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ABSTRACT

We introduce DoReMi (Difficulty-Oriented Reasoning Effort Modeling), a struc-
tured framework leveraging an extended Bloom’s taxonomy to comprehensively
characterize intrinsic problem difficulty for large language models on scientific
reasoning tasks. DoReMi systematically annotates problems along six cognitive
and methodological axes using judge large language models (LLM) distinct from
those being evaluated, with human annotations confirming the validity of these
assessments. We empirically quantify LLM reasoning effort through metrics includ-
ing minimum reasoning tokens required for solution, expected number of attempted
runs to first correct answer. Our validation demonstrates strong agreement across
diverse judge LLMs spanning both open-source and proprietary LLMs. Evalua-
tions on GPQA, ARC, and SuperGPQA reveal that our multidimensional difficulty
fingerprints correlate strongly with and enable accurate predictive modeling of
LLM reasoning effort. DoReMi enables principled difficulty-aware subset selec-
tion that substantially outperforms other baselines while providing interpretable
diagnostics that uncover emergent reasoning capabilities across successive model
generations. This framework offers actionable insights for benchmark design and
targeted post-training improvements toward higher-order reasoning skills.

1 INTRODUCTION

Latest reasoning large language models (LLMs) have demonstrated significant progress in tackling
complex reasoning tasks. However, clearly characterizing their capabilities remains challenging, as
task difficulty often combines several partially overlapping factors including linguistic complexity,
domain-specific knowledge, and the depth of reasoning involved. Consider a partial differential
equation problem: an LLM might present a correct solution either by recalling a known theorem or by
logically deriving the solution from fundamental principles. Both approaches are expressed through
language and rely on familiarity with domain-specific notation, such as distinguishing between x
and x⃗. When conventional benchmarks fold these heterogeneous challenges into a single accuracy
score, they hide which capability—domain knowledge, deductive reasoning, or methodological
complexity—were the real bottlenecks. Even seemingly finer-grained signals, like the accuracies of a
question across a leaderboard packed with hundreds of LLMs, tell us little: most leaderboard entries
are generic non-reasoning models, so their collective failure is like asking a roomful of laypeople
to solve a PhD-level physics question—the near-universal miss reflects the respondents more than
the task. Without a nuanced and principled way to measure difficulty for reasoning LLMs, tracking
progress across model versions becomes inconsistent. New benchmarks risk being quickly saturated
by state-of-the-art LLMs. Applications like curriculum learning or difficulty-aware subset sampling,
which depend on understanding why a question is hard, remain mostly heuristic.

To address these limitations, we propose a structured, multi-dimensional evaluation framework
grounded in educational theory, specifically Bloom’s taxonomy and its extensions Heer (2012). Our
framework systematically annotates each scientific reasoning problem along six complementary axes:
Cognitive Level, Knowledge Dimension, Method Difficulty, Definition Completeness, Knowledge
Breadth, and Number of Reasoning Steps. Although not strictly orthogonal, these dimensions provide
principled, theory-informed handles that expose facets of difficulty invisible to traditional static
metrics such as SMOG, Gunning Fog, and Flesch-Kincaid scores McLaughlin (1969); Scott (2025);
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Figure 1: The performance of different LLMs long three Bloom axes: (a) cognitive level, (b)
knowledge dimension, and (c) method difficulty.

Tanprasert & Kauchak (2021). The resulting interpretable “difficulty fingerprint” explicitly captures
both the what (knowledge and cognition) and the how (methodological effort) necessary to reach a
solution. This approach supports more nuanced performance comparisons across LLMs and helps
evaluate and improve the difficulty of both current and future benchmarks.

One key application of this framework is to reveal unique insights into how intrinsic problem char-
acteristics influence the reasoning effort required by LLMs for scientific problem-solving. Figure 1
highlights three important trends. (i) Cognitive Level: Early-generation reasoning models like
o1-mini exhibit a steep increase in reasoning effort (measured by the expected number of runs to
hit the first correct answer) as cognitive complexity increases, whereas advanced current-generation
models such as gemini-2.5-pro demonstrate remarkable stability, maintaining consistently low
reasoning effort across cognitive levels. (ii) Knowledge Dimension: The first-generation reasoning
model o1-mini and the non-reasoning mode of claude-3.7-sonnet show a clear rise in
error rates as problems require higher-order knowledge dimensions. In contrast, reasoning enabled
(claude-3.7-sonnet-extended-thinking) and other later-generation reasoning LLMs ex-
hibit robust, stable performance or even improved accuracy at the highest (metacognitive) dimension,
suggesting emergent capabilities along the knowledge dimension axis. (iii) Method Difficulty: we
observe improved robustness across successive generations in the same model family as o1-mini
shows a sharp rise in errors from Low to High methodological difficulty, while o3-mini-high
exhibits a more gradual increase and o4-mini-high maintains stable performance from Medium
to High. These diagnostic insights reveal a gradual and dimension-specific emergence of higher-order
reasoning skills. This pattern supports our hypothesis that scaled reinforcement learning (RL) during
post-training may lead to effective transfer of reasoning strategies. It also enables stronger cognitive
generalization across the Bloom-inspired axes. Our paper contributes three primary advancements:

1. Difficulty-Oriented Reasoning Effort Modeling (DoReMi). We introduce a framework to model
difficulty for reasoning-intensive science problems. By correlating structured difficulty metrics
derived from an extended version of Bloom’s taxonomy with empirically measurable proxies of
reasoning effort, such as the minimum reasoning token length (MRT) and expected number of
attempted runs to first correct answer (R2FCA), we establish interpretable, dimension-specific
relationships between intrinsic problem characteristics and LLM reasoning demands. Based
on these insights, we develop and validate predictive models capable of accurately identifying
challenging (“high-effort”) problems across multiple established scientific reasoning benchmarks
such as GPQA Rein et al. (2024), ARC Clark et al. (2018), and SuperGPQA Team et al. (2025).

2. Difficulty-Aware Downstream Applications. Using the predictive capabilities of our DoReMi
framework, we propose difficulty-aware subset selection, which adaptively prioritizes challenging
problems. This helps preserve discriminative evaluation power even as aggregate benchmark
performance saturates due to rapid advances in LLM capabilities. Experiments comparing our
approach against static-difficulty baselines show significant improvements in correctly identifying
truly challenging problems. Furthermore, these difficulty-aware selection strategies could enable
more informed curriculum learning protocols and facilitate targeted benchmark refinement.

3. Interpretable Diagnostics of Reasoning Capabilities. We leverage the fine-grained difficulty
characterizations provided by DoReMi to construct a diagnostic framework for systematically
analyzing reasoning strengths and weaknesses of LLMs. By examining performance stratified
along multiple axes of Bloom’s taxonomy, we uncover distinct patterns in reasoning behaviors
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across generations of models and post-training stages. Our analyses pinpoint precisely how and
where improvements manifest—highlighting emergent capabilities especially along cognitive
and knowledge dimension axes. These gained insights could provide potential guidance on
post-training methodologies to foster higher-order reasoning skills.

2 DESIGN PRINCIPLES

There is currently a lack of precise and reliable measures of intrinsic problem difficulty tailored
specifically to reasoning capabilities. Traditional static metrics, such as readability scores, overlook
cognitive and methodological complexity inherent to reasoning problems.

2.1 ANALOGY AND INTUITION: REASONING EFFORT AS A COGNITIVE BUDGET

We propose to operationalize problem difficulty through explicit, measurable proxies for reasoning
effort, directly mirroring cognitive processes observed in human scientific problem-solving:

Expected Number of Attempted Runs to First Correct Answer (R2FCA) Analogous to a mathe-
matician discarding one proof sketch after another until a promising idea emerges, we measure the
average number of independent attempts an LLM needs before it first produces the correct answer.
This metric reflects both the model’s exploratory persistence and its inherent stochasticity.

Minimum Reasoning Token (MRT) required to solve a problem from multiple sampled solutions,
retaining only the shortest successful one. This is the LLM analogue of a mathematician’s cleanest
proof, capturing the minimal cognitive and computational budget required to solve the problem.

Consider the cognitive process a mathematician undergoes when confronting a challenging theorem.
Typically, they begin by exploring various potential proof strategies—each attempt consuming
significant time, effort, and cognitive resources analogous to iterative ”scratch paper” explorations.
As many explored pathways fail to yield immediate success, repeated exploratory iterations often
become necessary. Thus, if the probability of reaching a correct solution per attempt is low, the
expected number of exploratory attempts scales inversely with this probability. Additionally, even
after identifying a viable strategy, the final formal proof still incurs an inherent cognitive ”cost”—the
minimal sequence of logical reasoning steps (or written tokens) required to rigorously articulate the
solution. In this analogy, our notion of Expected Reasoning Cost (ERC) aligns with:

Expected Reasoning Cost (ERC) ∼ E[R2FCA]︸ ︷︷ ︸
Exploratory Attempts

⊗ MRT︸ ︷︷ ︸
Minimal Solution Transcript

as a combined metric indicated by symbolic ⊗ that jointly captures the iterative exploratory complex-
ity and the minimal cognitive burden to reach a successful solution. Applying this to LLM reasoning
under stochastic sampling, the repeated attempts are like the mathematician’s exploration, and the
generated reasoning tokens represent the cognitive resources used.

2.2 EXTENDED BLOOM’S TAXONOMY

To capture the multifaceted nature of science problem, we extend the original Bloom’s framework
into a six–axis taxonomy. Each axis is annotated directly from the problem statement and reference
solution, yielding a machine-parsable “difficulty fingerprint”.

1. Cognitive Level: Highest Bloom cognitive process required to solve the task: Remember, Under-
stand, Apply, Analyze, Evaluate, or Create. The level is chosen by locating the most demanding
mental operation that a correct solution must exhibit.

2. Knowledge Dimension: Type of knowledge invoked: Factual, Conceptual, Procedural, or
Metacognitive. This axis distinguishes mere recall from methodological know-how and self-
regulation of the reasoning process.

3. Method Difficulty: Degree of methodological novelty (Low, Medium, High). Low denotes routine,
textbook procedures; Medium requires minor adaptations or synthesis; High entails non-routine
combinations or inventive leaps.

4. Definition Completeness: Whether the statement fully specifies the solution space (Complete) or
leaves essential variables/criteria implicit (Incomplete), forcing the solver to supply assumptions.
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5. Knowledge Breadth Disciplinary span of required knowledge: Single- versus Multi-Discipline.
The latter flags problems that integrate concepts from two or more distinct scientific fields.

6. Number of Reasoning Steps: Integer count of essential logical actions whose removal would
break the solution chain. Trivial paraphrases are excluded.

Together, these six axes disentangle the what (knowledge and cognition) from the how (method and
reasoning) of problem solving, enabling the reasoning effort modeling based on these metrics.

3 RELATED WORK

Recent advancements in reasoning LLMs have highlighted the need for precise measures of problem
difficulty, specifically within scientific tasks where reasoning complexity is prominent. Traditional
assessments have relied on static readability metrics, such as SMOG, Gunning Fog, or Flesch-
Kincaid McLaughlin (1969); Scott (2025); Tanprasert & Kauchak (2021), which fail to reflect deeper
cognitive demands required in complex reasoning tasks. Prompt-based approaches Rooein et al.
(2024) partially overcome these limitations by leveraging LLMs’ language understanding capabilities
to capture more abstract complexity; however, they primarily emphasize textual difficulty rather
than cognitive or methodological complexity. Compared to these static readability-focused metrics,
our DoReMi framework leverages an extended Bloom’s taxonomy Heer (2012), systematically
characterizing multiple dimensions of intrinsic cognitive and methodological difficulty.

Previous studies have employed Bloom’s taxonomy in the context of LLM evaluation Huber &
Niklaus (2025) and curriculum learning design Hase et al. (2024). Huber et al. Huber & Niklaus
(2025) classified benchmarks according to Bloom’s cognitive levels, revealing that LLM performance
predominantly excels at lower cognitive levels. Complementing this work, DoReMi enriches Bloom’s
taxonomy with additional methodological and metacognitive axes, directly linking these theory-
informed dimensions with empirical proxies of reasoning effort rather than accuracy alone.

Curriculum learning shows performance gains when aligning difficulty progression for LLM training.
To quantify sample-level hardness, previous work Hase et al. (2024) annotated the Bloom’s taxonomy
for each dataset based solely on human annotation. In contrast, we refined annotation with multiple
LLM judges and validated them with human annotations to ensure scalability and consistency.

Recent research investigates the relation between chain-of-thought (CoT) lengths and reasoning
success, suggesting a non-monotonic relationship and an optimal length dependent on problem
complexity and model capacity Wu et al. (2025). In comparison to this previous analysis, DoReMi ex-
plicitly correlates intrinsic problem properties to proxies of reasoning effort, modeling and predicting
effective reasoning difficulties across multiple science benchmarks.

4 SOLUTION

In this section, we describe our systematic methodology to predict LLM reasoning effort by combining
difficulty metrics from an extended 3D Bloom’s Taxonomy with learned reasoning patterns.

4.1 PROBLEM DIFFICULTY QUANTIFICATION VIA 3D BLOOM’S TAXONOMY

We develop a systematic annotation process using our extended 3D Bloom’s taxonomy (Section 2.2)
to quantify problem difficulty across D = 6 dimensions: Cognitive Level, Knowledge Dimension,
Method Difficulty, Definition Completeness, Reasoning Steps, Knowlege Breath.

For each problem, we employ K reasoning LLMs as automated judges. Each judge independently
evaluates the problem statement and reference solution, classifying difficulty along each Bloom
dimension with supporting rationale. Through iterative prompt refinement—testing over two dozen
variants with explicit decision criteria and illustrative examples—we achieved strong inter-judge
agreement. The optimized prompts are provided in Section 7.2. We also validated our approach by
comparing average LLM-as-a-judge scores against two human annotations on 100 GPQA questions,
with good alignment results observed in Section 5.1.
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Final annotations are obtained by encoding categorical Bloom levels into ordinal scores bi,d ∈
{1, 2, ..., Ld} for dimension d and problem i, then averaging across judges. This yields a continuous
multi-dimensional ”difficulty fingerprint” Bi = {bi,d}Dd=1 for each problem.

4.2 REASONING EFFORT METRICS

To capture the computational and algorithmic effort required for reasoning, we evaluate M reasoning
models, each for Rm runs per question. We define four complementary effort metrics:

(1) Wrong Answer Fraction (WAF): The average failure rate across models:

WAFi =
1

M

M∑
m=1

(
1

Rm

Rm∑
r=1

1(si,m,r = 0)

)
where si,m,r ∈ {0, 1} indicates correctness for question i, model m, run r.

(2) Minimum Reasoning Tokens (MRT): The minimum token count needed for success:

MRTi,m =

{
min{ti,m,r | si,m,r = 1}, if any run succeeds
max{ti,m,r | r ∈ [Rm]}, otherwise

where ti,m,r denotes reasoning tokens used.

(3) Expected Runs to First Correct Answer (R2FCA): The expected number of attempts needed:

R2FCAi =

Rm∑
n=1

n · P (n) + ϵ

where P (n) is the empirical probability of first success on run n. Taking the expectation across many
trials smooths out single–run volatility; the ε floor prevents division by 0 when no run succeeds.
R2FCA is intended to measure problem solvability under repeated attempts.

(4) Reasoning Inconsistency (RI): The diversity of reasoning trajectories:

RIi =
1

Rm

Rm∑
r=1

d(c, er), c =
1

Rm

Rm∑
r=1

er

where er are response embeddings, c is their centroid, and d(·, ·) is cosine distance.

4.3 LEARNING TO PREDICT REASONING EFFORT

Our correlation analysis in Section 5.2 reveals that MRT exhibits the strongest relationship with
Bloom metrics. Based on this finding, we develop a two-stage approach to predict reasoning effort:

Stage 1: Model Aggregation. We combine model-specific MRTs into a unified metric:

MRTC =

M∑
m=1

wm ·MRTi,m

where weights wm are learned via gradient descent to maximize F1-score on high-effort samples.
MRTC is distributed in four quantile-based bins — Minimum, Low, Medium, and High—ensuring
clear separation of difficult problems from the abundant easy ones. These binned labels serve as
targets/ground truth for training our reasoning-effort predictor.

Category(x) =


Minimum, x < µ− σ

Low, µ− σ ≤ x < µ

Medium, µ ≤ x < µ+ σ

High, x ≥ µ+ σ

Stage 2: Difficulty-to-Effort Mapping. We train a neural classifier fθ : Bi → Category that maps
Bloom features to effort categories. The model is optimized using weighted cross-entropy loss with
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emphasis on high-effort samples:

L = −
N∑
i=1

4∑
c=1

αc · yi,c log(fθ(Bi)c)

where αc are class weights and yi,c are one-hot encoded labels.

4.4 DOREMI ALGORITHM

Algorithm 1 summarizes our complete pipeline: (1) annotate bloom metrics using LLM judges,
(2) inference of reasoning LLMs to collect reasoning effort metrics, (3) learn optimal aggregation
weights, and (4) train a predictor from difficulty features to effort categories.

Algorithm 1 DoReMi: Difficulty-oriented Reasoning Effort Modeling

Require: Questions Q = {qi}Ni=1, Models M = {mj}Mj=1, Judges J = {jk}Kk=1
Ensure: Effort predictor fθ : B → Category

1: // Phase 1: Difficulty Annotation
2: for each question qi ∈ Q do
3: Obtain Bloom features Bi via judge consensus (Section 3.1)
4: end for
5: // Phase 2: Effort Measurement
6: for each model mj ∈M , question qi ∈ Q do
7: Evaluate Rj runs, record correctness and token counts
8: Compute MRTi,j using Equation (2)
9: end for

10: // Phase 3: Learn Aggregation
11: Initialize weights w = [w1, ..., wM ] randomly
12: while not converged do
13: MRTC ←

∑
j wj ·MRTi,j

14: Update w to maximize F1 on high-effort class
15: end while
16: // Phase 4: Train Predictor
17: Discretize {MRTC,i} into categories
18: Train fθ on dataset {(Bi,Categoryi)}Ni=1
19: return Trained predictor fθ

5 EXPERIMENTS AND RESULTS

Comprehensive experiments were conducted to validate our DoReMi framework. We evalu-
ated 9 LLMs: three generations of OpenAI reasoning models (o1-mini, o3-mini-high,
o4-mini-high); three generations of Qwen-14B model family including two non-reasoning
variants (Qwen1.5-14B, Qwen2.5-14B) plus one reasoning variant (Qwen3-14B); Google’s
gemini-2.5-pro; and Anthropic’s claude-3.7-sonnet (non-reasoning mode) and
claude-3.7-sonnet-extended-thinking (reasoning mode). Each model answers every
problem 10 times to capture stochasticity, yielding 90 runs per problem.

Our evaluation spans three scientific reasoning benchmarks representing varying difficulty distribu-
tions: GPQA (PhD-level STEM), ARC (K-12 science reasoning), and two specialized SuperGPQA
domains (particle physics and molecular biology) test deep domain expertise.

5.1 BLOOM SCORES: ALIGNMENT BETWEEN JUDGE GROUPS

To validate our automated Bloom annotations, we compared LLM-generated scores with hu-
man judgments on 100 GPQA problems. Two independent human annotators rated all six
Bloom dimensions; Human1 served as the reference. We used three open-source reason-
ing LLMs—DeepSeek-V3.1-Terminus DeepSeek-AI (2024), GPT-OSS-120B OpenAI
(2025), Qwen3-Next-80B-A3B-Thinking Yang et al. (2025)—to avoid overlap with our

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Cognitive Level
Knowledge Dimension

Method Difficulty
Reasoning Steps

Knowledge Breadth
Definition Completeness

0.0

0.2

0.4

0.6

0.8

1.0

Al
ig

nm
en

t w
ith

 H
um

an
1

Human2 Proprietary LLMs OpenSource LLMs ICC threshold for Good alignment

Figure 2: Human–model alignment across Bloom metrics.
ICC(2,1) values measure inter-rater reliability between
Human1 (reference) and three annotator groups.

Cognitive Level

Knowledge Dimension

Method Diffic
ulty

Definition Completeness

Knowledge Breadth

Reasoning Steps

Wrong Answer Fraction

MRT

Expected R2FCA

Log(MRT)

Log(Expected R2FCA)

0.109 0.106 0.248 0.199 -0.030 0.087

0.005 0.416 0.339 0.279 -0.127 0.253

0.017 0.042 0.108 0.124 0.016 0.077

-0.110 0.546 0.302 0.266 -0.146 0.313

0.062 0.071 0.178 0.162 -0.006 0.085

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3: Correlation Analysis of Rea-
soning Effort proxies across Bloom Axes
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Figure 4: Test performance of optimal classification
model for high-effort prediction on GPQA, SuperGPQA-
HEP, and ARC using recall and f1-score optimization
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Figure 5: Benchmarking DoReMi with
baselines in Predicting Reasoning Effort

evaluation models, and three proprietary LLMs—gemini-2.5-pro, gemini-2.5-flash,
o3-mini—to test cross-group consistency.

Figure 2 reports Interclass Correlation Coefficient Leyland & Groenewegen (2014) - ICC(2,1)
across judge groups. LLM judges show good–to–excellent agreement with humans on the axes
most predictive of effort—Cognitive Level, Knowledge Dimension, and Reasoning Steps—with
ICC > 0.75, and approach inter-human reliability on most remaining axes. Open-source and
proprietary judges align closely with each other (Appendix Fig. 11).

Bloom-axis judging is rubric-driven, simpler than verifying full solutions, and stable across judge
groups, mitigating LLM-as-judge risks. We therefore use LLM-derived Bloom features in DoReMi.

5.2 REASONING EFFORT MODELING RESULTS

We evaluated candidate effort proxies—WAF, R2FCA, UCA, and RI—and analyzed their correlations
with Bloom axes (Fig. 3). MRT emerged as the strongest signal, so we adopt it as the primary
proxy and aggregate it across M reasoning models into a combined metric MRTc. Model-specific
weights (Figs. 24, 25) are learned to optimize either recall- or F1-oriented objectives. The resulting
aggregate achieves ≈ 80% precision for identifying high-effort problems (details later). While a
future composite could integrate R2FCA, WAF, and related proxies, the MRTc-based approach is a
strong, practical baseline.

We train classifiers to detect high-effort questions (high MRTc). Figure 4 summarizes preci-
sion–recall trade-offs under recall- and F1-optimized settings. On GPQA, optimizing for recall
selects logistic regression (recall 0.90, precision 0.62); optimizing for macro-F1 favors a linear SVM
(precision 0.81, recall 0.71). Five-fold CV yields F1 = 63.4% ± 4.9%, precision 57.2% ± 2.4%,
and recall 71.5%± 9.3% (Fig. 27). Our evaluation spans both science-focused benchmarks (GPQA,
SuperGPQA-HEP) and general reasoning tasks (ARC) to demonstrate that Bloom taxonomy met-
rics can effectively capture reasoning difficulty across different domains. On SuperGPQA-HEP,
SVM attains balanced performance (precision 75%, recall 71%). On ARC, SVM prioritizes recall
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(87%) at lower precision (54%). Across benchmarks, the models remain interpretable and require
no dataset-specific feature engineering, further supporting the domain-agnostic utility of Bloom
taxonomy features for reasoning effort prediction.

5.3 DOREMI USE CASE 1: DIFFICULTY-AWARE SUBSET SELECTION

As state-of-the-art LLMs achieve near-saturation performance on many benchmarks (e.g., 85-88% on
GPQA), distinguishing between models becomes increasingly challenging. Difficulty-aware subset
selection addresses this by strategically sampling challenging problems to create more discriminative
evaluation sets. We compare three approaches for identifying high-effort problems:

DoReMi (Ours): Leverages learned reasoning effort models based on 3D Bloom taxonomy metrics
to predict ˆMRTc, capturing nuanced aspects of problem difficulty beyond surface-level complexity.
The configurable effort metric MRT ∗

c allows optimization for different objectives (recall vs. F1),
enabling flexible prioritization of either coverage or precision in identifying high-effort questions.

Sublime-D Baseline: A specialized variant within the SubLIME framework Xu et al. (2024) that
uses static readability metrics (Flesch, Gunning Fog) to estimate difficulty. While computationally
efficient, these surface-level metrics may miss deeper reasoning challenges that make problems truly
difficult for LLMs.

LLM Rubric Baseline: Employs a judge LLM (o4-mini-high) to directly classify reasoning effort by
analyzing problem statements and reference solutions holistically. This end-to-end approach serves
as a methodological contrast to DoReMi’s structured, multi-dimensional analysis (full prompt in
Appendix 7.6.1).

Figure 5 demonstrates DoReMi’s superior performance in identifying genuinely challenging prob-
lems. DoReMi achieves 54% accuracy in categorizing high reasoning effort problems, significantly
outperforming both the LLM rubric (25%) and Sublime-D (27%) methods. This 2× improvement
suggests that structured analysis through Bloom taxonomy features provides more reliable difficulty
assessment than either static readability metrics or direct LLM classification.

The practical impact is substantial: when selecting a discriminative subset from benchmarks,
DoReMi’s higher accuracy ensures more ”real” hard samples are included, preserving evaluation
power even as aggregate performance saturates. This capability enables more informed curriculum
learning protocols and facilitates targeted benchmark refinement as LLM capabilities continue to
advance.

5.4 DOREMI USE CASE 2 - INTERPRETABLE DIAGNOSTICS OF REASONING CAPABILITY
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Figure 6: Qwen 14B model family analysis:
Wrong answer fractions along knowledge-
dimension axis
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Figure 7: Average MRT vs Reasioning steps

Cognitive Level. Fig 1a shows the expected number of R2FCA, grouped by Bloom’s cognitive
levels. For o1-mini, the curve rises sharply—roughly quadrupling from APPLY to ANALYZE,
and again from ANALYZE to EVALUATE. Since this metric is inversely related to a model’s per-
attempt success rate, the steep slope shows that early-generation reasoning models experience an
exponential drop in hit rate as soon as multi-step evaluation or hypothesis testing is needed. In contrast,
gemini-2.5-pro maintains an almost flat profile. Its expected runs change little across the three
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cognitive tiers, suggesting both a higher baseline competence and a much stronger ability to transfer
reasoning strategies as the cognitive level of the science problem increases. o3-mini-high and
o4-mini-high fall between these extremes. This suggests a smooth, but not yet complete, scaling
path where each new model narrows the gap between APPLY-level heuristics and EVALUATE-level
analytical reasoning.

Knowledge Dimension. Fig 1b reports the wrong–answer fraction (WAF), grouped by Bloom’s
knowledge dimensions. o1-mini again displays a monotonically rising error profile: its WAF
climbs from the CONCEPTUAL band through PROCEDURAL and peaks at the METACOGNITIVE
tier. Scaling post-training in o3-mini-high and o4-mini-high eliminate the gap between
CONCEPTUAL and PROCEDURAL questions and even invert the trend at METACOGNITIVE. A similar
transition is found in Claude: without reasoning tokens, performance of claude-3.7-sonnet
tracks o1-mini almost exactly—error rates rise steadily with the knowledge dimension, suggest-
ing that the core model alone shares the same weakness. When reasoning tokens are enabled in
claude-3.7-sonnet-extended-thinking, the pattern breaks: errors grow only slightly
from CONCEPTUAL to PROCEDURAL and decrease at METACOGNITIVE. The open-source Qwen-
14B family shows the same story (Fig. 6): Qwen1.5-14B and Qwen2.5-14B—which lack RL-
based post-training—exhibit a monotonic rise from CONCEPTUAL to METACOGNITIVE, whereas the
reasoning-tuned Qwen3-14B reverses the trend with lower error at METACOGNITIVE than PROCE-
DURAL. Because RL appears only in the Qwen 2.5→3 transition, these results provide converging
evidence that RL might be the driver of the emergent metacognitive capability.

Method Difficulty. Fig 1c reveals a clear stratification in how successive model generations respond
to increasing method difficulty. For o1-mini, the wrong–answer fraction rises sharply—from
roughly 20% at Low to 42% at Medium, and up to 100% at High. o3-mini-high exhibits the
same monotonic trend but with a noticeably shallower slope. In contrast, o4-mini-high shows
a qualitatively different pattern: its error rate increases from Low to Medium and then plateaus,
remaining statistically unchanged from Medium to High, which indicates a newfound robustness.
Compared to the knowledge-dimension results, these observations point to a staggered emergence of
higher-order abilities: sensitivity to what knowledge is required appears earlier (in o3-mini-high),
while resilience to how that knowledge must be operationalized emerges one generation later (in
o4-mini-high). This suggests that scaled RL post-training yields non-uniform gains across
difficulty axes, with different dimensions reaching their inflection points at distinct stages.

Solution-Step Complexity vs. Minimum Reasoning Tokens. Figure 7 reveals a piecewise relation-
ship between the annotated number of solution steps and the minimum reasoning tokens required
by the most capable models in our study, o4-mini-high (•) and gemini-2.5-pro (•). In the
low-complexity regime (steps < 5), both models quickly converge on concise answers—the average
reasoning token falls as the step count decreases. Once problems demand more than 10 explicit
steps, each additional step now incurs a significant rise in the minimum token count. This suggests
that beyond a critical complexity threshold the models must maintain longer context windows to
keep intermediate facts “alive,” and the cost scales super-linearly with step count. Intriguingly, in the
transition band (5 ≤ steps ≤ 10) the correlation is almost flat for both systems. Together, these
three regimes highlight an emergent efficiency plateau followed by an exponential token explosion.

6 CONCLUSION

We proposed DoReMi, a structured Bloom-inspired framework for quantifying science problem
difficulty for LLMs. Evaluations on GPQA, ARC, and SuperGPQA demonstrated good correlations
(up to (r=0.52)) between our multidimensional difficulty fingerprints and empirical reasoning effort
metrics MRT and expected R2FCA. Our reasoning-effort prediction model significantly outperformed
static-difficulty baselines: DoReMi (54%) vs Sublime-D (27%). Moreover, through interpretable
diagnostics of reasoning capabilities, we identified emergent reasoning capabilities—such as improved
robustness to methodologically challenging problems and enhanced metacognitive monitoring—that
have appeared systematically across successive generations of reasoning LLMs. These insights could
potentially guide future targeted model improvements, curriculum design, and benchmark creation,
particularly highlighting the importance of careful post-training strategies for fostering higher-order
reasoning capabilities.
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7 TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

7.1 THE USE OF LLMS IN MANUSCRIPT PREPARATION

In accordance with ICLR 2026 submission guidelines, we disclose the use of Large Language Models
(LLMs) in the preparation of this manuscript. LLMs were employed as general-purpose assist tools
for the following specific purposes:

• Writing assistance: LLMs were used to improve clarity, grammar, and flow of certain
sections of the manuscript, particularly in refining technical explanations and ensuring
consistent terminology throughout the paper.

• Literature review support: LLMs assisted in identifying relevant related work and helped
structure the presentation of background material, though all cited works were independently
verified by the authors.

• Code documentation: LLMs were used to generate comments and documentation for
supplementary code materials to improve readability and reproducibility.

We emphasize that the core research ideas, experimental design, methodology, analysis, and conclu-
sions presented in this work are entirely the intellectual contribution of the human authors. LLMs did
not play a significant role in research ideation or the formulation of novel contributions. All factual
claims, experimental results, and scientific interpretations have been independently verified by the
authors.

The authors take full responsibility for all content in this manuscript, including any text that may have
been refined with LLM assistance. We confirm that no content generated by LLMs could be construed
as plagiarism or scientific misconduct, and all sources and prior work are properly attributed.

7.2 FULL BLOOM’S TAXONOMY PROMPT TEMPLATES

This appendix provides the full prompt templates used for automated, LLM-based annotation of sci-
ence problems along the extended 3D Bloom’s taxonomy. Each template is optimized for consistency
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and clarity, facilitating accurate evaluation by large language models. Prompts are presented verbatim
as used in our experiments.

PROMPT 1: COGNITIVE LEVEL ASSESSMENT

You are an expert in evaluating scientific problems using Bloom's
Taxonomy. Your task is to assess a given problem statement and its
reference solution to determine the highest cognitive process level
required for its resolution. Focus solely on the cognitive actions
necessary to solve the problem. Your analysis should be objective,
detailed, and applicable across all scientific subdomains.

The cognitive process levels (from lowest to highest) are defined as
follows:

1. Remember : Involves the recall or retrieval of factual information,
definitions, or previously learned material without modification or
interpretation.
*Example tasks:* Listing key facts, reciting definitions, or recalling
formulas.

2. Understand : Involves demonstrating comprehension by interpreting,
summarizing, or explaining concepts in your own words.
*Example tasks:* Paraphrasing theories, summarizing research findings,
or explaining the meaning of concepts.

3. Apply : Involves using known information, methods, or procedures in
specific or novel situations.
*Example tasks:* Solving standard problems using known formulas,
applying theories to new contexts, or executing established
procedures.

4. Analyze : Involves breaking complex information into parts to examine
relationships, identify patterns, and differentiate between

components.
*Example tasks:* Decomposing arguments, comparing and contrasting
elements, or mapping relationships within a system.

5. Evaluate : Involves making judgments based on criteria or standards
by critiquing, assessing, or validating theories, methods, or
evidence.
*Example tasks:* Critically assessing the validity of a hypothesis,
weighing evidence, or comparing alternative approaches.

6. Create : Involves synthesizing information to produce new or original
ideas, models, or solutions.

*Example tasks:* Formulating novel hypotheses, designing innovative
experiments, or constructing comprehensive models that integrate
diverse elements.

===================================================
Problem Statement:
<problem_statement>
{problem_statement}
</problem_statement>

===================================================
Reference Solution:
<reference_solution>
{reference_solution if reference_solution is not None else None }
</reference_solution>

Instructions:
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a. Read the problem statement and reference solution carefully.
b. Identify the specific cognitive actions required for a correct

solution.
c. Determine the highest cognitive process level (from the list above)

necessary to solve the problem.
d. Provide a detailed rationale for your rating by citing specific

elements from the problem statement and reference solution that
indicate the required cognitive processes.

Now output your answer as a JSON object with two keys: cognitive_level
(which must be one of Remember , Understand , Apply , Analyze ,
Evaluate , or Create ) and rationale . Do not include any
additional commentary.

PROMPT 2: METHOD DIFFICULTY ASSESSMENT

You are an expert in evaluating scientific problems using Bloom's 3D
Taxonomy.

**Objective:**
Evaluate the difficulty of the method required to solve a problem,

focusing exclusively on the m e t h o d s characteristics. Base your
judgment solely on the method's nature-not on the overall complexity
of the scientific or biological context.

**Classification Criteria:**

- **Low Method Difficulty:**
- The problem is solved by directly applying a well-known, established
method exactly as described in standard references.

- No modifications, adaptations, or additional interpretative steps are
necessary.

- **Medium Method Difficulty:**
- The solution requires adapting or modifying a known method to fit the

specific problem constraints or context.
- This may include reconciling contradictory observations, integrating
multiple pieces of evidence, or ruling out alternative hypotheses
before arriving at a conclusion.

- *Threshold:* If even a single additional step beyond the basic method
is needed (e.g., adjusting for indirect binding signals or combining
two standard analyses), classify as Medium.

- **High Method Difficulty:**
- The problem demands a creative or non-routine approach that goes well

beyond standard adaptations.
- This includes devising new frameworks, integrating multiple disparate

methods in unconventional ways, or reasoning through unfamiliar or
abstract concepts.

- *Threshold:* If multiple adaptations, non-linear reasoning, or
innovative synthesis of several methods is required, classify as High
.

**Evaluation Steps:**

1. **Examine the Method:**
- Focus exclusively on the method employed in the solution. Ignore the
overall biological or technical complexity unless it directly

impacts the m e t h o d s execution.

2. **Determine the Degree of Adaptation Required:**
- **Direct Application (Low):** If the method is used in a textbook,
unmodified way.
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- **Minor Adaptations (Medium):** If a standard method is modified or
augmented by one extra layer of interpretation or integration.
- **Significant Innovation (High):** If the solution requires
combining multiple methods, developing a new approach, or applying
the method in a highly non-standard or creative manner.

3. **Provide a Detailed Rationale:**
- Cite specific aspects of the method in the problem statement and
reference solution that indicate whether the method is used routinely
or has been significantly adapted.

- Explain why any additional steps or integrations push the
classification toward Medium or High.

4. **Maintain Objectivity:**
- Base your classification solely on the nature and execution of the
m e t h o d not on the underlying scientific problem.

- Emphasize the number and significance of modifications required to
apply the method.

==================================================
Problem Statement:
<problem_statement>
{problem_statement}
</problem_statement>

==================================================
Reference Solution:
<reference_solution>
{reference_solution if reference_solution is not None else None }
</reference_solution>

==================================================
Output your answer as a JSON object with the keys method_difficulty (

one of Low , Medium , High ) and rationale . Do not include any
additional commentary.

PROMPT 3: DEFINITION COMPLETENESS ASSESSMENT

You are an expert in evaluating scientific problems using Bloom's 3D
Taxonomy.

Please analyze the following problem statement and reference solution,
focusing exclusively on whether the problem is completely defined.

Consider the following:
- Is the problem completely defined with all necessary details provided?

If yes, answer yes ; if it requires assumptions or strategic
decisions, answer no .

Provide a detailed rationale by citing specific aspects of the problem
statement and reference solution.

==================================================
Problem Statement:
<problem_statement>
{problem_statement}
</problem_statement>

==================================================
Reference Solution:
<reference_solution>
{reference_solution if reference_solution is not None else None }
</reference_solution>
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Output your answer as a JSON object with two keys completely_defined (
yes or no ) and rationale . Do not include any additional
commentary.

PROMPT 4: KNOWLEDGE DIMENSION ASSESSMENT

You are an expert in evaluating scientific problems using Bloom's 3D
Taxonomy.

Please analyze the following problem statement and reference solution,
focusing exclusively on the type of knowledge required.

The knowledge dimensions (from lowest level to highest level) are defined
as:

- Factual : Involves recalling basic facts or definitions.
- Conceptual : Involves understanding theories, principles, and

relationships.
- Procedural : Involves knowing how to perform methods or algorithms.
- Metacognitive : Involves awareness and control of o n e s own thinking

processes.

Your tasks:
1. Determine the **highest level** of knowledge dimension(s) the problem

targets.
2. Provide a detailed rationale for your classification by citing

specific elements from the problem statement (and reference solution,
if provided).

Problem Statement:
<problem_statement>
{problem_statement}
</problem_statement>

Reference Solution:
<reference_solution>
{reference_solution if reference_solution is not None else None }
</reference_solution>

Please output your answer as a JSON object with two keys:
knowledge_dimension (highest level of Factual , Conceptual ,
Procedural , Metacognitive required) and rationale . Do not
include any additional commentary.

PROMPT 5: KNOWLEDGE BREADTH ASSESSMENT

You are an expert in evaluating scientific problems using an extended
version of Bloom's Taxonomy.

Focus exclusively on the 'Knowledge: Breadth' subdimension. This
dimension examines whether the problem

requires integrating knowledge from multiple disciplines.
By order of complexity, from low to high, this dimension's levels are

defined as:
- Single-Discipline : Does not require integrating knowledge from

multiple disciplines.
- Multi-Discipline : Requires integrating knowledge from multiple

disciplines.

Your tasks:
1. Analyze the problem statement and reference solution.
2. Determine if the problem involves multiple disciplines (i.e., Multi-

Discipline ) or is confined to one.
3. Provide a detailed rationale citing specific elements from the text.
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Output your answer as a JSON object with two keys: knowledge_breadth
and rationale . Do not include any additional commentary.

Problem Statement:
{problem_statement}

Reference Solution:
{reference_solution if reference_solution is not None else None }

PROMPT 6: REASONING STEPS ASSESSMENT

You are an expert in evaluating scientific problems using an extended
version of Bloom's Taxonomy.

Focus exclusively on the 'Reasoning: Number of Reasoning Steps Required
to Solve the Problem' subdimension. This dimension examines how many
distinct

reasoning or planning steps are required to solve the problem, and
whether the process is straightforward or complex.

Follow the guidelines below to count the number of distinct reasoning
steps:

1. **Identify Independent Logical Actions:**
- Count each separate act of analysis, deduction, computation, or
planning that contributes uniquely to arriving at the solution.
- A \ s t e p should represent an independent logical move rather than
a mere rephrasing or elaboration of an earlier step.

2. **Define the Boundaries of a Step:**
- A step begins when a new reasoning method or operation is introduced
(e.g., setting up an equation, deducing a chemical property, or

applying a theoretical principle).
- A step ends when that piece of reasoning has been fully applied or
resolved. Avoid splitting actions that are inherently part of one
unified idea.

3. **Ensure Each Step Is Essential:**
- Only count steps that are necessary for reaching the final
conclusion. Trivial clarifications, restatements of known facts, or
background information that does not directly contribute to the
reasoning process should not be counted as separate steps.
- Consider whether the removal of a step would leave a gap in the
logical progression toward the solution. If so, it must be counted.

4. **Differentiate Between Substeps and Major Steps:**
- When a step naturally divides into substeps, assess if those
substeps represent distinct reasoning actions. If they are tightly
interwoven and the separation does not change the logical flow, count
them as one step.

- Use clear criteria such as \new calculation , \new inference ,
or \application of a different principle to decide on splitting or
merging substeps.

5. **Apply Consistent and Objective Criteria:**
- Use objective markers such as \setting up an equation , \balancing
mass or c h a r g e , \inferring molecular structure , \evaluating

experimental d a t a , or \applying a t h e o r y to identify steps.
- Ensure that the criteria for what counts as a step are uniformly
applied, regardless of the scientific discipline (chemistry, physics,
biology, etc.).

6. **Document the Rationale for Each Counted Step:**
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- For every reasoning step counted, provide a brief description that
clearly indicates why it is independent and essential to the overall
solution.
- This documentation should include reference to the specific part of
the problem or reasoning process it addresses.

7. **Sequence and Dependency Consideration:**
- Ensure that each counted step represents a sequential action that
builds on previous steps. Independent parallel reasoning that
converges into one conclusion may be considered as separate steps if
each contributes a distinct part to the final result.
- Avoid double-counting: if two pieces of reasoning essentially
support the same conclusion without introducing new independent
information, they should be merged into one step.

==================================================
Problem Statement:
<problem_statement>
{problem_statement}
</problem_statement>

==================================================
Reference Solution:
<reference_solution>
{reference_solution}
</reference_solution>

==================================================

Your tasks:
1. Analyze the problem statement and reference solution.
2. Output the number of distinct reasoning or planning steps required to

solve the problem.
3. Provide a detailed rationale citing specific elements from the text.

Output your answer as a JSON object with two keys: number_of_steps and
rationale . Do not include any additional commentary.

These prompt templates are designed to maximize annotation consistency and interpretability. For
further implementation details, see Section 2.2.

Bloom Distribution Plots on GPQA, SuperGPQA and ARC To analyze how scientific problems
are distributed across the Bloom taxonomy, we visualize the annotation results across three bench-
marks: GPQA, SuperGPQA, and ARC. These distributions reveal the relative frequency of cognitive,
knowledge-level, method difficulty demands placed by each benchmark.

7.2.1 HUMAN ALIGNMENT FOR BLOOM METRICS

7.3 PLOTS FOR REASONING EFFORT METRICS

We visualize the distribution of various reasoning metrics across models. These include:

• Wrong Answer Fraction (WAF) — Figure 12

• Minimum Reasoning Tokens for Correct Answer — Figure 13

• Expected Runs to Correctness — Figure 14

• Uncertainty in Correct Answers — Figure 15

• Inter-run Reasoning Inconsistency — Figure 16

These metrics serve as quantitative signals of reasoning effort and complexity in LLM behavior,
complementing the structural annotations from the Bloom taxonomy.
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Figure 8: Bloom Metrics Distribution for GPQA
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Figure 9: Bloom Metrics Distribution for SuperGPQA
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Figure 10: Bloom Metrics Distribution for ARC
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Figure 12: Distribution of Wrong Answer Fraction(WAF)

Figure 13: Distribution of Minimum Reasoning Token for Right Answer across Models M

Figure 14: Distribution of Expected Runs for Correct Answer

Figure 15: Distribution of Uncertainty of Correct Answers
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Figure 16: Distribution of Reasoning Inconsistency across 10 runs

Figure 17: Ratio of High to Low Cognitive Expected R2FCA for o1-mini and Gemini-2.5-pro across
4 GPQA subfields

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 18: Correlation of Bloom Metrics across Reasoning Effort Metrics from individual reasoning
models: GPQA

7.4 EXTENDED CORRELATION ANALYSIS

For ARC we also leveraged the human labeled data provided by Clark et al. (2018) to perform
correlation analysis to see if the human labeled metrics align well with the judge models Bloom
prediction. The human labeled score was only for cognitive levels, it does not contain other dimensions
of bloom taxonomy. We see that the human bloom scores correlate equally well as model assigned
bloom scores across reasoning metrics.

7.5 MODEL GENERATION COMPARISONS ON REASONING EFFORT

We compare different model generations—such as o1-mini, o3-mini, and o4-mini—with
respect to the reasoning effort required for problems of varying difficulty:

• Figure 22 compares minimum reasoning token lengths across knowledge difficulty classes.
• Figure 23 summarizes model behavior across effort metrics.

These comparisons illustrate emergent capabilities in later model generations, especially in handling
high-difficulty tasks.
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Figure 19: Correlation of Bloom Metrics across Reasoning Effort Metrics from individual reasoning
models : SuperGPQA
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Figure 20: Overall correlation of Individual Reasoning Metrics w.r.t Bloom metrics
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Figure 21: Correlation of Bloom Metrics across Reasoning Effort and Human Labeled Difficulty :
ARC

Figure 22: Minimum Reasoning Tokens to Right Answer across Knowledge Difficulty
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Figure 23: Overall analysis across Models

Figure 24: Weights Optimised for Recall : GPQA

7.6 REASONING EFFORT PREDICTION

Finally, we present results from Combined Reasoning effort model that predict reasoning effort from
Bloom taxonomy features. Key findings include:

• Figure 24 and Figure 25 show weights learned for recall and F1-optimized classification,
respectively.

• Figure 26 illustrates classifier performance for detecting high-effort reasoning cases opti-
mized through f1.

7.6.1 PROMPT FOR LLM RUBIC CLASSIFICATION

Using a Judge LLM, in our experiment we have used o4-mini-high, to perform reasoning effort
classification to serve as a baseline for DoReMi approach. The Judge LLM is given the problem
statement, and reference solution as context to classify the reasoning effort required to solve the
problem.
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Figure 25: Weights Optimized for F1-score: GPQA

Figure 26: Model Prediction Metrics for Classifying High Reasoning Effort

Figure 27: Confidence interval for predicting High Reasoning Effort class
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You are a top-notch scientist. Classify the reasoning effort required to
solve the given scientific problem into exactly one category: Minimum
, Low, Medium, or High.

## Definitions

**Minimum:** Direct recall or single-step application. Problem is solved
by retrieving and directly applying one known fact, formula, or
procedure.

**Low:** Straightforward multi-step reasoning within a single concept.
Require 2-4 logical steps using one domain of knowledge, with minimal
abstraction or transformation.

**Medium:** Coordinated application of multiple concepts. Requires
selecting appropriate methods, combining knowledge from 1-2 domains,
or building intermediate representations to bridge problem and
solution.

**High:** Complex integration across domains. Demands synthesizing
concepts from 3+ domains, constructing elaborate models, navigating
significant abstraction, or developing novel solution pathways.
Sometimes require a large number of reasoning steps to solve the
problem.

## Guidelines

- Consider the conceptual complexity, not computational difficulty
- If you consider the reasoning steps, use the cognitive steps an
expert would perform, not the time required
- Provide a rationale (2-3 sentences) that identifies the key
reasoning operations and justifies your classification

## Problem Statement:
{problem_statement}

## Reference Solution:
{reference_solution if reference_solution is not None else None }
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