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Abstract
Large Language Models (LLMs) are increasingly
being used for medical advice by patients and
healthcare providers. These models capture knowl-
edge from their training data, which consists of vast
medical corpora. However, they lack the ability to
use this knowledge to causally reason about the un-
derlying physiological processes. Moreover, they
are unable to deal with uncertainty, generating re-
sponses that are confidently presented yet factually
incorrect. Acting on such factually incorrect medi-
cal advice can be dangerous. Mitigating these risks
requires rethinking the role of LLMs in medicine.
In this work, we present an evaluation scheme for
LLMs in three roles: direct clinical decision sup-
port, exact medical knowledge base, and approx-
imate medical knowledge base. We evaluate six
LLMs on two clinical studies, in obstetrics and pe-
diatric critical care, respectively. Our results indi-
cate that LLMs are much better suited to the ap-
proximate knowledge base role. Based on these
observations, we request caution when directly em-
ploying LLMs in safety-critical domains such as
medicine.

1 Introduction
Large language models (LLMs), such as Generative Pre-
trained Transformer (GPT) and Gemini, have generated sig-
nificant interest in their potential to assist or even replace
aspects of medical practice, with speculation regarding their
ability to generate differential diagnoses and treatment plans
and especially to reduce administrative burdens [McCoy et
al., 2024a]. Indeed, internal medicine residents already per-
ceive a current and future role for LLMs in medicine and
use these tools in professional settings, often without for-
mal guidance [Fried et al., 2024]. Moreover, patients are
increasingly using LLMs to obtain medical advice [Kohane,
2024]. However, despite the compelling fluency of LLM-
generated text, LLMs cannot reason [Zečević et al., 2023;
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Kambhampati, 2024]. Rather, LLMs are designed to mimic
human utterances by identifying linguistic patterns from large
corpora; they lack an explicit logical or causal reasoner, a
stark contrast to the way clinicians manage patients.

Medical practice is fundamentally rooted in sophisticated
cognitive processes, and especially causal reasoning [Kuipers
and Kassirer, 1984]. Clinicians develop causal models to
understand physiological mechanisms, evaluate hypotheses,
construct explanations, and devise physiological interven-
tions. Such causal concepts are very challenging for LLMs;
they struggle to perform reasoning tasks not represented in
their training data, such as simple math problems involving
infrequently used numbers [Yasaman et al., 2022]. In prac-
tice, this results in “hallucinations” or “confabulations”: co-
herent and confident yet factually incorrect statements; these
are particularly dangerous in a medical context where ac-
curacy is critical. In one report soliciting advice from an
LLM to manage a serious infection, the LLM suggested dan-
gerously incorrect management plans contradicting clinical
guidelines [Schwartz et al., 2024]. The persuasive nature of
LLM outputs can also exploit human automation bias, po-
tentially leading clinicians to over-rely on machine sugges-
tions and make errors. Moreover, inserting factually incorrect
text directly into medical records could diminish the quality
of information, impede clinical reasoning, and even hinder
the development of future AI tools [McCoy et al., 2024a].
Given these substantial risks and limitations in areas critical
for causal reasoning, it is dangerous and unethical to rely on
current LLMs to diagnose and manage human disease. How-
ever, it is likely that less ambitious tasks may be assigned to
LLMs to aid in medical practice and clinical decision support.

To this effect, we evaluate the efficacy of pretrained LLMs
as approximate sources of causal knowledge, focusing on
two clinical studies in obstetrics and pediatric critical care.
Specifically, we propose a three-stage evaluation scheme for
such systems, consisting of pairwise question answering, full
causal graph construction, and the refinability of the con-
structed causal graph. Our evaluation shows that while LLMs
struggle to answer causal questions, their answers can be used
as initial hypotheses to construct models more amenable to
causal reasoning, such as Causal Bayesian Networks.



2 Background
2.1 Large Language Models
Large Language Models (LLMs [Minaee et al., 2024]) are a
class of generative models that represent the probability dis-
tribution over natural language text using neural networks,
typically based on the transformer architecture [Vaswani et
al., 2017]. They are distinguished from other language mod-
els, such as Hidden Markov Models (HMMs [Rabiner and
Juang, 1986]), by their unprecedented scale, with some of the
largest models boasting hundreds of billions of trainable pa-
rameters. This large size allows them to capture intricate sta-
tistical patterns from large corpora of natural language text.

LLMs can be categorized into encoder-only, decoder-only,
and encoder-decoder models. Of these, decoder-only mod-
els have demonstrated impressive capabilities across a wide
range of natural language processing tasks. These models
process text in one direction, modeling its probability au-
toregressively, that is, the probability of each word is con-
ditioned on all the words before it. This autoregressive struc-
ture allows decoder-only LLMs to be efficiently trained on
vast amounts of unlabeled text through simple tasks such as
next-word prediction, allowing them to generate highly real-
istic text. As a result, decoder-only LLMs, including models
fine-tuned on medical data, demonstrate impressive perfor-
mance on medical benchmarks such as question answering,
clinical note summarization, patient report generation, and
diagnostic reasoning [Luo et al., 2022; Singhal et al., 2025;
Schwartz et al., 2024].

While LLMs can generate clinically relevant and accurate
text that mimics causal reasoning, they do not perform true
causal inference. As Zečević et al. (2023) note, LLMs rely on
statistical correlations rather than causal understanding, mak-
ing them prone to blending genuine causal relationships with
spurious associations. Moreover, the decoder-only architec-
ture makes them inherently stochastic and prone to cascading
errors [McCoy et al., 2024b; Holtzman et al., 2019]. These
limitations – an inability to reason, stochasticity, and cas-
cading errors – result in these models generating confident-
sounding yet factually incorrect text, especially about topics
less represented in training data. This phenomenon is re-
ferred to as a hallucination or a confabulation. Since con-
fabulations are the result of inherent limitations of decoder-
only LLMs, commonly used mitigation strategies such as
Retrieval-Augmented Generation (RAG, Lewis et al. [2020])
are inadequate; they may even result in unsafe text genera-
tion [An et al., 2025].

2.2 AI-in-the-loop
LLM use in medicine can be analyzed by characterizing
the nature of human-AI interaction. Since clinical prac-
tice requires the human clinician to be the primary decision-
maker [Chin-Yee and Upshur, 2018], it is an example of an
AI-in-the-loop domain [Natarajan et al., 2025]. Here, the AI
system’s role is to support the clinician by providing them
with accurate and actionable information. The efficacy of
such a system depends on its ability to improve the clinician’s
decision-making, such as by alleviating their cognitive load
by automating mechanical aspects of clinical reasoning.

However, LLM use in medicine can potentially deviate
from the AI-in-the-loop paradigm. Fig. 1 depicts this de-
viation. Clinicians could treat LLMs as an expert system,
asking them questions that typically require causal inference.
Since LLMs are unable to reason, stochastic, and prone to
generating erroneous output, the human clinician would need
to validate the LLM-generated answers, increasing their bur-
den [Karabacak and Margetis, 2023]. Moreover, since the
erroneous output is often confidently phrased, there is a dis-
tinct possibility that clinicians under pressure might miss one
or more errors, which might carry over in their ultimate deci-
sion. Mitigating these risks requires a fundamental rethinking
of the role LLMs might play in clinical decision support.

2.3 Causal Bayesian Networks
LLMs can be contrasted with another class of gen-
erative models called Causal Bayesian Networks
(CBNs, Pearl [2009]); unlike LLMs, CBNs are inter-
pretable, amenable to causal reasoning, and naturally deal
with uncertainty, satisfying the desiderata for AI-in-the-loop
in medicine. CBNs are closely related to causal diagrams,
which clinicians have used for causal reasoning [Kuipers and
Kassirer, 1984].

CBNs are a subclass of Bayesian Networks (BNs). BNs
represent the joint probability distribution over a set of vari-
ables by factorizing it over a directed acyclic graph (DAG).
This DAG consists of nodes corresponding to each variable;
each directed edge between two variables denotes direct influ-
ence. If the edges also denote direct causal relationships, then
the BN is considered a CBN. In a CBN, each edge X → Y
means that X is a cause of Y . These causal edges can be in-
terpreted interventionally: intervening on the component cor-
responding to X should change the distribution over Y . Such
targeted interventions might not be reasonable in some cases,
such as when modeling the effect of the Family history of a
medical condition; in such cases, the edges can be interpreted
historically or etiologically [Glymour and Glymour, 2014].

CBNs can be constructed by eliciting them from domain
experts or clinical guidelines such as the Quick Medical Ref-
erence (QMR Shwe and others [1991]). This approach falls
short when modeling medical conditions that are less well-
understood, such as rare diseases and conditions involving
complex causal relationships. As a result, considerable re-
search has been performed to devise ways to generate causal
graphs from observational data [Guo et al., 2020].

Data-driven causal discovery methods typically use large
amounts of data to exclude non-causal edges and rely on
several assumptions to decide the causal direction of the re-
maining edges; examples of such methods include Peter-
Clark (PC, Spirtes et al. [2000]), Greedy Equivalence Search
(GES, Koller and Friedman [2009]), and Fast Causal Infer-
ence (FCI, Spirtes et al. [2000]). The assumptions used by
these methods include the causal Markov condition, which
states that each variable is independent of its non-effects
(non-descendants) given its direct causes; faithfulness, which
states that any conditional independencies in the data arise
from the structure of the causal graph itself; and causal suf-
ficiency, which requires all common causes of observed vari-
ables to be included in the dataset.



Perception Subsystem  
Human perception primarily processes data 

AI Perception is secondary

Inference Subsystem 
Clinician prompts the LLM

LLM response contains errors

Action Subsystem
Errors carry over into the Clinician's 

the ultimate decision

Decisions

LLMs in medicine

Environment

LLM Clinician

Perception Subsystem  
Human perception primarily processes data 

AI Perception is secondary

Inference Subsystem 
Human drives the  inference 

AI Inference assists  
  with supplementary insights

Action Subsystem
Human  makes the ultimate decision

Decisions

AI In The Loop

Environment

AI
Systems Human

Figure 1: In AI-in-the-loop domains (left), humans must make the ultimate decisions, while AI systems assist with perception, inference, and
action. The fluency of LLM-generated text blurs the lines between AI assistance and human decision-making. As a result, using LLMs as
AI-in-the-loop systems in medicine (right) risks introducing new errors to clinical practice. In response to a difficult query, the LLM might
generate confident-sounding text with errors that the human clinician might fail to catch, carrying them over in their final decision.

Data-driven causal discovery in medicine is challenging.
First, the complex dynamics underlying medical domains
make it difficult to make assumptions like causal suffi-
ciency without expert knowledge. Second, human physiol-
ogy is naturally cyclic, while causal graphs represent acyclic
relationships [Claassen et al., 2021]. This requires the
causal modeling domain and its variables to be carefully de-
signed. Finally, expensive data annotation, the temporal na-
ture of the data, missingness of variables due to data col-
lection issues further complicate data-driven causal discov-
ery in medicine [Sanchez et al., 2022; Kitson et al., 2023;
Zanga et al., 2022]. CBN construction in medical domains
requires a hybrid approach, combining expert domain knowl-
edge with empirical patterns.

2.4 Theory Refinement
Theory refinement is one such hybrid method that com-
bines expert knowledge with data-driven learning. In it, an
expert-specified model is refined to better fit empirical evi-
dence [Mooney and Shavlik, 2021]. This method has been
used to improve the structure of BNs derived from incom-
plete or imperfect domain knowledge [Buntine, 1991], such
as LLM output [Mathur et al., 2024; Mathur et al., 2025].
Refining a BN involves adding, removing, or reversing edges
from it to maximize a score measuring the empirical va-
lidity of the relationships between variables. Commonly
used scores include Bayesian-Dirichlet (BD, Heckerman et
al. [1995]) and the Minimal Description Length (MDL, Lam
and Bacchus [1993]) scores. The MDL score has been used in
causal discovery since it approximates the Kolmogorov com-
plexity of the causal graph [Janzing and Schölkopf, 2010;
Mian et al., 2023]. It consist of two components — the log-
likelihood of the data under the CBN (L(M,D)) and the de-
scription length cost of the CBN (Cost(M)), Score(M) =

L(M,D)− Cost(M).

3 Assessment of LLMs for Causal Reasoning
LLMs excel at capturing statistical patterns from large
amounts of textual data, allowing them to synthesize highly
coherent text and achieve impressive performance on medical
benchmarks. This has generated significant interest in using
them for clinical decision support, as AI-in-the-loop. How-
ever, these models are stochastic and lack a reasoner, mak-
ing their responses a blend of accurate and inaccurate infor-
mation. We aim to empirically evaluate the performance of
models on real-world medical domains.

3.1 Data sets
We consider two medical domains: nuMoM2b and PEL-
ICAN. nuMoM2b is an obstetrics domain, based on a
study that aims to understand Adverse Pregnancy Outcomes
(APOs) in nulliparous subjects (first-time mothers). APOs
are common, affecting 15% of U.S. pregnancies, and the
study covers a time scale of 8 to 9 months. In contrast, PEL-
ICAN is based on a pediatric critical care study that aims to
understand neurological injury in pediatric subjects supported
by Extracorporeal Membrane Oxygenation (ECMO). This
condition is extremely rare, and the study deals with a much
shorter period, encompassing the duration during which the
patient was on life support (less than one month). The dataset
size for PELICAN is considerably smaller, with only 71 sub-
jects, and existing research on neurological injury in pediatric
patients on ECMO is less abundant, with 34,000 results on
Google Scholar, 80 times fewer results than APOs. Table 1
summarizes the differences between the two domains, and ta-
bles 3 and 2 summarize the specific variables considered for
our evaluation. These variables were selected by our domain
experts.



nuMoM2b PELICAN
Subfield Obstetrics Pediatric Critical Care
Time scale 8 to 9 months < 1 month
Condition(s) considered Adverse pregnancy outcomes Neurological injury on life support
Rarity of condition(s) Common (15% of US pregnancies) Extremely rare (20% out of < 2500

cases a year in the US)
Existing research 2.7M results on google scholar 34k results on google scholar
Subject inclusion criteria First-time mothers (Nulliparous) with-

out pregestational diabetes
Pediatric patients supported by ECMO,
but not having congenital heart disease

Average age of subjects 27.79 years 4.32 years
Risk factors Demographics, existing conditions,

family history, and lifestyle factors
recorded at start of pregnancy

Abnormal events identified from high-
frequency physiological measurements
and laboratory test results up to 24
hours on ECMO

Data set size 3,856 71

Table 1: Comparison of the two medical domains and the corresponding subsets considered in this work

Variable Value % subjects
Age ≤ 21 15.9%

21-35 77.0%
> 35 7.0%

BMI ≤ 18 1.3%
18-25 54.1%
> 25 44.6%

Race Non-Hispanic Asian 4.2%
Non-Hispanic Black 11.2%
Non-Hispanic White 67.8%
Hispanic 12.3%
Others 4.43%

DiabHist TRUE 20.7%
HTNHist TRUE 45.4%
HiBP TRUE 2.7%
PCOS TRUE 4.8%
METS TRUE 66.1%
Smoking TRUE 14.9%
PReEc TRUE 5.9%
NewHTN TRUE 17.7%
PTB TRUE 7.7%
GDM TRUE 3.8%
Total 3,856

Table 2: Risk Factors and Outcomes for nuMoM2b. We con-
sider four adverse outcomes: Preeclampsia (PReEc), New Hyperten-
sion (NewHTN), Gestational Diabetes Mellitus (GDM), and Preterm
Birth (PTB). For these adverse outcomes, we consider nine risk fac-
tors: Age, Body Mass Index (BMI), Race, Family History of Dia-
betes and Hypertension (DiabHist and HTNHist, respectively), Hy-
pertension (HiBP), Polycystic Ovary Syndrome (PCOS), physical
activity measured in Metabolic Equivalents of Time (METs), and
Smoking in the three months before start of pregnancy.

3.2 Evaluation scheme
To empirically assess each LLM’s performance on these
real-world medical domains, we use a three-stage evaluation
scheme. First, to assess the LLM’s ability to answer direct
causal questions, we prompt it with queries about every pair

Variable Value % subjects
HighVIS TRUE 21.1%
Hypotension TRUE 23.9%
Hypertension TRUE 4.2%
LowPlatelet TRUE 32.4%
HighLactate TRUE 59.2%
LowpH TRUE 9.86%
RelativepCO2 TRUE 29.6%
NeurologicalInjury TRUE 23.9%
Total 71

Table 3: Risk Factors and Outcomes for PELICAN. We consider
the adverse outcome of Neurological Injury. We consider seven of its
risk factors: High Vasoactive-inotropic score (HighVIS), Hypoten-
sion, Hypertension, Low Platelets, High Lactate, Low pH, as well as
the high relative change of pCO2 24 hours post-canulation, as com-
pared to pre-canulation levels.

of variables. We use their answers to construct a causal graph
and evaluate this graph. For the second stage, we evaluate the
LLM as a knowledge source and prompt it to construct a full
causal graph from the given list of variables. Finally, the third
stage evaluates the LLM as an approximate knowledge
source , focusing on the refinability of the LLM-constructed
causal graph. Here, we combine the LLM-generated graph
with indirect expert knowledge like anticausal relations based
on temporal order, and refine it using empirical data to further
eliminate incorrect edges. We evaluate this refined graph.

Each of these graphs is compared against graphs con-
structed by our domain experts. Since both domains are being
actively researched, these expert graphs do not fully capture
all the causal relationships, but they do capture known causal
relationships, to the best of our experts’ knowledge.

3.3 Metrics
We evaluate the structure of causal Bayesian networks
(CBNs) by comparing them against expert-provided causal
graphs. To quantify the difference, we use three metrics:
Structural Hamming Distance (SHD [Acid and De Campos,



Extracorporeal Membrane
Oxygenation, or ECMO for short, is
an advanced therapy that is
sometimes used to work the heart
and lungs when a patient’s organs
are too sick or weak to work on
their own. It is effectively a
modified heart-lung bypass
machine-a machine that takes over
heart and lung function (meaning it
adds oxygen to and removes carbon
dioxide from a patient’s blood
supply).
For such patients, is there a
causal edge from LowMAP to HighMAP?
Here, LowMAP is hypotension in the
first 24 hours of the ECMO run, and
HighMAP is hypertension in the
first 24 hours of the ECMO run.
Provide the answer as a single
word, Yes or No (with No also for
cases when the answer is unknown).

## Setup
You are a knowledge engineer working on a study
on mitigating the risk of Adverse Pregnancy
Outcomes (APOs). Think carefully and
logically, explaining the reasons for your
answer.
## Available Information
Your team has collected variables representing
clinical and demographic information. The
study data is collected on Nulliparous women
and consists of variables representing clinical
and demographic features that might influence
the risk of Adverse Pregnancy outcomes. The
variables being considered are as follows:
{Variable Descriptions}
## Task
Make a list of direct causal relations between
these variables and explain the rationale
behind each decision. Please provide the
answers in the format: Variable 1 -> Variable
2, followed by an explanation on a different
line.

Figure 2: Prompts used for pairwise (left) and full causal graph elicitation (right) for PELICAN and nuMoM2b, respectively

2003]), Structural Intervention Distance (SID [Peters and
Bühlmann, 2015]), and the number of spurious edges (SE).
SHD quantifies the number of edge additions, deletions, or
reversals needed to convert the learned graph into the true
graph. SID captures the number of incorrect inferences a
learned graph makes about intervention effects compared to
the true causal model. Finally, SE refers to the edges present
in the learned graph but not in the true graph.

4 Results of Empirical Evaluation
We now present the results of our empirical investigation1 and
try to answer the following questions

1. How do LLMs perform as causal question answering
systems?

2. How do LLMs perform as exact knowledge bases?
3. How do LLMs perform as approximate knowledge

bases?
We evaluate our results using 10 bootstrap samples for each
dataset. To construct each LLM’s representative causal graph,
the model was prompted five times with the same full prompt
for the full-graph generation. For the question-based graph
construction, each question was similarly posed five times.
These responses were aggregated to construct a DAG, adding
edges in decreasing order of frequency across the five runs,
excluding any edge that would introduce a cycle. Ties in edge
frequency were resolved lexicographically based on the name
of the source node.

1Please refer to the supplementary material for additional
details of the experimental setup, including data preprocess-
ing, LLM prompts, and responses: https://github.com/s-ranveer/
LLM-Causal-Medicine-Eval

Results are presented in Table 5 for six LLMs: Claude [An-
thropic, 2023], DeepSeek [Liu et al., 2024], Gemini [Team
et al., 2023], GPT-4o [OpenAI, 2025], LLaMA [Touvron et
al., 2023], and the LLM fine-tuned on medical text, Open-
BioLLM [Liu et al., 2025]. For the data-only baselines, we
consider the constraint-based Peter-Clark (PC) algorithm that
starts with a fully connected undirected graph and uses sta-
tistical independence tests to remove or orient edges. Ad-
ditionally, we consider the score-based Greedy Search and
Score (GSS) algorithm, which is based on Greedy Equiva-
lence Search (GES), where we evaluate graph structures by
optimizing a score function such as the Bayesian Information
Criterion (BIC). Finally, we consider Fast Causal Inference
(FCI), which is designed to handle latent confounders and
learn causal features that remain consistent across all graphs
in an equivalence class.

4.1 LLMs for Causal Question Answering
To evaluate whether LLMs can be used for causal reasoning
in obstetrics and pediatric critical care, we posed questions
about the causal relationships between pairs of variables to
the LLMs using the prompt illustrated in Figure 2 (left). The
LLM responses were then compared to an expert-constructed
causal graph. Table 5 (middle and bottom) presents the ex-
perimental results.

Both domains present unique challenges to the LLMs. For
pediatric critical care, the limited availability of relevant lit-
erature on ECMO likely restricts the LLM’s ability to iden-
tify accurate causal relationships from its training data. Con-
versely, the obstetrics domain has a lot more literature, but it
involves a significantly larger number of variables. As a re-
sult, asking pairwise causal questions without sufficient con-
textual information results in spurious associations, driven by

https://github.com/s-ranveer/LLM-Causal-Medicine-Eval
https://github.com/s-ranveer/LLM-Causal-Medicine-Eval


Domain LLM Deleted/Total
Pairwise Full

PELICAN

Claude 0/4 2/13
Deepseek 1/13 3/17
Gemini 13/35 2/17
GPT 4o 1/10 1/11
LLaMA 20/46 7/25
OpenBioLLM 17/43 1/9

nuMoM2b

Claude 1/18 0/32
Deepseek 0/27 0/31
Gemini 0/40 0/34
GPT 4o 1/37 0/25
LLaMA 32/95 1/32
OpenBioLLM 39/99 2/43

Table 4: The number of edges deleted to eliminate cycles during
causal graph construction, for both prompt types and across both
domains.

hidden confounders. This issue is evident in the pairwise
results for both domains, where the performance is close to
purely data-driven baselines. The best-performing models in
these scenarios tend to be those that responded more conser-
vatively, affirming fewer causal relationships like Claude and
Deepseek, as seen in table 4, resulting in lower SHD, SID,
and SE values.

Additionally, the prompt responses often exhibit incon-
sistencies in determining the direction of causal relation-
ships between variable pairs. When asked using the pair-
wise prompt format, LLMs frequently respond affirmatively
to both directions—i.e., A → B and B → A—thereby in-
troducing cycles. This can be seen in Table 4, which presents
the number of edges deleted to enforce acyclicity for each
case. Therefore, LLMs by themselves perform poorly as ca-
sual question answering systems.

4.2 LLMs as Exact Knowledge Bases

To evaluate the potential of LLMs as medical knowledge
bases, we provided each model with a prompt for one-shot
full causal graph construction, including the domain descrip-
tion, variable definitions, and the overall task description. As
in the pairwise evaluation, the generated graphs were com-
pared against expert-established causal structures. Table 5
(middle and bottom) presents the results of full causal graph
construction in both domains.

While the domain-specific challenges discussed earlier are
not entirely resolved by providing the full set of available
variables, they are significantly mitigated. As a result, LLM
performance improves notably when using the full prompt
compared to pairwise prompting. As in pairwise prompt-
ing, conservative models, such as Claude and DeepSeek, pro-
duced fewer edges, performing better than the other models.

Full prompt-based causal graphs outperform data-driven
causal discovery methods. However, despite these improve-
ments, the number of spurious edges, SHD, and SID remains
too high to fully trust the LLM-generated graphs. Therefore,
while LLMs show promise, they cannot yet be relied upon as
standalone exact medical knowledge bases.

4.3 LLMs as Approximate Knowledge Bases
To evaluate the use of LLMs as approximate knowledge
bases, we refine their outputs using data and indirect domain
knowledge about temporally impossible edges. The refine-
ment procedure deletes edges to maximize the MDL score.
Table 5 (middle and bottom) shows the results after refining
the LLM-generated graphs.

For the pediatric critical care domain, we see a reduction in
the SHD and the number of spurious edges (SE) across most
LLMs in both pairwise and full prompting, with a reduction
in SID for some of the LLMs. However, in the obstetrics
domain, performance improves only for the pairwise prompt.
For the full prompt, only OpenBioLLM shows significant im-
provement, while the others have similar or slightly worse
performance. This indicates the lower refinability of LLM-
generated causal graphs in the obstetrics domain.

Overall, refinement appears to be more effective for the
PELICAN domain than for nuMoM2b. This is likely due
to the relatively limited literature available on pediatric crit-
ical care, which limits the LLM’s exposure during training.
As a result, the model is more prone to generate non-causal
edges that are non-associational, and hence easier to remove
through the refinement process. In contrast, obstetrics is a
well-studied domain with a broad body of research covering
diverse populations. Moreover, obstetrics-related discussions
are more prevalent in public discourse, often drawing from a
mix of high- and low-quality sources. As a result, LLM out-
puts in this domain may include specific causal claims that are
either not credible or not applicable to the nuMoM2b study
population. This can lead to suboptimal refinement, includ-
ing the unintended removal of valid edges from the graph.

Despite these limitations, the graphs constructed from
LLM-responses are more accurate than those discovered from
the limited data using algorithms like GSS, PC, and FCI, as
seen in table 5 (Top). The difference becomes more pro-
nounced after refinement, especially for LLMs that output a
lot of causal edges like OpenBioLLM and LLaMA. There-
fore, LLMs have utility as approximate knowledge sources.

5 Conclusion
We considered LLM use in medical practice. These mod-
els capture intricate statistical patterns from vast medical cor-
pora to generate fluent text, achieving high performance on
medical benchmarks. Indeed, there has been significant in-
terest in their potential to assist or even replace aspects of
medical practice. However, their lack of an explicit causal
reasoner, along with their stochasticity, raises concerns about
their suitability as clinical decision support systems. We pro-
posed an evaluation scheme to evaluate LLMs in three differ-
ent roles in the clinical decision support pipeline. We eval-
uated six LLMs on two medical domains. Our results in-
dicate that while LLMs do capture medical domain knowl-
edge from their training data, they fail to accurately answer
causal questions. LLM-use requires caution, especially in
high-stakes domains like medicine, but these models might
be used as approximate knowledge sources to construct mod-
els more amenable to causal reasoning, like Causal Bayesian
Networks. There are a number of directions for future work.



Baseline PELICAN nuMoM2b
SHD SID SE SHD SID SE

Greedy Search and Score (GSS) 9.5± 1.6 19.2± 4.6 4.2± 1.5 33± 1.5 90± 5.5 10.8± 1.1
Peter and Clarke (PC) 8.5± 1.1 18.7± 4.0 1.2± 1.0 33.7± 1.7 91.9± 7.5 7.5± 2.4
Fast Causal Inference (FCI) 8.0± 0.5 14.9± 0.3 0.1± 0.3 31.8± 1.2 80.6± 4.1 2.3± 1.7

LLM LLM output Subtractive refinement
SHD SID SE SHD SID SE

Pairwise

Claude 6 6 1 6.3 ± 0.5 11.9 ± 1.2 0
DeepSeek 9 7 7 8 ± 1.2 13.4 ± 2.2 1.8 ± 1.1
Gemini 21 8 18 14.3 ± 1.6 11.6 ± 1.6 9 ± 1.5
GPT 4o 9 14 6 6.6 ± 0.9 12.8 ± 1.9 0.4 ± 0.5
LLaMA 24 17 23 14.3 ± 1.4 16.7 ± 3.9 8.7 ± 1.2
OpenBioLLM 23 11 22 14.8 ± 3 14.6 ± 2.5 8.5 ± 2.5

Full

Claude 4 5 4 4.5± 0.7 5± 1.2 4.8± 1.1
DeepSeek 6 0 6 4.8± 0.9 4.2± 1.3 3.2± 0.4
Gemini 9 10 9 5.9± 1.0 6.5± 2.4 3.5± 0.7
GPT 4o 8 15 6 7± 1.0 12± 3.7 1.6± 0.9
LLaMA 14 12 13 8.3± 1.0 7.1± 1.7 5.1± 0.9
OpenBioLLM 9 19 5 7.8± 1.2 14.3± 1.5 0.9± 0.9

LLM LLM output Subtractive refinement
SHD SID SE SHD SID SE

Pairwise

Claude 23 63 6 27.5 ± 0.8 66.9 ± 0.7 4.8 ± 0.6
DeepSeek 23 56 10 22.1 ± 0.7 56.3 ± 1.2 7.5 ± 0.5
Gemini 32 49 21 30 ± 0.5 49.7 ± 1.1 17.6 ± 4.8
GPT 4o 25 45 15 23.8 ± 0.4 41.6 ± 1.8 13.7 ± 0.5
LLaMA 45 52 41 24.6 ± 0.9 37.9 ± 3.3 15.8 ± 1.3
OpenBioLLM 43 35 38 31.8 ± 1.0 26.7 ± 0.6 23.5 ± 0.5

Full

Claude 17 44 9 18.5 ± 0.8 49.5 ± 0.8 8.2 ± 0.6
DeepSeek 21 50 10 22.7 ± 1.3 53.1 ± 1.1 9.3 ± 1.0
Gemini 16 38 9 16.1 ± 0.9 39.2 ± 1.7 8.7 ± 0.6
GPT 4o 20 53 5 21.9 ± 0.8 58.5 ± 3.4 4.1 ± 0.3
LLaMA 26 53 11 26.7 ± 1.5 55.6 ± 1.5 9.6 ± 0.5
OpenBioLLM 32 54 22 26.2 ± 1.0 45 ± 4.4 13.5 ± 0.5

Table 5: Evaluation results comparing graphs constructed by each method to corresponding expert graphs; the difference is quantified in terms
of Structural Hamming Distance (SHD), Structural Interventional Distance (SID), and the number of spurious edges (SE). The tables show
results for the three data-driven baselines on both data sets (top), and the LLM-generated graphs on the PELICAN (middle) and nuMoM2b
(bottom) domains.

First, this evaluation can be expanded to more medical do-
mains. Second, imposing validity constraints on the LLM
responses can improve the quality of LLM-generated graphs.
Finally, multiple LLMs might be combined to create a more
reliable ensemble of approximate knowledge sources.
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man Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
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