Accepted at the AI4NA workshop at ICLR 2025

RE-PURPOSING GNNOME: GENOME ASSEMBLY
POSTPROCESSING (GAP)

Joshua Teo, Martin Schmitz

Genome Institute of Singapore, A*STAR

60 Biopolis Street, Singapore 138672
Corresponding: joshuaemmanuelteo @ gmail.com

ABSTRACT

GNNome is a graph neural network based framework that aims to perform de novo
genome assembly. It works by representing a genome as a graph, then assigns
probability scores to edges corresponding to if it thinks those two nodes in the
genome overlap. However, these graphs are imperfect, and we hypothesize that
we can find this missing information by searching all pairwise overlaps between
the genome’s fragments. In this paper, we create a pipeline to find and introduce
this missing information by re-training and re-purposing GNNome’s overlap edge
prediction capabilities. In doing so, we are able to consistently improve upon
GNNome, and outperform other state-of-the-art genome assemblers.
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Figure 1: Using GNNome’s edge probability prediction and supplementary overlap
information to improve genome assemblies.

1 INTRODUCTION

De novo genome assembly, the reconstruction of genomes from short DNA fragments (reads) with-
out the use of a reference genome, remains one of the most challenging and fundamental problems in
computational biology. This process is crucial for studying organisms that have not been previously
sequenced. A popular method for de novo genome assembly is known as Overlap-Layout-Consensus
(OLC), which creates a graph by treating reads as nodes and overlaps between them as edges. A
graph traversal algorithm is then used to decode a path which represents the final genomic sequence.

GNNome (Vrcek et al., 2024) is a recently developed graph neural network (GNN) framework
which automates this OLC process by training the GNN to predict the probability of an overlap
edge being true. However, GNNome does not perform well on some genomes, and is also unable
to handle diploid genomes as the framework does not do phasing. Moreover, overlap graphs in all
such assemblers are imperfect and have missing information, primarily stemming from the nature
of the sequencing data and/or the algorithmic approaches used. We hypothesize that this missing
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information is available from an all vs all (AvA) overlap database which contains the pairwise over-
lap information of all reads in the dataset. The challenge then is how to identify and inject this
information.

In this study, we create a Genome Assembly Postprocessing (GAP) pipeline to find and introduce
this missing information into the assemblies, while re-purposing GNNome’s overlap edge prediction
capabilities in a more effective and generalisable method. We also use supplementary telomere
information to enhance performance, something not done in the original GNNome paper.

This paper is structured as follows: Section 2 describes the proposed methods in the pipeline, ex-
perimental setup and configuration. Section 3 analyses the experiment’s results. Finally, Section 4
concludes our study and discusses future steps.

2 METHODS

Our pipeline, GAP, requires two things: a baseline assembly and an AvA overlap database of its
reads. GAP is independent from and operates without assumptions about the baseline assembly
input regarding its ploidy status or sequencing technology, and delegates the choice of assembly
strategy to the upstream assembler. For this study, we test haploid and diploid assemblies derived
from both HiFi and ONT datasets. We use Hifiasm (Cheng et al.| 2022)), another state-of-the-art de
novo genome assembler, to generate both the baseline assembly, and the AvA overlaps in a Pairwise
mApping Format (PAF) file. Then, GAP does the following:

* 1. Compressing of Sequences: Conventional OLC treats each individual read in the
dataset as a node. Instead, we treat each sequence in the assembly as a node. The po-
sitional information of each individual read that make up these sequences is also stored.

* 2. Adding Ghost Nodes and Edges: We then look for previously missed overlaps from
the AvA overlaps, and add them into the graph as *ghost’ nodes and edges.

* 3. GNNome Overlap Edge Probability Generation: We use a re-trained GNNome model
to produce probability scores for these ghost edges.

* 4. Decoding of Sequences: We greedily decode walks on our graph using GNNome’s
probability scores, then convert them into sequences for our new assembly.

2.1 ADDING GHOST NODES AND EDGES

We first create an empty graph by treating each of the assembly’s sequences as a node. Then, from
the AvA overlaps, we find reads that 1. overlap with at least one of these original sequences, and
2. are not already in any of them. Each of these reads are then added to the graph as a node, with
an edge connecting it to the nodes of the original sequences it overlapped with. We refer to these
newly added nodes and edges as ’ghosts’. When we connect a ghost node to an original sequence
at position ¢, the bases behind 7 are sliced off and discarded. We also introduce a hyperparameter,
Valid Connection % (vc%), indicating the valid start and end percent of an original sequence that
can be connected to. As vc% increases, more sections of the original sequences can be connected
to, but also more will be discarded upon connection. Figure [2]illustrates this process. Additionally,
we attempted to use heuristics such as coverage, overlap length, and overlap similarity to validate
and filter these ghost edges. However, this was unsuccessful as these heuristics indiscriminately
removed both correct and incorrect edges.

Finally, as there may be multiple connections between a ghost node and an original sequence node,
we also perform a de-duplication step to pick the outermost connection (i.e. most towards the start
of the sequence for connections in the starting vc%, and most towards the end of the sequence for
connections in the ending vc%).

2.2 GNNOME OVERLAP EDGE PROBABILITY GENERATION

The original GNNome is a GNN framework where given an assembly’s OLC graph, it predicts which
edges/overlaps in the graph are valid. Accordingly, it is also trained on simulated OLC graphs with
ground truth labels produced by PBSIM3 (Ono et al.,|2012). Our task is almost similar to the original
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Figure 2: Adding a ghost node (red) connected to
two compressed original sequence nodes (blue).
vc% = 0.3, with the section of the sequence valid
for connection underlined in red. The G’ base at
the end of the first blue node and the T’ base at
the start of the second blue node is discarded.

GNNome study, but with one key difference - the topology of the input graphs. We are feeding it
graphs that include an additional one-hop neighbourhood of overlaps, which on average results in
100% more nodes and 300% more edges (varies by genome). As a result, we use the same model
architecture as the original GNNome, but re-train the model on our larger graphs.

To create our graphs for training and validation, we first simulate HiFi Human (HG002) data (Con-
sortium), [2023)) using PBSIM3 (Ono et al., 2012). Each chromosome is separated and treated as an
individual data point. We then run Hifiasm and use its assemblies to construct the conventional OLC
graphs. Finally, from the AvA overlaps, we add nodes and edges with valid overlaps in a one-hop
neighbourhood. This is similar to what was done in Section [2.1] with the key difference being the
original nodes we are connecting to are individual reads instead of compressed sequences. During
training, edges from the original OLC graph (and not from the AvA overlaps) are masked.

The learning objective is the symmetry loss used in the original paper, defined as SymLoss(e, e’) =
BCE(pe, Ye) + BCE(Pen, Yen) + 0.01 X |le — €’||, where e and e” are an edge and its virtual pair,
and p, y and / denote probability, label and logit corresponding to e or e’. Hyperparameters used are
latent dimension d = 64, latent feature dimension f = 16, number of GNN layers L = 8, dropout =
0.2. The learning rate for all models start at 0.0001, which is applied to the Adam optimiser, and
then managed using PyTorch’s ReduceLROnPlateau scheduler which reduces the learning rate by a
factor of 0.1 with patience 20.

2.3 DECODING OF SEQUENCES

To retrieve the new sequences from our graph, we run a greedy search algorithm. Treating each
original sequence node as the start, we greedily select the neighbour with the highest GNNome edge
score until there are no more neighbours. We run this forwards and backwards, and track the number
of original sequence nodes connected in that walk. We then select the walk that connects the most
original sequence nodes, and remove it from the graph. This process then repeats until all original
sequence nodes are removed from the graph.

We attempted to use other edge features such as overlap length and overlap similarity (as well as a
mix of them) as heuristics when selecting neighbours. However, all experiments either matched or
underperformed purely using GNNome edge scores. Another option was to use DFS to exhaustively
search and retrieve the longest walk. However, this was computationally infeasible.

2.3.1 USE OF TELOMERE INFORMATION

We also make use of telomere information in this step. A telomere is a region of repetitive DNA
sequences called motifs demarcating the ends of eukaryotic chromosomes via repetitive DNA se-
quences, and can be exploited for more accurate assemblies. For all mammal genomes used in this
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study, this motif is TTAGGG, and for all plant genomes used in this study, this motif is TTTAGGG.
Telomere detection is done using seqtk (Li,|2021). The algorithm is outlined in Appendix

We use this telomere information in three ways. Firstly, original sequence nodes that start and
end with telomeres are removed beforehand. Secondly, we prioritise original sequence nodes with
telomeric regions when choosing start nodes for our greedy search. Lastly, during the greedy search,
the telomere type of the current walk is tracked, and non-compatible walks are terminated. For
example, if the walk already has a telomeric region, and it meets another identical telomeric region,
that walk will terminate immediately after. The position of the telomeric region in the original
sequence is also tracked, and walks are cut accordingly. For example, if an original sequence node
has a telomeric region at the start of its sequence, it cannot have any incoming edges.

2.4 DATASET

All data used in this study is publicly available. We used both HiFi and ONT Simplex read data
to evaluate our pipeline. HiFi datasets include Human (CHM13) (Nurk et al., [2022), Mouse (M.
musculus) (Hon et al., 2020), Chicken (G. gallus) (Rhie et al., [2021)), Arabidopsis (A. thaliana)
(Wang et al.| 2022), Corn (Z. mays) (Chen et al., 2023), Bonobo (P. paniscus) and Western Gorilla
(G. gorilla) (Yoo et al.l 2024) genomes. Bonobo and Western Gorilla are diploid while the rest
are haploid. ONT datasets include Tomato (S. lycopersicum) (Su et al., 2021), Human (HGO0O05)
(Consortium, 2023), and Western Gorilla (G. gorilla) (Yoo et al.,|2024)). HG00S5 and Western Gorilla
are diploid while tomato is haploid. HiFi Human (HG002) data (Consortium}|2023) was used to train
and validate GNNome.

2.5 METRICS

To access the quality of the assemblies we use several standard metrics to measure contiguity, qual-
ity, and completeness. All metrics are computed with minigraph (Li et al.,|2020).

NGx and NGAx are metrics used to measure the contiguity of the assembly, with higher values indi-
cating longer contiguous sequences. NGAXx aligns the assembly to the reference before calculation,
and thus reflects accuracy as well. The ’x’ refers to the percentage of the genome to account for
when calculating these metrics. We use NG50 and NGAS50, two commonly used metrics. When
comparing the two, if NG50 is significantly higher than NGAS5O, it is an indication of overcorrec-
tion, where the assembly is too aggressive in connecting reads and makes connections that should
not exist. We also look at AUNGA, which calculates the area under the curve when plotting NGA
across all thresholds (0-100). Finally, Rdup represents the percentage of duplicate alignments or
duplicated regions in the assembly.

3 RESULTS

We compare the assemblies before and after applying our method. We also perform ablation ex-
periments with and without the use of telomere information. For haploid datasets, we also include
the original GNNome’s results (GNNome does not support diploid). For all runs, we set vc%=0.1.
Full results of our experiments are in Table[I] We are able to consistently improve NG50, NGA50
and AUNGA and surpass the original GNNome on all genomes except for CHM13. Overcorrec-
tion (NG50 minus NGAS50) already exists in most of Hifiasm’s assemblies, thus we compare if our
method reduces, maintains, or worsens this initial overcorrection. We can group the results on the
genomes into three distinct categories:

* Strict improvements across all metrics: Genomes in this category are (HiFi) A. thaliana,
Z. mays; (ONT) S. lycopersicum, HG0OO0S5 Paternal.
We are able to improve NG50, NGAS50 and AUNGA on these genomes while reducing or
maintaining overcorrection and duplication rate. The new connections introduced by our
pipeline were correct.

* Improvements in contiguity but with overcorrection: Genomes in this category are
(HiFi) G. gallus, M. musculus, P. paniscus Paternal and Maternal, G. gorilla Paternal
and Maternal; (ONT) HGO0O5 Maternal, G. gorilla Paternal and Maternal.
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NG50, NGA50 and AUNGA on these genomes increased. However, so did overcorrection
and/or duplication rate. This indicates that while we did introduce corrrect connections that
improved the contiguity, there were also some incorrect connections introduced.

* Overcorrection without improvement in contiguity: Only (HiFi) CHM13 falls in this

category.

NG5O0 increased with no difference in NGA50/AUNGA. This indicates that we mainly in-
troduced incorrect connections. There is a minor increase in AUNGA, indicating that there
were a small handful of correct connections introduced amongst the shorter sequences.

Table 1: Assembly results for the different genome datasets.

Experiment NG50 NGAS50 AUNGA  Rdup (%)
(HiFi) A. thaliana
Hifiasm 12442387 12439611 10189795 0.58
GNNome 12442359 12439583 10189885 0.64
GAP (w/o telo info) 12749108 12746238 10437609 0.61
GAP 12749108 12746238 10437489 0.58
(HiFi) G. gallus
Hifiasm 11487786 10858828 15181647 4.18
GNNome 11379811 10899819 13389474 3.64
GAP (w/o telo info) 13047147 11969028 17899402 4.20
GAP 14092472 12696723 19085068 4.18
(HiFi) M. musculus
Hifiasm 22952472 18723670 23999763 0.64
GNNome 22952576 17971948 23453739 0.63
GAP (w/o telo info) 28447861 22371954 28575360 0.68
GAP 28447861 22371951 28593165 0.67
(HiFi) CHM13
Hifiasm 111708415 111068087 100017625 0.31
GNNome 111252795 111045714 98421653 0.26
GAP (w/o telo info) 121736307 111068087 102777353 0.32
GAP 121736307 111068087 102737998 0.31
(HiFi) Z. mays
Hifiasm 102618559 79610908 94054358 7.37
GNNome 75961425 75961395 79091244 5.40
GAP (w/o telo info) 142826180 117558082 106868889 7.45
GAP 117664086 117558018 105139141 7.41
(HiFi) P. paniscus, Paternal
Hifiasm 3528986 3080294 4158504 1.26
GAP (w/o telo info) 5485364 4656504 5972371 1.26
GAP 5550666 4708352 6015031 1.26
(HiFi) P. paniscus, Maternal
Hifiasm 3303137 2893596 4235275 1.16
GAP (w/o telo info) 5266385 4610107 6416779 1.14
GAP 5592962 4939097 6640755 1.12
(HiFi) G. gorilla, Paternal
Hifiasm 12798765 10733443 12613022 1.17
GAP (w/o telo info) 20566508 14759912 17192444 1.18
GAP 20277228 14815529 17081701 1.18
(HiFi) G. gorilla, Maternal
Hifiasm 11778356 10212228 12022468 1.14
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Experiment NG50 NGAS50 AUNGA Rdup (%)
GAP (w/o telo info) 18773065 15126455 19023744 1.18
GAP 18793265 15126455 19057834 1.18
(ONT) S. lycopersicum
Hifiasm 67122914 42403697 38311092 0.34
GNNome 67122914 43581231 38456766 0.37
GAP (w/o telo info) 67122914 43953729 38476154 0.34
GAP 67122914 43953729 38476159 0.34
(ONT) HGO0S, Paternal
Hifiasm 94260768 53629323 54094963 0.60
GAP (w/o telo info) 96449415 55219196 55746919 0.57
GAP 96449415 55219196 55764592 0.57
(ONT) HG0O05, Maternal
Hifiasm 87832971 53502639 56438272 0.52
GAP (w/o telo info) 97336512 59512061 57482540 0.52
GAP 97336512 59512051 57484180 0.52
(ONT) G. gorilla, Paternal
Hifiasm 58915776 23268248 34587226 2.06
GAP (w/o telo info) 63651705 24467321 35180192 2.07
GAP 63651705 24467321 35179136 2.06
(ONT) G. gorilla, Maternal
Hifiasm 56192691 30922572 33259053 2.37
GAP (w/o telo info) 66744814 34114106 36074022 2.34
GAP 66744814 34114106 36073863 2.34

We show that there is useful information in Hifiasm’s AvA overlap database and our method presents
a viable method to introduce it into the assemblies. However, it does not excel at filtering out which
overlaps should be selected, as the majority of genomes face the overcorrection problem. This is
directly correlated with GNNome’s edge prediction capabilities, as the selection of overlaps is done
via GNNome’s edge scores. If we are able to improve upon GNNome, we can better filter out these
incorrect edges. The use of telomere information also helps to filter out some of these incorrect
edges, reducing overcorrection and improving contiguity on (HiFi) G. gallus, Z. mays, P. paniscus
Paternal and Maternal, and G. gorilla Maternal. However, the effectiveness of using telomere
information largely depends on the presence of these telomeric regions in the dataset as well as how
accurately they are detected.

Specifically for CHM 13, we suspect that since Hifiasm was designed on Human genome data, its
assembly is of a very high quality. Hence, the probability of finding improved connections is low.

4 CONCLUSION AND FUTURE WORK

There are several areas for improvement that we are currently working on, or have plans to do so in
future. Firstly, in this study, the information introduced from the AvA overlaps when adding ghost
nodes to our graphs was only in a one-hop neighbourhood. However, this can be extended to any n-
hop number of neighbourhoods. Hifiasm’s PAF itself contains up to two-hop neighbourhoods worth
of alignment information. For this study, we decided against this as each additional neighbourhood
adds exponential computational costs. However, this would allow connections between original
sequence nodes that are n ghost nodes apart (currently they can only be one apart). This could reveal
more crucial connections. Secondly, while GAP has proven its generalisability and effectiveness
independent of sequencing technology and ploidy status, it would also be beneficial to tailor our
methods to cater specifically to each case. One low-hanging fruit we plan to implement would be
for diploid assemblies. Hifiasm only produces a single AvA overlap database/PAF. Thus, binning
these overlaps beforehand could potentially reduce haplotype switches.
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The methods used in GAP can be easily adapted to and integrated with any OLC assembler, with
the only key piece of information needed being the AvA overlap database. In our case, this was
conveniently generated by Hifiasm in the PAF. However, this can be manually achieved on any
dataset. We hope that the methods and findings from this study can offer simple and practical
building blocks for improving genome assembly, and on a broader scale integrate it with the domain
of machine learning.
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A  GREEDY DECODING ALGORITHM

—_

: function GET_NEW_WALKS(original _sequence_nodes, graph)

2: Initialise new walks, reverse graph, and partition original sequence nodes by telomere pres-
ence
3: Remove all original sequence nodes that have both start and end telomeric regions, and add

them to new walks

4: for each group in {telomeric, non-telomeric} original sequence nodes do
5: while unused nodes in current group do
6: best_walk, best_n_seq-nodes < empty, empty
7: for each node_id in current group do
8: graph_to_use < (graph if telomere at start of node_id, else reversed graph)
9: walk, n_seq-nodes <— GET_-BEST_-WALK(node_id, graph_to_use)
10: if n_seq_nodes > best_n_seq_nodes then
11: best_walk, best_n_seq_nodes <— walk, n_seq_nodes
12: end if
13: end for
14: Append best_walk to new walks
15: Remove all node IDs in the walk from their respective telomeric/non-telomeric
groups
16: end while
17: end for
18: return new walks

19: end function

20: function GET_BEST_WALK(start, graph)

21: walk, current_node, visited < [start], start, empty set

22: while True do

23: Get neighbours of current_node

24: Filter out neighbours that are in visited or have incompatible telomeric regions
25: if there are no valid neighbours then break

26: current_node <— neighbour with highest GNNome edge score

27: Append current_node to walk

28: end while

29: return walk, number of key nodes in walk

30: end function
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