The datasets were chosen to be diverse,
complex and cover a wide range of data distributions to stress CE models. All the datasets are publicly
available or are based on publicly available datasets (we list the sources in the CardBench repository).
Datasets marked with (∼) in Table 1 are created by random sampling the original datasets to reduce
their size. Smaller datasets reduce the cost of statistics calculation and running queries. For example,
the size of the original github_repos dataset is 3 petabytes, using random sampling the version we
use in CardBench is 300 gigabytes in size. The number of datasets included with CardBench was
chosen to allow for training zero-shot models, which is validated by our experiments and previous
work (6). In Table 1 correlation is the column pairwise Pearson correlation for columns of the same
table, averaged for all tables. N/A correlation means that all columns of the tables are non numeric,
for which a Pearson correlation is not defined.

Queries and Training Data: Our training data are SQL queries represented as graphs annotated
with dataset statistics and the query cardinality as the label (Table 2, right). CardBench includes three
sets of training data, Single Table, Binary Join and Multi-Join. Single Table queries filter a single
table using 1 to 4 filter predicates. Binary Join queries join two tables that are also filtered with 1
to 3 filter predicates per table. Binary Join queries perform 0 to 8 joins and also apply 0 to 2 filter
predicates per table. The three training dataset configurations can demonstrate the challenges of
more complex queries on CE models (see Section 5). To obtain the training labels (i.e. the query
cardinalities) we used System X1, executing the queries of the three training data sets required more
than 14 cpu time years. Table 4 in the Appendix shows the average, max and standard deviation
of the query cardinalities of the queries per database and set of training data, these statistics show
the diversity of databases and queries. As such, releasing the queries with their true cardinalities
significantly lowers the entry barrier for research on learned CE models.

1System name hidden to preserve anonymity
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Figure 1: CardBench Benchmark Creation Steps. The scripts to create the benchmark along with the
training data (query graphs) released as open-source.

The number of queries we include per dataset varies, the query generator (described in Section
3.1.2) uses dataset information and statistics and follows a random process to create realistic queries.
Although we generate the same number of queries per dataset, during query execution we filter out
queries that are duplicate, return zero results or timeout while running. As a result, the successfully
run queries that become the training data vary per dataset (at minimum we have 5,000 successfully
run queries per dataset). We opted not to cap the number of queries per dataset and leave it to the
benchmark user to use as many queries as they deem useful. For example, for the experiments shown
in Section 5 we use the same number of queries across all datasets to ensure a fair cross-comparison.

Accuracy Metric The q-error is a common metric in database systems research for evaluating the
accuracy of CE models (4; 5; 12). It calculates the relative deviation of the predicted cardinality from
the true cardinality for a given query. The Q-error for a single query is calculated as follows:

Q-error = max
( ŷ
y
,
y

ŷ

)
∈ [1,+∞), (1)

where y and ŷ represent true and predicted cardinalities, respectively. We particularly focus on P50
and P95 q-errors aggregated across all queries within a dataset to evaluate the models’ accuracy in
common and tail cases. We refer to Section 5.1.1 for the details of how CardBench is used to train
and evaluate zero-shot, instance and fine-tuned CE models.

3.1 BENCHMARK CREATION

The process we follow to create CardBench is illustrated in Figure 1 and comprises of three major
steps a) statistics calculation, b) query generation and execution, c) annotated query graph generation.
The first and second steps of the process involve running SQL queries to calculate statistics and
collect the query plans and training labels. Thus, creating CardBench is expensive and for that reason
alongside the pipeline that creates the benchmark we release the statistics of the datasets, the queries
with their cardinalities and the query graphs.

3.1.1 DATASET STATISTICS CALCULATION

In CardBench we include a set of data statistics and summaries which can be used as input features
for CE models, we expect traditional query optimizers to calculate and store most of the statistics
we use, but as not all query optimizers maintain the same set of statistics or calculate them in the
same way, the first step in our infrastructure is statistics calculation. Therefore the statistics used by
CardBench are database system agnostic. The calculated statistics are stored in a database and used
to create the SQL queries as well as the training data. Table 2 lists the statistics we calculate/collect.

Primary foreign key relationships (pk-fk) are part of a database schema design (17). A pk-fk
relationship is a logical connection between the columns of two tables semantically linking their
information. Naturally we want to use pk-fk relationships when creating synthetic workloads. A
challenge we faced is that open source datasets do not usually specify pk-fk relationships, instead
we discover pk-fk relationship between columns of different tables using the steps outlined in
Appendix A.2.

3.1.2 SQL QUERY GENERATION AND EXECUTION

This step of the process generates a set of SQL queries per dataset and executes it to collect the query
cardinalities, the training labels. We use the workload generator proposed by (6) 2. The generator
takes as input the calculated statistics for each dataset and also a configuration that specifies the SQL

2https://github.com/DataManagementLab/zero-shot-cost-estimation, license: Apache License 2.0
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Table 2: (left) Query Graph (heterogeneous) features. Features can be numeric (∈R) or categorical
(∈Z). Symbol ♦ denote features utilized in query workload generation, and ♥ denotes ones used by
our models (§5). Notes: (i) §3.1.1; (ii) Always = “Pearson”; (iii) ∈ {join,scan}; (iv) ∈ {=, >
,<,≥,≤,IS,IS NOT,BETWEEN,AND}. (right) Query Graph depiction with corresponding SQL
query statement.

Node Type Feature Node Type Feature

tables rows♦♥∈R attributes name♦∈Z
name♦∈Z data_type♥∈Z

correlations correlation♥∈R null_frac♦♥∈R
validity♥∈Z num_unique♥∈R
type (ii)

∈Z percentiles_100_numeric♦♥∈R

ops operator♥ (iii)
∈Z percentiles_100_string♦∈Z

predicates predicate_operator♥ (iv)
∈Z min_string♦∈Z

estimated_selectivity♥∈R max_string♦∈Z
offset♥∈R min_numeric♦∈Z
constant∈Z max_numeric♦∈Z
encoded_constant∈R

SELECT * 
FROM orders o, lineitem l
WHERE o.orderkey = l.orderkey
AND o.orderkey >= c1
AND l.orderdate > c2
AND l.clerk = c3
AND o.orderkey = l.orderkey

≥ c1

orders 1.3e5 lineitem 507

orderkey int…

orderdate date…

clerk int …
orderkey int…

= > c2
= c3

X

and

X

scan

join

scan

SELECT * FROM orders o,
lineitem l
WHERE o.orderkey =
l.orderkey
AND o.orderkey >= c1
AND l.orderdate > c2
AND l.clerk = c3
AND o.orderkey =
l.orderkey

query shapes to be produced. We have modified the original workload generator so that all queries
return the cardinality as their final result.

3.1.3 ANNOTATED QUERY GRAPH GENERATION

After the queries are executed, we convert the SQL queries into a graph representation which is
annotated with statistics. We focus on transferable features and not dataset or workload specific
features such as table and attribute names. This approach enables learning of zero-shot CE models.
An example is shown in Table 2, on the right we present the sql query and its representation as a
graph. The graph nodes are annotated with the features listed on the left of Table 2. The query graph
has table nodes (in blue), column nodes (in green), operator nodes (in red), predicates (in yellow) and
correlations across column of the same table (white circles with red outline). The only feature that
is calculated as part of this step is the predicate estimated_selectivity, as both dataset statistics and
query are needed. Selectivity is a fraction that represents the part of the input that satisfies a predicate
(17) and is used to estimate cardinality. We estimate selectivity for filter predicate nodes using the
methods described in (18).

4 CARDINALITY ESTIMATION MODELS

In this section, we discuss details of our model for which supports zero-shot CE.

4.1 DATA ENGINEERING

Features: The set of features (numerical or categorical) that the models use are specified in Table 2.
In order to train a zero-shot model that can generalize to new datasets, we only include transferable
features that are dataset-agnostic. This means that we exclude dataset-specific information such as
table or column names. Furthermore, we select detailed statistics (e.g., histogram, correlation) as
input features so the model can learn the underlying data distribution.

Pre-processing: For numerical features and the cardinality label, we employ a data transformation
process to enhance their representation. First, we apply a logarithmic transformation to the data,
which helps to reduce the impact of outliers. We then perform standardization to ensure that all
features are on the same scale. For categorical features, we adopt one-hot encoding to allow effective
learning of relationships between different categories. Additionally, we filter out queries with zero
cardinality or zero predicates. In practice, such queries are relatively rare, and their inclusion could
introduce noise into the training process.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 GRAPH NEURAL NETWORK MODEL

The graph representation of SQL queries provides a natural way to capture the relationship between
different elements of a query. This representation allows us to directly leverage Graph Neural
Network (GNN) which is designed to learn from graph-structured data. We build a GNN model
to predict cardinality of queries based on the design of the GNN-based cost model from (6). The
GNN model first initializes the hidden state for each node by applying a node-type specific Multi-
Layer-Perceptrons (MLP) to the node’s input feature vector (a concatenation of the input feature
values of that node). Since query graphs are directed acyclic graphs, the GNN model propagates
information from leaf to root nodes via bottom-up message passing. This topological information
flow also follows the natural query processing order. During message passing, at each node, the
hidden states of its children nodes are summed up and concatenated with the original hidden state
of that node, the concatenated embedding then runs through a separate node-type specific MLP to
derive the updated hidden state. Finally after all nodes are updated in topological order, the hidden
state of the root node is read out as the learned graph-level embedding. This embedding is passed
into an MLP-based cardinality model to get the final prediction.

4.3 GRAPH TRANSFORMER MODEL

In addition to GNN, Graph transformer is an emerging type of neural network architecture specifically
designed for graphs. Similar to traditional transformers, which capture the relationship between tokens
in a sequence with self-attention, graph transformer extends the attention mechanism to graphical
data, where the relationships between different nodes are constrained by the graph structure (25).
Compared to traditional transformers, we make following adaptation3:

Heterogeneous input embedding layer: The SQL query graph is a heterogeneous graph with
multiple node types that contain different features. For each node type, we use a separate input
embedding layer to project node features to a fixed-dimension input node embedding.

Shortest distance spatial encoding: Following the methodology of Graphormer (24), we compute
the shortest path distance between node pairs to construct a spatial encoding matrix. This matrix is
incorporated as a learnable bias that adds to the input before the softmax in the self-attention block.

Directional causal mask: To ensure information flow adheres strictly to the DAG’s structure, we
implement a causal masking mechanism based on the topological ordering of the nodes.

Virtual node readout: Inspired by Graphormer, we augment the query graph by introducing a virtual
node as the direct child of all other nodes. Given that the virtual node attends to all other nodes in the
query graph, its embedding serves as the graph-level representation for cardinality prediction.

Figure 2 shows an overview of the graph transformer cardinality prediction model. The backbone
of the model architecture is derived from encoder-only transformers. The node feature encoder
embed the node features to vectors and pass those vectors to N transformer blocks with modified
self-attention layers using additional causal mask and spatial encoding.

5 EXPERIMENTAL FINDINGS

In this section, we present our empirical findings, evaluating the accuracy of various model configura-
tions for cardinality prediction. We focus on the Single Table and Binary Join CardBench datasets
that contain queries with 0 to 1 joins, as often the majority of queries fall in this category (in the
recently released dataset by Amazon (20) more than 90% of the queries have 0 to 1 joins).

5.1 EVALUATION SETUP

5.1.1 MODEL CONFIGURATIONS

We assess cardinality prediction performance using three distinct ML model configurations: instance-
based, zero-shot, and fine-tuned.

3Figure 2 in the appendix illustrates the architecture of the attention block of the graph transformer model
designed to embed SQL query graphs.
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Figure 2: An overview of the graph transformer.

Instance-based Models: In this configuration, we train and evaluate individual models using a
single dataset. For each dataset, queries are randomly partitioned into training and validation sets
with 85:15 train-validation split. An additional 500 queries are reserved as a standalone test set to
evaluate final model accuracy.

Zero-shot Models: This configuration investigates the generalizability of cardinality prediction
models to out-of-distribution data, i.e., data from another dataset apart from the training data. We
train and validate the model on queries from 19 datasets, maintaining the 85:15 train-validation split.
The model is then tested on the standalone test set of the remaining 20th dataset. This test set contains
the same queries used in the instance-based setting to ensure a fair comparison.

Fine-tuned Models: This configuration investigates whether fine-tuning a pre-trained zero-shot
model improves accuracy and sample efficiency. We fine-tune the model initially trained on 19
datasets using the 20th dataset. The fine-tuned model’s accuracy is then evaluated using the same 500
holdout queries from this 20th dataset.

The average training times under each configuration are4 1.3hr, 1.4hr and 11min (single-table queries),
and 1.3hr, 1.5hr, and 11min (binary join queries) for the GNN-based model on a 8-core VM (4GB
memory). For the Transformer-based model the average training times are 3.3hr, 11.8hr and 1.6hr
(single-table queries), 11.1hr, 11.1hr and 2.1hr (binary join queries) on a V100 GPU. We observe
that training the zero-shot model over extended epochs can often result in lower accuracy due to
over-fitting to the training set. Therefore, we cap the maximum number of training epochs for
zero-shot training to 20, and set a maximum training epochs of 100 for the other two configurations.

The inference time for the GNN model is 35ms and for the transformer model is 97ms. The inference
time of the zero-shot, fine-tuned and instance-based configurations of the same model type are the
same since they share the same architecture and model size. The graph transformer model size is
33.6MB, with 8.4M parameters in total, the GNN model size is 7.5MB, with 1.88M parameters in
total.

5.1.2 BASELINE

We compare the learned cardinality approaches against a the cardinality estimation of PostgreSQL5.
To get the estimates we load the CardBench data in PostgreSQL and use the explain command, similar
to (6). We call this baseline Postgres.

4Listed in instance-based, zero-shot, fine-tuned order.
5https://www.postgresql.org/
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Figure 3: Box plots of P50 (left) and P95 (right) q-errors of different model configurations for queries
on a single table, aggregated across 20 test datasets.
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Figure 4: Box plots of P50 (left) and P95 (right) q-errors of different model configurations for queries
contains a binary join, aggregated across 20 test datasets.

5.2 ACCURACY OF CARDINALITY PREDICTION

We evaluate the accuracy of cardinality prediction by comparing the baseline method, GNN models,
and graph transformer models, each under different configurations as described in Section 5.1.1. We
run a single experiment on each of the 20 test datasets in CardBench per model configuration. We
then collect and aggregate the accuracy metrics across all experiments per model configuration. For
training instance-based and zero-shot models, 4500 queries are randomly selected per dataset to form
the training and validation set. Fine-tuning utilizes a smaller subset of 500 queries per dataset.

5.2.1 SINGLE TABLE CARDINALITY PREDICTION

Figure 3 shows the box-and-whisker plots of P50 and P95 q-errors of different model configurations
for queries on a single table, aggregated across 20 test datasets in CardBench. The baseline algorithm
demonstrates strong median accuracy results in single-table cardinality prediction, with the majority
of datasets achieving a q-error below 1.5. However, accuracy degrades significantly at the tail due to
the failure of both the uniform distribution and independence assumptions that the baseline approach
makes, especially for more complex queries.

GNN-based models outperform transformer-based models in most cases, despite the latter’s larger
receptive field through attention mechanisms. This suggests that iterative message passing along
query graph paths adequately captures the structure of SQL queries. Notably, instance-based models
achieve the highest accuracy, with the GNN model demonstrating an average P50 q-error of 1.1 and
a P95 q-error of 24.08, and the transformer model demonstrating an average P50 q-error of 1.15
and a P95 q-error of 136.87. It is achieved by implicitly learning dataset-specific joint-column data
distributions, enabling tailored predictions. In contrast to instance-based models, zero-shot models
struggle to generalize such knowledge to unseen datasets, resulting in a lower accuracy (especially at

Table 3: Average Q-Error percentiles, from results presented in Figure 4. The best accuracy (excluding
instance-based models) are in bold.

Model Q50
err Q75

err Q90
err Q95

err Q50
err Q75

err Q90
err Q95

err

no join binary join

Postgres 1.03 18.01 7864.88 12296.35 5.29 21.03 38557.10 411511.45
GNN Instance 1.10 1.64 6.00 24.08 1.17 1.82 10.92 37.55
GNN Zeroshot 1.39 11.52 51.09 171.25 22.66 102.12 3430.23 16271.84
GNN Finetune 1.22 2.00 8.07 41.50 1.32 2.45 13.62 109.77

Transformer Instance 1.14 1.86 9.46 140.67 1.20 1.99 11.93 43.96
Transformer Zeroshot 1.60 8.38 666.31 2954.98 24.88 264.06 6000.99 228499.79
Transformer Finetune 1.25 2.81 13.80 79.52 1.57 4.19 47.14 355.57
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Figure 5: Box plots of P50 (left) and P95 (right) q-errors of instance-based vs. fine-tuned models of
GNN (top) and Transformer (bottom) with varying training sample size for queries on a single table,
aggregated across 20 test datasets.
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Figure 6: Box plots of P50 (left) and P95 (right) q-errors of instance-based vs. fine-tuned models of
GNN (top) and Transformer (bottom) with varying training sample size for queries contains a binary
join, aggregated across 20 test datasets.

the tail). Fine-tuning pre-trained models, even with a modest 500 samples, significantly improves
accuracy for both GNN and transformer models, highlighting the importance of incorporating table
and column-specific distributions for accurate cardinality prediction. Table 3 further breaks down the
statistics shown in Figure 3.

5.2.2 BINARY JOIN CARDINALITY PREDICTION

Cardinality prediction for queries with binary joins is much more challenging than single table because
cross-table distribution and multi-column correlation, which are difficult to model, significantly
impact join cardinality. Figure 4 shows the P50 and P95 q-errors for queries with binary joins. In
contrast to single-table prediction, the baseline algorithm exhibits significant inaccuracy in binary join
query CE, with a median q-error of 55.54 and P95 q-error of 4.4× 106, respectively. This appears to
be a result of the oversimplified assumption that queries join two tables via single-column primary
and foreign keys, without considering more complex cross-table relationships that are intractable
using traditional heuristics.

Learning-based models significantly outperform the baseline though, particularly at the 95th per-
centile. Instance-based models, which learn cross-table distributions within a dataset, achieve low
median q-errors of 1.16 (GNN) and 1.20 (transformer). While their P95 q-errors are higher (37.55
for GNN, 43.96 for transformer), the results suggest that estimating join cardinality via learned
distributions is feasible. However, out-of-distribution cardinality prediction for binary joins proves
more challenging, as zero-shot models experience a dramatic increase in q-errors (up to 20x at the
median, 5300x at P95). As with single-table results, even a small amount of data used for fine-tuning
improves the accuracy of pre-trained models considerably. Table 3 further breaks down the statistics
shown in Figure 4.
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5.3 VARYING SAMPLE SIZE

We study the impact of varying amounts of training data on model accuracy by considering three
sample sizes: 250, 500, and 1000. For each sample size, we train an instance-based model or fine-tune
a pre-trained model, and evaluate it on the same 500 samples as described in Section 5.1.1. We
repeat this process for both the GNN and transformer-based models. The results for single table and
binary join cardinality predictions are summarized in figure 5 and figure 6 respectively. We observe
same patterns between GNN and transformer. The model accuracy improves as more training data is
provided, for both instance-based and fine-tuned models.

Comparing instance-based training with fine-tuning, we find that the fine-tuned models are more
sample-efficient. Fine-tuned models achieve similar median and tail Q-errors as instance-based
models trained with twice the amount of data. This is evidence that fine-tuned models benefit from
the generalization power of a pre-trained model, which has learned from a large number of data
patterns over many datasets. When using only 500 samples from each of the binary join datasets, the
average P50 and P95 Q-errors across 20 datasets are: 1.57 & 280 for the instanced-based GNN model,
and 1.32 & 120 for the fine-tuned GNN model. There is a significant improvement especially for
the tail queries due to learnings transferred from more diverse data patterns seen by the pre-trained
model. Nonetheless, the accuracy gap between instance-based and fine-tuned models reduces as the
sample size increases. This suggests that fine-tuning on a pre-trained model is more advantageous
when there is limited amount of training data available for a new dataset.

6 CONCLUSION AND BROADER IMPACT

In this paper, we release CardBench a benchmark for CE in relational databases. CardBench contains
code to 1-) compute various data statistics, 2-) generate queries and execute them, and 3-) create the
training data (the annotated querygraphs). We are also releasing three training datasets with queries
over 20 datasets and their true cardinalities: one containing queries with single table queries, one
with binary joins, and the third with multi-join queries. We trained both instance-based and zero-shot
models, and observed that CE is a extremely challenging problem to learn in a zero-shot manner.
However, when using pre-trained models with a small amount of fine-tuning, we can achieve accuracy
similar to instance-based models, with much lower training overhead.

With CardBench, we hope to provide a systematic mechanism to track progress, especially on recent
directions such as pre-trained CE models. Moreover, we think that CardBench is highly important
to foster further research on CE models, from the ML and DB communities. The training datasets
were constructed with high overhead (14 cpu years of query runtime). Releasing such a training set
lowers the barrier of entry for developing and training new CE models. Furthermore, we hope that
the benchmark itself will be extended with new datasets and more complex queries using the tools
and code we provide and thus push the boundaries of learned CE models further.
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A APPENDIX

A.1 WORKLOAD STATISTICS

Table 4: Query Cardinalities. (The Multi-join Cardinalities are being calculated and will be added
soon.)

Database Name Single Table Binary Join Multi-Join
AVG MAX STDDEV AVG MAX STDDEV AVG MAX STDDEV

airline 196.8K 11.4M 1.3M 4.3M 4.3M 4.3M
sample_covid19_weathersource_com 225.6M 2.8B 656.4M 4.3B 4.3B 4.3B

sample_idc_v10 4.1M 29.1M 9.7M 5.1M 5.1M 5.1M
sample_usfs_fia 2.3M 30.1M 6.2M 8.2M 8.2M 8.2M

sample_cms_synthetic_patient_data_omop 40.8M 748.9M 115.6M 304.1M 304.1M 304.1M
sample_crypto_bitcoin_cash 36.8M 146.0M 53.8M 56.2M 56.2M 56.2M

sample_human_variant_annotation 4.2M 79.2M 12.5M 1.8M 1.8M 1.8M
sample_wikipedia 162.3M 1.1B 357.5M 16.1B 16.1B 16.1B

tpch_10G 2.6M 60.0M 9.0M 110.6M 110.6M 110.6M
sample_samples 17.1M 188.3M 32.2M 15.6M 15.6M 15.6M

consumer 1.4M 12.1M 3.2M 2.2M 2.2M 2.2M
sample_open_targets_genetics 10.4M 222.0M 32.0M 10.2B 10.2B 10.2B

accidents 200.1K 954.0K 318.6K 382.1K 382.1K 382.1K
sample_stackoverflow 9.1M 141.9M 21.3M 11.7M 11.7M 11.7M

employee 883.2K 8.5M 1.7M 1.4M 1.4M 1.4M
movielens 687.5K 8.5M 1.6M 1.5M 1.5M 1.5M

sample_ethereum_blockchain 19.6M 181.8M 40.4M 27.0M 27.0M 27.0M
sample_github_repos 24.9M 230.9M 62.2M 466.7M 466.7M 466.7M

sample_geo_openstreetmap 27.2M 560.7M 75.4M 19.9M 19.9M 19.9M
sample_uspto_oce_claims 35.8M 82.0M 37.6M 45.2M 45.2M 45.2M

A.2 PRIMARY-FOREIGN KEY RELATIONSHIPS

Primary foreign key (pk-fk) relationships are part of a database schema design (17). A pk-fk
relationship is a logical connection between the columns of two tables semantically linking their
information. In the real world, most of the times two tables are joined using the columns that
participate in the pk-fk relationship. Naturally we want to use pk-fk relationships when creating
synthetic workloads. A challenge we faced is that open source datasets do not usually specify pk-fk
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relationships, instead we discover pk-fk relationship between columns of different tables using the
steps outlined below. One assumptions we make is that data is organized in a snowflake schema, this
is the norm in practice and what is assumed by most database benchmarks (TPC-H (3), SSB (16),
TPC-DS(2), TPC-C(1), JOB(10)).

1. Identify candidate primary keys per table using a uniqueness threshold and choose one with
the most unique values. A primary key should be unique for each row of a table (17), we
relax this condition and require that for a column to be a primary key more than 90% of
rows must be unique values.

2. Split tables of a dataset in fact and dimension tables6. The criteria we use is a size threshold
(fact tables should be a few times larger than dimension tables) as well as a check if a
primary key exists for dimension tables.

3. For each dimension table and pk column identify a fk column in the fact table(s). Out of all
possible candidates we choose the pk-fk pair with the most join results, which we obtain by
running a join query using the candidate pk-fk column pair as the join condition.

6https://en.wikipedia.org/wiki/Snowflake_schema
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