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ABSTRACT

Quantum machine learning, an emerging field in the noisy intermediate-scale
quantum (NISQ) era, faces significant challenges in error mitigation during train-
ing and inference stages. Current noise-aware training (NAT) methods typically
assume static error rates in quantum neural networks (QNNs), often neglecting
the inherently dynamic nature of such noise. By addressing this oversight, our
work recognizes the dynamics of noise in the NISQ era, evidenced by fluctuating
error rates across different times and qubits. Moreover, QNN performance can
vary markedly depending on the specific locations of errors, even under similar
error rates. This variability underscores the limitations of static NAT strategies in
addressing the dynamic nature of noisy environments. We propose a novel NAT
strategy that adapts to both standard and fatal error conditions, cooperating with a
low-complexity search strategy to efficiently locate fatal errors during optimiza-
tion. Our approach marks a significant advancement over current NAT methods
by maintaining robust performance in fatal error scenarios. Evaluations validate
the efficacy of our strategy against fatal errors, while maintaining performance
comparable to state-of-the-art NAT approaches under various error rates.

1 INTRODUCTION

Quantum machine learning (QML) has found |x) = Encode(x) ) = U(B)Ix)
great advancement along with modern classi- Encoder PQC (ansatz)
cal ML in the areas of chemistry [Sajjan et al.| 19 R (t1n)
(2022), physics |Guan et al.|(2021), natural lan- o) —{r,ce,0) |-+,
guage processing |Guarasci et al.| (2022)), etc. e IO P
Specifically, the variational quantum algorithm "
(VQA) |Cerezo et al.| (2021) is recognized as ’ ’
one of the most promising solutions to near- '
term QML tasks. The VQA is performed in T l
the hybrid classical-quantum optimization sce- —> ComPutinginauantum computer

nario, where parameterized quantum circuits 0
(PQCs), a.k.a. ansatz, produce measurements of
quantum states on the quantum computer, and Figure 1: A demonstration of QNN task. Input
the classical computer performs parameter opti-  is encoded as a state vector |x) using rotation
mization of PQCs through gradient-based meth- gates|Wang et al.|(2022a)), which is fed into PQC
ods[Simeone et al] (2022). We demonstrate this to prepare a final state vector |1)) for measurement.
procedure in Figure [T} taking qauntum neural

network (QNN) as an example, and further details of PQC optimization are provided in Appendix
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Different from classical circuits, the execution on PQCs faces a more rigorous situation with noise.
As quantum computers move to the noisy intermediate-scale quantum (NISQ) era, errors in qubits
and quantum operations are inevitable due to the dynamic nature of the quantum system and its
environment Preskill| (2018)). Under the complexity of quantum systems and the fragility of qubits,
basis gates usually have error rates on the scale of 10~% to 1072, as reported in IBM quantum
calibration data, while classical logic gates already achieve error rates lower than 10~% decade
ago Mielke et al.|(2008)). Thus, error mitigation in PQCs is critical for robust execution on quantum
computers, where mitigation strategies have been proposed during QNN training [Wang et al.| (2022b)
or execution |Cai et al.| (2023)); [Endo et al.| (2021); |Strikis et al.[(2021)).
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In this work, we focus on noise-aware training (NAT) for QNN models, aiming to enhance the
robustness of PQC against errors. The current NAT approach proposed by Wang et al.| (2022b))
involves deliberately introducing simulated noise into quantum gates, based on a predefined error
rate. This technique is designed to improve the robustness of PQC to a specific error rate. Despite
the pronounced effectiveness, we highlight a critical limitation in the current NAT strategy and PQC
simulators, which rely on static error rates during noise analysis. In reality, the noise landscape is
dynamic across both time and qubits. Recent studies have demonstrated that noise levels in quantum
computers can fluctuate significantly over time, even within a transient time window of operation Ravi
et al.| (2023). In our work, we also emphasize the dynamic nature of noise across different qubits. In
extreme cases, the error rate for a quantum gate can vary dramatically — from as high as 8% on one
qubit to as low as 0.1% on another — illustrated in Figure2] Such a highly variable noise landscape
renders the static error rate assumption in NAT insufficient for practical applications. For instance, a
qubit in an optimized QNN model that was assumed to have a low error rate during simulation could
be mapped to a physical qubit with a significantly higher error rate or might experience increased
errors over extended runtime.

Additionally, current approaches to evaluating errors in noisy QNN models predominantly focus
on the probability of errors, rather than assessing the actual detrimental impact these errors have
on QNN performance. Practically, even errors with identical probabilities can have vastly different
consequences. Certain errors may have a negligible influence on the QNN'’s inference performance,
while some fatal errors can degrade its performance to levels worse than random guessing. The
situation is more critical when qubits with possible fatal errors are mapped to high-error-rate physical
qubits, posing a significant risk to the robustness of QNN inference.

In this paper, we characterize the influence of dynamic noise on PQCs, and demonstrate the scenarios
where state-of-the-art (SOTA) NAT strategy is not competent. While it can mitigate errors occurring
at predictable rates, it falls short in managing fatal errors that critically undermine QNN performance.
Our analysis underscores the need for a more comprehensive NAT strategy that transcends static
error rate consideration and effectively mitigates fatal errors. To tackle this challenge, we propose a
low-complexity search strategy. It can search for fatal errors along with QNN training, and evolve
with PQC parameters simultaneously. Rather than randomly sampling errors, we utilize the searched
fatal errors to boost the robust QNN training. We highlight our contributions as follows:

* We reveal the significant influence of dynamic noise landscape on QNN models. The
uncertainty of error rates hinders the practice of current NAT strategies on static error rates.

* We quantify the negative influence of error cases on QNN models, and propose the analysis
methods for the fatal errors on a QNN model.

* To the best of our knowledge, this is the first NAT method that is independent of error rates,
but concentrates on fatal errors of PQCs. Our strategy aims to develop QNN models adaptive
to various noise distributions and with good tolerance to these fatal error cases.

* We thoroughly evaluate the effectiveness of our strategy, which greatly improves the ro-
bustness of QNN models against fatal errors. Also, our strategy can achieve performance
comparable to that of the SOTA NAT strategy under various error rates.

2 PRELIMINARY

2.1 DEFINITION

We follow the QNN model summarized in Mitarai et al.| (2018)), composed of an input encoder, a
PQC, and a measurement module. The PQC is optimized for a set of training data and applied for
further inference on quantum computers.

Definition 2.1 (QNN feed-forward). A QNN model starts with a predefined encoder Yan et al.
(2016); [Wang et al.| (2022ab) to prepare the query sample x as a quantum state vector |z). It then
applies a sequence of parameterized unitary gates U, (6,) € G represented by unitary matrix U(0) =

H;:G Uq(04). The final quantum state is denoted as [¢)) = U(@) |z). Then, the measurement of
PQC is tackled by evaluating an observable B on |¢), which is expressed as

f(lz),0) = (W| Bly) = (2| U'(0)BU(6) |) M
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In the following, we use f(|z) , @) to denote the expected measurement results of PQC.

Definition 2.2 (Noise model). To simulate noise effects in PQCs, we consider bit flip errors
(Pauli-X), phase flip errors (Pauli-2Z), and bit-phase flip errors (Paul i-Y), as outlined in[Wang
et al.[ (2022b). Other common errors, such as decoherence, can be mitigated without additional
resource overhead during execution Smith et al.[(2022); yet, mitigating Pauli errors typically requires
extra qubits and operations [Terhal| (2015)); |Acharya et al.| (2023)); Chen et al.| (2021)). Therefore,
developing QNNs with inherent resilience to Pauli errors during training can significantly alleviate
extensive error correction during execution, enhancing their performance on quantum computers.
Additionally, post-training error mitigation methods, which are independent of our approach, can
complement our in-training strategy. This combination is further explored in Appendix [B] We
introduce two error modeling methods Nielsen & Chuang|(2010) involved in our analysis:

Probabilistic Modeling. Denoting the density matrix of a pure state |¢) as p = |¢) (|, the error
channel of error E with probability p is represented by the mixed state as £(p) = (1 — p)p + pEpE.
The measurement of PQC is expressed as

G
f(|CC> ’0) = ng'l)(px,py,pz)Tr[BpG]’ where pc = (H 5g © Ug(ag)> (pO) 2

g=1
The noisy operation on the g-th gate conducts £, o Uy (0,)(p) = pglp'I + pf Xp' X +pl Y p'Y +
pZZp' Z, where p' = Uy(0y)pUS(04). Py = 1 —p; — py — pZ.and py = |x) (z|. The error of
each gate £, € & follows the distribution of P, = (g, p; , Py , Py ) representing the probability of

error-free, Pauli-X, Pauli-Y, and Pauli-Z error on g-th gate. This probabilistic noise model
estimates the expected PQC measurement given the predefined error rates of each quantum gate.

Deterministic Modeling. Rather than a general expectation, the deterministic noise model estimates
the PQC output in certain error cases. Assuming an error E; (as an operation) could occur on the
gate Uy (8,), e.g., Uy(04|Eg) = EqU,4(8,), we define the measurement of PQC as

f(lz),6|E) = (4| B[¢), where [¢)) = U(0|E) |x) 3)
The noisy PQC conducts U(0|E) = H;:G E,U,(0,) on |z), where E € {I, X,Y, Z}% is a specific
error case. Deterministic modeling tackles the analysis of error effect under certain errors, such as

systemetic errors [Khodjasteh & Viola|(2009) and coherent errors |Greenbaum & Dutton| (2017)). In
our work, we utilize this model to evaluate the worst-case errors for PQC measurement.

2.2  SCOPE OF OUR WORK

Application Scenario. We aim to mitigate the dynamic error effect on quantum computers by
training a robust model for future use. A robust QML model should perform well under dynamic
and unpredictable noise. Therefore, QNN models pre-trained through classical simulations or
classical-quantum hybrid algorithms are ideal for this scenario. Other VQA tasks, such as VQE Tilly,
et al.[(2022), fall outside our scope but benefit from noise mitigation techniques like quantum error
correction codes |Acharya et al.| (2023)). For instance, once the state is optimized and prepared in
VQE, no further execution of the PQC is neede In such tasks, real-time error mitigation methods,
including surface codes|Acharya et al.|(2023) and iterative skipping strategies Ravi et al.|(2023)), are
more appropriate. Related work is provided in Appendix

Case Study. In the following analysis, validation is provided as a numerical proof of concept along
with the analytical dicussion. Without loss of generality, we take a case study from a 4-qubit QNN,
whose PQC contains 3 layers. Each layer is composed of 4 U3 gates and 4 CU3 gates in a cyclical
manner Wang et al.[(2022a). This model is trained for an MNIST-2 task that classifies digits 3 and 6.

3 DYNAMIC NOISE AND FATAL ERROR ON QNN

3.1 SEVERE ERROR VARIATION ON TIME SCALE AND QUBIT SCALE

In previous NAT on QNN, the model parameters are usually optimized under the static noise
assumption. However, transient errors have recently been recognized for both long-term and short-

'This excludes extreme cases, such as reusing or analyzing the found state in the future.
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Figure 2: The demonstration of large variation of qubit error rates on both time scale and qubit
scale. We record the Pauli-X gate error rates of all qubits of two IBM quantum computers,
ibmg.algiers (27 qubits) and ibmg_cusco (127 qubits). We sample 20 calibration data in a
consecutive 72-hour frame. The barplot (left y-axis) demonstrates the standard deviation of error
rates on qubits of each calibration, along the time scale. The line plot (right y-aixs) shows the
maximum/minimium qubit error rate of all qubits for each calibration, and the dash line highlights the
qubit error rate track which has the largest variation along the calibration time window. Calibration
data on other quantum computers are provided in Appendix

term quantum operations Ravi et al.|(2023)), where the characteristic of qubits (e.g., gate error rate)
could vary significantly along the time scale.

Even worse, large variations of qubit characteristics also exist along the qubit scale. In Figure [2| we
demonstrate the dynamic noise landscape from two IBM commercial quantum computers, on the
time scale and the qubit scale. During a long-term run, the gate error rate on a certain qubit (e.g.,
shown as black dash lines in Figure[2)) could vary by an order of magnitude in the worst case. On the
qubit scale, the error rates of different qubits also have a significant variation. In some extreme cases,
the error rate on one qubit can be 80 times greater than that on another. Thus, for a well-trained QNN,
different mappings from its qubits to the physical qubits on quantum computers can induce significant
error rate divergence on each qubit. Overall, the transient error rates on qubits are quick-changing
and unpredictable, making it difficult to model them and provide a reliable prediction.

Error Rate Variation Analysis. We consider a simplified example of error rate deviation in
probabilistic modeling (Eq.[2). Specifically, we assume a small deviation Ap in the Pauli-X error
rate at the g-th gate, such that (pff ) = p;( + Ap and (py)’ = py — Ap. We evaluate the impact
of this error rate deviation on the PQC measurement, Af = f(|x),0|p) + Ap) — f(|x),0[p)).
Since f(|z), 0) is smooth, we apply a Taylor expansion around pff and estimate the measurement
deviation as Af ~ 9f/ (’9pff - Ap. The resulting measurement influence is derived as:

g—1
Af = Trlpg+(Xpl 1 X — pjy_1)]Ap, where pl, = U,(0,) | [] & o Ui@i)) (po) | UL (6,)
=1

pg+ 1is the back-propagation operator from the observer B. Detailed derivation is provided in
Appendix @ In the worst case, where Xpj, ;X = —p;_;, the measurement is significantly affected,
resulting in Af = Tr[—2pg,1pg+]Ap, even with a small error rate deviation. Extending this analysis
to larger error rate deviations and potentially occurring across multiple qubits, probabilistic modeling
may lead to significant deviations in measurement predictions. This indicates that static noise analysis,
which assumes fixed error rates, is inadequate for capturing realistic dynamic noise across both time
and qubit scales. Consequently, current NAT strategies and evaluation methods based on static error
rates cannot effectively train or evaluate QNNs under dynamic noise in practice.

3.2 FATAL ERRORS POISONING QNN ACCURACY

Besides the error rate variation, not all gates in a PQC have the same sensitivity to errors. Although
this is a straightforward phenomenon, the influence of gate error on QNN performance is aston-
ishing. We present this assessment of QNN in Figure |3] under a minimal error scenario where
only one single gate is affected by error. The result is intriguing, since even one gate error can
significantly compromise the QNN model into a useless level. Specifically, there are 9 out of 72
errors, for a QNN trained without noise consideration, that result in performance below random
guess (0.5 for the MNIST-2 task). Even with SOTA noise injection training |[Wang et al.| (2022b)),

4
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there are still 4 errors that lead to worse than Paulix —— Pauliy —— Pauliz
random guess. This underscores that errors at 81 error free |
different locations can cause widely disparate
levels of performance degradation, even with
similar error rates. On real quantum computers,
the occurrence of such a fatal error can render (a) Baselin

the QNN inference utterly unreliable. Under the T a2
dynamic noise, the coming of fatal error cases

is also unpredictable.

Accuracy

[9 fatal errors]

Accuracy
o
o

worse than
random guess
[4 fatal errors]

As a preview, our strategy significantly enhances 0.4

QNN performapce across all error cases, ensur- (b) Noise Injection

ing that predictions consistently exceed random oo
. . . error free

guesses in all scenarios explored in our case

study. Furthermore, accuracy histograms indi-

cate that SOTA noise injection training generally

Accuracy
o
o

worse than

. 0.4 random guess
improves model accuracy under most error con- [no fatal error]

1t1 _ 1M1 1 1 5 10 15 20 240.30.50.70.9
ditions over the error-free tralnlqg (basellr}e). & our Methon 303078
However, this approach falls short in addressing Gate Index

specific low-accuracy, or fatal, error scenarios Figure 3: The inference accuracy of QNN which
effectively. In contrast, our method successfully is trained by (a) no error consideration (b) noise-
mitigates the impact of these fatal errors without injection strategy and (c) our method (Section E[),
compromising model performance in other error for the MNIST-2 task, assuming only one gate
scenarios. occurring logical error. Right plots are the corre-
sponding histograms of accuracies. The PQC in
QNN has 24 gates, where each gate could have
error from {Pauli-X, Pauli-Y, Pauli-z}.

How does the fatal error analysis behave as
a complement to noisy accuracy evaluation?
The most commonly used metric to evaluate
QNN performance is the inference accuracy at specific error rates, which we will refer to as Noisy
Accuracy. This metric determines QNN performance by introducing errors at predefined rates across
individual samples or batches, where the negative impact of fatal errors is diluted over multiple
samples. Consequently, this approach evaluates only the average performance of a noisy QNN, not
its variation. Besides, assessing accuracy at fixed error rates does not accurately reflect the real-time
performance of a QNN on a quantum computer due to the dynamic nature of quantum noise. A more
reliable measure of QNN robustness in noisy conditions is the performance under fatal error scenarios,
which we call Fatal Accuracy. This metric, focusing on QNN behavior under worst-case conditions,
provides a critical measure of robustness by evaluating variation in performance across different
noisy environments. A QNN model that scores high in both noisy and fatal accuracies demonstrates
not only strong average predictive performance under noise but also consistent robustness across
various noisy conditions.

3.3 WORST CASE ANALYSIS

Evaluating all possible error scenarios during QNN training is both time-consuming and impractical,
especially since many of these scenarios have negligible probabilities. Instead, it is more meaningful
to focus on error cases with relatively high probabilities, as these are the most common during
quantum execution. For example, with an average error rate of 0.001 (such as in ibmg_cusco)
across a 100-gate PQC, the conditional probability that one or two errors occur given the error
occurring, is P(Ng < 2|Ng > 1) ~ 99.84%. This indicates that nearly all error events involve one
or two gate errors. Therefore, we emphasize concentrating on these relatively “high-probability”
errors, e.g., considering up-to-two gate errors (denoted as M = 2), since they are the most likely
to affect the model’s performance when errors occur. The specific collection strategy of these error
cases is discussed in Appendix [E] In our analysis, we locate fatal errors in the high-probability error
set and utilize the deterministic noise model described in Eq. 3]

Definition 3.1 (Fatal loss £,,,) Given an error set {2, and input-label pair (z, y), we define the fatal
loss to the PQC measurement f(|z) , 8), as the supremum of losses caused by all E € ).,

Loup(Qe,v,y) = Esug {L(f(|z),0|E),y)} 4
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Accordingly, the QNN fatal accuracy evaluates the worst-case performance of PQC measurement
against all noise cases in 2. That is, the “worst-case” performance refers to the maximum loss
that surpasses other losses with high probability. Our metric in Eq. @ does not involve gate error
rates during evaluation; thus, the evaluation remains fair and robust against dynamic noise changes
in quantum computers. Please note that although we consider the general/average error rate when
collecting €2, to narrow the scope of noise events under consideration, this approach does not affect
the dynamic noise landscape or compromise the error-rate independence of our fatal loss metric. This
is because large fluctuations in few qubits’ error rates can be effectively averaged out in the general
error rate without introducing significant bias; meanwhile, a simultaneous and sudden change in all
qubits’ error rates is improbable during normal operation of a quantum computer.

To conclude, there are two challenges for noise-aware training on QNN models: (D noisy accuracy
challenge—Since there is no obvious routine for the error rate change on qubits, it is necessary to
develop a general NAT strategy, so that the optimized PQC is supposed to perform well under various
error rates on average. Q) fatal accuracy challenge—The optimized PQC should have acceptable
performance even with high-probability fatal errors. A desired NAT strategy should be error-rate
independent, i.e., equitable to all error rates without deliberate bias, so that the performance loss of
QNN under a dynamic noise landscape can be alleviated.

4 METHODOLOGY: EQUITABLE TRAINING WITH LOW-COMPLEXITY SEARCH

4.1 PROBLEM FORMULATION

We aim to co-optimize the noisy accuracy of QNN models and the fatal accuracy given the high-
probability error set. While current NAT strategies optimize robust QNN models by randomly
sampling errors from all possible error cases, our approach specifically considers fatal accuracy by
actively searching for and sampling the fatal errors during optimization. In this error-rate-independent
optimization problem, we do not rely on specific error rates; therefore, we treat the first component
as an error-free term. The optimization problem is formulated as follows:

mein L (f(‘X> 76)aY) + )“Csup(Qe)
4 La(2e,X.Y) = Ecyey sup {£(F(X).0]E). V) ©)

e

where (X, Y) is the input-label pairs following distribution in sample space X x Y, and A > O is a
hyperparameter to balance the focus on error-free accuracy and fatal accuracy.

4.2 Low-COMPLEXITY SEARCH

To determine the supremum of losses caused by high-probability error cases, the most straightforward
method is to exhaustively traverse all error cases in {2.. However, the cardinality of the error set ||
actually increases polynomially along the PQC scale, i.e., the gate number G. Since L, must be
evaluated for each data batch and at every iteration during training, the computational time quickly
becomes impractical as the PQC scales up. Therefore, it is essential to adopt low-complexity yet
effective search strategies to address this scalability challenge.

Scalable Evolution-Based Low-Complexity Search. We adopt the idea from genetic algorithm |Mir
jalili & Mirjalili| (2019) to search for fatal errors during each training iteration. To balance the
search effort and effectiveness, we propose allowing the error cases to evolve alongside the model
optimization. More design details and comparisons with other search strategies are provided in
Appendix [F} Under this strategy, the search complexity in each iteration only depends on the error
population NN, in current generation and the number of data batches.

Remark: How does our low-complexity search perform in estimating the fatal loss? The
evaluation of £, (£2e) must be performed repeatedly during QNN training, thus the key to reducing
time consumption is to use fewer samples to derive a highly accurate estimate. In Table [T} we
demonstrate the search procedure between brute-force search, random search, a sequential search
strategy, and our low-complexity search. We construct three QNNs with different scales (G =
24,40, 56) on the MNIST-2 task, and vary €2 by collecting all cases up to two (M = 2) and three
(M = 3) errors. While brute-force search explores all error cases in (2, it guarantees an accurate
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Table 1: Estimated L, (€2e) on a data batch and time consumption on different search strategies.
The first column is the QNN scale and the maximal expected gate errors in (e, i.e., (G, M). The
sequential search is developed from greedy algorithm, which is lightweight but not scalable (see
Appendix . The search time is measured on Intel i7 @3.80GHz CPU.

Search BruteForce RandomSearch SequentialSearch ours

Size | Ly,)(Qe)  Time(s) | Loup(Qe) Time(s) | Loup(Qe) Time(s) | Loup(Qe) Time(s)
(24,2) 1.19 30 1.07 1.73 1.19 1.78 1.15 1.22
(40, 2) 1.11 122 1.03 4.24 1.06 4.30 1.06 1.74
(56,2) 1.22 317 1.06 7.37 1.22 7.38 1.22 2.26
(24,3) 1.31 655 1.12 2.57 1.20 2.48 1.27 1.20
(40, 3) 1.24 4,617 0.97 6.24 1.10 6.21 1.11 1.75
(56, 3) 1.23 15,964 1.09 10.40 1.22 10.42 1.22 2.35

fatal loss estimate, but at the cost of significant computational effort. Random search, though less
exhaustive, fails to provide sufficiently accurate estimates of fatal loss. Differently, sequential search
yields better estimates under the same time consumption, closely approximating the ground truth
in most cases. However, its time complexity increases significantly with the scale of QNN and the
number of errors, making it impractical for large PQC implementations where errors are expected
to increase. Our evolution-based low-complexity search strategy offers comparable estimates to
sequential search but with approximately half the time cost for small-to-moderate QNN scales; this
speedup even increases over 4 times on large QNN. Moreover, the time cost of our low-complexity
search grows only marginally with the number of errors, e.g., only around 4% from two errors to
three errors, while this increment on sequential search is over 40%.

4.3 OVERVIEW OF EQUITABLE TRAINING

To solve the optimization problem pre-
sented in Eq.[5] we iteratively update
the parameters @ ithrough equitable Require: error case set (2., QNN model f, training epoch
training, as detailed in Algorithm [I] T, scaling factor A, learning rate n

In each iteration, we perform signle- Ensure: 6* = 67 for equitable QNN

generation low-complexity search to  1: initialize 8° and candidates S, C Qe;

estimate the supremum of L, () 2: fort =1..T do

Algorithm 1 Equitable noise-aware training on QNN

for each data batch, so that error can-  3: for data batch x do
didates evolve with the QNN train-  4: E* {LEg} <+ supges, L(f(Jx), 0 E),y)
ing. This is followed by evaluat- > Deterministic noise model
ing both the error-free model and the 5 Se C Qe « crossover&mutation(Se, {LE })
noisy model with identified fatal error ¢, oL oL, OL(f(2).0'1).y) OL(f(l2).0" [|E").y)
E*. Crucially, we conduct multiple 7- gte %8?9,571 _, 875’ 07 \ 2L 90
searches per iteration to frequently re- ) o ~ 1" 90

. . 8: end for
fresh the candidate set S.. This ap-

9: end for

proach is essential for enhancing the
robustness of the QNN model against critical errors, given the large size of {2, and the necessity of
covering fatal error cases for effective mitigation.

A Selection. ) provides the trade-off between the normal accuracy and fatal accuracy of the QNN
models. Although the determination of A can be evaluated by hyperparameter tuning, we share an
empirical start as A = 0.5. A discussion of the choice of \ is presented in Appendix [G]

5 EVALUATION

Benchmark Strategies. All QNN tasks are evaluated under the error-free training and the noise-
injection training strategies, as benchmark methods. For the error-free strategy (baseline), we optimize
QNN models with default architecture, excluding noise consideration during QNN training. For the
noise injection strategy, we follow the assumption in[Wang et al.| (2022b)) that one gate has the same
and static rates to induce Pauli-X, Pauli-Y, and Pauli-Z error. For the injecting error rate, we
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Table 2: The fatal accuracy (F.Acc) on QNN models (with 3/5/7/10 layers), trained by the baseline,
noise-injection, and ours strategy. The evaluation tasks are MNIST (M2, M4, M10), FMNIST(F2,
F4), and CIFAR(C2). All the models are trained on 50 epochs, with the same training configuration.
Best F.Acc for each task is highlighted. Additionally, improvements of ours over the second-best are
marked in green, while the difference to the best is in red when ours is not the best.

3Layer SLayer 7Layer 10Layer
M2 M4  MIO0O F2 F4 C2 | M2 MI0O R F4 | M2 MI0 R c2 | M2 F2 F4 C2
Baseline| 0.303 0.023 0.067 0.247 0.099 0.380 | 0.152 0.025 0.163 0.059 | 0.146 0.011 0.166 0378 | 0.141 0.195 0.056 0.341
NI-L | 0.378 0.047 0.094 0293 0.141 0453 | 0.152 0.025 0.165 0.055 | 0.136 0.027 0.152 0.387 | 0.135 0.160 0.055 0.396
NI-M | 0273 0.033 0.062 0.333 0.147 0444 | 0.148 0.023 0.164 0.041 0.149 0.030 0.167 0.388 | 0.127 0.164 0.039 0.367
NI-H | 0.390 0.059 0.100 0.498 0.108 0.501 0.179 0.042 0.184 0.044 | 0.152 0.089 0.164 0368 | 0.174 0.171 0.052 0.397

0.564 0.136 0.139 0.673 0.272 0.536 | 0.184 0.074 0.211 0.064 | 0.191 0.086 0.198 0.407 | 0.183 0.173 0.057 0.390
+0.174 +0.077 +0.039 +0.175 +0.126 +0.036 | +0.004 +0.032 +0.027 +0.005 | +0.039 -0.003 +0.031 +0.019 | +0.009 -0.022 +0.001 -0.007

ours

(+/-)

generally categorize the error rates of a QNN model as “NI-L(ight)” (p~ = p¥ = pZ = 0.001 for all
qubits), “NI-M(oderate)” (p = 0.005), and “NI-H(eavy)” (p = 0.01).

Metric. We apply fatal accuracy (F.Acc) and noisy accuracy (N.Acc) to evaluate different NAT
strategies. Specifically, fatal accuracy is derived from the lowest accuracy from error cases of ),
that contain high-probability errors. On the other hand, the noisy accuracy measures the model
performance under a certain set of error rates on qubits. As the qubit error rate is unpredictable and
dispersed (Section [3), we randomly pick three noisy environments based on the error rate levels. We
denote py = p; = py = pZ on g-th gate, and each gate’s error rate follows Gaussian distribution
Py ~ N (11p, 01%) s.t. pg > 0 for a G-gate PQC. N.Acc(L) — the noisy accuracy under low error rates,
tp = 0.001 and o, = 0.0005; N.Acc(M) — for medium error rates p,, = 0.005 and o}, = 0.002;

N.Acc(H) — for high error rates p,, = 0.01 and o, = 0.005.

5.1 PROBLEM SOLVING: IMAGE CLASSIFICATION

The image classification task in QNN is in accordance with the definition used in classical com-
puters. As image classification on QNN is still emerging, common QNN models can achieve good
performance on easy datasets, such as MNIST [Lecun et al.| (1998), FMNIST Xiao et al.| (2017)), and
CIFAR [Krizhevsky et al.|(2009). We evaluate the tasks MNIST2, MNIST4, MNIST10, FMNIST2,
FMNIST4, and CIFAR2, which all have four-qubit input except MNIST10 with ten qubits. The
details are provided in Appendix

QNN Configuration. W.L.O.G, we build the QNN with U3 gates and CU3 (Controlled-U3) gates.
Each U3 gate has three parameters indicating the three Euler angles to rotate a qubit on the Bloch
sphere. We define one layer as “U3+CU3” layer, where each qubit has a U3 gate followed by a CU3
gate cyclically Wang et al.| (2022a). We specify four QNN models, with 3 layers, 5 layers, 7 layers,
and 10 layers. To apply our equitable training, we empirically assume M = 1,2, 2, and 3 for each
QNN model, representing larger PQC scales with more expected gate errors in practice.

5.1.1 FATAL ACCURACY EVALUATION

We demonstrate the fatal accuracies of different training strategies on our selected QNN models in
Table[2] From an overall standpoint, our equitable training strategy consistently achieves the highest
fatal accuracy across most tasks. It only slightly underperforms compared to the top-performing
strategies on some large-scale tasks, such as the 7-layer MNIST10, where the difference is minimal.
By comparing the noise injection (NI) strategy with the baseline method which does not account for
noise, we observe a marked improvement in fatal accuracy, particularly in smaller QNNs (e.g., 3
layers). This underscores the importance of noise-adaptive training strategies in quantum execution.
However, the NI strategy, which randomly samples error cases, faces challenges as the QNN scale
increases due to the near-polynomial growth in the error case space. As a result, the advantage of the
NI strategy diminishes for moderate to large QNN (5 layers and above). This is evidenced by the NI
strategy’s marginal performance improvement over the baseline in fatal accuracy assessments. Only
the “NI-Heavy” method, which has a higher likelihood of sampling errors, occasionally outperforms
the baseline method with certain improvements.

On the other hand, our equitable training strategy employs the evolutionary search during model
training, thereby assigning higher priority to locating fatal errors. In smaller QNN models, where the
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Figure 4: The noisy accuracy (N.Acc) of the 3/10-layer QNN model, optimized using various
strategies under (L)ow, (M)edium, and (H)igh error rates. The boxplots summarize 10 runs for each
task. Results for additional tasks are provided in Appendix @

error set (), is limited, our method significantly outperforms the Noise Injection (NI) strategy, for
instance, achieving a 17.51% improvement in the FMINIST? task for a 3-layer QNN. Due to more
frequent access of fatal errors during training, our strategy also excels in moderate-scale QNN models,
such as those with 5 layers. Nevertheless, as the model scale increases, our advantage diminishes.
For example, our strategy ranks second best in the 7-layer MNIST10 and 10-layer FMINIST?2 tasks,
indicating reduced access to fatal errors and less optimization of the PQC parameters concerning
these errors. Despite these challenges, our strategy still manages to deliver the best performance in
over half of the large-scale QNN tasks.

5.1.2 NOISY ACCURACY EVALUATION

In Figure[d] we demonstrate the noisy accuracy of the small (3-layer) and large (10-layer) QNN models
in different noisy environments. By incorporating additional parameters into PQC, the 10-layer model
exhibits a higher likelihood of errors in noisy environments than 3 layers, leading to an obvious
decline in noisy accuracy. Notably, additional layers would typically enhance performance without
noise, creating antagonsim with the detrimental effects of more errors in the noisy environment.
This is demonstrated by the evaluation for CIFAR2 task across 3-layer to 10-layer QNNs (shown in
Figure 4] and [T 1)), where the 5-layer QNN surpasses the 3-layer model under low error conditions
(N.Acc(L)), yet accuracy decreases with further layer additions. In most cases, the adverse impact of
errors outweighs the benefits of increased model complexity. Therefore, effective error mitigation
strategies are essential for practical QML tasks.

Analysis of different strategies reveals that the baseline method excels only in simpler tasks, such as
MNIST2, while strategies that incorporate noise considerations generally outperform the baseline
in noisy environments across other tasks. However, this advantage is not markedly pronounced.
Moreover, when compared to NI strategies, our equitable training achieves comparable noisy accuracy,
leading in 8 out of 24 tasks. Combined with our method’s superior performance in fatal accuracy,
our equitable training not only matches the general performance of SOTA NAT strategies without
compromise, but also significantly enhances the robustness of the QNN models against fatal errors
during practical execution. Additionally, we evaluate these training methods on different tasks in real
quantum environments with IBMQ backends, in Appendix

5.2 PROBLEM SOLVING: POS TAGGING

The sequential data modeling, such as natural language processing, is also receiving favors in the
QML area |Coecke et al.|(2020). We take a case study of the part-of-speech (POS) tagging task to
evaluate the NAT strategies in another QNN architecture, i.e., quantum long short-term memory
(QLSTM) [Chen et al.|(2022). Detailed architecture is discussed in Appendix [H.2] Given that current
QLSTM models can only be performed on small-scale datasets|Di Sipio et al.|(2022), popular ones
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(such as Penn Treebank Marcus et al.|(1993))) are not practical for QLSTM application, and to our
knowledge there is no corresponding work on them. Thus, we generate a small corpus that contains
20 sentences, whose vocabulary tags contain noun, verb, determiner, adjective, adverb, and pronoun.

Results. We demonstrate the experiment re-
sults in Table [5] evaluating the fatal accuracy
and noisy accuracy on QNN models optimized
with different strategies. For the fatal accuracy,
our training strategy can achieve a significant
improvement over baseline and noise-injection
methods. Since the QNN scale and the cardinal-
ity of {2, are small and we have enough search

Figure 5: The fatal accuracy (F.Acc) and noisy
accuracy(N.Acc) with different error rates, for the
POS tagging task under different NAT strategies.
The noisy accuracy is averaged on 10 runs.

| FAcc | N.Ace(L)  N.Ace(M) N.Acc(H)

Baseline | 0.35 | 0.92+902 (. 90+0-02  g7+0.03
NI-L 0.18 | 0.90F0-01 (. 87%0-03  ( g5+0.04

Fimes during the traini.ng iteratiop, the .fatal lqss NLEM | 020 | 094001 (99002 () gg0.04
is well addressed. This observation aligns with NL-H 0.13 | 0.89%0.01 (3 gg*0.03 () g5+0.05
the results from the image classification prob- Ours 0.69 | 0942001  (.93£001 o g(E0-04

lem. Besides, since the QLSTM architecture is
a hybrid model, i.e., classical NN plus QNN, the parameters in the classical part can also help the
robustness of QNN against fatal errors. In addition, our method can achieve comparable noisy
accuracies with the noise-injection strategy under various error rates. This observation again proves
the superiority of our method to provide robustness in fatal errors and dynamic noise environments.

5.3 PROBLEM SOLVING: REGRESSION

QNN have been explored in regression tasks Wang|(2017). Specifically, given a set of data samples
(X,Y) following a mapping function f : x — y, QNN is trained to fitting this mapping by minimize
the MSE loss function

Lf(X),0).Y)= > [f(x).0) —yl (6)

zeX,yeY

Similar to the image classification task, we build the QNN as a three-layer U3+CU3 model with 2
qubits, which has in total G = 12 gates, thus the ) collects all the error cases where M = 1. We
evaluate the regression task on mapping function: y = sin(2x)cos(xs).

Results. Table (& shows the fatal and noisy Figure 6: The fatal MSE loss (F.Loss) and noisy
losses on training strategies evaluated. Our eq- \[SE Joss (N.Loss) with different error rates, for

uitable training can achieve at least 57% reduc-  he regression task under different NAT strategies.
tion on the fatal loss over other strategies. For Ty noisy loss is averaged on 10 runs.

noisy loss, our method cannot always outper-

form other NAT ’strategies on Va;ious error rates. | ELoss | NLoss(L) NLossM)  NLoss(H)
Unlike the previous classification and tagging o T 0085005 0 07550102 0 4045027
problem, the divergence of performance of dif- NLL | 1.261 | 002920058 () 076£0.195 () 945%0.156
ferent methods is significant. The baseline strat- NI-M | 1.695 | 0.055%0-096  ,059%0:073 503+0-249
egy without error consideration is prone to have NIH | 1.292 | 0.010=0026  0,054%007  0.196+0-172

. . . +0.019 +0.083 +0.088
lower loss in low error rate environment, while Ours | 0.543 | 0.048 0.123 0.134

the noise injection with high-error-rate (NI-H)

and our method perform better in high error rate environment. In addition, we notice that the noisy
loss evaluation is not accurate, w.r.t. large standard deviation to the average N.Loss. This is also
a motivation that we propose the F.Loss metric to evaluate the robustness of a model against error,
which is error-rate independent.

6 CONCLUSION

We highlight the critical impact of dynamic noise and fatal errors on QNNs. Existing training
and evaluation methods fall short facing a dynamically changing quantum noise environment. We
propose fatal error analysis, which is independent of error rates and assesses QNN robustness against
high-probability fatal errors. We also present the first noise-aware training strategy aimed at general
fatal error mitigation, rather than a specific error rate. Our evaluations confirm the efficacy of our
strategy for fatal errors; besides, QNNs optimized by our approach perform on par with SOTA NAT
strategies under various error rates.

10
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A PARAMETERIZED QUANTUM CIRCUIT OPTIMIZATION

Parameterized Quantum Circuit (PQC) involves a set of parameters 6 to convert the input state |z)
to a new state |¢)) for measurement, denoted f(|z) , @) following Eq. [l} Optimization of 8 aims to
minimize the loss function between the ground truth and the expectation value of an observable,
L(f(|x),80),y). During iterative updating of the parameter 8, two commonly adopted strategies are
applied. The first scenario is for PQC optimization based on simulation, i.e., emulating the quantum
propagation on the classical computer, so that the gradient 9L/06 is derived straightforwardly as
normal NN training, then the parameter is updated through 6 < 8 — n0L/08.

Another scenario is to keep the quantum propagation on real quantum computer, and treat it as a
black-box execution (due to the noise existence). Then, the gradient of 6 is estimated from the
parameter-shift rule [Simeone et al.[(2022)) as

OL _ L(6 + c0,]E) — L(B — cb,€)

oL X .Y . Z
58, = 5 , where £ € D[P(p*,p" ,p?)]

where € > 0 is a small positive number and 6, is the unit vector for the g-th parameter. £ is sampled
from the noise distribution D at the time of PQC execution on quantum computer. Afterwards, the
parameter is updated iteratively. The benefit of this strategy is considering the real noise distribution
& during PQC optimization, although it is unknown (as a black box). However, in practice, the noise
distribution is changing dynamically and significantly, making it difficult for optimized PQC under
one noise distribution to adapt to another, highlighting the necessity of our equitable training method.

B NOISE MITIGATION ON QNN MODELS

In addition to the NAT strategy that enhances the robustness of QNNs during training, various post-
measurement and in-execution strategies have been developed to address quantum errors effectively.
For instance, error extrapolation—executing the QNN multiple times under varying error conditions
and synthesizing the results to approximate an error-free outcome—has been shown to reduce the
impact of errors significantly [Temme et al.|(2017). Wang et al. propose an additional normalization
of parametrized quantum circuit (PQC) measurements, leveraging the distribution of training data to
refine measurement accuracy [Wang et al.|(2022b). Furthermore, Ravi et al. recommend employing
dynamic decoupling, a method that counteracts decoherence and phase noise by strategically inserting
multiple Pauli-X and Pauli-Y gates between the original gates of the circuit Ravi et al.| (2022).
These noise mitigation techniques, primarily aimed at enhancing QNN performance post-training,
complement our training-centric strategy. Our NAT approach is designed to integrate seamlessly with
these methods, ensuring robust performance throughout all phases of QNN operation—from training
through execution.

In this study, we assess the integration  ypje 3: The N.Acc of 3-layer QNN under different noise
of our NAT strategy with post-training  itjgation strategies, under noisy environment of p = 0.01.

noise mitigation techniques in a high- - A ccyracies are collected from 10 runs. EX.—Extrapolation.
error-rate environment (p = 0.01),

focusing on error mitigaFion perfor- o N4 = Fa
mance. For the extrapolation method, Baseline 07185005 04885002 0.7]0F0 011 (.57gE0.010
we selected 10 random error rates be- 0.763£0.009 () 5000014 (77450007 () 567+0.012
tween 0.001 and 0.05 during QNN in- ours+EX. 0.811%0-015  ().639+0.008 () gp=0.007 () 640+0.010
ference and extrapolated to the error-  ours+Norm. | 0.7660-026  0.567+0:022  (.772%0.032  (616+0-022
free expectation value of the PQC error-free | 0.856 0.691 0.822 0715
measurement. In measurement nor-
malization, the QNN model was trained to standardize each qubit measurement across data batches.
We conducted experiments using a 3-layer QNN on the MNIST2, MNIST4, FMNIST2, and FM-
NIST4 datasets, with results detailed in Table[3] While our training strategy significantly enhanced
QNN model performance compared to the baseline, post-training noise mitigation further improved
inference accuracy, approximating error-free conditions. Among the strategies, extrapolation yielded
more substantial improvements due to multiple measurements, whereas measurement normalization
offered enhancements with a single inference run.
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C RELATED WORK

The noise-aware training (NAT) on QNNs has been recently proposed to apply robust training
strategies during parameter optimization Wang et al.|(2022b). Specifically, random noise injection is
utilized during training, and other strategies, such as normalization and quantization, are applied as
post-training robustness enhancement. Our work aligns with the in-training methodology, for example,
noise injection, while it is orthogonal to the other strategies. The ensemble strategy is also proposed
to improve performance with majority voting |Qin et al.|(2022); however, the multiplied model size
will either burden the quantum resources or lengthen the execution time along the ensemble scale.
Nevertheless, both works assume a static and unique noise distribution during QNN training, which
contradicts reality, as quantum noise exhibits dynamic properties.

D DERIVATION OF PROBABILISTIC NOISE MODEL DERIVATIVE

Given a probabilistic noise model f(|z) , 8) in Eq.|2} we derive O f/dp;\, where p,* is the Pauli-X
error rate on the g-th gate. We first rewrite the final density matrix during measurement as

G
pGc = H EioUi(0:) | (pg),

i=g+1

Po = Dol pyr D +pg Xpl 1 X +py Vg Y +p77, @

g—1
Pg—1 = Ug(0y) [(H &io Uz’(@)) (Po)
i=1

Therefore, 8 f/0p = df/dpc - Opa/Op; -

Us(09)p9-12

We have f = Tr[Bpg| = Z?(jl Z?il B, j(pc) ;i assuming a Q-qubit system, thus 0 f /0pe = BT
can be easily derived. For the second term, we further do the chain rule and calculate dp¢/ 8p;( =
Opc/Opg - Opg/ 6‘p§(. We first represent a noisy gate operation as p,, = A(pm—1), thus the

derivative 9p,,/0pm_1 should be determined. For the first term in A, we have Al(p,,_1) =
P LUy (00) pro— 11U} (0,,) 1 its derivative to p,,, 1 can be written as

Ovec(Al) T
———— = (LU (O, 1U,, (01
Svoctp ) = P17 Ui (0n)) @ T (0
where vec is the vectorization of a matrix, U* is the complex conjugate, and ® is the Kronecker
product. Similarly, we can derive the derivative in other three terms of A, and we denote A/, =
Opm0pm—1 = ON/Opm—1 = (ON*)Opm—_1 + ON?/Opym_1 + ON3/Opim—_1 + ON*/Opm_1). The
vector results can be converted to matrix format after calculation. Therefore, the derivative of
dpc:/Opg can be calculated as []7_, A}. For the term of dp,,/ (9ng , it can be directly derived from
Eq.[7]as
Ip

8]0% = (szjle - P;q)

g
To conclude all the derivations, we finally determine

of _ 9f Opc Opg
opy  Opa Opg Opy

9
= Trlpg+ (Xp, 1 X — p,_1)], where py+ = B" H A
i=G

E HIGH-PROBABILITY ERROR CASE COLLECTION

While the motivation example in Figure [3| demonstrates the QNN performance under one-gate-error
circumstance, the total error cases that a QNN model can incur is a combination problem. Upon m

. G . . .
errors occurring in an G-gate QNN, there are <m> possible error cases. Evaluating every potential

error case during NAT is impractical due to the extensive time required. Additionally, focusing on
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Algorithm 2 Error case set (2, collection

Require: The QNN architecture ({Gg}, {pq}), the high-probability threshold P,
Ensure: €,

1: Q. @ k=1;

2:m [Zqzl quﬂ;

3: Collect Qs = {E| |E| = m}; > Collect all the error cases with m errors

4: P+ ZEEQ P(E)

5: Qe +— QU sub

6: while P < P;;, do

7: mp=m—k,mg =m+k,

8: if m; > 0 then > Collect the error cases in the direction of drecreasing the number of
errors

9: Collect Qg = {E| |E| =m1};

10: P<—P—|—ZEGQ P(E);

11: Qe +— Qo U Qs

12: end if

13: if my < G and P < P, then > Collect the error cases in the direction of increasing the
number of errors

14: Collect Qg = {E| |E| = ma};

15: P« P+ ZEGQ‘M P(E);

16: Qe < Qe U Qgups

17: end if

18: k+k+1
19: end while

low-probability error cases is inefficient. Thus, it is necessary to define a collection that contains
critical error cases for QNN performance. We define the “high-probability” error set as:

Definition E.1 (High-probability error set €2.). Given a QNN with ) qubits, G, gates on each qubit,
and logical error rate p, = pf + p;/ + pg on each qubit, where ¢ € [1, Q], Q. is defined as a set of
error cases { E} who has the minimal cardinality, such that the total probility of all error cases (plus
the error-free case if necessary) is larger than a threshold P, (e.g., 0.995). This definition is based
on two assumptions:

 The error rates {p, } are independently distributed along the qubits, ignoring interference between
the qubits. For example, crosstalk between qubits can be effectively mitigated by tuning the qubit
frequency |Ding et al. (2020). @ All the operations on a certain qubit have the same error rate distri-
bution; this is reasonable because the execution of quantum gates is usually below the microsecond
scale, e.g., only 103ns on CNOT gate in |Noiri et al.|(2022), which is short enough for a static qubit
noise distribution. Note that this does not conflict with our previous observation on the large error
rate variation on time scale, because other parts of circuit running on quantum computers, e.g., state
profiling and repeated measurements, are the major time concern during PQC execution.

In order to collect €2, the error rate distribution should be analyzed Considering the cases {E}

where each qubit ¢ has m, gate errors, thus in total m = Z ~_, Mg gate errors, the probability of
this case group is

Q
PN ) = TL(51) (1=, ®

q=1

where each qubit has an independent binomial distribution on the error occurrence. Likewise, the
probability of error-free case is P({e}|0) = Hqul (1 — p,)%e. Simultaneously, the expectation of

the error number is F(m) = Zqul Gypq- Starting from E/(m), which is the most possible error case
group, the error cases are collected in the increasing and decreasing directions of the error number.
At the same time, P({e}|{m}) accumulates until P,;. We provide an algorithmic description in
Algorithm 2] While our proposed error case evaluation should be independent of error rates, we do
estimate the general error rate of a qubit p, during the collection of {2, as a summary of normal
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quantum computer running. For example, p, = 0.001 for ibmg.algiers and p, = 0.01 for
ibmg_cusco.

F Low-COMPLEXITY SEARCH DESIGN

To effectively estimate the supremum of losses, i.e., supgcqo_ {L(f(|7),0E),y)}, an efficient
search strategy should be provided. Multiple in-training strategies are utilized in modern search tasks,
such as differentiable search Liu et al.[(2018)), reinforcement learning [Kaelbling et al.|(1996), and
evolutionary search |[Mirjalili & Mirjalili| (2019).

F.1 SEARCH STRATEGY SELECTION

Deficiency of Differentiable Search and Reinforcement Learning. In the differentiable search
strategy, all the candiate operations, such as {I, X,Y, Z}, should be differentiable during model
execution. In this case, we use the probabilistic noise model (Eq. [2) to express each noisy gate
operation, i.e., employing the density matrix representation of qubit states. Although this format is
commonly used in theoretical analyses, such as noise channel modeling, it raises scalability concerns
in classical computing. This is because the size of the density matrix is 29 x 29 for a Q-qubit system;
the computational complexity increases exponentially with the QNN scale, making it inefficient
for practical use. For the reinforcement learning search, integration with the QNN model training
involves setting up an agent model to decide the next action (error case selection) given the current
error case and PQC parameters. However, the action space grows linearly with the number of QNN
gates, which makes agent model training harder and more time-consuming. On the other hand, we
utilize evolutionary algorithms, which avoid model training during the search, instead relying on
multiple model inferences. Furthermore, as long as the population size per generation is appropriate,
the search effort does not have to increase linearly with the QNN scale.

Our Evolution-Based Low-Complexity Search Design. We employ an evolutionary search strategy
to minimize the online fatal loss in §2. Initially, we randomly generate N, candidate error cases Se
for the first generation, evaluated against the deterministic noise model described in Eq.[3] For parent
selection during crossover and mutation, we apply elite tournament selection within a substantial
population. We then use uniform crossover and binary mutation techniques to generate the subsequent
generation. It is important to note that the evolution of generations occurs concurrently with model
training. Consequently, during each iteration of model training, only one generation is assessed based
on the current state of the QNN model. The algorithm is referred to Algorithm ]

An Sequential Search Alternative. Reviewing the composition of €2, it only contains error cases
with certain error numbers, such as 1 and 2 when M = 2. Given this characteristic, we also propose
another search strategy that approximates the supremum of 2., which is efficient for a quick search
in small PQC scale. The algorithm of our sequential search strategy is based on the idea of greedy
search, where the algorithm is provided in Algorithm[3] We categorize the error cases in €2, by the
total number of errors m = Zqul mg. From the group with the least number of errors, we evaluate
all the cases, and find the error case with the largest loss. Then, this candidate is stored for further
search. If we locate the worst error case with m errors, then we boldly assume that these errors will
also occur in fatal error cases with (m + 1) errors. Therefore, we proceed with the search for (m + 1)
errors by fixing the m errors as the worst error case of the m errors, plus one error occurring in the rest
of the G — m gates, until reaching the largest number of errors in €2, denoted M = max{m}. With
this approach, we locate the fatal error case from the elements in €2.. This strategy can only find an
approximate supremem of losses with error, but will greatly reduce the searching time. Theoretically,
the time complexity can be reduced from polynomial to linear on the circuit scale.

F.2 TIME COMPLEXITY ANALYSIS

We assume that the evaluation time in a certain error case is a constant C, so the search time in €2,
is dominated by the cardinality of {2.. Denote the minimum number of errors in 2. as mg, and the
maximum number of errors as M. Thus, the cardinality of 2. is

0= 3 (fj) ©)

m=mg
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Algorithm 3 Low-complexity search to approximate the supremum of losses on selected error cases
Esup(Qe)

Require: error case set {2, loss function L(f(|z),0|E),y)

Ensure: E* and approx Ly, (€2e)

H{E}m] « Qe > group E € Q. by # of errors, m
t, M = min {m}, max {m};
=0

while ¢ < M do
extract group I' < {E}|,=¢;
if = is empty then
{E}sub +— I
else
{E}sub — {E‘E € 1—‘735 € E‘m:tflvg C E}s
end if
A {yly = LI(X) ,0|E),Y), E € {E},u}
E+ ZU{maxA}
t+t+1
end while
Lsup(QE) ¢ max E

where G is the total number of gates in QNN. Due to the nature of the quantum error rates and the
circuit scale, M is usually less than 3 given a high probability threshold, e.g. Py, = 0.995. Thus,
the growth of (), size is polynomial along the circuit scale GG. Therefore, the brute-force search in
Qe costs time C - [Q.| = O(G™M), which is roughly increasing with order G, given the fact that
G > M in practice. Here, we can conclude that the brute-force search time increases polynomially
along the circuit scale, and exponentially along M which is related to the threshold P;; and the
assumed general qubit error rate p,.

For the sequential search, it only evaluates the m-error cases which contain the worst error case
in (m — 1)-error cases. Specifically, from mq to M the total number of error cases that the low-
complexity search evaluates is

M
Nss=No+ > (G-m+1) (10)

m=mgo+1

where N is the number of error cases with mg errors. Thus, the search time of the sequential
search is linear to both the circuit scale G' and the M (maximum of errors) in €).. Although the time
complexity has been reduced from polynomial to linear, our experiments reveal that the sequential
search still incurs significant time delays during large-scale QNN model training. This is attributable
to the search procedure being repeated for each data batch and training iteration. For instance, a QNN
model with parameters (G, M) = (56, 3), assuming 50 training epochs and 100 data batches, would
require approximately 8.32 x 10® model inferences. Such computational demands are impractical.
Thus, a search strategy with even lower complexity is essential for efficient training of large-scale
QNN models.

In our evolution-based search, the time complexity is primarily associated with the population size
Npop = |Se| for each generation, compared to Ngg in sequential search. While population selection
is influenced by the QNN scale, our empirical evaluations indicate that IV, can increase sub-linearly
relative to the QNN scale, particularly when there are sufficient data batches and training iterations,
i.e., a large number of generations. For example, in our exploration, a QNN model with parameters
(G, M) = (56, 3) achieves satisfactory performance with N,,, = 100. Assuming 50 training epochs
and 100 data batches, the QNN training requires only approximately 5 x 10° model inferences. This
approach is substantially more efficient than the sequential search strategy. Thus, our evolution-based
low-complexity strategy can well address the scalability issue during the fatal loss estimation.

G ABLATION STUDY ON )\
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In the optimization problem (Equation [3)), A tunes the
updating focus between the error-free model and the fatal-
error model. In Figure[/| we demonstrate the A tuning on
the fatal accuray and error-free accuracy using our 3-layer
QNN example. The best fatal accuracy occurs at A = 0.6.
As the observation, we find that the ratio of fatal loss
E(f(‘x> ’0|E*)’ Y) over error-free loss ’C(f(|x> ’0)’ Y) 01 02 03 04 05 06 07 08 09
is usually in the range of [1.5, 6] in all of our experiments, Lambda

which means that these two losses are on the same scale

yet fatal loss could be 2 times larger. Thus, A around 0.5is  Fjgure 7: The fatal accuracy and error-
an appropriate choice to slightly emphasize the fatal loss  free accuracy of the 3-layer QNN on
while still taking into account the error-free loss, which is  MNIST? task, with varing .

adopted in our experiments.
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H EVALUATION DETAIL

H.1 IMAGE CLASSIFICATION

For image classification, an input image x is encoded by rotation gates Wang et al.| (2022a)), which is
represented by a qubit state vector |x). Later, the PQC is conducted for the vector porcessing and the
final state is measured through a certain basis, e.g., the computational basis. The loss is evaluated as

L(f(IX),8),Y) = CrossEntropy(f(|X) ,6),Y)

where (X,Y) is the image-label pair of training dataset. In Table E], we demonstrate the dataset
information for the evaluated image classification tasks. For QNN models optimized on two-class
tasks, the PQC measurements of qubit 0 and qubit 1 are summed up as the score for the first class,
while the summation of the other two measurements is for the second class. For other tasks, each
qubit measurement represents the score for one class.

Table 4: The information of tasks selected to evaluated NAT strategies on image classification.

Task Class Input Size  # of qubits Encoder
MNIST2 (3,6) 4x4 4 Ry-R.-R;-R,
MNIST4 (0,1,2,3) 4x4 4 Ry-R.-R.-R,
MNIST10 0, ...,9) 10 x 10 10 Ry-R.-..-R,
FMNIST?2 (Dress, Shirt) 4 x4 4 Ry-R.-R.;-R,

(T-Shirt, Trouser,
FMNIST4 5500 Dress) 4x4 4 Ry-R.-R,-R,
CIFAR2 (Auto, Bird) 4x4 4 Ry-R.-R;-R,

We further provide an illustration of 3-layer QNN with 4 qubits, in Figure[§] In this PQC, we have
12 U3 gates and 12 CU3 gates, i.e., G = 24. However, please note that these general gates are not
naturally supported in most quantum computers. Instead, they must be decomposed to the basis gates
belonging to the targeted quantum computers. An example of gate decomposition is illustrated in
Figure 0] Here, the 24-gate PQC is decomposed to 204 basis gates for quantum execution. With
respect to architecture and operation planning, further optimization is usually performed, thus the
final gate number is smaller than the initial results.

Encoder PQC (ansatz) =
Figure 9: The decomposition of U3 and

U3 U3
CU3 gates, following primitives CNOT,
Figure 8: The architecture of a 3-layer QNN RZ, SX, and X (IBM basis gates).

w
<

[s

3]

Measurement
[E]
3
I

BB

In our evaluation, we specify four QNN models, with 3/5/7/10 “U3+CU3” layers. For
MNIST2/MNIST4/FMNIST2/FMNIST4/CIFAR?2 tasks, these model have 24/40/56/80 gates re-
spectively; yet for the MNIST10 task with 10 qubits, these models have 60/100/140/200 gates. For
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the training configuration, we universally setup 50 epochs for PQC optimization, where the fatal
loss is considered starting from the 10th epoch. We employ the Adam optimizer (1r = 0.03 and
wd=1e-4) with cosine annealing learning rate decay.

H.1.1 EVALUATION ON REAL QUANTUM COMPUTERS

While we manually configure the noise en- )
vironments based on the calibration data of Table 5: The inference accuracy of M2/M4/F2/F4

known quantum computers, we hereby fur- tasks on 3/5-layer QNN models, evaluteq on
ther deploy our trained QNN models on actual ~1bmg-brisbane environment. Accuracy is de-
quantum computers to assess their performance rived from 500 test samples, where 81.92 shots are
in realistic noisy environments. Specifically, conducted for each sample’s observation.

we conduct a series of selected tasks on the

ibmg_brisbane quantum computer, through v MR M w MR R
the qiskit toolkit, including M2/M4/F2/F4 taskS  paseline | 0872 0714 0842 0750 | 0874 0734 0838 0712
on 3/5-layer QNN models. The execution tme M |050 062 0120 oo 0% 0p0 i 07
on real quantum computers significantly exceeds NI-H | 0860 0.604 0832 0.650 | 0880 0.694 0834 0730
that of classical simulations due to the measure- > 10870 0654 0830 071210872 - 080 0760
ments being derived from multiple circuit execu-

tions (shots); therefore, we limit our testing to 500 samples per task, with each sample measurement
comprising 8192 shots. The accuracy results are presented in Table[5] The results presented largely
corroborate our observations in Sec.[5.1.2] demonstrating that our method can achieve QNN per-
formance comparable to both the baseline and the noise injection strategy. Notably, our method
generally improves inference accuracy across most tasks over noise injection (NI) strategy, yet
sometimes underperform the baseline method. Since our evaluations are conducted on a SOTA IBM
quantum computer, that has relatively low error rates during execution, the observed improvements
are not significant. This is further evidenced by the inference accuracy in Table [5] which closely
approximates the results from error-free evaluations (shown in Table[3). In this scenario, the baseline
model can sometimes achieve better error-free accuracy due to noise absence during training, yet its
performance deteriorates when errors occur, as we highlight in Table 2]

H.2 POS TAGGING

Quantum long short-term memory (QLSTM) use PQC to represent the classical LSTM counterpart,
which has the following mathematical construction:

gt = o(fi(|ve) ,61))
it = o (f2(|vr) , 62))
Cy = tanh(f5(|ve) , 03))

¢t =g X c—1 +ip x Cy (1D
or = o (fa|vt) , 64))

hi = f5(|ostanh(cy)) , 05)

yt = fe(Jostanh(cy)) , Og)

where (vt gt, ¢, Ct, 0¢, ht, yt) are the default LSTM variables [Yu et al.| (2019), yet we use g; to
represent the forget gate (rather than f) to avoid confuse with our QNN measurement notation. €2,
has M = 1 to satisfy Py,.

I SUPPLEMENTARY FIGURES

I.1 QUBIT ERROR RATES ON OTHER QUANTUM COMPUTERS
As the complementary material, we further collect the Pauli—X gate error rate on other IBM quan-

tum computers, i.e., ibmg_mumbai, ibmg_cario, ibmg_brisbane, and ibmg_sherbrooke.
The qubit error landscape is shown in Figure
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Figure 10: The demonstration of large variation of qubit error rates on both time scale and qubit
scale. We record the Pauli-X gate error rates of all qubits of four IBM quantum computers,
ibmg.mumbai, ibmg_cario, ibmgbrisbane, and ibmg_sherbrooke. We sample 20 cal-
ibration data in a consecutive 72-hour frame. The barplot (left y-axis) demonstrates the standard
deviation of error rates on qubits of each calibration, along the time scale. The line plot (right y-aixs)
shows the maximum/minimium qubit error rate of all qubits for each calibration, and the dash line
highlights the qubit error rate track which has the largest variation along the calibration time window.

1.2 NOISY ACCURACY OF OTHER TASKS

As the complementary of the N.Acc results in Figure 4] we visualize other tasks in Figure[TT] Just as
shown in Figure [ we highlight analogous findings here that our equitable training approach attains
accuracy similar to other methods. This underscores our progress towards achieving a QNN model
with high N.Acc and high F.Acc, indicating that the model’s performance remains stable across
different errors, even in fatal cases.
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Figure 11: The noisy accuracy (N.Acc) of the 5/7-layer QNN model, optimized using various
strategies under (L)ow, (M)edium, and (H)igh error rates. The boxplots summarize 10 runs for each
task.
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