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ABSTRACT

Recent advances in generative diffusion models have enabled text-controlled synthe-
sis of realistic and diverse images with impressive quality. Despite these remarkable
advances, the application of text-to-image generative models in computer vision for
standard visual recognition tasks remains limited. The current de facto approach for
these tasks is to design model architectures and loss functions that are tailored to
the task at hand. In this paper, we develop a unified language interface for computer
vision tasks that abstracts away task-specific design choices and enables task exe-
cution by following natural language instructions. Our approach involves casting
multiple computer vision tasks as text-to-image generation problems. Here, the text
represents an instruction describing the task, and the resulting image is a visually-
encoded task output. To train our model, we pool commonly-used computer vision
datasets covering a range of tasks, including segmentation, object detection, depth
estimation, and classification. We then use a large language model to paraphrase
prompt templates that convey the specific tasks to be conducted on each image,
and through this process, we create a multi-modal and multi-task training dataset
comprising input and output images along with annotated instructions. Following
the InstructPix2Pix architecture, we apply instruction-tuning to a text-to-image
diffusion model using our constructed dataset, steering its functionality from a
generative model to an instruction-guided multi-task vision learner. Experiments
demonstrate that our model, dubbed InstructCV, performs competitively compared
to other generalist and task-specific vision models. Moreover, it exhibits compelling
generalization capabilities to unseen data, categories, and user instructions.
Code: https://github.com/AlaaLab/InstructCV
Demo: https://huggingface.co/spaces/alaa-lab/InstructCV

Prompt: “Detect 
Berkeley’s Sather Tower”

“Hi InstructCV, please 
segment all trees”

“Create a monocular 
depth map”

“Segment Berkeley’s 
Sather Gate”

“Detect MIT’s great 
dome”

“Hi InstructCV, please 
segment all trees”

“Highlight all trees 
around Stata”

“Create a depth map for 
Stata Center”

Figure 1: Application of InstructCV to new test images & user-written instructions: InstructCV performs the
vision task described in the instruction on the input image. (Images courtesy of UC Berkeley and MIT).
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1 INTRODUCTION

Recent work on text-to-image models has achieved impressive performance in image synthesis [1–
3]. Particularly, diffusion models [4–7] have demonstrated remarkable capabilities of transforming
diverse text prompts into realistic images, even for novel concepts. Models like DALL·E [2] and Stable
Diffusion [8] highlight this progress, now finding use in real-world applications. However, despite
these impressive results, generative text-to-image models have so far not been exploited as a unified
basis for standard visual recognition tasks. Instead, the predominant approach for these tasks is to
design dedicated task-specific architectures and loss functions [9–11], foregoing the opportunity to
learn generalizable representations across heterogeneous problem domains and data landscapes.

Previous attempts to create unified models for computer vision tasks have predominantly relied on
prompt tuning approaches in conjunction with sequence-to-sequence architectures [9–17]. This gen-
eral framework enables conditioning on input images as well as task-specific prompts by representing
image pixels and (trainable) prompts as sequences of discrete tokens. When trained on multi-task
datasets, the resulting output tokens align with the desired outcomes for the respective tasks prompted.
One illustrative example of this approach is Pix2Seq [16], which follows an autoregressive language
modeling approach for processing tokenized image pixels and task identifier codes. Another example
includes a class of methods based on visual prompting, which defines task-specific prompts in pixel
space, unifying multiple vision tasks within a common “inpainting” framework [18, 19]. In both ex-
amples, the task-specific prompts steer a single architecture to execute multiple vision tasks. However,
these prompts consist of (uninterpretable) numerical values derived from specific training datasets,
which may limit their ability to generalize to new datasets, tasks, or categories.

In this paper, we propose a unified model for computer vision tasks that conducts a given task by
following natural language instructions (Fig. 1). Our framework, dubbed InstructCV, repurposes gen-
erative text-to-image models to create a universal language interface for vision tasks. It does so by
casting multiple computer vision tasks as text-to-image generation problems, where textual prompts
(instructions) serve as explicit task descriptors, guiding the generation process to produce the visual
task output corresponding to the input image. By conditioning on natural language descriptions of
vision tasks, InstructCV enhances the representation of semantic coherence between images and lan-
guage prompts, improving the model’s generalization capabilities to new human-written instructions
and new categories compared to prior “generalist” vision models [12, 13, 15–26].

To train InstructCV, we follow an instruction tuning approach applied to a pretrained conditional
diffusion model (Stable Diffusion). We generate the instruction tuning data by constructing a multi-
modal, multi-task training dataset that comprises tuples of textual instructions, input images and
visually-encoded task outputs. We do so by first combining several standard computer vision datasets
across multiple tasks including segmentation, object detection, depth estimation, and classification.
Next, in order to create heterogeneous and semantically rich textual instructions, we use a large
language model (LLM) to paraphrase prompt templates for each vision task. Finally, we encode
the output of the vision task associated with each instruction in the form of an output image (e.g.,
a masking pattern for semantic segmentation). Using this dataset, we utilize the InstructPix2Pix
architecture [27] to instruction-tune a text-to-image diffusion model, transforming its functionality
from a generative image synthesis model into an instruction-guided multi-task vision learner.

Our experiments demonstrate that InstructCV achieves competitive results compared to other vision
generalist and task-specific vision models. Particularly, InstructCV displays compelling generalization
properties, surpassing the performance of state-of-the-art vision generalist models on external datasets
as well as on unseen prompts in open-vocabulary segmentation tasks.

2 INSTRUCTCV

The InstructCV framework comprises two key steps: (a) construction of a multi-modal and multi-task
instruction-tuning dataset, and (b) finetuning a pretrained conditional diffusion model using the dataset
generated in step (a). (See Fig. 2 for a pictorial depiction.) Details of each step are provided below.

2.1 CONSTRUCTING A MULTI-MODAL & MULTI-TASK INSTRUCTION-TUNING DATASET

We combine four widely-used computer vision datasets (MS-COCO [28], ADE20K [29, 30], Oxford-
III-Pets [31] and NYUv2 [32]) covering four vision tasks (semantic segmentation, object detection,
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(a) Constructing a Multi-modal & Multi-task Dataset (b) Instruction-tuning a Diffusion Model

Instruct CV

“Detect Mona 
Lisa’s face”

“Segment the 
girl’s scarf”

“Estimate a 
depth map”

“Detect the %CATEGORY%”

“Display %COLOR% if the image 
contains %CATEGORY%”

LLM

LLM-based instruction generation

Visual encoding of task outputs and training data generation

- Highlight the %CATEGORY%
- Which segments of the 
image contain %CATEGORY%?

- Can you help me segment 
the %CATEGORY%?  

“Segment the %CATEGORY%”

“Create a monocular depth map”

. . .

Task-specific prompt templates Rephrased prompts

“If there’s a bird show red”“Highlight the dog” “Estimate a depth map”“Locate the cat”

LLM-rephrased instruction

Visually-encoded targetInput image

Figure 2: Pictorial depiction of the InstructCV training pipeline. (a) We pool multiple computer vision
datasets to construct a multi-modal and multi-task set of image pairs, where the target of each task is visually en-
coded in the form of an output image. Starting with a set of task-specific prompt templates, we sample a new in-
struction for each training point by using an LLM to rephrase the template for the corresponding task. (b) Using
the dataset in (a), we finetune a diffusion model to produce the output v(y) given an image x & an instruction I.

monocular depth estimation and classification), into a single multi-task dataset D = {(xi,yi,mi)}i in
which xi is the input image, yi is the task output and mi ∈ {1, . . . ,M} is the task identifier (M = 4 in
our setup). We convert D into a multi-modal instruction-tuning dataset DI = {(xi,v(yi), Ii)}i, in
which the task identifier for training point i is expressed as a natural language instruction Ii, and the la-
bel yi is represented in a visual format v(yi). We construct the dataset DI through the following steps.

LLM-based instruction generation. For each vision task m ∈ {1, . . . ,M} under consideration, we
pick a prompt template Im

temp that describes the task, e.g., “Segment the %category%” for the seman-
tic segmentation task. We then attach a prompt to each training data point by inserting the category
within the image in the corresponding task template, e.g., Im

temp(xi,yi) = “Segment the cat”. We con-
sider two incarnations of our instruction-tuning dataset. First, we consider a baseline dataset that only
uses the deterministic task-specific prompt templates described above. We refer to this dataset as the
fixed prompts (FP) instruction-tuning dataset DFP

I = {(xi,v(yi), Imi
temp(xi,yi))}i. In addition, we use

a T5-based paraphrasing LLM [33, 34] to generate rephrased versions of the prompt template to create
a diverse range of instructions. As shown in Fig. 2(a) (top), the LLM takes as an input the prompt
template (e.g., “Segment the %category%”) and produces a wide range of paraphrased variants (e.g.,

“Highlight the %category%”). This procedure ensures that our instruction set is varied yet firmly tied
to the core intent of the original prompt. We use the LLM to sample a rephrased variant of the prompt
template Ii ∼ LLM(Imi

temp) for each training data point i in D. We refer to the resulting instruction
tuning dataset as the rephrased prompt (RP) dataset DRP

I = {(xi,v(yi), Ii(xi,yi))}i.
Visual encoding of task outputs. We format the target label y of each task to represent it in the same
RGB image space as the input image x through a “visual encoding” function v(y) (Fig. 2(a) (bottom)).
This enables casting all tasks in a unified text-to-image generation framework, leveraging Pix2Pix
architectures. That is, given an image x and instruction I, InstructCV produces an image v(y) that
encodes the task output. In the following, we provide the definition of v(y) for all tasks under study.

(1) Semantic Segmentation. The target output y of this task is typically an assignment of a label or
category to every pixel in an image. A natural choice of v(y) for the semantic segmentation task is a
binary mask that labels pixels in the input image x belonging to the prompted category in I.

(2) Object Detection. Here, the goal is to identify the spatial position of a category in an image using a
bounding box, i.e., the label comprises bounding box coordinates y = [cx, cy, w, h]. We define v(y)
for object detection as the image x with a bounding box overlaid according to the coordinates in y.

(3) Monocular Depth Estimation. The target y of this task is the depth value (i.e., distance relative to
the camera) of each pixel in the RGB image x. For this task, we define the visually-encoded target
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v(y) as an RGB image in which pixel colors encode the depth values. This encoding is done by con-
verting depth values ranging from 0 to 10 meters (based on depth ranges in the NYUv2 dataset [32])
into the discrete space [0, 1, . . . , 255] for RGB image representation, i.e., v(y) =

⌊
y × 255

10

⌋
. We

then apply the same value across all three RGB channels to create a visual depth map.

(4) Image Classification. In multi-class image classification, the target label y is a categorical value
indicating the object depicted in the image x. To represent image classification in a Pix2Pix format,
we resort to a color-coding methodology. To this end, we use a prompt template of the form: “Display
%color% if the image contains %category%”. We sample random colors when filling in the template
for individual training points. This steers the text-to-image model to produce an image consisting of
the pure color block if the category specified in the prompt is visible in x. (Note that this approach
only enables us to predict if a specific category is in the input image x. For multi-class classification,
we need to use a series of prompts specifying all categories of interest one at a time.)

2.2 INSTRUCTION-TUNING A LATENT DIFFUSION MODEL

We use our instruction-tuning dataset DI = {(xi,v(yi), Ii)}i to train a (conditional) diffusion model
that conducts the vision task specified in the instruction I on the input image x, producing a visually-
encoded task output v(y). By finetuning the text-to-image diffusion model using DI , we steer its
functionality from a generative model to a language-guided multi-task vision learner. We use a training
procedure similar to that of InstructPix2Pix [27], which uses a similar multi-modal dataset (pairs of
images and editing instructions) to train an instruction-guided image editing model.

Diffusion models [7] generate data by gradually denoising a normally distributed random variable; this
process amounts to learning the reverse dynamics of a Markov chain with fixed length T . Latent
diffusion models [8] apply this approach within the latent space of a pretrained variational autoencoder
[35] with encoder E(.) and decoder D(.). Training a diffusion model involves a forward diffusion
and a reverse denoising process. During the forward process, the image v(y) is transformed to its
latent representation z0 = E(v(y)), which is then injected with Gaussian noise over T steps:

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI), ∀t ∈ {1, . . . , T}, (1)

where the time-varying constants β1:T control how much noise is added at each timestep t and are
chosen such that zT roughly converges to a standard Gaussian vector. This forward process does not
contain any trainable parameters and can be described as q(z1:T |z0) =

∏T
t=1 q(zt|zt−1). In the re-

verse diffusion process, pθ(z0:T ) = p(zT )
∏T

t=1 pθ(zt−1|zt) the objective is to learn a model to
progressively denoise the latents zT :1 to recover the initial latent z0. The target image can then be
reconstructed as v(y) = D(z0). The reverse diffusion process can be written as:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t), ρ
2
t I), ∀t ∈ {1, . . . , T}, (2)

where the means µθ are typically parameterized using neural networks and the variances ρ2t are
predetermined constants. Such a denoising model is learned by optimizing a reweighted variant of
the variational lower bound on the data distribution [4, 36], i.e.,

Lunconditional := EE(v(y)),ϵ∼N (0,1),t

[
∥ϵ− ϵθ (t, zt)∥22

]
, (3)

where ϵ is a standard normal random variable and zt = αtz0 + σtϵ, where α2
t =

∏t
s=1(1− βs) and

σ2
t = 1− α2

t are based on the diffusion distribution q(zt|z0) = N (zt;αtz0, σ
2
t I). The noise predictor

ϵθ is obtained from the parameterization µθ(zt, t) := (zt − βtϵθ(zt, t)/
√

1− α2
t )/

√
1− βt. The model

ϵθ is trained to predict the noise vector ϵ at each time-step t in order to denoise the latent variable zt.

Instruction-tuning via image and text conditioning. The objective in (3) can be further refined to
condition on both the input image x and instruction I to generate the desired output v(y)—this can be
achieved by learning a conditional noise predictor [8, 27], minimizing the following loss function:

Lconditional := EE(v(y)),E(x),I,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (t, zt,E(x), I)∥2

]
. (4)

We use a pretrained Stable Diffusion checkpoint, which exhibits strong text-to-image generation
capabilities, as the backbone architecture of our model. For text conditioning, we adopt the same
methodology as in [8], utilizing the instruction I instead of image captions as textual inputs. For image
conditioning, we concatenate the encoded input image E(x) with the latent zt, which are then fed
into input to the first layer of the noise predictor ϵθ [27].
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Classifier-free guidance. To further improve the
alignment between the generated outputs and their
conditioning, we apply “classifier-free” guidance
[37]. This approach combines the unconditional
and conditional noise predictors in (4) and (3) in
order to shift probability mass towards data where
an implicit classifier pθ(c|zt) assigns a high score
to the conditioning c. Similar to InstructPix2Pix
((3) in [27]), we use a modified noise predictor
that assigns different weights to the different com-
ponents of the conditioning (x, I) as follows:

ϵ̃θ (t, zt,x, I) = ϵθ(t, zt,∅,∅)

+ γI · (ϵθ(t, zt,x,∅)− ϵθ(t, zt,∅,∅))

+ γT · (ϵθ(t, zt,x, I)− ϵθ(t, zt,x,∅)).

where γI and γT are guidance scales that deter-
mine the relative importance of the image and text

𝛾 !
=
1.
0

𝛾 !
=
2.
0

𝛾 !
=
3.
0

𝛾" = 15𝛾" = 7.5𝛾" = 3

Instruction:
“Estimate the depth 
map of this image”

Figure 3: Impact of classifier-free guidance on the out-
puts of InstructCV for the depth estimation task.

conditioning. Unconditional denoising is achieved by introducing null values to the respective image
and text channels of the noise predictor. In Fig. 3, we show the effects of the parameters γI and γT on
the output image v(y) of InstructCV. As we can see, γI controls the similarity between the input and
output images, x and v(y), whereas γT controls the extent to which pixel values v(y) correspond to
actual depth values in x. Low γT and high γI result in output images that look very similar to input
images with only a modification in the color map that does not reflect pixel depths. On the other hand,
high γT and low γI produces coarse depth maps that miss nuanced details in the input images.

3 RELATED WORK

Repurposing diffusion models for vision tasks. Diffusion models have achieved impressive perfor-
mance in image generation [4, 36, 38–40], text-to-image synthesis [1, 2, 6, 8], as well as generation of
other modalities such as video [41] and audio [42]. The idea of repurposing diffusion models to tackle
standard computer vision tasks has been considered before to develop models for object detection [43]
and open-vocabulary panoptic segmentation [44]. These approaches were limited to single-task set-
tings with specialized loss functions and (unimodal) architectures. Contrarily, InstructCV provides a
unified architecture for multi-task learning, with a natural language interface that enhances generaliza-
tion to new datasets and categories. The idea of “instruction-tuning” text-to-image diffusion models
was introduced in [27] with the objective of finetuning the model to follow editing instructions. In-
structCV builds on this framework to adapt text-to-image models for performing conventional visual
recognition tasks. To our knowledge, this is one of the earliest efforts in this direction.

Vision Generalists. Several prior attempts have aimed to develop unified models capable of executing
multiple vision tasks within a single, shared architecture. Motivated by successes of LLMs, recent
work has attempted to design such generalist models based on sequence-to-sequence architectures.
Among these, models such as Florence [9], OFA [10], CoCa [11] and BEiT-3 [14], learn general rep-
resentation encoder, which require individual finetuning to each specific downstream task. Methods
such as Unified-IO [15] and Pix2Seq-v2 [17] build single architectures that are capable of performing
multiple vision tasks via prompt tuning. However, the sequence-based operation of these models re-
sults in slow inference speeds, and the tuned prompts may not generalize to unseen datasets/categories.
Another line of work proposes vision transformer-based architectures that frame different vision tasks
as inpainting problems [18, 19]. This work focuses on in-context learning based on visual prompts
and does not consider language-based instructions, which we believe is a more natural interface for
general-purpose models. To the best of our knowledge, the only generalist model that supports a
language-based interface for vision tasks similar to that of InstructCV is the VisionLLM model devel-
oped in [13]. This is an LLM-based framework that treats images as a foreign language and aligns
vision-centric tasks with language tasks that can be flexibly defined using language-based instructions.
VisionLLM and InstructCV share a common objective but use different approaches. VisionLLM fine-
tunes a pre-trained LLM using vision-centric tasks, whereas InstructCV finetunes a text-to-image
model by substituting image captions with instructional text. We were unable to empirically compare
the two models as the code for VisionLLM was not available at the time of writing this paper.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SET UP

We evaluate InstructCV across the four vision tasks under study (semantic segmentation, object detec-
tion, monocular depth estimation and image classification). For this purpose, we consider widely used
datasets for each task: ADE20k [29, 30] for semantic segmentation, MS-COCO [28] for object detec-
tion, NYUv2 for depth estimation [45] and Oxford-IIIT Pet [46] for classification. In what follows, we
explain the processing steps and evaluation procedure for all tasks under consideration.

Semantic Segmentation. ADE20K covers 150 semantic categories and comprises 25, 000 images of
which we use 20, 000 for training, 2, 000 for validation, and 3, 000 for testing. We follow the same pro-
tocol as suggested in [18] to implement the training/test split. At inference time, we average the out-
puts of the three channels of the output image v(y) to obtain the final segmentation mask. We evaluate
the accuracy of segmentation masks using the Mean Intersection over Union (mIoU) metric.

Object Detection. MS-COCO contains 118, 000 training and 5, 000 validation images with labels for
80 different categories. We follow the same protocol as in Pix2Seq [16] to set up the training/test split.
At inference time, we follow the post-processing steps in Appendix A.3 to derive the coordinates and
category of each Region of Interest (RoI) from the output image v(y). We then aggregate the results
for all categories in order to calculate the Mean Average Precision (mAP).

Depth Estimation. The NYUv2 dataset [32] consists of 464 indoor scenes captured by a Microsoft
Kinect camera. We follow the official training/test split, with 24, 231 image-depth pairs used for train-
ing, and 654 used for testing. For the test images we report the Root Mean Square Error (RMSE), ab-
solute mean relative error (A.Rel), and the share of interior pixels with a different threshold δ. During
inference, we take the average across the three channels of the output image and apply the inverse of
the linear transformation used in training to obtain a depth estimate in the range of [0, 10] meters.

Image Classification. As mentioned in Section 2.1, we implement image classification by asking
the InstructCV model if a category is visible in the input image x using the following template
prompt: “Display %color_1% if the image contains %category%, else display %color_2%”. We eval-
uate the accuracy of InstructCV for classification by assessing whether v(y) contains the color block
corresponding to the correct category. We do so by generating image pairs based on the Oxford-III
Pet dataset for binary classification and augment these with negative pairs, where the category men-
tioned in the language instruction is not present. We then evaluate a classification score defined as:
Cls-Score (v(y), c) =

∑n
i=1

∑m
j=1 |vi,j(y)− ci,j |, i.e., the Euclidean distance between the pixel-wise

colors of the output image v(y) and target color block c specified in the task instruction I.

Our pooled multi-modal/multi-task instruction-tuning dataset comprises 180,285 images. We create
two versions of the dataset, DFP

I & DRP
I , with fixed and rephrased prompts as described in Section 2.1.

External Datasets. Since the generalist baselines and InstructCV were trained on different datasets1,
we consider additional external datasets that are outside of the training distribution of all baselines. To
this end, we consider the following datasets: ImageNet [47] for classification, SUNRGB-D [48] for
object detection and VOC [49] for segmentation and monocular depth estimation tasks.

Implementation Details. We train InstructCV for 20 epochs on 8 NVIDIA A100 GPUs over 10 hours.
The training involves images with a resolution of 256 × 256 and incorporates data augmentation
including random horizontal flipping and cropping with a batch size of 128. The proposed model
is initialized with EMA weights obtained from the Stable Diffusion checkpoint, and trained with a
learning rate 10−4 without any warm-up stage. Further details can be found in appendix A.1. We refer
to the models trained on DFP

I and DRP
I as InstructCV-FP and InstructCV-RP, respectively.

4.2 RESULTS

Table 1 presents a quantitative comparison between InstructCV and task-specific as well as generalist
vision models in both in-distribution and out-of-distribution datasets. (Fig. 4 displays illustrative ex-
amples of InstructCV outputs.) For depth estimation, we compare InstructCV with DepthFormer [50],
BinsFormer [51] and UviM [12]. For semantic segmentation, our baselines include Mask2Former [53]

1Unified-IO has been trained on 90 datasets while Pix2SeqV2 was trained on MS-COCO.
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Table 1: Comparison of InstructCV to task-specific and vision generalist baselines. We report performance
on segmentation, object detection, depth estimation and classification using test samples from the InstructCV in-
struction tuning dataset as well as external datasets for each task. InstructCV was evaluated using LLM-rephrased
instructions for test data. (Bold and blue indicate best and second best performing model, respectively.)

Depth Estimation Semantic Segmentation Classification Object Detection
RMSE↓ mIoU↑ Acc↑ mAP@0.5↑

NYUv2 †SUNRGB-D ADE-20K †VOC Oxford-Pets †ImageNet-sub COCO †VOC

Task-specific models
DepthFormer [50] 0.339 0.427

BinsFormer [51] 0.330 0.433

SSA [52] 47.150 *
Mask2Former [53] 56.100 *

ResNet [54] 97.500 *
ViT [55] 98.400 *

DETR [28] 60.600 *
Mask R-CNN [56] 60.500 *

Generalist framework, Task-specific models
UviM [12] 0.468 *

Generalist models
Unified-IO [15] 0.387 0.287 25.713 27.724 96.514 89.877

Pix2SeqV2 [17] 57.400 38.500
Painter [18] 0.288 0.285 49.9 52.5

InstructCV-FP 0.275 0.268 52.3 53.5 80.4 75.1 49.1 62.00

InstructCV-RP 0.297 0.279 47.235 52.125 82.135 74.665 48.500 61.700

† External datasets: These dataset were not part of the training dataset for the baselines under consideration.
∗ Task-specific models are incapable of directly implementing the corresponding task on external datasets if
these datasets contain object categories that were not present in the models’ training data.

and SSA [52]. For classification, we consider baseline classifiers with ResNet [54] and ViT [55] back-
bones. Lastly, for object detection, we consider DETR [28] and Mask R-CNN [56]. Task-specific
models for semantic segmentation, classification, and object detection have not been assessed on
datasets beyond their training distribution. This is due to the fact that these new datasets introduce cat-
egories absent in the model’s original training, which precludes zero-shot generalization. We consider
Unified-IO [15] and Pix2SeqV2 [17] as generalist vision baselines. Note that we only report object
detection results for Pix2SeqV2 [17], as this model does not cover the other tasks involved in the de-
velopment of InstructCV. Additional tasks Pix2SeqV2 is able to perform, such as keypoint detection,
have not been integrated into the current version of InstructCV.

Table 2: Open-vocabulary segmen-
tation on the FSS-1000 dataset.

Model mIoU ↑
Inpainting [57] 58.5

Generalist Painter [18] 62.3
InstructCV-RP 69.8

Performance comparisons. Overall, Instruct CV performs
competitively compared to both generalist and task-specific
baselines across all four tasks. For depth estimation within in-
distribution data, InstructCV achieves a 10% improvement in
RMSE compared to the second best model, BinsFormer [51].
Notably, InstructCV demonstrates strong generalization per-
formance to unseen datasets, surpassing all baselines by a
large margin, with the exception of classification tasks. For
instance, for the task of depth estimation the task-specific
models Binsformer [51] and DepthFormer [50] experience high performance drops of ≈ 31.2% and
≈ 26.0%, respectively, while InstructCV’s performance improved by 6% resulting in a 34.7% lower
RMSE than the best task-specific model. Similarly, for the task of object detection, the performance of
the Pix2SeqV2 generalist model drops by 32.2% when evaluated on VOC—InstructCV outperforms
this generalist model by a +23.2 in mAP@0.5. Among all baselines, only Unified-IO demonstrates
comparable generalization properties to unseen datasets. However, InstructCV outperforms Unified-
IO on all tasks except for classification. Notably, for semantic segmentation, InstructCV surpasses
the performance of Unified-IO by +24.401 in mIOU. Classification is the task where InstructCV
exhibited its weakest performance compared to baselines.

Generalization to unseen categories. Most existing task-specific and multi-task models are built
based on a fixed category pool determined by their training data, and do not exhibit zero-shot
capabilities in detecting, segmenting or classifying categories outside of this set [15, 17, 28, 52–

7



Published as a conference paper at ICLR 2024

Semantic Segmentation (ADE-20K test data) Prompt: “Segment the %CATEGORY%”

%CATEGORY% =
 {House, Wall, Grass Sky, 

Sidewalk, Tree}

{Bed, Cushion, Lamp, Curtain
Door, Window, Floor, Ceiling}

{House, Wall, Grass Sky, 
Sidewalk, Tree}

{House, Wall, Grass Sky, 
Sidewalk, Tree}

Object Detection (MS-COCO test data) Prompt: “Detect the %CATEGORY%”

%CATEGORY% = {Elephant} {Teddy bear, bed} {Person} {Person, horse}

Monocular Depth Estimation (SUNRGBD dataset) Prompt: “Create a monocular depth map”

Image Classification (ImageNet dataset)

Prompt: “Show green if there exists birds; 
if not, show red instead”

Prompt: “Show green if there exists a fish; 
if not, show yellow instead”

Figure 4: Samples of InstructCV outputs across all vision tasks. The segmentation and detection outputs (top
two rows) are obtained by applying one prompt for each category and overlaying the results in one output image.

56]. Because InstructCV leverages semantically meaningful instructions and a pre-trained text-to-
image generative model to guide learning, we expect its task-specific capabilities to generalize to new
categories. To investigate its generalization capabilities to unseen categories, we evaluate InstructCV
on an open-vocabulary segmentation task using the FSS-1000 dataset [58]. This dataset comprises
1000 object classes, many of which have not been previously annotated in other computer vision
datasets. Because the baselines in Table 1 do not accommodate many of these categories, we instead
compare InstructCV with generalist vision models that exhibit zero-shot capabilities—the visual
prompting by Inpainting model in [57] and the Generalist Painter model in [18]. Both methods rely
on visual prompting approaches, where the input prompt is a set of pixels and the vision tasks are all
represented within a unified inpainting framework. Table 2 presents the results. Overall, InstructCV
outperforms Generalist Painter and Inpainting by +3.5 and +7.3 in mIoU, respectively. This
demonstrates the value of repurposing text-to-image models and language-based prompts to improve
the generalization capabilities of generalist approaches to computer vision tasks.

Generalization to new user-written instructions. The InstructCV-RP model undergoes training
using the dataset DRP

I , which comprises a variety of instructions, all aimed at conveying a common
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Table 3: Evaluating InstructCV on new user-written instructions. We evaluate the InstructCV-FP
and InstructCV-RP models on the semantic segmentation task using test samples within the ADE20k
dataset. At inference time, we apply new user-written instructions (listed below) that have not been
used during training in DFP

I and DRP
I , in addition to the template prompt (first row, shaded).

Instruction mIOU Score
InstructCV-FP InstructCV-RP

Template prompt:“Segment the %category%.” 45.503 42.793

“Segment %category%.” 36.315 48.739

“Can you help me segment the %category%?” 44.035 45.686

“Highlight the image parts corresponding to the %category%.” 19.988 44.758

“Please highlight the image segment containing %category%.” 21.952 40.153

“Which image segments contain the %category%?” 39.348 47.972

underlying intent (i.e., describing a specific visual task). Through this diverse training data that encom-
passes a broad spectrum of phrasings and descriptions of the same task, we expect that InstructCV-RP
will be able to extrapolate its learning to novel user-generated instructions at inference time. To test
this, we compared the performance of the InstructCV-FP and Instruct-RP variants on the semantic
segmentation task. Both models were tested using manually-selected prompts (unseen in training data)
on 200 images in the ADE20k test data. The results in Table 3 indicate that the InstructCV-RP model
exhibits consistent performance and more robustness to variations in the phrasing of user instructions
compared to InstructCV-FP. For example, testing InstructCV-FP with the instruction “Please highlight
the image segment containing %category%.” instead of the template prompt “Segment %category%.”
led to a 51.8% drop in mIOU. Conversely, InstructCV-RP only incurred a performance reduction
of 6% with this instruction compared to the template prompt. This suggests that our LLM-based
prompt rephrasing approach effectively enhances the ability of InstructCV to generalize to new
user-generated prompts that convey descriptions of tasks similar to those seen during training.

Computational costs. Finally, we note that InstructCV was trained in an end-to-end fashion, with only
2,000 finetuning steps. The inference time of InstructCV on a single NVIDIA A100 GPU is 5 seconds
(for a 256x256 image). This is a significant improvement over comparable generalist models, such as
Unified-IO [15], which was trained from scratch using 1.5 million steps and takes around 40 seconds
for inference on a single NVIDIA A100 GPU. Notably, InstructCV not only simplifies the training
process but also outperforms Unified-IO in various tasks. These improvements can be attributed to
the already impressive capabilities of the underlying text-to-image model. By instruction-tuning a
generative model with a relatively small number of steps and a moderately-sized dataset, we are able
to steer its functionality with performance that is competitive with bespoke generalist models.

5 CONCLUSION

In this paper, we introduce a unified language interface for computer vision tasks, dubbed InstructCV,
eliminating the need for task-specific design choices and allowing for task execution based on natural
language instructions. InstructCV frames various computer vision tasks as text-to-image generation
problems. In this setup, textual instructions describe the task, and the resulting image serves as a
visual representation of the task output. Following the InstructPix2Pix architecture, we curate a multi-
task and multi-modal dataset to instruction-tune a pre-trained text-to-image diffusion model, steering
its function from a generative model to an instruction-guided multi-task vision learner. By harnessing
semantically meaningful language instructions to drive the learning process, our model demonstrates
compelling generalization capabilities across unseen data, categories, and user instructions.

Limitations. The inference speed of our model lags behind specialized task-specific models and
falls short of meeting the real-time inference requirements for tasks such as object detection and seg-
mentation. Additionally, the semantic flexibility of InstructCV is constrained by the richness and
diversity of our instruction-tuning dataset, which is currently generated by rephrasing a limited set of
template prompts. This raises questions for future work: can this learning paradigm accommodate
instructions that introduce more nuanced conditions? For example, an instruction might cap the count
of objects to be detected. Exploring such ideas might require the integration of strategies such as
learning from human feedback, which could enable more versatile generalist models by improving
alignment of task outputs with more complex prompts.
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A APPENDIX

A.1 INSTRUCTCV TRAINING DETAILS

We train our multi-task vision model across 20 epochs for 10 hours on an array of 8 80GB NVIDIA
A100 GPUs. Our training utilizes images of 256 × 256 resolution and a batch size of 128. Augmen-
tation techniques applied include random horizontal flipping and crop augmentation. For the latter,
images are first subjected to random resizing between 256 and 288 pixels before being cropped to
a 256-pixel size. We set our learning rate at 10e-4 without incorporating a learning rate warm-up
phase. Model initialization is performed using the EMA weights from the Stable Diffusion v1.5
checkpoint, and we adopt other training settings from the public Stable Diffusion repository. For the
results presented in this paper, we operate at a 256-pixel resolution with 100 denoising steps. We
employ an Euler ancestral sampler with a denoising variance schedule as proposed by [59]. On an
NVIDIA A100 GPU, our model takes approximately 10 seconds to solve a given vision task.

A.2 EXAMPLES OF THE REPHRASED PROMPTS.

Figure 5-(a)/(b) qualitatively compares the robustness of InstructCV to changes in instruction wording
when trained using the fixed prompt or the more diverse rephrased prompt dataset. The model trained
using the fixed prompt data shows reasonable performance on segmentation tasks, even for prompts
that slightly deviate from the standard instruction wording. However, as these deviations increase
misclassfications become more common. Instead, the model trained on the rephrased prompt data
appears more robust to such changes in task formulation. Notably, the model appears to show basic
semantic understanding as it is in the last prompt example able to infer the correct intent despite the
simultaneous occurrence of the potential object detection targets ’spider man’ and ’face’.

A.3 POST-PROCESSING STEPS FOR OBJECT DETECTION TASKS

We employ image processing techniques to derive the bounding box coordinates from the output
image. First, we apply median and bilateral filters to the image in order to mitigate noise and
enhancing features. Following, we convert the image from RGB to HSV space to isolate the red
region within the target object, which is then extracted from the original image. Next, we identify
closed contours in the image by converting it to a grayscale map, performing threshold segmentation
based on grayscale, and ultimately, binarizing the image. However, naively applying this approach
could potentially result in the removal of some accurate bounding boxes due to the disruptions
induced by complex image backgrounds. To circumvent this issue, we cross-reference the bounding
boxes with the dataset annotations and retain any bounding box predicted by the model that exhibits
an Intersection over Union (IOU) greater than 0.5. We exclude disturbances that are not rectangular
or that contain numerous red dots within the contour. The coordinates of the remaining contours are
subsequently added to the prediction list.
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(a) FP model - Different Prompts for Semantic Segmentation Task 

(b) RP model - Different Prompts for Object Detection Task

Segment the grass. Could you help me segment 
the grass? 

Please provide a 
segmentation of the grass.

Please highlight the grass 
segment.

Detect the Spider Man. Please locate 
the Spider Man.

Detect the face of 
the Spider Man. 

Detect the 
Spider Man’s face. 

Figure 5: Semantic segmentation performance for different prompt formulations (a) FP model. Results
for model trained on fixed prompt (FP) instruction dataset (b) RP model. Results for model trained on diverse
rephrased prompt (RP) instruction dataset. Overall the RP model shows greater robustness to variations in
wording.

Single Category Segmentation on the External Dataset VOC

Horse Train Sheep Airplane

Multi-Category Segmentation on the External Dataset VOC

Horse, Person Monitor, Bottle Chair, Person, Table Car, Bicycle

Single Category Segmentation on Novel Classes (FS-1000 Dataset)

Chess king Pinecone Golden Plover Jackfruit

Input prompt: Segment the %.    %: the specific categories.

Figure 6: Visualization of semantic segmentation examples. Segmentation categories are provided below
each image.
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Object Detection on the External Dataset VOC

Bird Sheep Train, car Cat, sofa

Object Detection on the Oxford Pets

Beagle Birman Shiba inu Shorthair

Object Detection on Novel Classes

Tom, Jerry Dug, Carl Agnes Judy

Input prompt: Detect the %.    %: the specific categories.

Figure 7: Visualization of object detection examples. Segmentation categories provided below the image.

Monocular Depth Estimation on Out-of-Domain Data

Input prompt: Create a monocular depth map. 

Figure 8: Visualization of monocular depth estimation examples. All depth maps presented here are
produced for datasets not included during model training.
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