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ABSTRACT

Some neurons in deep networks specialize in recognizing highly specific percep-
tual, structural, or semantic features of inputs. In computer vision, techniques
exist for identifying neurons that respond to individual concept categories like
colors, textures, and object classes. But these techniques are limited in scope, la-
beling only a small subset of neurons and behaviors in any network. Is a richer
characterization of neuron-level computation possible? We introduce a procedure
(called MILAN, for mutual-information-guided linguistic annotation of neurons)
that automatically labels neurons with open-ended, compositional, natural lan-
guage descriptions. Given a neuron, MILAN generates a description by searching
for a natural language string that maximizes pointwise mutual information with
the image regions in which the neuron is active. MILAN produces fine-grained
descriptions that capture categorical, relational, and logical structure in learned
features. These descriptions obtain high agreement with human-generated feature
descriptions across a diverse set of model architectures and tasks, and can aid in
understanding and controlling learned models. We highlight three applications of
natural language neuron descriptions. First, we use MILAN for analysis, character-
izing the distribution and importance of neurons selective for attribute, category,
and relational information in vision models. Second, we use MILAN for auditing,
surfacing neurons sensitive to human faces in datasets designed to obscure them.
Finally, we use MILAN for editing, improving robustness in an image classifier by
deleting neurons sensitive to text features spuriously correlated with class labels.1

1 INTRODUCTION

A surprising amount can be learned about the behavior of a deep network by understanding the indi-
vidual neurons that make it up. Previous studies aimed at visualizing or automatically categorizing
neurons have identified a range of interpretable functions across models and application domains:
low-level convolutional units in image classifiers implement color detectors and Gabor filters (Erhan
et al., 2009), while some later units activate for specific parts and object categories (Zeiler & Fer-
gus, 2014; Bau et al., 2017). Single neurons have also been found to encode sentiment in language
data (Radford et al., 2017) and biological function in computational chemistry (Preuer et al., 2019).
Given a new model trained to perform a new task, can we automatically catalog these behaviors?

Techniques for characterizing the behavior of individual neurons are still quite limited. Approaches
based on visualization (Zeiler & Fergus, 2014; Girshick et al., 2014; Karpathy et al., 2015; Ma-
hendran & Vedaldi, 2015; Olah et al., 2017) leave much of the work of interpretation up to human
users, and cannot be used for large-scale analysis. Existing automated labeling techniques (Bau
et al., 2017; 2019; Mu & Andreas, 2020) require researchers to pre-define a fixed space of candidate
neuron labels; they label only a subset of neurons in a given network and cannot be used to surface
novel or unexpected behaviors.

This paper develops an alternative paradigm for labeling neurons with expressive, compositional,
and open-ended annotations in the form of natural language descriptions. We focus on the visual

1Code, data, and an interactive demonstration may be found at http://milan.csail.mit.edu/.
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Figure 1: (a) We aim to generate natural language descriptions of individual neurons in deep networks. (b)
We first represent each neuron via an exemplar set of input regions that activate it. (c) In parallel, we collect a
dataset of fine-grained human descriptions of image regions, and use these to train a model of p(description |
exemplars) and p(description). (d) Using these models, we search for a description that has high pointwise
mutual information with the exemplars, ultimately generating highly specific neuron annotations.

domain: building on past work on information-theoretic approaches to model interpretability, we
formulate neuron labeling as a problem of finding informative descriptions of a neuron’s pattern
of activation on input images. We describe a procedure (called MILAN, for mutual-information-
guided linguistic annotation of neurons) that labels individual neurons with fine-grained natural
language descriptions by searching for descriptions that maximize pointwise mutual information
with the image regions in which neurons are active. To do so, we first collect a new dataset of
fine-grained image annotations (MILANNOTATIONS, Figure 1c), then use these to construct learned
approximations to the distributions over image regions (Figure 1b) and descriptions. In some cases,
MILAN surfaces neuron descriptions that more specific than the underlying training data (Figure 1d).

MILAN is largely model-agnostic and can surface descriptions for different classes of neurons, rang-
ing from convolutional units in CNNs to fully connected units in vision transformers, even when the
target network is trained on data that differs systematically from MILANNOTATIONS’ images. These
descriptions can in turn serve a diverse set of practical goals in model interpretability and dataset
design. Our experiments highlight three: using MILAN-generated descriptions to (1) analyze the
role and importance of different neuron classes in convolutional image classifiers, (2) audit mod-
els for demographically sensitive feature by comparing their features when trained on anonymized
(blurred) and non-anonymized datasets, and (3) identify and mitigate the effects of spurious cor-
relations with text features, improving classifier performance on adversarially distributed test sets.
Taken together, these results show that fine-grained, automatic annotation of deep network models
is both possible and practical: rich descriptions produced by automated annotation procedures can
surface meaningful and actionable information about model behavior.

2 RELATED WORK

Interpreting deep networks MILAN builds on a long line of recent approaches aimed at explain-
ing the behavior of deep networks by characterizing the function of individual neurons, either by
visualizing the inputs they select for (Zeiler & Fergus, 2014; Girshick et al., 2014; Karpathy et al.,
2015; Mahendran & Vedaldi, 2015; Olah et al., 2017) or by automatically categorizing them accord-
ing to the concepts they recognize (Bau et al., 2017; 2018; Mu & Andreas, 2020; Morcos et al.,
2018; Dalvi et al., 2019). Past approaches to automatic neuron labeling require fixed, pre-defined
label sets; in computer vision, this has limited exploration to pre-selected object classes, parts, ma-
terials, and simple logical combinations of these concepts. While manual inspection of neurons has
revealed that a wider range of features play an important role in visual recognition (e.g. orientation,
illumination, and spatial relations; Cammarata et al. 2021) MILAN is the first automated approach
that can identify such features at scale. Discrete categorization is also possible for directions in rep-
resentation space (Kim et al., 2018; Andreas et al., 2017; Schwettmann et al., 2021) and for clusters
of images induced by visual representations (Laina et al., 2020); in the latter, an off-the-shelf im-
age captioning model is used to obtain language descriptions of the unifying visual concept for the
cluster, although the descriptions miss low-level visual commonalities. As MILAN requires only a
primitive procedure for generating model inputs maximally associated with the feature or direction
of interest, future work might extend it to these settings as well.
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Natural language explanations of decisions Previous work aimed at explaining computer vision
classifiers using natural language has focused on generating explanations for individual classification
decisions (e.g., Hendricks et al., 2016; Park et al., 2018; Hendricks et al., 2018; Zellers et al., 2019).
Outside of computer vision, several recent papers have proposed procedures for generating natural
language explanations of decisions in text classification models (Zaidan & Eisner, 2008; Camburu
et al., 2018; Rajani et al., 2019; Narang et al., 2020) and of representations in more general sequence
modeling problems (Andreas & Klein, 2017). These approaches require task-specific datasets and
often specialized training procedures, and do not assist with interpretability at the model level. To the
best of our knowledge, MILAN is the first approach for generating compositional natural language
descriptions for interpretability at the level of individual features rather than input-conditional deci-
sions or representations. More fundamentally, MILAN can do so independently of the model being
described, making it (as shown in Section 4) modular, portable, and to a limited extent task-agnostic.

3 APPROACH

Neurons and exemplars Consider the neuron depicted in Figure 1b, located in a convlutional
network trained to classify scenes (Zhou et al., 2017). When the images in Figure 1 are provided as
input to the network, the neuron activates in patches of grass near animals, but not in grass without
animals nearby. How might we automate the process of automatically generating such a description?

While the image regions depicted in Fig. 1b do not completely characterize the neuron’s function
in the broader network, past work has found that actionable information can be gleaned from such
regions alone. Bau et al. (2020; 2019) use them to identify neurons that can trigger class predictions
or generative synthesis of specific objects; Andreas & Klein (2017) use them to predict sequence
outputs on novel inputs; Olah et al. (2018) and Mu & Andreas (2020) use them to identify adversarial
vulnerabilities. Thus, building on this past work, our approach to neuron labeling also begins by
representing each neuron via the set of input regions on which its activity exceeds a fixed threshold.
Definition 1. Let f : X → Y be a neural network, and let fi(x) denote the activation value of the
ith neuron in f given an input x.2 Then, an exemplar representation of the neuron fi is given by:

Ei = {x ∈ X : fi(x) > ηi} . (1)
for some threshold parameter ηi (discussed in more detail below).

Exemplars and descriptions Given this explicit representation of fi’s behavior, it remains to
construct a description di of the neuron. Past work (Bau et al., 2017; Andreas et al., 2017) begins
with a fixed inventory of candidate descriptions (e.g. object categories), defines an exemplar set E′

d
for each such category (e.g. via the output of a semantic segmentation procedure) then labels neurons
by optimizing di := argmind δ(Ei, E

′
d) for some measure of set distance (e.g. Jaccard, 1912).

In this work, we instead adopt a probabilistic approach to neuron labeling. In computer vision appli-
cations, each Ei is a set of image patches. Humans are adept at describing such patches (Rashtchian
et al., 2010) and one straightforward possibility might be to directly optimize di := argmaxd p(d |
Ei). In practice, however, the distribution of human descriptions given images may not be well-
aligned with the needs of model users. Fig. 2 includes examples of human-generated descriptions
for exemplar sets. Many of them (e.g. text for AlexNet conv3-252) are accurate, but generic; in real-
ity, the neuron responds specifically to text on screens. The generated description of a neuron should
capture the specificity of its function—especially relative to other neurons in the same model.

We thus adopt an information-theoretic criterion for selecting descriptions: our final neuron descrip-
tion procedure optimizes pointwise mutual information between descriptions and exemplar sets:
Definition 2. The max-mutual-information description of the neuron fi is given by:

MILAN(fi) := argmax
d

pmi(d;Ei) = argmax
d

log p(d | Ei)− log p(d) . (2)

To turn Eq. (2) into a practical procedure for annotating neurons, three additional steps are required:
constructing a tractable approximation to the exemplar set Ei (Section 3.1), using human-generated
image descriptions to model p(d | E) and p(d) (Section 3.2 and Section 3.3), and finding a high-
quality description d in the infinite space of natural language strings (Section 3.4).

2In this paper, we will be primarily concerned with neurons in convolutional layers; for each neuron, we
will thus take the input space X to be the space of all image patches equal in size to the neuron’s receptive field.
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Figure 2: Examples of MILAN descriptions on the generalization tasks described in Section 4. Even highly
specific labels (like the top boundaries of horizontal objects) can be predicted for neurons in new networks.
Failure modes include semantic errors, e.g. MILAN misses the cupcakes in the dog faces and cupcakes neuron.

3.1 APPROXIMATING THE EXEMPLAR SET

As written, the exemplar set in Equation (1) captures a neuron’s behavior on all image patches. This
set is large (limited only by the precision used to represent individual pixel values), so we follow past
work (Bau et al., 2017) by restricting each Ei to the set of images that cause the greatest activation
in the neuron fi. For convolutional neurons in image processing tasks, sets Ei ultimately comprise
k images with activation masks indicating the regions of those images in which fi fired (Fig. 1a; see
Bau et al. 2017 for details). Throughout this paper, we use exemplar sets with k = 15 images and
choose ηi equal to the 0.99 percentile of activations for the neuron fi.

3.2 MODELING p(d | E) AND p(d)

The term pmi(d;Ei) in Equation (2) can be expressed in terms of two distributions: the probability
p(d | Ei) that a human would describe an image region with d, and the probability p(d) that a
human would use the description d for any neuron. p(d | Ei) is, roughly speaking, a distribution
over image captions (Donahue et al., 2015). Here, however, the input to the model is not a single
image but a set of image regions (the masks in Fig. 1a); we seek natural language descriptions of
the common features of those regions. We approximate p(d | Ei) with learned model—specifically
the Show-Attend-Tell image description model of Xu et al. (2015) trained on the MILANNOTATIONS
dataset described below, and with several modifications tailored to our use case. We approximate
p(d) with a two-layer LSTM language model (Hochreiter & Schmidhuber, 1997) trained on the text
of MILANNOTATIONS. Details about both models are provided in Appendix B.
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3.3 COLLECTING HUMAN ANNOTATIONS

As p(d | Ei) and p(d) are both estimated using learned models, they require training data. In
particular, modeling p(d | Ei) requires a dataset of captions that describe regions from multiple
different images, such as the ones shown in Fig. 1. These descriptions must describe not only
objects and actions, but all other details that individual neurons select for. Existing image captioning
datasets, like MSCOCO (Lin et al., 2014) and Conceptual Captions (Sharma et al., 2018), only focus
on scene-level details about a single image and do not provide suitable annotations for this task. We
therefore collect a novel dataset of captions for image regions to train the models underlying MILAN.

Network Arch. Task Datasets Annotated # Units

AlexNet CNN Class. ImageNet
Places365 conv. 1–5 1152

1376

ResNet152 CNN Class. ImageNet
Places365

conv. 1
res. 1–4

3904
3904

BigGAN CNN Gen. ImageNet
Places365 res. 0–5 3744

4992

DINO ViT BYOL ImageNet MLP 1–12
(first 100) 1200

Table 1: Summary of MILANNOTATIONS, which labels 20k units
across 7 models with different network architectures, datsasets,
and tasks. Each unit is annotated by three human participants.

First, we must obtain a set of image
regions to annotate. To ensure that
these regions have a similar distribu-
tion to the target neurons themselves,
we derive them directly from the ex-
emplar sets of neurons in a set of seed
models. We obtain the exemplar sets
for a subset of the units in each seed
model in Table 1 using the method
from Section 3.1. We then present
each set to a human annotator and ask
them to describe what is common to
the image regions.

Table 1 summarizes the dataset, which we call MILANNOTATIONS. In total, we construct exemplar
sets using neurons from seven vision models, totaling 20k neurons. These models include two archi-
tectures for supervised image classification, AlexNet (Krizhevsky et al., 2012) and ResNet152 (He
et al., 2015); one architecture for image generation, BigGAN (Brock et al., 2018); and one for un-
supervised representation learning trained with a “Bootsrap Your Own Latent” (BYOL) objective
(Chen & He, 2020; Grill et al., 2020), DINO (Caron et al., 2021). These models cover two datasets,
specifically ImageNet (Deng et al., 2009) and Places365 (Zhou et al., 2017), as well as two com-
pletely different families of models, CNNs and Vision Transformers (ViT) (Dosovitskiy et al., 2021).
Each exemplar set is shown to three distinct human participants, resulting 60k total annotations. Ex-
amples are provided in Appendix A (Fig. 10). We recruit participants from Amazon Mechanical
Turk. This data collection effort was approved by MIT’s Committee on the Use of Humans as Ex-
perimental Subjects. To control for quality, workers were required to have a HIT acceptance rate of
at least 95%, have at least 100 approved HITs, and pass a short qualification test. Full details about
our data collection process and the collected data can be found in Appendix A.

3.4 SEARCHING IN THE SPACE OF DESCRIPTIONS

Directly decoding descriptions from pmi(d;Ei) tends to generate disfluent descriptions. This is
because the p(d) term inherently discourages common function words like the from appearing in
descriptions. Past work language generation (Wang et al., 2020) has found that this can be remedied
by first introducing a hyperparameter λ to modulate the importance of p(d) when computing PMI,
giving a new weighted PMI objective:

wpmi(d) = log p(d | Ei)− λ log p(d). (3)

Next, search is restricted to a set of captions that are high probability under p(d | Ei), which are
reranked according to Eq. (3). Specifically, we run beam search on p(d | Ei), and use the full beam
after the final search step as a set of candidate descriptions. For all experiments, we set λ = .2 and
beam size to 50.

4 DOES MILAN GENERALIZE?

Because it is trained on a set of human-annotated exemplar sets obtained from a set of seed net-
works, MILAN is useful as an automated procedure only if it generalizes and correctly describes
neurons in trained models with new architectures, new datasets, and new training objectives. Thus,
before describing applications of MILAN to specific interpretability problems, we perform cross-

5



Published as a conference paper at ICLR 2022

Model CE ND p(d | E) pmi(d;E)

AlexNet-ImageNet .01 .24 .34 .38
AlexNet-Places .02 .21 .31 .37
ResNet-ImageNet .01 .25 .27 .35
ResNet-Places .03 .22 .30 .31

Table 2: BERTScores for neuron labeling meth-
ods relative to human annotations. MILAN ob-
tains higher agreement than Compositional Expla-
nations (CE) or NetDissect (ND).

validation experiments within the MILANNOTA-
TIONS data to validate that MILAN can reliably label
new neurons. We additionally verify that MILAN
provides benefits over other neuron annotation
techniques by comparing its descriptions to three
baselines: NetDissect (Bau et al., 2017), which
assigns a single concept label to each neuron by
comparing the neuron’s exemplars to semantic
segmentations of the same images; Compositional

Generalization Train + Test BERTScore (f)

within network AlexNet–ImageNet .39
AlexNet–Places .47
ResNet152–ImageNet .35
ResNet152–Places .28
BigGAN–ImageNet .49
BigGAN–Places .52

Train Test

across arch. AlexNet ResNet152 .28
ResNet152 AlexNet .35
CNNs ViT .34

across datasets ImageNet Places .30
Places ImageNet .33

across tasks Classifiers BigGAN .34
BigGAN Classifiers .27

Table 3: BERTScores on held out neurons rela-
tive to the human annotations. Each train/test split
evaluates a different kind of generalization, ul-
timately evaluating how well MILAN generalizes
to networks with architectures, datasets, and tasks
unseen in the training annotations.

Explanations (Mu & Andreas, 2020), which follows
a similar procedure to generate logical concept la-
bels; and ordinary image captioning (selecting de-
scriptions using p(d | E) instead of pmi(d;E)).

Method In each experiment, we train MILAN on
a subset of MILANNOTATIONS and evaluate its per-
formance on a held-out subset. To compare MILAN
to the baselines, we train on all data except a single
held-out network; we obtain the baseline labels by
running the publicly available code with the default
settings on the held-out network. To test general-
ization within a network, we train on 90% of neu-
rons from each network and test on the remaining
10%. To test generalization across architectures, we
train on all AlexNet (ResNet) neurons and test on
all ResNet (AlexNet) neurons; we also train on all
CNN neurons and test on ViT neurons. To test gen-
eralization across datasets, we train on all neurons
from models trained on ImageNet (Places) and test
on neurons from models for the other datasets. To
test generalization across tasks, we train on all clas-
sifier neurons (GAN neurons) and test on all GAN neurons (classifier neurons). We measure perfor-
mance via BERTScore (Zhang et al., 2020) relative to the human annotations. Hyperparameters for
each of these experiments are in Appendix C.

Results Table 2 shows results for MILAN and all three baselines applied to four different net-
works. MILAN obtains higher agreement with human annotations on held-out networks than
baselines. It is able to surface highly specific behaviors in its descriptions, like the splashes of water
neuron shown in Figure 2 (splashes has no clear equivalent in the concept sets used by NetDissect
(ND) or Compositional Explanations (CE)). MILAN also outperforms the ablated p(d | E) decoder,
justifying the choice of pmi as an objective for obtaining specific and high-quality descriptions.3

Table 3 shows that MILAN exhibits different degrees of generalization across models, with gener-
alization to new GAN neurons in the same network easiest and GAN-to-classifier generalization
hardest. MILAN can generalize to novel architectures. It correctly labels ViT neurons (in fully
connected layers) as often as it correctly labels other convolutional units (e.g., in AlexNet). We
observe that transferability across tasks is asymmetric: agreement scores are higher when trans-
ferring from classifier neurons to GAN neurons than the reverse. Finally, Figure 3 presents some
of MILAN’s failure cases: when faced with new visual concepts, MILAN sometimes mislabels the
concept (e.g., by calling brass instruments noodle dishes), prefers a vague description (e.g., similar
color patterns), or ignores the highlighted regions and describes the context instead.

We emphasize that this section is primarily intended as a sanity check of the learned models underly-
ing MILAN, and not as direct evidence of its usefulness or reliability as a tool for interpretability. We

3It may seem surprising that ND outperforms CE, even though ND can only output one-word labels. One
reason is that ND obtains image segmentations from multiple segmentation models, which support a large vo-
cabulary of concepts. By contrast, CE uses a fixed dataset of segmentations and has a smaller base vocabulary.
CE also tends to generate complex formulas (with up to two logical connectives), which lowers its precision.
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Figure 3: Examples of MILAN failures.
Failure modes include incorrect gener-
alization (top), vague descriptions for
concepts not seen in the training set
(middle), and mistaking the context
for the highlighted regions (bottom).

follow Vaughan & Wallach (2020) in arguing that the final test
of any such tool must be its ability to produce actionable in-
sights for human users, as in the three applications described
below.

5 ANALYZING FEATURE IMPORTANCE

The previous section shows that MILAN can generalize to new
architectures, datasets, and tasks. The remainder of this paper
focuses on applications that use generated labels to understand
how neurons influence model behavior. As a first example:
descriptions in Figure 2 reveal that neurons have different de-
grees of specificity. Some neurons detect objects with spatial
constraints (the area on top of the line), while others fire for
low-level but highly specific perceptual qualities (long, thin
objects). Still others detect perceptually similar but fundamen-
tally different objects (dog faces and cupcakes). How impor-
tant are these different classes of neurons to model behavior?

Method We use MILAN trained on all convolutional units
in MILANNOTATIONS to annotate every neuron in ResNet18-
ImageNet. We then score each neuron according to one of
seven criteria that capture different syntactic or structural
properties of the caption. Four syntactic criteria each count
the number of times that a specific part of speech appears in a
caption: nouns, verbs, prepositions, and adjectives. Three structural criteria measure properties of
the entire caption: its length, the depth of its parse tree (a rough measure of its compositional com-
plexity, obtained from the spaCy parser of Honnibal et al. 2020), and its maximum word difference
(a measure of the semantic coherence of the description, measured as the maximum Euclidean dis-
tance between any two caption words, again obtained via spaCy). Finally, neurons are incrementally
ablated in order of their score. The network is tested on the ImageNet validation set and its accuracy
recorded. This procedure is then repeated, deleting 2% of neurons at each step. We also include five
trials in which neurons are ordered randomly. Further details and examples of ablated neurons are
provided in Appendix D.

Results Figure 4 plots accuracy on the ImageNet validation set as a function of the number of ab-
lated neurons. Linguistic features of neuron descriptions highlight several important differences be-
tween neurons. First, neurons captioned with many adjectives or prepositions (that is, neurons
that capture attributes and relational features) are relatively important to model behavior. Ab-
lating these neurons causes a rapid decline in performance compared to ablating random neurons or
nouns. Second, neurons that detect dissimilar concepts appear to be less important. When the

0 4 8 12 16
% units ablated

0.2

0.4

0.6

0.8

ac
cu

ra
cy

random
verbs
prepositions
adjectives
nouns

0 4 8 12 16
% units ablated

0.2

0.4

0.6

0.8

ac
cu

ra
cy

random
max word diff.
parse depth
caption length

conv1 layer1 layer2 layer3 layer4
0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

. n
eu

ro
ns

contains verb
contains adjective
contains preposition
length > 10
parse depth > 3
top 10% word diff.

Figure 4: ResNet18 accuracy on the ImageNet validation set as units are ablated (left, middle), and distribution
of neurons matching syntactic and structural criteria in each layer (right). In each configuration, neurons are
scored according to a property of their generated description (e.g., number of nouns/words in description, etc.),
sorted based on their score, and ablated in that order. Neurons described with adjectives appear crucial for good
performance, while neurons described with very different words (measured by word embedding difference;
max word diff.) appear less important for good performance. Adjective-selective neurons are most prevalent in
early layers, while neurons with large semantic differences are more prevalent in late ones.
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caption contains highly dissimilar words (max word diff.), ablation hurts performance substantially
less than ablating random neurons. Such neurons sometimes detect non-semantic compositions of
concepts like the dog faces and cupcakes neuron shown in Fig. 2; Mu & Andreas (2020) find that
these units contribute to non-robust model behavior. We reproduce their robustness experiments us-
ing these neurons in Section 5 (Figure 14) and reach similar conclusions. Finally, Figure 4 highlights
that neurons satisfying each criterion are not evenly distributed across layers—for example, middle
layers contain the largest fraction of relation-selective neurons measured via prepositions.

6 AUDITING ANONYMIZED MODELS

One recent line of work in computer vision aims to construct privacy-aware datasets, e.g. by de-
tecting and blurring all faces to avoid leakage of information about specific individuals into trained
models (Yang et al., 2021). But to what extent does this form of anonymization actually reduce

unblurred blurred
0

10

20

30

40

# 
un

its

Figure 5: Change in # of
face neurons found by MI-
LAN (each pair of points
is one model architecture).
Blurring reduces, but does
not eliminate, units selec-
tive for unblurred faces.

models’ reliance on images of humans? We wish to understand if mod-
els trained on blurred data still construct features that can human faces,
or even specific categories of faces. A core function of tools for inter-
pretable machine learning is to enable auditing of trained models for such
behavior; here, we apply MILAN to investigate the effect of blurring-
based dataset privacy.

Method We use MILAN to caption a subset of convolutional units in
12 different models pretrained for image classification on the blurred
ImageNet images (blurred models). These models are distributed by the
original authors of the blurred ImageNet dataset (Yang et al., 2021). We
caption the same units in models pretrained on regular ImageNet (un-
blurred models) obtained from torchvision (Paszke et al., 2019). We
then manually inspect all neurons in the blurred and unblurred models
for which MILAN descriptions contain the words face, head, nose, eyes,
and mouth (using exemplar sets containing only unblurred images).

A Study of Face Obfuscation in ImageNet

Figure 1. Most categories in ImageNet Challenge (Russakovsky et al., 2015) are not people categories. However, the images contain
many people co-occurring with the object of interest, posing a potential privacy threat. These are example images from barber chair,
husky, beer bottle, volleyball and military uniform.

Effects of face obfuscation on classification accuracy.
Obfuscating sensitive image areas is widely used for pre-
serving privacy (McPherson et al., 2016). Using our face
annotations and a typical obfuscation strategy: blurring
(Fig. 1), we construct a face-blurred version of ILSVRC.
What are the effects of using it for image classification?
At first glance, it seems inconsequential—one should still
recognize a car even when the people inside have their faces
blurred. However, to the best of our knowledge, this has
not been thoroughly analyzed. By benchmarking various
deep neural networks on original images and face-blurred
images, we report insights about the effects of face blurring.

The validation accuracy drops only slightly (0.13%–0.68%)
when using face-blurred images to train and evaluate. It is
hardly surprising since face blurring could remove informa-
tion useful for classifying some images. However, the result
assures us that we can train privacy-aware visual classifiers
on ILSVRC with less than 1% accuracy drop.

Breaking the overall accuracy into individual categories in
ILSVRC, we observe that they are impacted by face blur-
ring differently. Some categories incur significantly larger
accuracy drop, including categories with a large fraction of
blurred area, and categories whose objects are often close
to faces, e.g., mask and harmonica.

Our results demonstrate the utility of face-blurred ILSVRC
for benchmarking. It enhances privacy with only a marginal
accuracy drop. Models trained on it perform competitively
with models trained on the original ILSVRC dataset.

Effects on feature transferability. Besides a classifi-
cation benchmark, ILSVRC also serves as pretraining
data for transferring to domains where labeled images are
scarce (Girshick, 2015; Liu et al., 2015a). So a further ques-
tion is: Does face obfuscation hurt the transferability of
visual features learned from ILSVRC?

We investigate this question by pretraining models on the
original/blurred images and finetuning on 4 downstream
tasks: object recognition on CIFAR-10 (Krizhevsky et al.,
2009), scene recognition on SUN (Xiao et al., 2010), object
detection on PASCAL VOC (Everingham et al., 2010), and
face attribute classification on CelebA (Liu et al., 2015b).
They include both classification and spatial localization, as

well as both face-centric and face-agnostic recognition.

In all of the 4 tasks, models pretrained on face-blurred
images perform closely with models pretrained on original
images. We do not see a statistically significant difference
between them, suggesting that visual features learned from
face-blurred pretraining are equally transferable. Again, this
encourages us to adopt face obfuscation as an additional
protection on visual recognition datasets without worrying
about detrimental effects on the dataset’s utility.

Contributions. Our contributions are twofold. First, we
obtain accurate face annotations in ILSVRC, which facil-
itates subsequent research on privacy protection. We will
release the code and the annotations. Second, to the best of
our knowledge, we are the first to investigate the effects of
privacy-aware face obfuscation on large-scale visual recog-
nition. Through extensive experiments, we demonstrate that
training on face-blurred does not significantly compromise
accuracy on both image classification and downstream tasks,
while providing some privacy protection. Therefore, we ad-
vocate for face obfuscation to be included in ImageNet and
to become a standard step in future dataset creation efforts.

2. Related Work
Privacy-preserving machine learning (PPML). Ma-
chine learning frequently uses private datasets (Chen et al.,
2019b). Research in PPML is concerned with an adversary
trying to infer the private data. It can happen to the trained
model. For example, model inversion attack recovers sensi-
tive attributes (e.g., gender, genotype) of an individual given
the model’s output (Fredrikson et al., 2014; 2015; Hamm,
2017; Li et al., 2019; Wu et al., 2019). Membership infer-
ence attack infers whether an individual was included in
training (Shokri et al., 2017; Nasr et al., 2019; Hisamoto
et al., 2020). Training data extraction attack extracts verba-
tim training data from the model (Carlini et al., 2019; 2020).
For defending against these attacks, differential privacy is a
general framework (Abadi et al., 2016; Chaudhuri & Mon-
teleoni, 2008; McMahan et al., 2018; Jayaraman & Evans,
2019; Jagielski et al., 2020). It requires the model to behave
similarly whether or not an individual is in the training data.

Privacy breaches can also happen during training/inference.

(a)

(b)

(c)

Faces of people

Human faces

Figure 6: (a) The blurred ImageNet dataset.
(b–c) Exemplar sets and labels for two neu-
rons in a blurred model that activate on un-
blurred faces—and appear to preferentially
(but not exclusively) respond to faces in spe-
cific demographic categories.

Results Across models trained on ordinary ImageNet,
MILAN identified 213 neurons selective for human faces.
Across models trained on blurred ImageNet, MILAN iden-
tified 142 neurons selective for human faces. MILAN can
distinguish between models trained on blurred and
unblurred data (Fig. 5). However, it also reveals that
models trained on blurred data acquire neurons selec-
tive for unblurred faces. Indeed, it is possible to use
MILAN’s labels to extract these face-selective neurons di-
rectly. Doing so reveals that several of them are not sim-
ply face detectors, but appear to selectively identify fe-
male faces (Fig. 6b) and Asian faces (Fig. 6c). Blurring
does not prevent models from extracting highly specific
features for these attributes. Our results in this section
highlight the use of MILAN for both quantitative and qual-
itative, human-in-the loop auditing of model behavior.

7 EDITING SPURIOUS FEATURES

Spurious correlations between features and labels are a persistent problem in machine learning
applications, especially in the presence of mismatches between training and testing data (Storkey,
2009). In object recognition, one frequent example is correlation between backgrounds and objects
(e.g. cows are more likely to appear with green grass in the background, while fish are more likely
to appear with a blue background; Xiao et al. 2020). In a more recent example, models trained on
joint text and image data are subject to “text-based adversarial attacks”, in which e.g. an apple with
the word iPod written on it is classified as an iPod (Goh et al., 2021). Our final experiment shows
that MILAN can be used to reduce models’ sensitivity to these spurious features.
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(a) training dataset (b) adversarial 
test dataset

(c) text neuron

layer3-134, “words and letters”

Figure 7: Network editing. (a) We train
an image classifier on a synthetic dataset in
which half the images include the class label
written in text in the corner. (b) We eval-
uate the classifier on an adversarial test set,
in which every image has a random textual
label. (c) Nearly a third of neurons in the
trained model model detect text, hurting its
performance on the test set.

Data We create a controlled dataset imitating Goh et al.
(2021)’s spurious text features. The dataset consists of
10 ImageNet classes. In the training split, there are 1000
images per class; 500 are annotated with (correct) text
labels in the top-left corner. The test set contains 100
images per class (from the ImageNet validation set); in
all these images, a random (usually incorrect) text label is
included. We train and evaluate a fresh ResNet18 model
on this dataset, holding out 10% of the training data as a
validation dataset for early stopping. Training details can
be found in Appendix E.

Method We use MILAN to obtain descriptions of ev-
ery residual neuron in the model as well as the first
convolutional layer. We identify all neurons whose de-
scription contains text, word, or letter. To identify spu-
rious neurons, we first assign each text neuron an in-
dependent importance score by removing it from the
network and measuring the resulting drop in valida-
tion accuracy (with non-adversarial images). We then
sort neurons by importance score (with the least impor-
tant first), and successively ablate them from the model.

0 5 10 15 20 25
# text neurons zeroed of 1024
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Figure 8: ResNet18 accuracy on the adver-
sarial test set as neurons are incrementally
ablated. Neurons are sorted by the model’s
validation accuracy when that single neuron
is ablated, then ablated in that order. When
ablating neurons that select for the spurious
text, the accuracy improves by 4.9 points.
When zeroing arbitrary neurons, accuracy
still improves, but by much less.

Results The result of this procedure on adversarial test
accuracy is shown in Fig. 8. Training on the spurious data
substantially reduces ResNet18’s performance on the ad-
versarial test set: the model achieves 58.8% accuracy, as
opposed to 69.9% when tested on non-spurious data. MI-
LAN identifies 300 text-related convolutional units (out of
1024 examined) in the model, confirming that the model
has indeed devoted substantial capacity to identifying text
labels in the image. Figure 7c shows an example neurons
specifically selective for airline and truck text. By delet-
ing only 13 such neurons, test accuracy is improved by
4.9% (a 12% reduction in overall error rate).4 This in-
crease cannot be explained by the sorting procedure de-
scribed above: if instead we sort all neurons according to
validation accuracy (orange line), accuracy improves by
less than 1%. Thus, while this experiment does not com-
pletely eliminate the model’s reliance on text features, it
shows that MILAN’s predictions enable direct editing
of networks to partially mitigate sensitivity to spuri-
ous feature correlations.

8 CONCLUSIONS

We have presented MILAN, an approach for automatically labeling neurons with natural language
descriptions of their behavior. MILAN selects these descriptions by maximizing pointwise mutual
information with image regions in which each neuron is active. These mutual information esti-
mates are in turn produced by a pair of learned models trained on MILANNOTATIONS, a dataset of
fine-grained image annotations released with this paper. Descriptions generated by MILAN surface
diverse aspects of model behavior, and can serve as a foundation for numerous analysis, auditing,
and editing techniques workflows for users of deep network models.

4Stopping criteria are discussed more in Appendix E; if no adversarial data is used to determine the number
of neurons to prune, an improvement of 3.1% is still achievable.
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IMPACT STATEMENT

In contrast to most past work on neuron labeling, MILAN generates neuron labels using another
black-box learned model trained on human annotations of visual concepts. With this increase in
expressive power come a number of potential limitations: exemplar-based explanations have known
shortcomings (Bolukbasi et al., 2021), human annotations of exemplar sets may be noisy, and the
captioning model may itself behave in unexpected ways far outside the training domain. The MI-
LANNOTATIONS dataset was collected with annotator tests to address potential data quality issues,
and our evaluation in Section 4 characterizes prediction quality on new networks; we nevertheless
emphasize that these descriptions are partial and potentially noisy characterizations of neuron func-
tion via their behavior on a fixed-sized set of representative inputs. MILAN complements, rather
than replaces, both formal verification (Dathathri et al., 2020) and careful review of predictions and
datasets by expert humans (Gebru et al., 2018; Mitchell et al., 2019).
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We thank Ekin Akyürek and Tianxing He for helpful feedback on early drafts of the paper. We
also thank IBM for the donation of the Satori supercomputer that enabled training BigGAN on MIT
Places. This work was partially supported by the MIT-IBM Watson AI lab, the SystemsThatLearn
initiative at MIT, a Sony Faculty Innovation Award, DARPA SAIL-ON HR0011-20-C-0022, and a
hardware gift from NVIDIA under the NVAIL grant program.

REFERENCES

Jacob Andreas and Dan Klein. Analogs of linguistic structure in deep representations. In Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2893–
2897, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi:
10.18653/v1/D17-1311. URL https://www.aclweb.org/anthology/D17-1311.

Jacob Andreas, Anca D Dragan, and Dan Klein. Translating neuralese. In ACL (1), 2017.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, January 2015.

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James Glass.
Identifying and controlling important neurons in neural machine translation. In International
Conference on Learning Representations, 2018.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Computer Vision and Pattern
Recognition (CVPR), 2017.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B Tenenbaum, William T Freeman,
and Antonio Torralba. Gan dissection: Visualizing and understanding generative adversarial net-
works. In International Conference on Learning Representations (ICLR), 2019.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba.
Understanding the role of individual units in a deep neural network. Proceedings of the National
Academy of Sciences (PNAS), 2020.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and Martin
Wattenberg. An interpretability illusion for bert. arXiv preprint arXiv:2104.07143, 2021.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. In International Conference on Learning Representations, 2018.
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(a) qualification test (b) annotation form

Figure 9: Screenshots of the Amazon Mechanical Turk forms we used to collect the CaNCAn dataset. (a) The
qualification test. Workers are asked to pick the best description for two hand-chosen neurons from a model
not included in our corpus. (b) The annotation form. Workers are shown the top-15 highest-activating images
for a neuron and asked to describe what is common to them in one sentence.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
ating text generation with bert. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=SkeHuCVFDr.
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million image database for scene recognition. IEEE transactions on pattern analysis and machine
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Semantic understanding of scenes through the ade20k dataset. International Journal of Computer
Vision, 127(3):302–321, 2019.

A MILANNOTATIONS

We recruited annotators from Amazon Mechanical Turk to describe one neuron at a time given its
top-activating images. A screenshot of the template is shown in Figure 9b. Participants were given
the instructions:

Instructions: In one sentence, summarize everything shown inside the high-
lighted regions in the images. They might all show the same thing, or they might
show several different things.
In your answer, DO NOT mention that you are describing highlighted regions in
images.

Workers were given up to an hour to complete each annotation, but early trials revealed they required
about 30 seconds per HIT. We paid workers $0.08 per annotation, which at $9.60 per hour exceeds
the United States federal minimum wage.
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Figure 10: Example human annotations for neuron exemplars in MILANNOTATIONS, which contains annota-
tions for neurons in seven networks. Each set of images is annotated by three distinct human participants.

Model Dataset IAA

AlexNet ImageNet .25
Places365 .27

ResNet152 ImageNet .21
Places365 .17

BigGAN ImageNet .26
Places365 .24

DINO ImageNet .23

Table 4: Average inter-annotator
agreement among human annota-
tions, measured in BERTScore.
Some models have clearer neu-
ron exemplars than others.

To control for quality, we required workers to pass a short qualifi-
cation test in which they had to choose the most descriptive cap-
tion for two manually chosen neurons from VGG-16 (Simonyan &
Zisserman, 2015) trained on ImageNet (not included as part of MI-
LANNOTATIONS). A screenshot of this test is shown in Figure 9a.

Table 4 shows the inter-annotator agreement of neuron annotations
for each model, and Table 5 shows some corpus statistics broken
down by model and layer. Layers closest to the image (early lay-
ers in CNNs and later layers in GANs) are generally described with
more adjectives than other layers, while annotations for layers far-
ther from the image include more nouns, perhaps highlighting the
low-level perceptual role of the former and the scene- and object-
centric behavior of the latter. Layers farther from the image tend
to have longer descriptions (e.g. in BigGAN-ImageNet, AlexNet-
ImageNet), but this trend is not consistent across all models (e.g. in models trained on Places365,
the middle layers have the longest average caption length).

B MILAN IMPLEMENTATION DETAILS

B.1 IMPLEMENTING p(d | E)

We build on the Show, Attend, and Tell (SAT) model for describing images (Xu et al., 2015). SAT
is designed for describing the high-level content of a single images, so we must make several modi-
fications to support our use case, where our goal is to describe sets of regions in images.
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Model Layer # Units # Words Len. % Noun % Adj % Prep
AlexNet-ImageNet conv1 64 185 4.8 37.5 24.3 12.2

conv2 192 384 5.5 37.8 19.4 13.2
conv3 384 661 5.3 41.0 16.4 13.0
conv4 256 608 5.5 43.1 11.9 12.5
conv5 256 693 5.5 46.0 10.2 10.4

AlexNet-Places365 conv1 96 153 4.3 38.4 26.8 12.7
conv2 256 297 4.8 37.8 26.0 12.7
conv3 384 412 4.7 40.2 24.8 10.5
conv4 384 483 4.4 43.7 19.9 10.3
conv5 256 486 4.1 45.8 17.6 10.6

ResNet152-ImageNet conv1 64 285 4.7 43.8 11.8 10.3
layer1 256 653 5.5 43.1 10.5 12.5
layer2 512 936 5.1 44.0 12.7 12.6
layer3 1024 1222 4.2 49.6 10.9 11.3
layer4 2048 1728 4.6 47.8 8.6 7.8

ResNet152-Places365 conv1 64 283 5.2 47.3 11.1 14.6
layer1 256 633 5.3 46.3 9.4 13.3
layer2 512 986 5.8 46.0 8.3 13.8
layer3 1024 1389 4.8 48.2 6.7 12.7
layer4 2048 1970 5.3 46.3 5.5 11.9

BigGAN-ImageNet layer0 1536 1147 3.9 52.4 7.8 8.2
layer1 768 853 3.5 53.0 9.4 8.9
layer2 768 618 3.2 52.6 12.3 9.5
layer3 384 495 3.7 49.9 14.3 10.9
layer4 192 269 3.3 47.9 18.0 13.4
layer5 96 69 2.6 53.6 22.8 14.6

BigGAN-Places365 layer0 2048 1062 4.2 53.3 5.4 8.3
layer1 1024 708 3.9 55.0 6.1 11.5
layer2 1024 410 4.6 52.7 8.1 16.3
layer3 512 273 5.2 50.4 7.6 15.0
layer4 256 192 4.6 47.5 9.3 14.9
layer5 128 123 4.2 46.7 13.5 13.0

DINO-ImageNet layer0 100 320 4.4 45.7 12.7 4.8
layer1 100 321 4.2 49.8 9.1 6.8
layer2 100 285 3.9 53.3 6.2 7.5
layer3 100 312 3.9 54.4 6.2 7.1
layer4 100 304 3.9 53.5 4.4 7.0
layer5 100 287 3.5 55.1 5.5 5.2
layer6 100 377 3.9 51.3 8.2 5.4
layer7 100 374 3.8 52.0 6.4 6.2
layer8 100 330 3.4 53.0 7.0 8.8
layer9 100 350 3.1 56.1 6.3 9.6
layer10 100 369 3.9 50.3 9.3 8.2
layer11 100 294 3.3 52.4 7.5 9.4

Total 20272 4597 4.5 48.7 9.4 10.9

Table 5: Corpus statistics for MILANNOTATIONS descriptions broken down by model and layer. The # Words
column reports the number of unique words used across all layer annotations, the Len. column reports the
average number of words in each caption for that layer, and the % columns report the percentage of all words
across all captions for that layer that are a specific part of speech.
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Figure 11: Neuron captioning model. Given the set of top-activating images for a neuron and masks for the
regions of greatest activation, we extract features maps from each convolutional layer of a pretrained image
classifier. We then downsample the masks and use them to pool the features before concatenating them into a
single feature vector per image. These feature vectors are used as input to the decoder attention mechanism.

In the original SAT architecture, a single input image x is first converted to visual features by passing
it through an encoder network g, typically an image classifier pretrained on a large dataset. The
output of the last convolutional layer is extracted as a matrix of visual features:

v = [v1; v2; . . . ; vk]

These visual features are passed to a decoder LSTM whose hidden state is initialized as a function of
the mean of the visual features v = 1/k

∑
i vi. At each time step, the decoder attends over the fea-

tures using an additive attention mechanism (Bahdanau et al., 2015), then consumes the attenuated
visual features and previous token as input to predict the next token.

The SAT architecture makes few assumptions about the structure of the visual features. We will
take advantage of this generality and modify how v is constructed to support our task, leaving the
decoder architecture intact.

Now, instead of a single image x, the model inputs are the k top-activating images xj for a neuron
as well as a mask mj for each image that highlights the regions of greatest activation. Our task is to
describe what the neuron is detecting, based strictly on the highlighted regions of the xj . In support
of this, the visual features must (1) include information about all k images, (2) encode multiple
resolutions of the images to capture both low-level perceptual and high-level scene details about
the image, and (3) pay most (but not exclusive) attention to the regions of greatest activation in the
image.

Describing sets of images The k features in SAT correspond to different spatial localities of a
single image. In our architecture, each feature vj corresponds to one input image xj .

Encoding multiple resolutions Instead of encoding the image with just the last convolutional
layer of g, we use pooled convolutional features from every layer. Formally, let g`(x) denote the
output of layer ` in the pretrained image encoder with L layers, and let pool denote a pooling
function that uses the mask to pool the features (described further below). The feature vector for the
jth image xj is:

vj =

[
pool(mj , g1(xj)) ; . . . ; pool(mi, gL(xj))

]
Highlighting regions of greatest activation Each of the top-activating images xj that we hand
to our model comes with a mask mj highlighting the image regions of greatest activation. We
incorporate these masks into the pooling function pool from above. Specifically, we first downsam-
ple the mask mj to the same spatial shape as g`(xj) using bilinear interpolation, which we denote
upsample(mj). We then apply the mask to each channel c at layer `, written g`,c(xj), via element-
wise multiplication (�) with upsample(mj). Finally, we sum spatially along each channel, resulting
in a length c vector. Formally:

poolc(g`(xj)) = 1
>vec(upsample(mj)� g`,c(xj))

Each vi is thus a length
∑

` C` vector, where C` is the number of channels at layer ` of g.
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Gen. Train + Test # Units # Words Len. % Noun % Adj % Prep

within netwok AlexNet–ImageNet 115 100 3.5 45.7 16.4 11.9
AlexNet–Places 137 46 2.5 49.3 28.7 9.6
ResNet–ImageNet 390 121 2.8 52.2 23.8 11.7
ResNet–Places 390 376 4.3 46.5 8.7 10.9
BigGAN–ImageNet 374 112 2.2 59.8 17.5 10.4
BigGAN–Places 499 245 3.8 54.2 6.0 9.0

Train Test

across arch. AlexNet ResNet 7808 326 3.0 46.1 21.0 8.9
ResNet AlexNet 2528 275 2.7 48.0 27.1 6.4
CNNs ViT 1200 200 2.6 55.0 18.2 13.0

across dataset ImageNet Places 10272 271 2.2 58.8 14.0 13.8
Places ImageNet 8800 309 3.1 47.8 26.9 7.8

across task Classifiers BigGAN 8736 202 2.1 53.0 25.3 6.1
BigGAN Classifiers 10336 336 3.2 54.3 14.2 16.8

Total 51585 1002 2.7 51.9 19.8 11.1

Table 6: Statistics for MILAN-generated descriptions on the held-out neurons from the generalization experi-
ments of Section 4. Columns are the same as in Table 5.

Throughout our experiments, g is a ResNet101 pretrained for image classification on ImageNet,
provided by PyTorch Paszke et al. (2019). We extract visual features from the first convolutional
layer and all four residual layers. We do not fine tune any parameters in the encoder. The decoder
is a single LSTM cell with an input embedding size of 128 and a hidden size of 512. The attention
mechanism linearly maps the current hidden state and all visual feature vectors to size 512 vectors
before computing attention weights. We always decode for a maximum of 15 steps. The rest of the
decoder is exactly the same as in Xu et al. (2015).

The model is trained to minimize cross entropy on the training set using the AdamW optimizer
Loshchilov & Hutter (2019) with a learning rate of 1e-3 and minibatches of size 64. We include
the double stochasticity regularization term used by Xu et al. (2015) with λ = 1. We also apply
dropout (p = .5) to the hidden state before predicting the next word. Across configurations, 10% of
the training data is held out and used as a validation set, and training stops when the model’s BLEU
score (Papineni et al., 2002) does not improve on this set for 4 epochs, up to a maximum of 100
epochs.

B.2 IMPLEMENTING p(d)

We implement p(d) using a two-layer LSTM language model (Hochreiter & Schmidhuber, 1997).
We use an input embedding size of 128 with a hidden state size and cell size of 512. We apply
dropout to non-recurrent connections (p = .5) during training and hold out 10% of the training
dataset as a validation set and following the same early stopping procedure as in Appendix B.1,
except we stop on validation loss instead of BLEU.

C GENERALIZATION EXPERIMENT DETAILS

In each experiment, MILAN is trained with the hyperparameters described in Appendix B and Sec-
tion 3.4, with the sole exception being the within-network splits—for these, we increase the early
stopping criterion to require 10 epochs of no improvement to account for the training instability
caused by the small training set size.

To obtain NetDissect labels, we obtain image exemplars with the same settings as we do for MILAN,
and we obtain segmentations using the full segmentation vocabulary minus the textures.

To obtain Compositional Explanations labels, we search for up to length 3 formulas (comprised of
not, and, and or operators) with a beam size of 5 and no length penalty. Image region exemplars
and corresponding segmentations come from the ADE20k dataset (Zhou et al., 2019).

Finally, Table 6 shows statistics for MILAN descriptions generated on the held out sets from each
generalization experiment. Compared to human annotators (Table 5), MILAN descriptions are on
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Figure 12: Randomly chosen examples of MILAN-generated descriptions from the generalization experiments
of Section 4.

average shorter (2.7 vs. 4.5 tokens), use fewer unique words (1k vs. 4.6k), and contain adjectives
twice as often (9.4% vs. 19.8%). Figure 12 contains additional examples, chosen at random.

D ANALYSIS EXPERIMENT DETAILS

We obtain the ResNet18 model pretrained on ImageNet from torchvision (Paszke et al., 2019).
We obtain neuron descriptions for the same layers that we annotate in ResNet152 (Section 3.3) using
the MILAN hyperparameters described in Section 3.2 and Section 3.4. We obtain part of speech tags,
parse trees, and word vectors for each description from spaCy (Honnibal et al., 2020).

Figure 13 shows examples of neurons that scored high under each criterion (and consequently were
among the first ablated in Fig. 5). Note that these examples include some failure cases of MILAN: for
example, in the # verbs example, MILAN incorrectly categorizes all brass instruments as flutes; and
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max word difference

Animals, vehicles, and vases

ResNet18, layer4-427

parse depth / caption length

The center part of a flower, or radial spikes that extend from a center

ResNet18, layer3-153

# nouns

Text on a sign, text on a web page, text on a menu

# adjectives

Purple, red and blue fluorescent blue and purple objects

# prepositionsResNet18, layer2-52

Space on the right side of a object, space above a bird

ResNet18, conv1-16

ResNet18, layer4-450 # verbs

A man holding a flute, a flute, a man playing a flute

ResNet18, layer4-6

Figure 13: Examples of ablated neurons for each condition Section 5, chosen from among the first 10 ablated.

containership amphibian

hermit crabpretzel

snowplow jeep

(b) (c)(a)

.33

.37

.37

(d)

hermit crab

amphibian

jeep

Unit: ResNet18-ImageNet layer4-427
MILAN: “animals, vehicles, and vases”

Original Image & 
Ground Truth Label Distractor Image Adversarial Image & 

Model PredictionResidual Layer 4 Output Layer

Figure 14: Cut-and-paste adversarial attacks highlighting non-robust behavior by a neuron that scored high
on the max-word-diff criterion of Section 5. (a) MILAN finds this neuron automatically because the generated
description mentions two or more dissimilar concepts: animals and vehicles. The neuron is directly connected
to the final fully-connected output layer, and strongly influences amphibian, hermit crab, and jeep predictions
according to the connection weights. (b) To construct adversarial inputs, we pick three images from the Ima-
geNet validation set that do not include concepts detected by the neuron. (c) We then select a different set of
images to act as distractors that do include the concepts detected by the neuron. (d) By cutting and pasting the
central object from the distractor to the original image, the model is fooled into predicting a class label that is
completely unrelated to the pasted object: e.g., it predicts amphibian when the military vehicle is pasted.
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in the # adjectives example, the description is disfluent. Nevertheless, these examples confirm our
intuitions about the kinds of neurons selected for by each scoring criterion, as described in Section 5.

We hypothesized in Section 5 that neurons scoring high on the max-word-diff criterion correspond
to non-robust behavior by the model. Figure 14 provides some evidence for this hypothesis: we
construct cut-and-paste adversarial inputs in the style of Mu & Andreas (2020). Specifically, we
look at the example max-word-diff neuron shown in Figure 13, crudely copy and paste one of the
objects mentioned in its description (e.g., a vehicle-related object like a half track), and show that this
can cause the model to predict one of the other concepts in the description (e.g., an animal-related
class like amphibian).

E EDITING EXPERIMENT DETAILS

Hyperparameters We train a randomly initialized ResNet18 on the spurious training dataset for
a maximum of 100 epochs with a learning rate of 1e-4 and a minibatch size of 128. We annotate the
same convolutional and residual units we did for ResNet152 in Section 3.3. We stop training when
validation loss does not improve for 4 epochs.

How many neurons should we remove? In practice, we cannot incrementally test our model on
an adversarial set. So how do we decide on the number of neurons to zero? One option is to look
solely at validation accuracy. Figure 15 recreates Figure 8 with accuracy on the held out validation
set (which is distributed like the training dataset) instead of accuracy on the adversarial test set.
The accuracy starts peaks and starts decreasing earlier than in Fig. 8, but if we were to choose the
number to be the largest before validation accuracy permanently decreases, we would choose 8
neurons, which would still result in a 3.1% increase in adversarial accuracy.
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Figure 15: Same as Fig. 8, but shows ac-
curacy on the validation dataset, which is
distributed identically to the training dataset.
Dotted line denotes initial accuracy.
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