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ABSTRACT

With the demise of Moore’s law, the demand for efficient deep neural net-
work accelerators has surged. In addition, the democratization of AI encour-
ages multi-task learning (MTL), demanding more parameters and processing time.
To achieve highly energy-efficient MTL, Diffractive Optical Neural Networks
(DONNs) have garnered attention due to extremely low energy and high com-
putation speed. However, implementing MTL on DONNs requires manually re-
configuring and replacing specific layers, resulting in rebuilding and duplicating
the physical systems. To overcome the challenges, we propose LUMEN-PRO, an
automating MTL framework. Specifically, we first propose to automate MTL uti-
lizing an arbitrary backbone DONN and a set of tasks, resulting in a high-accuracy
multi-task DONN model with a small memory footprint that surpasses existing
MTL methods. Secondly, we leverage the rotatability of the physical system, and
replace task-specific layers with the rotation of the corresponding shared layers.
This replacement eliminates the storage requirement of task-specific layers, thus
further optimizing the memory footprint. LUMEN-PRO provides flexibility in
identifying optimal sharing patterns across diverse datasets, facilitating the search
for highly energy-efficient DONNs. Experimental results show that LUMEN-PRO
provides up to 49.58% higher accuracy and 4× better cost efficiency than single-
task and existing cutting-edge DONN approaches on different datasets. It achieves
memory lower bound of multi-task learning, i.e., having the same memory storage
as the single task model. Compared to technologies such as IBM TrueNorth and
Nanophotonic, LUMEN-PRO achieves 105× and 10× speedup in throughput, and
5, 969× and 680× energy efficiency gain, respectively.

1 INTRODUCTION

With the demise of Moore’s law, the demand for efficient deep neural network accelerators has
surged (Mack, 2015). To achieve real-time and ultra-low power DNN processing, advanced de-
vice/circuit technologies surpassing the Complementary metal–oxide–semiconductor (CMOS) tech-
nology are essential. As a representative, the Diffractive Optical Neural Network (DONN) has
emerged to overcome the energy efficiency drawbacks associated with CMOS-based DNN sys-
tems (Caulfield & Dolev, 2010). The all-optical processing capabilities of DONNs are achieved
by leveraging inherent physical phenomena, such as light diffraction and light signal phase modu-
lation, occurring naturally at the speed of light. It offers (i) significantly less energy and thermal
constraints, and more bandwidth compared to CMOS-based systems; and (ii) remarkable computa-
tional speed, transmitting information at the speed of light (Rı́os et al., 2015; Shastri et al., 2021).

On the other hand, the increasing accessibility of AI encourages the concurrent execution of multiple
interrelated tasks, i.e., more than one model simultaneously on a single resource-constrained device.
This presents challenges due to the escalated computation, energy, and storage costs (Zhang & Yang,
2021). To tackle this, multi-task learning (MTL) provides a promising solution by facilitating joint
learning of a task set and enabling parameter sharing to reduce costs. In general, MTL has high
model complexity. For example, Kendall et al. (2018) shows their MTL model is 4.5× slower at
inference and requires 2.4× more parameters than the single-task model for depth estimation when
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using the same backbone network. The MTL model in Long et al. (2017) also shows ∼ 2× more
parameters than the single-task model and requires ∼ 4× longer to train.

Table 1: Comparison of different MTL methods.

Methods Multi-task Automatic Rotation
VanillaMT ✓ ✕ ✕

RubikONN ✓ ✕ ✓

(Ours) LUMEN-PRO ✓ ✓ ✓

To realize highly energy efficient MTL, DONN
technology appears to be a highly compelling
and natural candidate, as evidenced by Vanil-
laMT (Li et al., 2021a) and RubikONN (Li
et al., 2023). Despite the success, the integra-
tion of MTL with DONN is still challenging
due to the need (i) to rebuild and duplicate the
physical hardware of the system, leading to en-
ergy disadvantage and cost inefficiency; (ii) of
domain knowledge when designing resource-efficient MTL models, as substantial exploration ef-
forts are needed to determine task-specific elements that shared across tasks.

In this work, we propose an extremely energy-efficient automating multi-task learning framework
on optical neural networks, LUMEN-PRO. LUMEN-PRO utilizes rotatability of the physical system
and takes an arbitrary DONN backbone and a set of vision tasks as inputs, where the backbone
defines the computation graph with layers functioning as shared operator nodes. The difference
between our method and state-of-the-arts (SOTAs) are summarized in Table 1. Our contributions
are summarized as follows:

• LUMEN-PRO automates the transformation of a user-provided DONN backbone into an
operator-level supermodel, enabling gradient-based architecture search for efficient task
sharing and cost optimization.

• LUMEN-PRO leverages the rotatability of the physical system to fine-tune the multi-task
DONN architecture for resource efficiency. The task-specific layers are replaced by the
physical rotation of the shared layers, therefore requiring zero memory footprint. Our
method achieves a memory lower bound of multi-task learning, i.e., having the same mem-
ory storage as the single-task model.

• LUMEN-PRO can greatly reduce the cost and energy that required for MTL DONN appli-
cations, while still maintaining high prediction accuracy.

Experimental results show that LUMEN-PRO framework achieves up to 13.51% higher accuracy
and 4× better cost efficiency than single-task and existing DONN baselines on MNIST family,
with an improvement in prediction accuracy of up to 49.58% on the CelebA. LUMEN-PRO also
achieves up to 105× and 10× speedup in throughput, with 5, 969× and 680× energy efficiency gain
compared with IBM TrueNorth and Nanophotonic, respectively.

2 RELATED WORKS

2.1 DIFFRACTIVE OPTICAL NEURAL NETWORKS

Diffractive Optical Neural Networks (DONNs) is an optical system where the information encoding
and the computation are realized by the manipulation of the light signal, which features with high
energy efficiency, high computational speed and easy parallelism (Shen et al., 2017; Lin et al.,
2018; Mengu et al., 2019; Feldmann et al., 2019; Li et al., 2021b; 2022). The DONN system is
composed by stacking diffractive layers in sequence as shown in Figure 1. The input information
is encoded with the coherent light signal on its optical characteristics, e.g., its intensity, amplitude,
or phase. The diffractive layers are arrays embedding the phase modulations trained w.r.t the ML
task for manipulating and encoding information on the light signal. The connection between layers
is realized by the light diffraction when the light signal propagates between layers. At the end of
the DONN system, a detector is employed to capture the light intensity pattern for the result readout
and the analog-to-digital conversion. Note that the optical manipulation happens by nature with
light propagation and modulation and the diffractive layers are implemented with passive optical
devices without extra energy needed for functionality, resulting in ultrahigh power efficiency and
computational speed. Once the training of a DONN system is completed on the digital computation
platform, the trained DONN is deployed on the optical platform with non-configurable fabricated
phase masks such as 3D printed phase masks, as diffractive layers for all-optical inference. Thus,
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DONNs lack reconfigurability for the weight parameters, which will bring significant energy and
system cost overhead in practical application scenarios, especially for MTL.

2.2 MULTI-TASK LEARNING

There are several research trends addressing the multi-task learning efficiency: (1) common features
extraction with feature transformation (Weinberger et al., 2009; Yim et al., 2015; Chu et al., 2015;
Zhang et al., 2014) and feature selection approaches (Wang et al., 2009; Ahmed et al., 2012), (2)
low-rank methods for weight parameter approximation and sharing (Xu et al., 2016; Cheng et al.,
2011), (3) clustering tasks based on task similarity (An et al., 2008; Zhang & Yeung, 2010; Almaev
et al., 2015), (4) simultaneous learning of parameters and pairwise task relations (Chapelle et al.,
2010; Liu et al., 2016; Widmer et al., 2010), and (5) decomposition approaches using multi-level
parameters to model complex task structures (Hong et al., 2013; Yan et al., 2013; Wan et al., 2012).

3 DONN PRELIMINARY

Dense Diffractive Layers Detector Layer

Input Plane

X
Z

Figure 1: A Five-layer DONN for classification.

DONN system is designed with three
major components (Figure 1): (1) laser
source encoding the input images, (2)
diffractive layers encoding trainable phase
modulation, and (3) detectors capturing
the output of the forward propagation. The
input image is first encoded with the laser
source. The information-encoded light
signal is diffracted in the free space be-
tween diffractive layers and modulated via
phase modulation at each layer. Finally,
the diffraction pattern after light propagation w.r.t light intensity distribution will be captured at the
detector plane for predictions.

First, the input information (e.g., an image) is encoded with the coherent light signal from the
laser source, and the information-encoded wavefunction is f0(x0, y0). The wavefunction after light
diffraction from the input plane to the first diffractive layer over diffraction distance z can be seen
as the summation of the outputs at the input plane, i.e.,

f1(x, y) =

∫∫
f0(x0, y0)h(x− x0, y − y0, z)dx0dy0 (1)

where (x, y) is the coordinate on the receiver plane, i.e., the first diffractive layer, h is the impulse
response function of free space. Here we use Fresnel approximation, thus the impulse response
function h is as Equation 2, where i =

√
−1, λ is the wavelength of the laser source, k = 2π/λ is

free-space wavenumber.

h(x, y, z) =
exp(ikz)

iλz
exp{ ik

2z
(x2 + y2)} (2)

Equation 1 can be calculated with spectral algorithm, where we employ Fast Fourier Transform
(FFT) for fast and differentiable computation, i.e., U1(α, β) = U0(α, β)H(α, β, z), where U and
H are the Fourier transformation of f and h.

After light diffraction, the wavefunction resulting U1(α, β) is first transformed to time domain
with inverse FFT (iFFT). Then the phase modulation W (x, y) provided by the diffractive layer
is applied to the light wavefunction in time domain by matrix multiplication, i.e., f2(x, y) =
iFFT(U1(α, β)) × W1(x, y), where W1(x, y) is the phase modulation in the first diffractive layer,
f2(x, y) is the input light wavefunction for the light diffraction between the first diffractive layer
and the second diffractive layer.

The computation module with one computation round of light diffraction and phase modulation at
one diffractive layer is named DiffMod, i.e.,

DiffMod(f(x, y),W ) = L(f(x, y), z)×W (x, y) (3)
where f(x, y) is the input wavefunction, W (x, y) is the phase modulation, L(f(x, y), z) is the
wavefunction after light diffraction over a constant distance z in time domain, i.e., iFFT(U(α, β)).
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Figure 2: Overview of the proposed LUMEN-PRO framework and DONNs system.

The forward function for a multiple-diffractive-layer-constructed DONN system is computed itera-
tively for the stacked diffractive layers. For example, for the 5-layer system shown in Figure 1, the
forward function can be expressed as,

I(f0(x, y),W ) =DiffMod(DiffMod(DiffMod(DiffMod(DiffMod

(f0(x, y),W1(x, y)),W2(x, y)),W3(x, y)),W4(x, y)),W5(x, y))
(4)

where f0(x, y) is the input wavefunction to the system and W1−5 is phase modulation provided at
each diffractive layer.

The final diffraction pattern w.r.t the light intensity I as denoted in Equation 4 is projected onto the
plane of the detector. By defining the coordinates of the detector region across the entire detector
plane for each class according to the user’s specifications, it becomes feasible to devise diverse
detector patterns for various tasks. As an illustration, in the case of MNIST datasets, the output
plane is partitioned into ten distinct detector regions to emulate the outcomes of conventional neural
networks that predict ten classes. The classification result is determined by employing the argmax
function on the sums of intensities from the ten detector regions. For instance in Figure 2, by
examining the label indices of the ten detector regions corresponding to the image “boots“, the
highest energy is observed in the first region of the first row. Consequently, the predicted class is
“0”. By utilizing the one-hot encoded representation of the ground truth class denoted as t, the loss
function L can be obtained through the utilization of MSELoss, i.e., L =∥ Softmax(I) − t ∥2.
Thus, the whole system is designed to be differentiable and compatible with conventional automatic
differential engines.

4 LUMEN-PRO FRAMEWORK

We aim to develop a precise, cost-efficient automating multi-task learning DONN system by sharing
parameters across tasks. Diffractive layers in DONN systems are typically 3D printed and feature
permanent phase parameters once fabricated. However, their square shape allows for relocating and
rotating the layers, enabling weight alterations and modification of the DONN system’s forward
function (Lin et al., 2018). This rotation changes light modulation patterns and enhances the perfor-
mance and computational efficiency of the MTL DONN system. Figure 2 provides an overview of
our LUMEN-PRO framework.

4.1 AUTOMATING MULTI-TASK LEARNING FRAMEWORK

The multi-task supermodel is generated from a backbone DONN as shown in Figure 2, encoding the
search space for all tasks. A gradient-based architecture search algorithm is employed to find the
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optimal architecture, ensuring accuracy and compactness. Task-specific aspects are then addressed,
where task-specific copies replace weights with rotated weights from the shared operator of the
backbone model. This approach tailors the model for each task without increasing energy and cost
compared to a single-task model.

4.1.1 SUPERMODEL AND SEARCH SPACE
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Figure 3: Computational graph of LUMEN-PRO.

Our framework views the DONN
backbone model as a computational
graph, with diffractive layers as oper-
ators that serve as sharing units (Fig-
ure 3). Sharing options include using
(1) the basic shared operator (bsc),
(2) a task-specific copy of the ba-
sic shared operator (spct), or (3) a
skip operator (skpt). The multi-task
DONN supermodel is represented by
a computational graph using Com-
putation Units (CUs) as layers, pre-
serving the backbone model’s topol-
ogy. These CUs include the neces-
sary components: the basic shared operator, task-specific copies, skip operators, and trainable policy
variables (P t) for task execution and sharing patterns.

4.1.2 GRADIENT-BASED ARCHITECTURE SEARCH

Our aim is to discover the most effective sharing policy for a multi-task supermodel that results in
the top-performing outcome across all tasks. To effectively explore the search space and identify
the ideal sharing policy for a multi-task DONN supermodel, a gradient-based architecture search
algorithm is employed (Zhang et al., 2022). This algorithm optimizes the sharing policy and
multi-task DONN model parameters simultaneously using standard back-propagation. The non-
differentiability and discrete nature of policy variables are handled using the Gumbel-Softmax Ap-
proximation (Jang et al., 2016) and soft differentiable policy as Equation 5.

P ′(k) =
exp ((Gk + log (πk)) /τ)∑

k∈{0,1,2} exp ((Gk + log (πk)) /τ)
(5)

Here, P is the policy variable; k represents the three operator options that 0 is the backbone basic
shared operator bsc is chosen for the task, 1 is the rotated task-specific copy spct is adopted, and
2 is the skip operator skpt is selected; Gk ∼ Gumbel(0, 1). Once the distribution π is learned,
we sample the discrete task-specific policy P , which determines the operator to execute in each CU
for each task. Using this policy, we construct the multi-task DONN architecture, ensuring better
performance among all the tasks.

To further optimize the energy and cost overhead, sharing operators across tasks are more encour-
aged in the multi-task DONN model. Denote the probability of selecting the basic shared operator,
the task-specific copy, and the skip operator as P ′tm

n (0), P ′tm
n (1), and P ′tm

n (2) for the m-th task in
the n-th CU , a policy regularization term Lreg (Dugas et al., 2000) is added to the loss function as
Equation 6. Here, T is the total number of tasks, and N is the total number of diffractive layers in
the backbone model.

Lreg =
∑
m≤T

∑
n≤N

N − n

N

{
ln
(
1 + eP

′tm
n (1)−P ′tm

n (0)
)

+ ln
(
1 + eP

′tm
n (2)−P ′tm

n (0)
)}

(6)

In this case, the final loss function can be written as Equation 7. Here, Lm refers to the loss for each
task as shown in Section 3, αm and αreg are regularization factors.

L =
∑
m≤T

αm · Lm + αreg · Lreg (7)

4.2 ROTATION ALGORITHM
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Figure 4: Rotation Process in LUMEN-PRO.

We use a three-stage training pipeline
for the multi-task DONN model. In
the first stage (Figure 2), pre-training
is conducted jointly on all tasks to
obtain a well-initialized multi-task
DONN supermodel. The output of
each CU for each task is the aver-
age of the backbone shared opera-
tor, task-specific copy, and skip con-
nection, ensuring parameter warm-
ing. The second stage is policy-
training, optimizing the sharing pol-
icy and model parameters iteratively.
Once the policy distribution param-
eters converge, a sharing policy is
sampled to generate the multi-task
DONN model. In the post-training
stage, the sharing policy is fixed, and
model parameters are trained from scratch. We use the rotation training algorithm to leverage the
inherent physical rotation properties of DONN systems for MTL with minimal overhead.

Algorithm 1: LUMEN-PRO Rotation Algorithm
Input: A MTL DONN M with N layers, T tasks
Initialization: A copy of M as Magg

1 Extract the policy set from M as {P}
2 while i ≤ training iterations do
3 for n ≤ N do
4 if spctn in {Pn} then
5 Substitute the weights of t in M with the

weights of bscn in Magg after applying a
rotation of αt

n degrees.
6 Train and update weights in M .
7 for n ≤ N do
8 Apply a rotation of 4− αt

n degrees to substituted
weights in M .

9 Compute the average of the weights of all tasks in
layer n in M , denote as Wtmp

n .
10 for t ≤ T do
11 Replace weight of t in Magg with Wtmp

n .
12 if policyt

n is spctn then
13 Substitute the weights of t in M with

αt
n-degrees rotated Wtmp

n .
14 Evaluation on M .

Output: Well-trained MTL DONN M w/ rotated weights.

After the sampling stage, the struc-
ture of the multi-task model is fi-
nalized, and operator selection for
each node in each task is determined.
As in Algorithm 1, during the post-
training phase, two models are ini-
tialized: one for aggregation and an-
other as a virtual model to temporar-
ily store updates for specific rotation
patterns and tasks. The virtual model
is re-initialized with either the ini-
tial weight parameters or the param-
eters optimized in the previous itera-
tion. As in Figure 4(a), during each
training iteration, nodes in certain
tasks may choose the shared back-
bone operator or the task-specific
copy in a specific layer of the multi-
task DONN model. The weights in
the task-specific copies are then re-
placed with varying degrees of rota-
tion using the weights from the back-
bone shared operator (lines 3-5). Af-
ter rotations and substitutions, the pa-
rameters in the virtual model are up-
dated (line 6). After one training iteration as in Figure 4(b), all substituted weights in the virtual
model are reverse-rotated back to their initial position (line 7-8) as in Figure 4(c). Aggregation is
then performed by averaging weights of nodes across tasks in the same layer (lines 9-11), and new
weights are copied to re-initialize the aggregation model (line 12-13) as in Figure 4(d).

5 EXPERIMENTS

5.1 SYSTEM PARAMETERS AND TRAINING SETUP

Dataset and Evaluation Metrics We evaluate the performance of LUMEN-PRO on two popular
multi-task learning datasets. The first is MNIST family, which consists of four public image clas-
sification datasets: MNIST-10 (MNIST) (LeCun, 1998), Fashion-MNIST (FMNIST) (Xiao et al.,
2017), Kuzushiji-MNIST (KMNIST) (Clanuwat et al., 2018), and Extension-MNIST-Letters (EM-
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NIST) (Cohen et al., 2017). For EMNIST, we customize the dataset by selecting the first ten classes
“A-J”. The second used is CelebFaces Attributes Dataset (CelebA) (Liu et al., 2015). We choose
four attributes with relatively more balanced labels, namely Smiling, Mouth Slightly Open, Male,
and Attractive. We transform all images to grayscale to ensure compatibility with DONN physical
system. F1-score and accuracy are used as evaluation metrics for CelebA.

DONN System Parameters and Training Setup We utilize a system configured with five diffrac-
tive layers, each of dimension 200 × 200, hence both the layer and the detector regions share these
dimensions. The system is configured in 532nm laser wavelength (green laser). Original input im-
ages in the evaluated datasets are interpolated to 200 × 200 to align with our optical system and
encoded. We maintain a uniform physical distance of 27.94cm among layers, between the first layer
and the source, and from the final layer to the detector. The distinct detector regions, corresponding
to the number of classes, are uniformly situated on the detector plane, each sized 20 × 20. The
aggregate intensity of the detector regions equates will return a vector in float32 type. The fi-
nal prediction results are computed using argmax. During the training process, we use learning
rate as 0.1 under Adam optimizer, batch-size being 200. StepLR scheduler is adoped with step-size
being 6000. All the implementations are constructed using PyTorch v1.8.1. Experiments are
conducted on a Nvidia Quadro RTX6000.

5.2 EVALUATION RESULT

5.2.1 ACCURACY COMPARISON
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Figure 5: Comparison with baselines on MNIST Family.

We compare LUMEN-PRO with four
baselines: (1) a single-task base-
line with independent models for
each task, (2) BaselineMT (Lin
et al., 2018), a straightforward multi-
task approach using a fixed single-
task DONN architecture by merging
datasets, (3) VanillaMT (Li et al.,
2021a), a specific MTL DONN
method with shared backbone and
separate diffractive layers at the out-
put stage, and (4) RubikONN (Li
et al., 2023), a state-of-the-art MTL
DONN method with weight aggregation and rotation but manual architecture design. We select the
best combination of rotated layers and rotation angles for RubikONN. To ensure fair comparisons,
we use the same backbone DONN model across all baselines and LUMEN-PRO.

MNIST

EMNIST

Shared

FMNIST

KMNIST

Task
L1 L2 L3 L4 L5

Input Detector

Layer

Figure 6: Policy Visualization for MNIST
Family. Weights on non-red nodes derived
via rotational transformation based on red
(shared) node weights. Semi-transparent
nodes mean the operators are not selected.

MNIST Family Figure 5 compares the accuracy
of LUMEN-PRO with and without rotation to base-
line methods on four MNIST family datasets. We
use MNIST family to align with the baselines. Re-
sults show that LUMEN-PRO outperforms all MTL
baselines, especially BaselineMT, with improve-
ments of 4.42%, 6.23%, 13.51%, and 10.12% in
MNIST, FMNIST, KMNIST, and EMNIST datasets,
respectively. LUMEN-PRO with rotation achieves
significant accuracy gains of 1.8%, 3.87%, 5.09%,
and 3.67% compared to RubikONN. Compared
to the single-task baselines, LUMEN-PRO with
rotation demonstrates accuracy improvements of
0.37% (MNIST) and 0.89% (KMNIST). Notably,
there is minimal difference in performance between
LUMEN-PRO with and without rotation, and rota-
tion does not incur additional memory usage on the
physical system for the multi-task DONN model.
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Figure 7: Comparison of single-task and MTL baselines with LUMEN-PRO on CelebA dataset.

We analyze the learned sharing policies of the multi-task DONN architecture. Figure 6 displays
the sampled feature sharing pattern for the four datasets. Earlier diffractive layers tend to have
dataset-specific weight selection, while operator sharing primarily occurs in later layers. FMNIST
consistently shares across all five diffractive layers. These results contrast with the architecture
design from RubikONN, where the first three diffractive layers are shared across tasks and the fourth
and fifth layers are task-specific and rotated from the backbone operators at pre-designed angles.

Attractive
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Mouse 
Slightly 
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Input Detector

Layer

Figure 8: Policy Visualization for CelebA.

CelebA Figure 7 compares LUMEN-PRO to base-
lines in a four-task MTL with CelebA attributes.
LUMEN-PRO outperforms the single-task model in
all tasks, indicating task correlations that enable
our MTL DONN model to leverage shared infor-
mation and learn common features, improving over-
all performance. With rotation, LUMEN-PRO out-
performs BaselineMT by up to 49.58% and Ru-
bikONN by up to 35.2%. Unlike BaselineMT and
RubikONN, our LUMEN-PRO framework automat-
ically explores and tailors architectures for data and
task specifics, enhancing correlation and dissimilar-
ity capturing for improved performance across tasks.

Figure 8 provides insights into the architecture of the
multi-task DONN model designed for CelebA. In the
initial layers, shared operators are utilized, whereas rotated task-specific operators are employed
starting from the fourth layer onwards. Our approach consistently outperforms RubikONN-designed
models, accommodating task heterogeneity effectively. The architecture for CelebA differs signif-
icantly from the MNIST-based dataset, demonstrating the flexibility of our automated feature in
LUMEN-PRO for diverse tasks and datasets.

5.2.2 ACCURACY-COST COMPARISON

In this part, we compare the model efficiency of LUMEN-PRO in terms of system cost and accuracy
to MTL baselines and single-task models. We use the “Accuracy-Cost evaluation metric” as in
Equation 8 for this evaluation (Li et al., 2023).

Eacc−cost =
Accuracysingle−task

AccuracyMTL

× F-CostMTL

F-Costsingle−task
(8)

Here, F-cost represents the fabrication cost for the diffractive layers and the detectors in the hardware
implementation, where the layer fabrication cost is ∼ $100 and detector cost is $1, 500 – $10, 000.
We normalize the cost of $100 as unit 1, thus, the layer cost for a 5-layer ONN is 5 and one detector
cost is 10 for the cost efficiency estimation.

Table 2 compares the accuracy and model efficiency of LUMEN-PRO with single-task models and
MTL baselines. The model efficiency of single-task models is normalized to a unit value of 1, which
is used to calculate the improvement achieved by the MTL method using Equation 8. The sharing
ratio indicates the proportion of shared layers among all four tasks. Both VanillaMT and RubikONN
share the first three layers and diverge at the last two, with RubikONN reusing the rotation layers.
As shown, LUMEN-PRO with rotation surpasses the single-task model and VanillaMT with 4× and
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Table 2: Accuracy-Cost trade-off comparsion of MNIST family: MNIST (Mnst), FMNIST (Fmst),
KMNIST (Kmnist), EMNIST (Emst). LUMEN-PRO follows the model structure shown in Figure 6.

Single-task VanillaMT RubikONN LUMEN-PRO w/o Rotation LUMEN-PRO w/ Rotation
Task Mnst Fmst Kmst Emst Mnst Fmst Kmst Emst Mnst Fmst Kmst Emst Mnst Fmst Kmst Emst Mnst Fmst Kmst Emst

Accuracy (%) 96.4 86.5 86.1 90.9 95.3 83.7 82.8 84.6 95.2 84.1 82.7 88.2 97.4 87.9 88.3 92.3 97.0 88.0 87.8 91.7

Layer Cost (Norm.) 5 5 5 5 11 5 8 5
Detector Cost (Norm.) 10 10 10 10 20 10 10 10

Model Eff. (Norm.) 1 1 1 1 1.8× 1.76× 1.75× 1.69× 3.95× 3.89× 3.84× 3.88× 2.48× 2.46× 2.44× 2.46× 4.03× 4.07× 4.08× 4.04×
Sharing Ratio – 12/20 16/20 16/20 17/20

Table 3: Comparison on accuracy, performance, energy efficiency of LUMEN-PRO and baselines

FINN TrueNorth FORMS ISAAC DaDianNao Holylight LUMEN-PRO
Technology FPGA ASIC ReRAM ReRAM ASIC Photonic Free-space Optics

Network Type BNN SNN CNN CNN CNN CNN DONN
Accuracy (%) 98.4 95 99.17 99.1 99.18 98.9 97

Throughput (kFPS) 1561 1.0 500 1× 103∗ 100∗ 1× 104∗ 1× 105

Power (Watt) 22.6 0.06 66.36 65.8 20.1 68.3 1.005
Energy Eff. (kFPS/W) 69.07 16.67 7.53 15.2 4.98 146.4 9.95× 104

∗ Note: Our retrieved numbers from the histograms in Liu et al. (2019), to the best of our knowledge.

2× model efficiency improvements, respectively. It has a 50% higher sharing ratio than VanillaMT,
reducing fabrication costs during deployment. Compared to RubikONN, LUMEN-PRO consistently
achieves higher model efficiency and accuracy across all tasks, demonstrating its effectiveness in
diverse datasets and real-world applications.

Comparing our LUMEN-PRO with and without rotation algorithm, we find that without rotation,
LUMEN-PRO achieves higher accuracy but lacks the cost-saving benefits of reusing middle layers.
This highlights the importance of balancing accuracy and cost in real-world deployment. By incor-
porating the rotation algorithm, LUMEN-PRO enables high-performing structures that excel in both
accuracy and model efficiency, improving practical applicability.

Energy Efficiency Comparison In Table 3, we provide the comparison results on accuracy,
throughput, power, and energy efficiency on MNIST. We select the state-of-the-art extremely en-
ergy efficiency implementation from other technologies (e.g., FPGA, ASIC, ReRAM) as baselines,
including FINN (Umuroglu et al., 2017) (binary neral network (BNN)), IBM TrueNorth (Esser et al.,
2015) (spiking neural network (SNN)), FORMS (Yuan et al., 2021), ISAAC (Shafiee et al., 2016),
DaDianNao (Chen et al., 2014), and Holylight (Liu et al., 2019) (photonic CNN). We observe that
compared to the reference FPGA-based implementation at a similar accuracy level, we achieve 64×
speedup in throughput, while the energy efficiency gain is 1, 441×. In comparison to ReRAM-based
and ASIC-based implementations, the energy efficiency gain is at least 6, 546× and 5, 969× respec-
tively. And when compared to photonic CNN, there is 10× throughput speedup and 680× energy
efficiency gain.

6 CONCLUSIONS

In this paper, we propose LUMEN-PRO, an automating multi-task learning optical neural network
framework that optimizes MTL DONN using physical principles. LUMEN-PRO converts a user-
provided DONN backbone into a supermodel with operator-level granularity, enabling gradient-
based architecture search for optimal possible sharing patterns across multiple tasks, enhancing
cost efficiency. LUMEN-PRO uses the rotation algorithm to fine-tune the architecture for higher
accuracy and resource efficiency, leveraging physical properties of optical systems. On MNIST
family, LUMEN-PRO achieves up to 13.51% higher accuracy and 4× and 2× better cost efficiency
than single-task and sota MTL DONN methods. On CelebA, LUMEN-PRO improves accuracy
by up to 49.58% compared to SoTA MTL DONN algorithms. In energy efficiency, LUMEN-PRO
achieves up to 105× and 10× speedup in throughput, with 5, 969× and 680× energy efficiency
gain compared with IBM TrueNorth and nanophotonic, respectively. LUMEN-PRO enables flexi-
ble adjustment and identification of suitable models across datasets, facilitating efficient search for
energy-efficient MTL DONN.
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