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ABSTRACT

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) has become a practi-
cal solution for addressing hallucination in large language models (LLMs) by con-
ditioning responses on retrieved documents. However, existing RAG systems face
two major limitations: (1) retrieval objectives are often misaligned with the down-
stream generation task, leading to irrelevant documents harmful to the generation;
(2) concatenating many retrieved documents into long prompts strains model ca-
pacity and introduces positional biases that degrade performance. To overcome
these issues, we propose a unified framework where the LLM itself learns to per-
form document selection and answer generation in an end-to-end manner. Inspired
by human reasoning, our model organizes documents via hierarchical semantic
IDs and selects relevant content through a self-reflection mechanism composed of
query-specific attention and an additional feed-forward MLP layer. This architec-
ture enables the model to promote helpful documents directly during generation,
eliminating the need for separate retrievers or rerankers. Through joint training,
the model learns to select the most informative 2-3 documents. We conduct ex-
periments to validate the effectiveness of our design.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range
of natural language processing tasks, including open-ended conversation (Wang et al., 2024a; Liu
et al., 2024; Xi et al., 2025), problem solving (Cobbe et al., 2021; Wei et al., 2022; Lewkowycz
et al., 2022), code generation (Chen et al., 2021; Austin et al., 2021; Li et al., 2022). Their success
is largely attributed to the scale of their architectures and the massive datasets used during pre-
training, which allow them to encode vast amounts of linguistic and factual knowledge. However,
despite these strengths, LLMs are inherently limited by the static nature of their pretraining corpus.
When presented with complex, ambiguous, or unfamiliar queries, especially those requiring recent
or specialized knowledge, they often generate inaccurate or fabricated responses, a behavior com-
monly referred to as hallucination. This issue becomes even more pronounced in domains where
information evolves rapidly or factual accuracy is essential.

To address the hallucination problem in large language models (LLMs), Retrieval-Augmented Gen-
eration (RAG) (Lewis et al., 2020) has emerged as a practical solution. Rather than relying solely
on static knowledge stored in model parameters, RAG enables LLMs to retrieve and condition on
external documents at inference time, grounding their responses in up-to-date and domain-specific
evidence. Despite its effectiveness, it have several intrinsic drawback.

(1) The performance of retrieval-augmented generation (RAG) relies critically on the quality of
the retrieved documents, yet the retriever’s objective is often misaligned with the goal of genera-
tion. Most retrievers are trained to maximize semantic similarity between a query and candidate
documents, typically through embedding-based scoring (Karpukhin et al., 2020). However, such
similarity does not guarantee that the document contains factual or contextually useful information
for answering the query. One may expect these semantically similar yet uninformative documents
to be harmless. Surprisingly, Cuconasu et al. (2024) show that such documents can actively degrade
performance, sometimes performing worse than inserting random documents into the prompt. For
instance, when answering “Who won the first Nobel Prize in Physics”, a misleading document about
Einstein may be more harmful than a random one (Jin et al., 2024; Wang et al., 2024b). These find-
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ings motivate the exploration of retriever metrics that are more directly aligned with the generation
objective.

(2) RAG systems depend on the long-context processing ability of large language models, as mul-
tiple retrieved documents are often concatenated into a single input. This not only increases com-
putational overhead but also weakens the model’s ability to leverage the retrieved information. As
shown by Liu et al. (2023), even models explicitly trained for long-context exhibit performance
degradation when relevant information appears in the middle of the input, rather than at the begin-
ning or end. Such positional sensitivity undermines the effectiveness of retrieval and necessitates
document reranking. However, as with retrieval, designing reranking objectives that are well aligned
with the generation task remains challenging. Moreover, introducing additional components such as
rerankers complicates the training pipeline and can lead to training instability.

To address these limitations, we adopt an intuitive strategy: allow the language model itself to
decide which documents are most useful for answering a given question. Rather than depending on
a retriever with manually crafted heuristics or embedding similarity, we design the model to learn
document selection directly from data in a hierarchical manner. This idea is inspired by how humans
naturally approach complex questions: they first organize available information into conceptual or
topical categories, and then selectively search within those categories for the most pertinent details.
By mimicking this behavior, we encourage the model to develop a coarse-to-fine understanding of
the corpus, leveraging hierarchical semantic ids, a concept borrowed for generative retrieval (Wang
et al., 2022c), to discriminate between document clusters and select those most likely to support
accurate generation.

To support this process, we introduce a lightweight self-reflection mechanism that plays a central
role in enabling the model to perform effective document selection. This mechanism consists of
additional query-specific attention heads and an independent MLP layer, designed to help the model
leverage its intrinsic knowledge and internal representations when selecting candidate documents.
Built upon this structure, we train the model in an end-to-end manner, allowing it to jointly learn
both document selection and answer generation. For each query, the model first identifies a set
of candidate documents, each annotated with hierarchical IDs that reflect their semantic or topical
structure. It then selectively incorporates the most relevant candidates into the generation process,
learning to associate specific hierarchical patterns with successful answer outcomes. Through this
training paradigm, the model effectively aligns document selection with downstream generation
quality, without relying on external retrievers or manual scoring heuristics.

Unlike traditional RAG pipelines, which decouple retrieval, reranking, and generation into distinct
modules, our framework unifies these components within a single model. The language model
simultaneously acts as retriever, reranker, and generator, leveraging the same set of internal param-
eters across all stages (See Figure 1). This design eliminates the need for an explicit reranking step.
Through end-to-end fine-tuning, the model learns to promote the most helpful documents to the
top of its input sequence, effectively aligning document selection with the downstream generation
objective. Meanwhile, documents that are unhelpful or distracting are implicitly filtered out during
training, as their lack of contribution to generation quality provides a negative learning signal. This
tightly coupled optimization enables the model to perform competitively even when selecting only
the top 2-3 documents.

Our contributions can be summarized as follows:

• We propose an end-to-end framework that enables a large language model to jointly perform
document selection and answer generation without relying on external retrievers or rerankers. By
leveraging hierarchical semantic identifiers inspired by generative retrieval, the model learns a
coarse-to-fine understanding of the document corpus and selects evidence that directly supports
the generation task.

• To enable large language models to retrieve documents, a capability not acquired during pretrain-
ing, we introduce a lightweight self-reflection module composed of query-specific attention heads
and an auxiliary MLP layer. This component allows the model to internalize relevance judgments
that are synchronized with generation utility, effectively eliminating the misalignment between
the retrieval and generation modules.

• Through unified training, the model learns to surface the most helpful documents and discard un-
helpful ones, achieving strong performance while conditioning on only the top 2-3 selected inputs.
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Experimental results show that our method outperforms traditional RAG methods, demonstrating
both efficiency and effectiveness.

2 RELATED WORK

Information Retrieval (IR). Information retrieval techniques aim to efficiently obtain, process,
and interpret information from large-scale data. Traditional approaches, known as sparse retrieval,
enable fast document search through inverted indexing, where each term is mapped to a list of doc-
uments containing that term. Relevance is then determined using term-matching metrics such as
TF–IDF (Ramos et al.), query likelihood (Lafferty & Zhai, 2001), and BM25 (Robertson et al.,
2009). With the development of pre-trained language models (Devlin et al., 2019; Liu et al., 2019),
several works have leveraged Transformer-based encoders to generate dense vector representations
for both queries and documents, with similarity typically measured using inner product or cosine
similarity (Karpukhin et al., 2020; Xiong et al., 2020; Wang et al., 2022b;a). In contrast, generative
retrieval (De Cao et al., 2020; Tay et al., 2022; Wang et al., 2022c; Zhou et al., 2022) represents
a different paradigm: instead of relying on similarity matching in the embedding space, it takes
the query as input and directly generates document identifiers (DocIDs) corresponding to relevant
documents. Specifically, each document in the corpus is assigned a unique identifier, and the re-
trieval model employs constrained beam search to ensure that the generated DocIDs correspond to
valid documents within the corpus. More recent works have focused on the retriever model training
(Zhou et al., 2023; 2024), the construction of semantic identifiers (Sun et al., 2023; Yang et al., 2023;
Askari et al., 2024; Valluri et al., 2024), and continual learning on dynamic corpora (Mehta et al.,
2022; Kishore et al., 2023; Guo et al., 2024).

Retrieval Augmented Generation (RAG). Early efforts to integrate retrieval mechanisms for im-
proving text generation quality can be traced back to Chen et al. (2017); Dinan et al. (2018); Weston
et al. (2018). In particular, retrieval systems play a crucial role in open-domain question answering,
where a two-stage framework is commonly adopted: a context retriever first selects a small subset
of passages, some of which may contain the answer to the question, and a generator then identifies
the correct answer from these passages (Chen et al., 2017). Subsequent research has focused on im-
proving retrieval quality by employing dense representing vectors (Karpukhin et al., 2020), or com-
bining the masked language model (Devlin et al., 2019) with the retrieval system (Lee et al., 2019;
Guu et al., 2020). This line of work was later formalized under the term Retrieval-Augmented Gen-
eration (RAG) by Lewis et al. (2020), which generalizes the framework to all sequence-to-sequence
models. After large language models with billions of parameters emerged and demonstrated their
superior performance in language generation, further studies explored how RAG could be lever-
aged to strengthen these models (Izacard & Grave, 2020; Borgeaud et al., 2022; Jiang et al., 2022).
Numerous studies have proposed methods that focused on different aspects of retrieval-augmented
generation, including training of retrievers or generators (Weijia et al., 2023; Izacard et al., 2023;
Lin et al., 2023; Li et al., 2024), instruction fine-tuning (Wang et al., 2023), leveraging in-context
abilities (Huang et al., 2023; Trivedi et al., 2022; Wang et al., 2024c), adaptive document selection
(Jiang et al., 2023; Asai et al., 2024; Yan et al., 2024; Su et al., 2024; Baek et al., 2024; Jeong et al.,
2024; Wang et al., 2024b), passage ranking (Yu et al., 2024), context compressing (Xu et al., 2024a),
and parametric knowledge injection (Su et al., 2025). In addition, several studies have investigated
how to retrieve relational knowledge relevant to a given query from a pre-constructed graph database
(Edge et al., 2024; Hu et al., 2024; Mavromatis & Karypis, 2024; Peng et al., 2024).

3 PRELIMINARIES

In this section, we present the framework for reasoning over a document corpus. We consider the
standard QA task, where we take in a query x ∈ X , and an LLM, denoted by pθ(·|x), which outputs a
conditional probability distribution over the answer space Y and generates an answer a by sampling
from this distribution. Let the QA dataset be denoted by DQA = {(xi, ai)}Mi=1, we consider the
following training loss of log-likelihood, where each (xi, ai) is a query-action pair. The standard
training objective is to maximize the log-likelihood of the ground-truth answers under the model,
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LLMQuestion

Traditional retrieval

Document Corpus

Hierarchical Docid
(3-17-25-0)

Retriever

Answer

Generation

Selection

Figure 1: Comparison between the traditional retrieval process and our proposed pipeline. In the
traditional setup, the retriever and generator are independent modules: the retriever first ranks doc-
uments, and the generator conditions on the top-k results. In contrast, our method enables the LLM
to generate hierarchical docids, which directly identify the most relevant document in a semantically
structured space.

leading to the loss function

LQA(ϕ) = −
M∑
i=1

[ m∑
j=1

log pθ
(
aji | x, a

[1:j−1]
i

)]
, (3.1)

where aji is the j-th token of ai. Although fine-tuning the LLM by minimizing this loss function
is straightforward, it may fail to yield improvements when the QA task requires knowledge absent
from the pretrained model. In such cases, the model parameters, constrained to remain close to their
pretrained values, cannot adequately capture the missing information, leading to persistently high
loss and consequently little or no improvement in the quality of the generated answers.

To mitigate this problem, we assume access to an external corpus D = {d1, d2, . . . , dN}. We further
assume that the knowledge required to answer the question can be found in the document corpus.
In the following, we will first review the RALM pipeline, which serves as a baseline framework for
incorporating external knowledge into the generation process.

Retrieval augmented generation (RAG). In RAG, a retriever model gϕ(·|x), parametrized by ϕ,
is employed to select a subset of documents D∗ ⊆ D given the query x. For a detailed survey of
retrieval approaches, we refer the reader to Section 2. The retrieved documents D∗ is then provided,
together with the query x, as input to the generator pθ, which produces an answer by sampling from
the conditional distribution

ã ∼ pθ(·|x,D∗).

When D∗ contains the supporting evidence, the distribution is expected to generate answers of higher
quality compared to the distribution conditioned solely on x.

However, retrieving documents that are genuinely helpful for generation remains challenging. Since
most retrieval methods are optimized for semantic similarity rather than generation task, they may
return documents that are topically related yet uninformative for answering the query, with their
actual contribution to generation becoming apparent only after being processed by the generator.
This limitation is exacerbated when fine-tuning the language model, as minimizing the retrieval-
augmented QA loss

LRAG
QA (θ) = −

∑
i

log pθ(ai|xi,D∗)

depends critically on the quality of the retrieved documents. When performance fails to improve, it
becomes unclear whether the bottleneck arises from the quality of the retrieved documents or from
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the generator’s ability to effectively utilize them during answer generation. While some studies have
proposed joint training strategies that simultaneously optimize retriever parameter ϕ and generator
parameter θ, the two components maintain fully independent hidden representations, with no pa-
rameter sharing or representational alignment. Consequently, even when optimized together, the
training process fails to capture or exploit the inherent relatedness between retrieval and generation,
thereby limiting the potential gains from joint learning.

4 METHODOLOGY

4.1 HIERARCHICAL SEMANTIC IDS

We apply the idea first proposed in (Wang et al., 2022c) to label the document with hierarchical
docids. Specifically, this method assigns each document a structured semantic identifier (docID) that
reflects its position within a tree of semantic clusters. Specifically, documents are first embedded
into vector representations using a pretrained encoder such as BERT. These embeddings are then
clustered using the k-means algorithm. If a cluster contains more than a predefined threshold c of
documents, k-means is applied recursively to produce finer-grained clusters. This process continues
until every leaf node contains at most c documents.

This hierarchical id exhibits two notable properties that are important for our design. First, doc-
uments with longer common prefixes in their semantic identifiers tend to be semantically similar.
This means that the identifier structure encodes coarse-to-fine semantic relationships: documents
grouped under the same high-level cluster share the initial segments of their identifiers, while finer
distinctions emerge in later segments. As a result, the model can leverage this structure to better
locate and discriminate between relevant documents based on shared semantics.

Second, the semantic identifiers can be generated in an autoregressive manner. Specifically, given a
document identifier id = [i1, i2, . . . , im], we can apply an autoregressive retriever model gϕ(·|x) to
generate its docids, to predict the sequence of indices one step at a time, conditioned on the query x
and the previously predicted indices. To train the model, we minimize a retrieval loss similar to the
supervised fine-tuning loss used in question answering (3.1), by minimizing the following retrieval
loss:

Lretriever(ϕ) = −E
[ m∑

j=1

log gϕ
(
ij | x, i[1:j−1]

)]
. (4.1)

The structural similarity between Equation (3.1) and Equation (4.1) motivates our design to unify
retrieval and generation into a single language model, streamlining both stages under a shared archi-
tecture and training objective.

4.2 UNIFYING RETRIEVAL AND GENERATION WITH A SINGLE LLM

Our approach draws on the parallel between generative retrieval and autoregressive generation in
large language models (LLMs). We begin with a standard decoder-only Transformer architecture,
where hidden representations are iteratively updated using self-attention and feedforward layers
across multiple layers. Each layer processes hidden states H = [h1, . . . ,hT ] ∈ RT×d through a
self-attention mechanism, followed by a gated feedforward network, allowing the model to capture
contextual dependencies and non-linear interactions.

In the standard self-attention mechanism, each token in the sequence is projected into query (Q),
key (K), and value (V ) vectors using learned linear projections, i.e.,

Q = HWQ,K = HWK ,V = HWV ,

where HQ,HK ,HV are the learned projection parameters. These projections allow the model to
compute similarity scores between queries and keys, which are then used to weight the values and
produce context-aware representations. This self-attention mechanism, defined as:

Attn(H) = softmax

(
QK⊤
√
dk

)
V,
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serves as the core operation for computing contextualized representations by dynamically weighting
token-to-token interactions, thereby enabling the model to capture both local and global dependen-
cies across the sequence.

When extending language models to perform document retrieval, the conventional attention heads,
originally optimized for natural language generation, may lack the inductive bias and represen-
tational capacity necessary to distinguish useful documents from irrelevant ones. This limitation
arises because generation-focused queries are trained to capture linguistic fluency and token de-
pendencies, rather than evidence relevance. Nonetheless, retrieval and generation typically share
a common input prefix, the question. The semantic understanding of the question is encoded into
key and value representations, forming a latent memory stored in the attention cache and reused
across all heads. Although these key-value (KV) pairs are designed to support next-token predic-
tion for question answering, they also contain rich semantic information that can be repurposed for
document selection.

Hidden_states

K,V Projection Q ProjectionQ' Projection

H' H

Transformers
Block

Figure 2: Transformer block design for unified re-
trieval and generation. Left stream for retrieval.
Right stream for the original generation.

To make use of the shared query understand-
ing stored in the attention, we introduce a ded-
icated retrieval pathway within the transformer
architecture by adding a separate set of query
projection heads specifically designed for doc-
ument selection. The retrieval-specific projec-
tion, denoted by W′

Q, produce a new set of
queries Q′ = HW′

Q from the hidden repre-
sentations H. Unlike the standard query pro-
jections used for generation—which prioritize
syntactic fluency—these retrieval queries are
optimized to evaluate semantic relevance be-
tween the query and candidate documents. Im-
portantly, Q′ interacts with the same key–value
(KV) pairs, K = HWK and V = HWV , as in
the main attention stream. These KV pairs en-
code the shared semantic information extracted
from the input prefix (the query), serving as a
latent memory available to all heads. The re-
trieval attention is computed as:

Attn′(H) = softmax

(
Q′K

⊤
√
dk

)
V.

To further process the retrieval-specific atten-
tion output, we introduce an additional MLP layer that mirrors the standard feedforward network
used in Transformer blocks. Rather than feeding this into the same MLP used for generation, we
apply an additional retrieval-specific MLP, defined as:

H′
out = MLP′(Attn′(H)).

For comparison, the standard generative path proceeds as:
Hout = MLP(Attn(H)).

This design decouples the computation paths for generation and retrieval, allowing the retrieval-
specific MLP to specialize in evaluating document relevance without interfering with generation
fluency. After processing, the retrieval-enhanced output is integrated back into the main hidden state
stream via a residual connection:

Hout = Hout +H′
out. (4.2)

Finally, we introduce a decoder head that projects the final hidden states into a vocabulary space tai-
lored for document identifiers. This projection produces logits over the docid token space, enabling
the model to autoregressively generate semantic document identifiers. With this addition, our frame-
work equips the original language model with retrieval capabilities, allowing it to perform document
selection through docid generation. Finally, we train the new added parameters by optimizing

Lretriever(ϕ) = −E
[ m∑

j=1

log p1θ,ϕ
(
ij | x, i[1:j−1]

)]
, (4.3)
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Here, θ denotes the parameters of the original language model, while ϕ represents the newly intro-
duced parameters for the retrieval component. We distinguish between two output modes depending
on whether retrieval is active. In the first output mode, denoted as p1θ,ϕ, the model generates docu-
ment identifiers from the docid vocabulary space. During the pretraining of ϕ, we freeze θ, ensuring
that the retrieval module learns independently without degrading the generation ability of the base
language model. When the residual connection in (4.2) is blocked, the system operates solely as
a generator, behaving identically to the original language model. However, when (4.2) is enabled,
the system transitions into the second output mode, denoted as p2θ,ϕ, where document retrieval and
answer generation are combined. In this case, the retrieved documents can be incorporated into the
generation process, enabling the model to produce answers that are both contextually grounded and
faithful to the retrieved evidence.

4.3 JOINT PROCESS WITH CROSS ATTENTION

In the previous section, we have described our unified framework for retrieval and generation: the
model performs retrieval when the residual path in Equation (4.2) is active, and generation when
this path is blocked. However, even under this unified setting, the two components—retrieval and
generation—operate in parallel, without direct interaction. This limits the ability of the generation
process to dynamically leverage evidence surfaced during retrieval. To more tightly couple the two,
we introduce a cross-attention layer that explicitly bridges their hidden states. To be more specific,
we consider

Hout = Hout +H′
out + CrossAttention(Hout,H

′
out), (4.4)

where the cross attention function is defined as:

CrossAttention(Hout,H
′
out) = softmax

(
Q′

outKout
⊤

√
dk

)
Vout,

with Q′
out = H′

outW
Q
out, Kout = HoutW

K
out, Vout = HoutW

V
out. This design provides a direct

communication channel between the retrieval-enhanced representations and the generation stream.
Unlike independent processing, the retrieval pathway contributes relevance-aware signals that guide
generation, and generation in turn reinforces which aspects of retrieval are most useful. This mutual
interaction forms a tight bridge between the two processes, enabling the model to more effectively
ground its responses in selected documents without losing fluency.

4.4 END-TO-END JOINT TRAINING

With all the structural designs described above, we are now able to conduct end-to-end joint training
of the complete retrieval–generation system. In a complete single training step, the model first
performs a forward pass through the retriever to select the document identifiers most relevant to
the query. By looking up the corresponding document contents, we then concatenate them with
the query and perform a second forward pass through the generator to produce the final answer.
This two-stage design unifies retrieval and generation in a differentiable pipeline, enabling shared
optimization of both components.

Different from prior work, our framework naturally supports two distinct training modes.

Mode 1: When the ground-truth document id id = [i1, i2, . . . , im] is available, we can minimize
the loss incurred by the first forward process, which directly supervises the retriever and generator
jointly from the retriever perspective:

L1
joint(θ, ϕ) = −E

[ m∑
j=1

log p1θ,ϕ
(
aji | x, a

[1:j−1]
i

)]
(4.5)

Mode 2: On the other hand, when explicit document evidence is not available in the training data,
we rely on the retrieval component to propose relevant candidates. In this case, we first sample
document paragraphs using p1θ,ϕ and then evaluate the model directly through the end-to-end QA
generation process. The loss is thus computed with respect to the final answer generation, condi-
tioned on both the query x and the retrieved documents D∗:

L2
joint(θ, ϕ) = −E

[ m∑
j=1

log p2θ,ϕ
(
aji | x,D

∗, a
[1:j−1]
i

)]
. (4.6)
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This formulation ensures that the parameters ϕ, θ are trained not only to approximate ground-truth
docids, but also to optimize for downstream QA performance. In other words, the retriever is re-
warded for selecting documents that lead to better answers under the joint distribution p2θ,ϕ.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

In our experiment, we evaluate our model in commonly used open-QA datasets.

Natural Questions (NQ). The NQ dataset (Kwiatkowski et al., 2019), is built from real,
anonymized, and aggregated queries issued to the Google search engine, paired with corresponding
Wikipedia pages. Each example contains a natural user query along with a human-annotated an-
swer span, which may be either long or short. In our experiments, we leverage the query–document
correspondence data for retrieval warm-up training. For the QA task, we adopt the open-domain
version (NQ-Open) introduced by Lee et al. (2019), where only questions with short-form answers
are retained, and models must retrieve the supporting evidence from the full Wikipedia corpus.

TriviaQA. The TriviaQA dataset (Joshi et al., 2017) is a reading comprehension dataset. The ques-
tions are authored by Trivia enthusiasts, forming natural question–answer pairs. On average, each
question is associated with six supporting evidence documents, which are collected retrospectively
from both Wikipedia and the Web. A single query in TriviaQA may correspond to multiple reference
documents and multiple valid answers.

For the large language model backbone, we select two competitive open-source models for the
generation task: Llama-3.1-8B-Instruct (Dubey et al., 2024) and Qwen3-4B-Instruct-2507 (Yang
et al., 2025). We evaluate these models under three different settings:

• No RAG: The model answers questions without retrieval augmentation.

• Vanilla RAG: Use dense passage retriever (DPR) (Karpukhin et al., 2020) for retrieval.

• Our method: Unify retrieval and generation and do joint training.

In our method, we divide the training pipeline into two different stages.

5.2 TRAINING RETRIEVAL

We begin by conducting a warm-up training stage for the retriever, where we minimize the objective
in (4.5). To represent document identifiers, we reserve a set of special tokens and initialize their em-
beddings by copying from existing token embeddings. In addition, we introduce a retrieval marker
token, <retrieve token>, which signals the start of docid generation. This warm-up phase ensures
that the retriever learns to associate queries with their corresponding documents based on the train-
ing data format, thereby guaranteeing that the retrieved documents are meaningful and relevant. We
close the cross-attention in this stage.

5.3 TRAINING GENERATOR

During generator training, we augment the base model with a LoRA structure (Hu et al., 2022),
enabling parameter-efficient adaptation. In this stage, we jointly optimize the newly introduced
parameters for the retriever, the cross-attention module, and the LoRA components. To preserve
retrieval capability and prevent degradation, we train on a balanced mixture of data from both mode
1 (retrieval-focused) and mode 2 (generation-focused). Consequently, the overall training objec-
tive becomes a weighted combination of the two losses, (4.5) and (4.6). This design is feasible
because the retriever and generator share parameters, allowing both components to reinforce each
other while maintaining consistency across tasks. Moreover, we introduce a generation marker to-
ken, <generates token>, which signals the start of answer generation.
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Table 1: Evaluation of our method on open-QA datasets

Model Method NQ TriviaQA

Llama3.1-8B-Instruct

No RAG 28.8 62.0
Vanilla RAG 47.7 64.1
Our method 51.3 71.9

Qwen3-4B-Instruct

No RAG 29.3 57.5
Vanilla RAG 40.8 47.4
Our method 43.2 47.9

5.4 EXPERIMENT RESULTS

We present our experimental results in Table 1. Overall, the results demonstrate that our method
can be regarded as a more effective retrieval-injection strategy compared with the baselines. The
performance improvement is more pronounced on NQ than on TriviaQA. One possible reason is
that TriviaQA often contains multiple valid answers per query, whereas our training setup only uses
the first annotated answer as the label to reduce computational cost.

6 DISCUSSION

The central idea of this paper is to unify retrieval and generation within a single model, mirroring the
natural way humans consult documents: we recall potential sources, select the most relevant ones,
and integrate them directly into reasoning. We believe that this joint perspective is also theoretically
meaningful from an information-theoretic standpoint. In particular, Xu et al. (2024b) character-
ize large language models as performing latent variable inference. Given a prefix x, a[1:i−1], the
probability of generating the next token ai can be described as

p
(
ai|x, a[i−1]

)
=

∫
Z
p(ai|x, a[1:i−1], z) · p(z|x, a[1:i−1])dz,

where Z is the space of high dimensional concept variable. Given a set of evidence documents D∗,
the probability distribution shifts accordingly, altering both the conditional likelihood of tokens and
the posterior over latent concepts:

p
(
ai|x,D∗, a[i−1]

)
=

∫
Z
p(ai|x,D∗, a[1:i−1], z)︸ ︷︷ ︸

I1

· p(z|x,D∗, a[1:i−1])︸ ︷︷ ︸
I2

dz.

Following Xu et al. (2024b), using the Bayesian formula, we can represent I2 as

I2 ∝ p(D∗, a[1:i−1]|x, z)︸ ︷︷ ︸
I3

·p(z|x).

Therefore, with some further analysis, Xu et al. (2024b) explained the benefit and detriment of re-
trieval augmented generation as distribution completion and distribution contradiction. We extend
this view by analyzing how end-to-end training can optimize these distributions with data. In partic-
ular, we assume that p(z|x) remains fixed, as it is primarily determined during large-scale pretrain-
ing and reflects the intrinsic concept distribution given the input. Consequently, the optimization in
downstream tasks focuses on the shifted terms. Specifically, I1 captures the probability of generat-
ing the correct answer conditioned on both the evidence and the latent concept, while I2 governs the
ability to retrieve appropriate documents by shaping the posterior over concepts. This aligns with
our intuition that it is preferable to let the language model select the supporting documents by itself
as the retrieval process becomes an internal component of the model’s inference.
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REPRODUCIBILITY STATEMENT

In Section 4, we provide a detailed description of the model architecture used in this paper. Addi-
tional implementation and experimental details can be found in Appendix A.

ETHICS STATEMENT

In this paper, we employ large language models (LLMs) to address standard open-domain question
answering (QA) tasks. All documents used are drawn from widely adopted benchmark datasets,
primarily consisting of Wikipedia articles and other reputable web sources. During the training
process, the LLM does not produce any harmful content, including discriminatory, biased, or unfair
outputs. As a result, this work does not raise any ethical concerns related to data usage or model
behavior.
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A EXPERIMENT DETAILS

For the doc-id generation, we directly follow the construction of Wang et al. (2022c). In the model
architecture, we incorporate four additional query heads, denoted as Q′, in the attention block of
each layer.

For the retrieval training phase, the model is trained on 8 NVIDIA A100 GPUs, each with 80 GB
of memory, and the process takes approximately 4 hours. The learning rate is set to 2 × 10−4. In
contrast, the generation training phase is more computationally intensive, requiring around 8 hours
on the same hardware configuration. A smaller learning rate of 1 × 10−5 is used to ensure stable
fine-tuning of the generator module.

To assess the performance of our system, we evaluate whether any of the gold answers is
found within the generated output. Since in our methods, we do not apply complicated
prompts, but a single token for the task identification, we utilize a basic input template that
explicitly separates the query and retrieved context for fairness. The format is as follows:“Q:
{query}\n\nContext:\n{context}A:”.
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B THE USE OF LARGE LANGUAGE MODELS (LLM)

We leverage large language models (LLMs) to structure our ideas and assist in writing logically
organized and coherent paragraphs.
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