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Abstract

Cross-lingual summarization aims to bridge001
language barriers by summarizing documents002
in different languages. However, ensuring se-003
mantic coherence across languages is an over-004
looked challenge and can be critical in several005
contexts. To fill this gap, we introduce multi-006
target cross-lingual summarization as the task007
of summarizing a document into multiple tar-008
get languages while ensuring that the produced009
summaries are semantically similar. We pro-010
pose a principled re-ranking approach to this011
problem and a multi-criteria evaluation proto-012
col to assess semantic coherence across target013
languages, marking a first step that will hope-014
fully stimulate further research on this problem.015

1 Introduction016

Cross-lingual summarization refers to the task of017

producing a summary in a different language than018

the original document and has the potential to break019

language barriers by helping people to effectively020

capture the essence of documents written in for-021

eign languages (Wang et al., 2022). This is a very022

challenging task, as it combines the difficulties023

of monolingual summarization, such as factual in-024

consistencies with respect to the source document025

(Maynez et al., 2020), with those of machine trans-026

lation, such as translation of idiomatic expressions027

and cultural references (Fadaee et al., 2018).028

The availability of large pre-trained multilin-029

gual transformers (Liu et al., 2020; Xue et al.,030

2021), followed by the widespread development031

and adoption of decoder-only language models032

(Radford et al., 2018; Touvron et al., 2023; Jiang033

et al., 2023; Team et al., 2024) has enabled a sin-034

gle model to perform cross-lingual summarization035

from multiple source languages to multiple target036

languages (many-to-many summarization, M2MS).037

Despite the increasing emphasis on this many-to-038

many paradigm, ensuring semantic coherence in039

summaries across different target languages has040

not been a primary focus of state-of-the-art meth- 041

ods, nor has it been systematically evaluated. Ta- 042

ble 1 illustrates this issue by presenting an example 043

where a state-of-the-art M2MS system based on 044

mT5 (Xue et al., 2021) produces very different 045

summaries, with one containing unfaithful content, 046

depending on the chosen target language. Clearly, 047

if information is not conveyed coherently across 048

languages, the trustworthiness of the system is com- 049

promised. Users cannot rely on the summaries to be 050

accurate and unbiased, regardless of the language 051

in which they consume the content. In addition, 052

in legal or regulatory contexts, ensuring that infor- 053

mation is presented coherently across languages 054

can be critical. This helps meet regulatory require- 055

ments and ensures that information is transmitted 056

coherently across language boundaries. 057

To fill this gap, we introduce a novel variant of 058

cross-lingual summarization, which we call multi- 059

target cross-lingual summarization (MTXLS), 060

where we specifically address the challenge of pro- 061

moting semantic coherence across target languages. 062

This framework represents an important step to- 063

wards more comprehensive cross-lingual summa- 064

rization techniques and evaluation. Our main con- 065

tributions in this work are summarized as follows: 066

First, we introduce MTXLS formally as a novel 067

task (Section 3), motivated by the need of produc- 068

ing summaries coherently for multiple target lan- 069

guages. Second, we present a re-ranking-based ap- 070

proach to address this problem (Section 4), where 071

the re-ranking phase selects a set of summaries that 072

exhibit superior semantic coherence across target 073

languages compared to treating each cross-lingual 074

summarization task independently. Notably, our 075

approach circumvents the need for a pivot language. 076

This language-neutral strategy ensures a more ro- 077

bust and unbiased multilingual summarization pro- 078

cess. Finally, we propose and conduct a multi- 079

criteria evaluation protocol that goes beyond the 080

simple evaluation of the similarity between gener- 081
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Text
(BBC)

en Bitcoin uses more electricity annually than the whole
of Argentina, analysis by Cambridge University sug-
gests. "Mining" for the cryptocurrency is power-
hungry, involving heavy computer calculations to ver-
ify transactions. Cambridge researchers say it con-
sumes around 121.36 terawatt-hours (TWh) a year -
and is unlikely to fall unless the value of the currency
slumps. (...)

M2MS
(mT5)

es Bitcoin es la moneda más consumida del mundo,
según un estudio de la Universidad de Cambridge.

fr Bitcoin consomme plus d’électricité chaque année,
selon une analyse de l’université de Cambridge.

Mistral 7B
es Los investigadores de la Universidad de Cambridge

estiman que el Bitcoin consume alrededor de 121,36
TWh de energía eléctrica al año, lo que lo convierte
en un proceso energético intenso y poco probable que
disminuya a menos que la valoración de la moneda
baje significativamente.

fr Des chercheurs de l’Université de Cambridge esti-
ment que le Bitcoin consomme environ 121,36 TWh
d’électricité par an, ce qui en fait un processus énergi-
vore qui est peu probable de décroître si la valeur de
la monnaie chute significativement.

NeutralRR
(ours)

es Bitcoin consume más electricidad que Argentina,
según un estudio de la Universidad de Cambridge.

fr Bitcoin consomme plus d’électricité que l’Argentine,
selon une analyse de l’université de Cambridge.

Table 1: An example of an en→{es, fr} summarization
task solved by three different state-of-the-art systems,
including ours. Text in red marks information that is
present in a summary for one of the languages but not
in the other summary.

ated summaries and references (Section 5). Specif-082

ically, we incorporate the important aspect of eval-083

uating the coherence of the entire set of generated084

summaries across all target languages using quality085

estimation methods for machine translation. The086

code and data used in our experiments are publicly087

available.1088

2 Related Work089

2.1 Cross-Lingual Summarization090

Research in cross-lingual summarization has re-091

cently gained traction, in part due to the increased092

availability of large datasets for this task (Lad-093

hak et al., 2020; Perez-Beltrachini and Lapata,094

2021). Among these, CrossSum (Bhattacharjee095

et al., 2023) stands out as the most resourceful.096

This news dataset contains document-summary097

pairs for 12 different languages and more than098

1,500 language directions, and it was built by au-099

tomatically pairing the data from the multilingual100

dataset XL-Sum (Hasan et al., 2021), which con-101

sists of news articles from BBC.102

Earlier cross-lingual summarization models op-103

erated on a per-language-pair basis (Cao et al.,104

2020; Bai et al., 2021; Liang et al., 2022). However,105

1URL available upon acceptance.

with the emergence of large pre-trained multilin- 106

gual transformers like mBART (Liu et al., 2020) 107

and mT5 (Xue et al., 2021), alongside extensive 108

cross-lingual summarization datasets covering mul- 109

tiple language directions, a shift to many-to-many 110

approaches occurred (Bhattacharjee et al., 2023; 111

Chen et al., 2023b; Wang et al., 2023b). Evalua- 112

tion expanded to include large decoder-only lan- 113

guage models, including in a zero-shot setting, with 114

only GPT-4 showing competitive performance com- 115

pared to fine-tuned mBART-50 (Wang et al., 2023a; 116

Tang et al., 2021). The approaches most akin to 117

our setting in the cross-lingual summarization lit- 118

erature either involve first generating a summary 119

in the source language and then using it to guide 120

the generation of the target language summary (Bai 121

et al., 2021), or employing a content plan gener- 122

ation step to condition the decoding of the target 123

summary (Huot et al., 2024). However, they do not 124

explicitly enforce or evaluate semantic similarity 125

across summaries in different target languages. 126

2.2 Quality Estimation for Machine 127

Translation 128

In machine translation (MT), quality estimation 129

methods aim to predict translation quality without 130

access to gold standard outputs (Specia et al., 2013, 131

2018). Our focus is on using sentence-level MT 132

quality estimation to evaluate semantic coherence 133

in the generated summaries across target languages, 134

by taking two system-generated summaries for dif- 135

ferent languages and evaluating how well one trans- 136

lates the other. 137

Quality estimation methods for MT can be per- 138

formed at various levels: word-level, where binary 139

labels (OK or BAD) are assigned to each machine- 140

translated word, and sentence- or document-level, 141

where a score is generated as an estimate of the 142

quality of the whole translated sentence or doc- 143

ument. Many quality estimation methods pro- 144

duce both word-level and sentence-level scores 145

(Wang et al., 2018; Kepler et al., 2019a,b; Lee, 146

2020). A sentence-level quality estimation method 147

can arise from training multilingual sentence en- 148

coders like LASER (Artetxe and Schwenk, 2019) 149

or SONAR (Duquenne et al., 2023). These models 150

align representations of translated sentences, allow- 151

ing embedding similarity metrics in the common 152

space to serve as quality estimation metrics for 153

MT. BLASER (Chen et al., 2023a), an automatic 154

text-free metric for evaluating speech translation, 155
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refines this idea by using a regression model trained156

on the concatenation of the LASER embeddings157

of the source text and the reference and machine-158

generated translations. BLASER 2.0 (Communi-159

cation et al., 2023) replaces LASER with SONAR160

embeddings, supports both speech and text modali-161

ties, and exists in both reference-dependent and162

reference-free (i.e., quality estimation) variants.163

Similarly, COMET (Rei et al., 2020) was initially164

introduced as a reference-dependent metric that165

cross-encodes the source text and the reference166

and machine-generated translations using an XLM-167

RoBERTa model (Conneau et al., 2020). Later, a168

similar idea was followed to build its reference-free169

version, called CometKiwi (Rei et al., 2022).170

3 Multi-Target Cross-Lingual171

Summarization172

3.1 Problem Formulation173

This section formalizes the task of MTXLS. Let174

xo ∈ X represent a document in the source lan-175

guage o, and let T = {t1, t2, . . . , tN} denote a set176

of N target languages. Without loss of general-177

ity, we assume that o ∈ T . The primary goal of178

MTXLS is to generate a set of N summaries, de-179

noted as S = {yt1 ,yt2 , . . . ,ytN }, where there is a180

summary yti ∈ Y for each language in T .181

It is evident that this task can be seen as a com-182

bination of a monolingual summarization task in183

language o and N − 1 cross-lingual summarization184

tasks from o to each target language t ∈ T ∖ {o}.185

While these tasks could be approached indepen-186

dently, we impose a constraint: all N summaries187

should convey identical information regardless of188

the language. This constraint ensures the alignment189

of information across different languages, thus pro-190

moting coherence in the resulting set of summaries.191

3.2 Summarize-and-Translate192

Consider a scenario where a summarization model193

is available for generating summaries from lan-194

guage o to a pivot language π. Additionally, there195

are models for translating from π to each language196

in T . Common statistical approaches to these197

tasks involve modeling the summarization distribu-198

tion p(yπ ∣ xo, π) and the translation distributions199

p(yt ∣ yπ, t) for each t ∈ T .200

To enforce the desired coherence constraint201

across target languages, a simple strategy is to as-202

sume that the target summaries are conditionally203

independent of the source document given the pivot204

summary, expressed as (yt á xo) ∣ yπ,∀t ∈ T and 205

entailed by the Bayesian network in Figure 1a. This 206

implies that, for each target language t, the informa- 207

tion utilized to generate yt from xo comes solely 208

from yπ. Notably, since translation is a more deter- 209

ministic task than summarization, this assumption 210

serves to mitigate the potential variability of yt 211

across different target languages. 212

The previous assumption allows us to write the 213

cross-lingual summarization distributions that use 214

π as the pivot language as: 215

p(yt ∣ xo, t, π) =∑
yπ

p(yπ ∣ xo, π)p(yt ∣ yπ, t) 216

= Eyπ ∣xo,πp(yt ∣ yπ, t), (1) 217

for each t ∈ T . Approximating this expectation 218

with a single sample and using the source lan- 219

guage as the pivot language yields the conventional 220

summarize-and-translate approach to cross-lingual 221

summarization. While this baseline ensures coher- 222

ence across multiple target languages by deriving 223

summaries from the translation of the same pivot 224

summary, it has inherent drawbacks. In particular, 225

it involves two successive phases of decoding: first 226

generating the pivot summary, and then generating 227

summaries for each target language, thus poten- 228

tially suffering from error accumulation from both 229

decoding phases. Moreover, it is likely to degrade 230

the similarity to the reference summaries in the 231

target languages because it is biased towards the 232

pivot language. Thus, all resulting summaries will 233

reflect any biases introduced during the summariza- 234

tion from language o to language π. 235

4 Methodology 236

4.1 Beyond Summarize-and-Translate 237

We now relax the conditional independence as- 238

sumption made previously by explicitly condition- 239

ing yt on xo, as shown in Figure 1b. Notably, this 240

approach does not involve decoding yt after yπ, 241

but rather allows the two processes to run in par- 242

allel, and explicitly promotes semantic similarity 243

between yπ and each yt, as required to satisfy our 244

constraint. We now have: 245

p(yt ∣ xo, t, π) = Eyπ ∣xo,πp(yt ∣ xo,yπ, t). (2) 246

Let us impose that: 247

p(yt ∣ xo,yπ, t) =
1

Z
ϕ(yt,yπ)q(yt ∣ xo, t), (3) 248
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xo π

yπ t

yt

(a)

xo π

yπ t

yt

(b)

xo

yt1 yt2 . . . ytN

t1 t2 . . . tN

(c)

Figure 1: Graphical models representing summarize-and-translate (a), our method with a pivot language (b), and our
language-neutral approach (c). Here, xo denotes the document in the source language o, yπ denotes the summary in
the pivot language π, and yti denotes the summary in the target language ti, i ∈ {1,2, . . . ,N}.

where Z is a normalizing function independent of249

yt, ϕ ∶ Y2 ↦ R+ is a symmetric function measuring250

the semantic similarity between two texts in differ-251

ent languages and satisfies ∑yt
ϕ(yt, ⋅) <∞, and252

q(yt ∣ xo, t) is modeled by a cross-lingual summa-253

rization system from language o to language t. This254

formulation explicitly addresses both of our goals:255

to produce a text yt that serves as a good summary256

of xo in language t and has a high similarity to the257

pivot yπ. Finally, we get:258

p(yt ∣ xo, t, π) = Eyπ ∣xo,π
1

Z
ϕ(yt,yπ)q(yt ∣ xo, t)259

≈ 1

Z
ϕ(yt,yπ)q(yt ∣ xo, t)260

∝ ϕ(yt,yπ)q(yt ∣ xo, t), (4)261

where yπ ∼ p(yπ ∣ xo, t). This framework unveils262

diverse avenues for MTXLS. One is to directly263

train p(yt ∣ xo, t, π) by jointly learning ϕ and q264

from data, which requires cross-lingual document-265

summary pairs for all target languages and parallel266

data between the pivot and each target language.267

Alternatively, ϕ could be used as a re-scoring func-268

tion at each decoding step from q, but this would269

introduce a significant computational burden.270

In our work, we adopt a simpler re-ranking ap-271

proach. We use q to generate k candidate sum-272

maries for each target language t, and then use273

ϕ to select the optimal candidate. Notably, this274

allows simultaneous generation of candidate and275

pivot summaries, and enhances the semantic co-276

herence of generated summaries while maintaining277

similarity to the reference cross-lingual distribu-278

tion used to train the summarizer, which were not279

possible in the summarize-and-translate approach.280

As shown in Section 4.3, our approach has a deep281

connection with rejection sampling.282

4.2 A Language-Neutral Formulation 283

Despite not using translation to obtain summaries 284

for the target languages, the approach we have de- 285

scribed in Section 4.1 still relies in a pivot language. 286

However, following the same formulation, we can 287

circumvent this issue by defining a joint distribu- 288

tion for the summaries in all the target languages: 289

p(S ∣ xo,T )∝ φ(S)
N

∏
i=1

q(yti ∣ xo, ti), (5) 290

where 291

φ(S) = 1

(N
2
)
∑

i,j∶ j>i
ϕ(yti ,ytj) (6) 292

measures the semantic similarity of the set of sum- 293

maries S by averaging all the pairwise similari- 294

ties between each pair of summaries in S. This 295

model is represented graphically in Figure 1c. Note 296

that the formulation in Section 4.1 is a partic- 297

ular case of this one where S = {yt,yπ} and 298

p(S ∣ xo,T ) = p(yt ∣ xo, t, π)q(yπ ∣ xo, π). 299

4.3 Summary Sampling 300

Our primary goal is now to conceive a method that 301

allows us to sample summaries from: 302

p(S ∣ xo,T ) =
φ(S)
Z ′

N

∏
i=1

q(yti ∣ xo, ti). (7) 303

We demonstrate we can achieve this goal through 304

rejection sampling, which works as follows. Given 305

a distribution f(x) from which we aim to sam- 306

ple and a proposal distribution g(x) satisfying 307

supx
f(x)
g(x) ≤ M , we start by generating a sample 308

x from g and a sample u uniformly in [0,1]. Sub- 309

sequently, we accept x if f(x)
Mg(x) ≥ u and reject it 310

otherwise. 311
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In our context, we may use ∏N
i=1 q(yti ∣ xo, t)312

as the proposal distribution and assume without313

loss of generality that ϕ is bounded in [0,1], so φ314

is also bounded in [0,1] and therefore:315

sup
S

p(S ∣ xo,T )
∏N

i=1 q(yti ∣ xo, ti)
= sup
S

φ(S)
Z ′
≤ 1

Z ′
. (8)316

Thus, M = 1
Z′ satisfies the condition above. The317

rejection sampling procedure for sampling from318

p(S ∣ xo,T ) is then:319

1. Sample S by sampling yt ∼ q(yt ∣ xo, t) in-320

dependently for each t ∈ T .321

2. Sample u ∼ U(0,1).322

3. Accept S if φ(S) ≥ u; otherwise, reject it.323

In step 1, summaries can be sampled independently324

and in parallel for each target language because of325

the factorized form of the proposal distribution.326

4.4 A Mode-Seeking Heuristic327

The procedure presented in Section 4.3 offers a sys-328

tematic means to sample sets of summaries from329

the distribution p(S ∣ xo,T ). However, in many330

practical scenarios, the objective is to obtain a sin-331

gle set of high-quality summaries, i.e. a set with332

high probability under this distribution. This goal333

motivates the approach we present here.334

Let us assume we can generate k candidate sum-335

maries for each target language using diverse beam336

search (Vijayakumar et al., 2018) or a sampling337

algorithm. In this setup, there are kN different sets338

of summaries resulting from the different combi-339

nations of selecting a candidate from each target340

language. Among these sets, we wish to choose the341

set S∗ that maximizes φ(S), in order to achieve342

our goal of having a maximally semantically coher-343

ent set of summaries. Interestingly, this criterion344

corresponds to choosing the set S∗ with maximum345

probability of being accepted in the rejection sam-346

pling procedure described in Section 4.3.347

However, finding S∗ among the kN candidate348

sets is an instance of the generalized maximum349

clique problem, which is NP-hard (Feremans et al.,350

2003), and therefore we must resort to a heuris-351

tic search. For this purpose, we introduce a ran-352

dom permutation σ of the target languages T , e.g.353

σ(T ) = (tN , tN−1, . . . , t1), and define the proxy354

similarity function as follows:355

φ̂(S;σ) = 1

N − 1
N−1
∑
i=1

ϕ(yσ(T )i ,yσ(T )i+1). (9)356

Algorithm 1 Language-neutral multi-target cross-
lingual summarization
Require: Input document (xo); Set of target languages (T ,

with size N ); Number of candidates per language (k);
Number of random permutations (m).
for each t ∈ T do ▷ Generate candidates

for i← 1 to k do
Sample y

(i)
t ∼ q(yt ∣ xo, t).

end for
end for
for i← 1 to m do ▷ Find set with high similarity

Build a weighted directed graph G = (V,E), where V
has Nk + 2 nodes, one for each candidate summary plus a
source and a sink node, and E ← ∅.

Sample a random permutation σ(T ) =

(t′1, t
′
2, . . . , t

′
N).

E ← E ∪ {(source→ y
(i)
t′
1
,0)}ki=1

E ← E ∪ {(y
(i)
t′
N
→ sink,0)}ki=1

for l ← 1 to N − 1 do
E ← E∪{(y

(i)
t′l
→ y

(j)
t′l+1

,1−ϕ(y
(i)
t′l

,y
(j)
t′l+1
))}

k
i,j=1

end for
Ŝ
∗
i ← shortest path(G, source, sink)

end for
return Ŝ∗ ← argmaxS∈{Ŝ∗

1
,...,Ŝ∗m}

φ(S) ▷ eq. (6)

This proxy represents a sparsification of the clique 357

in the graphical model shown in Figure 1c, where 358

only the edges connecting adjacent target sum- 359

maries according to the permutation σ are retained. 360

This sparsification embodies the assumption of tran- 361

sitivity in semantic similarity: For any three lan- 362

guages a, b, and c, if the summary ya is similar 363

to yb, and yb is similar to yc, then it follows that 364

ya should also share a significant degree of sim- 365

ilarity with yc. Notably, the set that maximizes 366

φ̂(S;σ) can be found in O(Nk2) time using dy- 367

namic programming. This observation motivates 368

Algorithm 1, where we consider k candidate sum- 369

maries per target language and m ≪ N ! random 370

permutations of the target languages. Then, for 371

each permutation, we find the candidate set Ŝ∗i that 372

maximizes φ̂(S;σi) using dynamic programming. 373

Finally, we choose the set among Ŝ∗1 , Ŝ∗2 , . . . , Ŝ∗m 374

that has the highest score according to φ. 375

4.5 Choice of ϕ 376

So far, we have presented our methodology in a for- 377

mal manner, but have not yet provided specifics on 378

implementing a function ϕ capable of measuring 379

the semantic similarity between two summaries in 380

different languages. In practice, any quality estima- 381

tion model for MT (Section 2.2) could be used. In 382

our experiments, we leverage the cosine similarity 383

of SONAR embeddings (Duquenne et al., 2023) as 384

the similarity metric, reserving BLASER 2.0 (Chen 385
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et al., 2023a) and CometKiwi (Rei et al., 2022) for386

evaluation. Our selection of the cosine similarity387

of SONAR embeddings is motivated by its sym-388

metry, unlike the remaining options, and the fact389

that the SONAR encoder is relatively lightweight.390

Specifically, we define the similarity function as:391

ϕ(ya,yb) =
1 + s⊺asb

2
, (10)392

where sa and sb represent the L2-normalized393

SONAR embeddings of summaries ya and yb.394

5 Experiments395

5.1 Dataset396

We use data from the CrossSum dataset, which con-397

tains documents and summaries in seven languages:398

Arabic, Chinese (simplified), English, French, Por-399

tuguese, Russian, and Spanish. CrossSum pairs400

documents in one language with summaries from401

documents in another language, using automatic402

similarity metrics. However, mispairings are fre-403

quent due to this automated process. Addition-404

ally, the dataset is designed for single-target cross-405

lingual summarization and does not perfectly fit406

our multi-target setting. To adapt the dataset to407

our needs, we restructured the dataset into clusters.408

This process is explained in Appendix A. Each409

resulting cluster consists of up to seven multilin-410

gual document-summary pairs, with one such pair411

for each language. This allows us to select any412

document within the cluster as a source for sum-413

marization, with all summaries within the cluster414

serving as references for each of the languages.415

Statistics about the clustered data and an analysis416

of the semantic coherence of the dataset summaries417

are also provided in Appendix A.418

5.2 Methods419

Our pivot-free re-ranking method (NeutralRR) pro-420

posed in Algorithm 1 was tested using k = 8 can-421

didates per target language for re-ranking and m =422

6 language permutations, unless otherwise speci-423

fied. We study the effects of varying k and m in424

Section 5.5 and Appendix D.2, respectively. We425

compare our method with four other approaches,426

namely: a many-to-many summarizer with beam427

search decoding (M2MS) with a beam size of 8; the428

summarize-and-translate approach (S&T), where429

summaries are obtained in the source language and430

then translated to each of the target languages us-431

ing beam search with a beam size of 8 in both432

decoding steps; a Mistral 7B (Jiang et al., 2023) 433

large language model (LLM) used in a zero-shot 434

setting and instructed to write summaries with 435

identical information for all the target languages 436

(see Appendix C); our pivot-dependent re-ranking 437

approach (PivotRR) as described in Section 4.1, 438

where we use the source language as the pivot. 439

All summaries except those of Mistral 7B were 440

decoded from the same mT5 base model (Xue et al., 441

2021) fine-tuned in CrossSum. In the S&T approach, 442

translations were performed using the NLLB 1.3B 443

model (Costa-jussà et al., 2022). NeutralRR and 444

PivotRR used beam search multinomial sampling 445

using with 5 beams and a temperature of 1.0 for can- 446

didate generation.2 The pivot summary in PivotRR 447

was decoded using beam search with 8 beams. For 448

Mistral 7B, we used multinomial sampling with a 449

temperature of 0.1. Further implementation details 450

are provided in Appendix B. 451

5.3 Evaluation Metrics 452

Throughout this work, we emphasize the impor- 453

tance of evaluating MTXLS not only by comparing 454

the generated summaries for each target language 455

with their respective references, but also by evalu- 456

ating the semantic coherence across different target 457

languages. To evaluate the former, we present the 458

ROUGE-2 scores (Lin, 2004) for each generated 459

summary against its corresponding reference in the 460

same target language. In addition, we calculate the 461

BLASER 2.0 score (Communication et al., 2023) 462

by treating the generated summary as the trans- 463

lation and the reference summary for the source 464

language as the source text. This evaluation metric 465

is justified due to mismatched articles in CrossSum, 466

as explained in Section 5.1, which reduces the reli- 467

ability of reference summaries in languages other 468

than the source. 469

To assess semantic coherence across various tar- 470

get languages, we evaluate how well each gener- 471

ated summary translates the generated summaries 472

for the remaining target languages. For this pur- 473

pose, we use two quality estimation models for 474

MT, namely CometKiwi (Rei et al., 2022) and 475

BLASER 2.0. Here, for each target language, we 476

use the generated summary as the translation and 477

the summaries generated for all the other target 478

languages as the source texts and then report the 479

average across those languages. 480

2https://huggingface.co/docs/
transformers/generation_strategies#
beam-search-multinomial-sampling
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Source Method ROUGE-2 (R) BLASER 2.0 (R) CometKiwi (C) BLASER 2.0 (C) T #Pen zh rest en zh rest en zh rest en zh rest

en

M2MS 17.88 18.63 13.20 3.52 3.04 3.25 59.28 61.00 60.31 3.48 3.26 3.61 0.52 582
S&T 17.88 7.51 11.77 3.52 2.73 3.26 85.00 79.24 86.40 4.67 3.87 4.79 0.53 1,953
Mistral 7B 6.52 3.18 4.57 2.45 2.13 2.31 69.77 65.95 71.09 3.09 3.24 3.16 4.64 7,241
PivotRR (ours) 17.88 17.54 13.12 3.52 3.09 3.28 63.72 64.42 63.35 3.71 3.45 3.81 0.96 1,348
NeutralRR (ours) 17.59 17.87 12.90 3.53 3.08 3.29 64.34 65.43 64.76 3.76 3.49 3.89 0.99 1,348

zh

M2MS 17.95 24.13 16.32 3.58 3.14 3.31 61.95 60.23 60.56 3.40 3.20 3.39 0.40 582
S&T 13.51 24.13 12.11 3.48 3.14 3.25 83.61 82.50 82.09 4.26 4.10 4.29 0.52 1,953
Mistral 7B 4.58 3.93 3.68 2.47 2.02 2.39 67.28 66.40 66.98 3.19 2.98 3.15 11.48 7,241
PivotRR (ours) 18.32 24.13 16.36 3.60 3.14 3.36 64.73 62.99 61.90 3.54 3.37 3.54 0.89 1,348
NeutralRR (ours) 18.34 23.72 16.37 3.61 3.18 3.35 66.94 63.74 63.23 3.63 3.43 3.62 0.90 1,348

rest

M2MS 16.73 23.83 13.83 3.48 3.07 3.23 60.50 60.33 61.13 3.55 3.15 3.54 0.56 582
S&T 11.88 7.63 11.41 3.38 2.72 3.20 85.63 80.38 85.67 4.71 3.88 4.75 0.59 1,953
PivotRR (ours) 16.32 23.56 13.66 3.50 3.12 3.25 63.63 62.04 63.28 3.72 3.33 3.73 0.98 1,348
NeutralRR (ours) 16.48 23.01 13.75 3.51 3.12 3.27 65.37 63.30 64.62 3.83 3.39 3.82 1.02 1.348

Table 2: Results of evaluated methods in CrossSum for multi-target cross-lingual summarization using different
languages as the source language. The language in each column is the target, with “rest" indicating the average for
the remaining target languages. Metrics with (R) evaluate similarity to reference summaries, while those with (C)
evaluate semantic coherence across languages. ROUGE-2 and CometKiwi range from 0 to 100, while BLASER 2.0
ranges from 1 to 5 (higher values are better). Best results are bold, second best results are underlined. Columns
T and #P indicate the average computation time per generated summary in seconds and the number of model
parameters in millions, respectively.

5.4 Main Results481

In this section, we present results on MTXLS con-482

sidering all the seven languages mentioned in Sec-483

tion 5.1 as targets. To perform this task, we took484

each of the seven languages as the source in turn485

and discarded the clusters that lacked a document486

in the source language. Then, we iterated through487

the remaining clusters taking the document in the488

source language as the input for summarization and489

we generated summaries for all the languages in490

the cluster, including the source language, using491

each of the methods mentioned in Section 5.2.492

The results are in Table 2 and are presented493

per language pair. Due to space limitations, we494

present detailed results only for English (en) and495

Chinese (zh), and show the averages for the re-496

maining source and target languages (rest). An497

extended version of this table, including detailed498

results for more languages, confidence intervals,499

and the accuracy of each approach on following the500

target language is shown in Appendix D.1. When501

the source and target languages are the same, S&T502

and PivotRR reduce to M2MS because we use the503

source language as the pivot. Consequently, the504

results of these three methods for ROUGE-2 and505

BLASER 2.0 (R) coincide for en→en and zh→zh.506

We begin by discussing the results of Mistral507

7B, as these deserve special attention. Interestingly,508

the model always performs worst in terms of simi-509

larity to the reference summaries (ROUGE-2 and 510

BLASER 2.0 (R)), even though it was instructed 511

that the articles were obtained from the BBC and 512

that the summaries should follow the BBC style 513

(see Appendix C). Regarding the coherence across 514

target languages, we observe that the model has 515

a very decent performance, as illustrated in Ta- 516

ble 1, ranking second in CometKiwi scores, only 517

surpassed by S&T. However, the model often failed 518

to produce the output in the requested format, in 519

which case we had to repeat the request, or did 520

not produce text in the specified target language 521

(see Appendix D.1). For these reasons, we did 522

not extend its evaluation to other source languages 523

beyond English and Chinese. 524

The method M2MS conducts cross-lingual sum- 525

marization for each target language independently, 526

disregarding semantic coherence across languages. 527

Consequently, it consistently achieves the highest 528

ROUGE-2 scores but ranks lowest in coherence 529

metrics (CometKiwi and BLASER 2.0 (C)). Con- 530

versely, S&T ensures the best semantic coherence 531

across target languages by directly translating the 532

source language summary for each target language. 533

However, this often results in significant degrada- 534

tion in similarity with the references for each target 535

language, as measured by ROUGE-2, and, in many 536

cases, even diminishes similarity to the reference 537

summary for the source language, as measured by 538

7
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Figure 2: Results of PivotRR and NeutralRR as a function of the number of candidates per target language for
re-ranking (k in Algorithm 1). Error bars indicate the standard deviations across the target languages.

BLASER 2.0 (R). This indicates that the MT model539

introduced errors compromising summary quality.540

Our approaches (PivotRR and NeutralRR) do541

not significantly degrade ROUGE-2 scores com-542

pared to M2MS and notably achieve the highest sim-543

ilarity to the the reference summary for the source544

language. As expected, our methods also signifi-545

cantly improve semantic coherence across differ-546

ent target languages compared to M2MS. NeutralRR547

performs comparably to PivotRR in terms of simi-548

larity to the reference summaries, and consistently549

outperforms it in terms of semantic coherence550

across target languages. This was expected because551

NeutralRR treats all languages equally and aims552

for a set of summaries with high similarity. Con-553

versely, PivotRR utilizes a fixed pivot summary554

and seeks candidates in each target language that555

closely resemble the pivot.556

5.5 Effect of Varying the Number of557

Candidates558

In this experiment, we investigate how the perfor-559

mance of our methods changes as we vary the num-560

ber of candidates for re-ranking, using English as561

the source language. To vary the number of candi-562

dates generated by beam search multinomial sam-563

pling, we kept the number of beams per output564

sequence constant and equal to 5 and varied the565

number of output sequences. The results are in566

Figure 2, where we show the averages and standard567

deviations across the seven target languages.568

Interestingly, increasing the number of candi-569

dates does not affect the similarity between the570

selected summaries and their respective references,571

as evaluated by ROUGE-2. In addition, it has a 572

positive effect on the similarity between the se- 573

lected summaries and the reference in the source 574

language, as measured by BLASER 2.0 (R). We 575

justify this observation by the hypothesis that a set 576

of summaries with high similarity can serve as a 577

reliable indicator of summary quality, since it is 578

unlikely that the model generates the same false 579

information in multiple languages. This was illus- 580

trated in the example in Table 1 for NeutralRR. 581

Finally, as more candidates are considered, compu- 582

tation time increases, yet so does the similarity of 583

selected summaries, as evaluated by CometKiwi. 584

Notably, this similarity increase is more significant 585

for NeutralRR, which is not limited by maximizing 586

similarity to a fixed pivot summary. 587

6 Conclusion 588

This work introduces multi-target cross-lingual 589

summarization to address the challenge of achiev- 590

ing coherent summaries across multiple target lan- 591

guages. We propose two re-ranking approaches 592

tailored to this task, which improve semantic coher- 593

ence across languages compared to conventional 594

beam search decoding, while still preserving simi- 595

larity to the reference summaries. In particular, one 596

of these methods eliminates the need for a pivot lan- 597

guage, thus treating all languages equally and elim- 598

inating potential biases arising from pivot language 599

selection. Furthermore, we extended the evalua- 600

tion framework for cross-lingual summarization by 601

including the assessment of semantic coherence 602

across different target languages. 603
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Limitations604

While we believe that our approach has merit, it605

is equally important to recognize its inherent limi-606

tations. First, we anticipate that as large language607

models continue to improve and become fluent in608

more languages, instructing the model to produce609

summaries with identical information for all target610

languages will eventually be sufficient to satisfy our611

semantic coherence constraint. Second, the success612

of our re-ranking approaches depends on the qual-613

ity of the sampled candidates. If all candidates are614

of low quality, or if they have poor semantic coher-615

ence across target languages, our approaches will616

inevitably fail. Investigating computationally effi-617

cient ways to incorporate the semantic coherence618

constraint directly at decoding time is an interesting619

research direction. Finally, our method introduces620

increased computational complexity compared to621

the usual beam search decoding.622
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A Dataset Clustering and Analysis946

As mentioned in Section 5.1, the original CrossSum947

dataset presents documents in one language paired948

with summaries in another language, a format that949

does not serve our multi-target setting. Therefore,950

we clustered the dataset to obtain clusters of mul-951

tilingual document-summary pairs about the same952

story. To achieve this, we aggregated all documents953

across the mentioned languages and constructed an954

undirected graph representing their pairwise con-955

nections. In this graph, two documents in differ-956

ent languages are connected if they are paired in957

CrossSum. We then built clusters by extracting958

all maximal cliques from this graph and we dis-959

carded all singleton cliques. Consequently, each960

maximal clique is a cluster of up to seven multilin-961

gual documents pertaining to the same story, where962

each document is accompanied by a summary in963

its respective language.964

This clustering procedure was applied separately965

to the CrossSum validation and test splits. The966

resulting validation set consisted of 4,525 clusters967

and 10,479 documents, while the test set consisted968

of 4,560 clusters and 10,535 documents. Table 3969

provides a breakdown of cluster sizes in the test set,970

as well as the distribution of documents for each971

language and cluster size. Notably, none of the clus-972

ters in the test set are complete, indicating that no973

cluster includes a document for all seven languages974

considered. In addition, we conducted an analysis975

of the co-occurrence of different language pairs976

within the clusters to verify whether a robust evalu-977

ation of cross-lingual summarization was possible978

across all language directions. Figure 3 illustrates979

the distribution of clusters containing examples of980

each language pair. While certain language pairs981

have higher representation than others, it is note-982

worthy that even the least represented pair (fr, zh) is983

found in 35 clusters, indicating a diverse linguistic984

coverage across the dataset.985

Since one of our goals is to assess the semantic986

coherence of the generated summaries in differ-987

ent target languages, it is crucial to evaluate the988

coherence of reference summary clusters in this989

regard. This evaluation helps to determine the level990

of coherence that can be achieved in the generated991

summaries without degrading similarity to the ref-992

erence summaries. To achieve this, we computed993

BLASER 2.0 and CometKiwi scores between ref-994

erence summaries within the same cluster for each995

language pair. The results are shown in Figure 4.996

Language Cluster Size
2 3 4 5 6 7 All

ar 1,022 455 153 34 6 0 1,670
en 1,780 598 176 37 7 0 2,598
es 1,271 367 130 31 7 0 1,806
fr 224 84 46 14 5 0 373
pt 1,027 280 118 33 6 0 1,464
ru 1,077 482 140 38 5 0 1,742
zh 531 224 93 28 6 0 882

All 3,466 830 214 43 7 0 4,560

Table 3: Number of clusters in the test set containing a
document of each language, organized by cluster size.

ar en es fr pt ru zh

ar
en

es
fr

p
t

ru
zh

1,670 974 373 102 259 545 304

974 2,598 694 193 478 856 492

373 694 1,806 102 714 481 190

102 193 102 373 92 87 35

259 478 714 92 1,464 425 135

545 856 481 87 425 1,742 244

304 492 190 35 135 244 882

Figure 3: Number of clusters in the test set containing
documents of each language pair.

It is important to note that the matrices are non- 997

symmetric due to the nature of BLASER 2.0 and 998

CometKiwi metrics. Firstly, we note a significant 999

agreement between the two metrics, as anticipated. 1000

Additionally, coherence tends to be higher among 1001

languages using the Latin script. However, for 1002

most language pairs, coherence remains above 3.40 1003

BLASER 2.0 points and 70.0 CometKiwi points. 1004

This suggests room for improvement compared to 1005

the results outlined in Table 2. 1006

B Implementation Details 1007

To represent the cross-lingual summarization dis- 1008

tribution q(yt ∣ xo, t), we use an mT5 model (Xue 1009

et al., 2021) for all the methods except Mistral 7B. 1010

mT5 allows us to perform summarization across 1011

all language directions by conditioning the decoder 1012

on a unique start-of-sequence token that specifies 1013

the intended target language. 1014

We used the publicly available SONAR 1015

checkpoint text_sonar_basic_encoder 1016

to implement ϕ, the mT5 checkpoint 1017

csebuetnlp/mT5_m2m_crossSum_enhanced, 1018

which was fine-tuned in the CrossSum 1019
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ar en es fr pt ru zh
source

ar
en

es
fr

pt
ru

zh
tra

ns
la

tio
n

3.96 3.53 3.76 3.62 3.69 3.51

4.05 3.87 4.23 3.98 3.87 3.56

3.63 3.86 3.84 3.96 3.55 3.29

3.71 4.09 3.71 3.66 3.46 3.26

3.69 3.93 3.93 3.77 3.51 3.33

3.68 3.77 3.45 3.49 3.46 3.34

3.54 3.49 3.27 3.41 3.33 3.40

(a)

ar en es fr pt ru zh
source

ar
en

es
fr

pt
ru

zh
tra

ns
la

tio
n

75.9 70.8 70.3 69.0 72.0 67.6

78.3 78.1 80.5 78.2 79.9 78.4

72.6 76.2 75.9 77.8 77.2 71.5

73.1 78.6 76.0 72.9 76.1 70.8

70.1 76.2 77.6 73.4 71.9 70.3

71.4 75.8 75.3 74.0 70.0 71.6

70.1 76.4 72.0 68.6 70.2 73.4

(b)

Figure 4: Average BLASER 2.0 (a) and CometKiwi (b) scores between reference summaries within the same cluster
for each language pair in the test set.

dataset, and the Mistral 7B checkpoint1020

mistralai/Mistral-7B-Instruct-v0.2. All of1021

these checkpoints are available at the Hugging1022

Face model hub.31023

The optimal beam size and sampling tempera-1024

ture for beam search multinomial sampling were1025

determined through a grid search. We explored1026

beam sizes of 1, 3, and 5, and temperatures of 0.1,1027

0.3, 0.5, 1.0, 1.5, and 2.0 in order to maximize the1028

ROUGE-2 score on the validation set of English-to-1029

all summarization. We also tried with other decod-1030

ing strategies, namely (single-beam) multinomial1031

sampling and diverse beam search (Vijayakumar1032

et al., 2018), but these degraded ROUGE scores1033

considerably. The number of random language per-1034

mutations (m in Algorithm 1) used by NeutralRR1035

was set to 6 when the number of target languages1036

was at least three and was set to 2 if there were1037

only two target languages, since there are only two1038

possible permutations of two languages.1039

Regarding the evaluation metrics, we used the1040

multilingual implementation of ROUGE by Hasan1041

et al. (2021).4 For CometKiwi and BLASER 2.0,1042

we used the Unbabel/wmt22-cometkiwi-da and1043

blaser_2_0_qe checkpoints, respectively.1044

All experiments were run on an 80-core Intel1045

Xeon Gold 5218R CPU @ 2.10GHz with 800GB1046

of RAM and an NVIDIA A100 GPU with 80GB1047

of memory.1048

3https://huggingface.co/models
4https://github.com/csebuetnlp/xl-sum/tree/

master/multilingual_rouge_scoring

C LLM Prompt 1049

The following prompt was used on the experiments 1050

with Mistral 7B: 1051

For the <source_lang> news article 1052

from BBC written below, provide a 1053

summary in <target_lang_1>, a summary in 1054

<target_lang_2>, ... and a summary in 1055

<target_lang_N>. All summaries should be 1056

one or two sentences long and follow the 1057

style of BBC. All summaries must contain 1058

the same information. Present the answer 1059

in the format of a JSON object where the 1060

keys are the language codes and the values 1061

are the summaries. 1062

Text: 1063

<source_document> 1064

D Further Experimental Results 1065

D.1 Main Results Extended 1066

An extended version of the results presented in 1067

Table 2 is shown in Tables 4 and 5. In addition 1068

to English and Chinese, we also show results for 1069

Spanish and French. Spanish is the second most 1070

represented language in the dataset, surpassed only 1071

by English, while French is the least represented 1072

(see Table 3). All the results are accompanied by 1073

95% bootstrap confidence intervals with 1,000 re- 1074

samples. Apart from the metrics mentioned in 1075

Section 5.3, we also include the target language 1076

accuracy in Table 4. This metric corresponds to 1077

the percentage of times a method generated text in 1078

the specified target language, and is calculated by 1079

comparing the specified language with the domi- 1080

nant language identified in the generated text by 1081
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Figure 5: Effect of varying the number of language permutations (m in Algorithm 1) on the results of NeutralRR.
The results of doing an exhaustive search for the most coherent set are also shown for comparison. The error bars
and the shaded area indicate the standard deviations across the target languages.

the fastText model (Joulin et al., 2016a,b). We ob-1082

serve that the mT5-based methods generate text in1083

the correct target language in the vast majority (if1084

not all) of the cases. Mistral 7B sometimes strug-1085

gles to generate text in the correct target language,1086

especially for Arabic.1087

D.2 Effect of the Heuristic Search1088

In this experiment, we investigate the effect of1089

the number of language permutations (m in Algo-1090

rithm 1) on the performance of NeutralRR. In this1091

experiment, we always use English as the source1092

language and only consider clusters of documents1093

with 4 languages, allowing up to 24 language per-1094

mutations. The number of candidate summaries1095

per language is kept fixed at 8. For this cluster size1096

and number of candidates, maximizing φ (equa-1097

tion (6)) directly with an exhaustive search is feasi-1098

ble since there are only 84 = 4096 possible sets of1099

summaries. Therefore, we also compare the results1100

of our approach with the exhaustive search. The1101

results are shown in Figure 5.1102

The first observation is that changing m or per-1103

forming an exhaustive search does not significantly1104

affect the similarity to the reference summaries.1105

Changing m also has no significant effect on the1106

computation time, which is natural since the time1107

required by the dynamic programming optimiza-1108

tion is much smaller than the decoding time of1109

the summarization model. However, an exhaustive1110

search obviously increases the computation time,1111

and the difference would only become larger for1112

larger cluster sizes or more candidate summaries1113

per language. Regarding the semantic coherence 1114

of the resulting set of summaries, an exhaustive 1115

search yields the best results as expected, but they 1116

are only slightly better than our heuristic search 1117

with a sufficiently large number of language per- 1118

mutations. 1119
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