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ABSTRACT

The notion of group invariance helps neural networks in recognizing patterns and
features under geometric transformations. Indeed, it has been shown that group
invariance can largely improve deep learning performances in practice, where
such transformations are very common. This research studies affine invariance on
continuous-domain convolutional neural networks. Despite other research consid-
ering isometric invariance or similarity invariance, we focus on the full structure
of affine transforms generated by the generalized linear group GL2(R). We in-
troduce a new criterion to assess the similarity of two input signals under affine
transformations. Then, unlike conventional methods that involve solving complex
optimization problems on the Lie group G2, we analyze the convolution of lifted
signals and compute the corresponding integration over G2. In sum, our research
could eventually extend the scope of geometrical transformations that practical
deep-learning pipelines can handle.

1 INTRODUCTION

Convolutional neural networks (CNNs) have achieved remarkable success at analyzing, recognizing,
and understanding of images. The capability of these networks is largely attributed to their ability to
generate good features from raw data. However, the types of structures that CNNs can explore are
limited to simple symmetries.

Addressing this limitation, Group Convolutional Neural Networks (G-CNNs) extend CNNs to cap-
italize on the intrinsic geometric properties and symmetries in data, particularly images (Cohen &
Welling, 2016). Unlike their traditional counterparts, G-CNNs harness the power of group theory, a
mathematical framework that formalizes transformations and symmetries. This theoretical founda-
tion ensures equivariance with respect to transformations described by the group, thereby enabling
the network to maintain predictable behavior under various transformations.

One striking characteristic of G-CNNs is their ability to preserve and leverage the fundamental
structures of data throughout the network’s architecture. Notably, they excel when dealing with
large groups that extend beyond mere translation equivariance. Classical CNNs can be regarded as
a special instance of G-CNNs. The real power of G-CNNs becomes evident when more intricate
geometric transformations are at play. Recent G-CNNs elevate feature maps to higher-dimensional,
disentangled representations (Bekkers, 2019). Within these representations, G-CNNs effectively
learn the characteristics of the data, rendering traditional geometric data-augmentation techniques
superfluous. This not only streamlines the learning process but also minimizes the risk of overfitting.
Moreover, G-CNNs maintain their predictive behavior under geometric transformations, thanks to
their foundation in group theory and, therefore, give rise to the concept of equivariance. The in-
troduction of G-CNNs to the machine-learning community by Cohen & Welling (2016) marked the
inception of an expanding body of G-CNN literature that consistently highlights many advantages
of G-CNNs over conventional CNNs. This literature can be roughly classified into three main cate-
gories: discrete G-CNNs, regular continuous G-CNNs, and steerable continuous G-CNNs. Discrete
G-CNNs delve into discrete group structures, yielding improved performance in various applica-
tions. This approach has been explored in studies by Cohen & Welling (2016); Winkels & Cohen
(2018); Dieleman et al. (2016); Worrall & Brostow (2018); Hoogeboom et al. (2018), collectively
contributing to the foundational understanding and practical deployment of discrete G-CNNs.
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Regular continuous G-CNNs, as investigated by Oyallon & Mallat (2015); Bekkers et al. (2015);
Weiler et al. (2018); Zhou et al. (2017), focus on seamless transformations within continuous do-
mains. Their research showcases how G-CNNs can excel in handling continuous data, offering
advantages over traditional CNNs in capturing intricate patterns and representations. Steerable con-
tinuous G-CNNs, explored Cohen et al. (2018); Worrall et al. (2017); Kondor & Trivedi (2018);
Thomas et al. (2018); Andrearczyk et al. (2019), introduce a specialized approach where the convo-
lution kernels are represented in terms of circular or spherical harmonics. This technique, particu-
larly suitable for unimodular groups like roto-translations, enables efficient computation by utilizing
basis coefficients.

Our research investigates the property of affine invariance in the context of continuous-domain con-
volutional neural networks. Our focus are affine spaces formed by the generalized linear group
GL2(R), the group of all invertible matrices of size 2 × 2. Affine transformations are fundamental
operations that combine linear transformations and translations. These transformations are important
because they address distortions of an affine nature. For example, such distortions arise in photos
when the camera is close to the subject being captured Fisher et al. (2000); Guo et al. (2019), or in
certain types of CAPTCHA Wang & Lu (2018) (see Figure 1). Previous attempts have been made to
investigate spaces that maintain affine-equivariance, but they are restricted to strict conditions, such
as cases where the determinant equals 1 (expressed as SO(n)). We instead consider affine-invariant
spaces across the entire spectrum of invertible matrices. The conventional method for determining
the invariance of two input signals, denoted as f1 and f2, under a transformation involves solving a
complex optimization problem on the Lie group G2. Instead, we introduce an alternative approach,
where we assess whether the convolution of the lifting of f1 and f2 to G2 exhibits G2 invariance for
every kernel. In order to apply this criteria, an additional step is required, namely, the computation
of convolutions over G2. We Solve this technical challenge using QR-decomposition discussed in
Schindler (1993).

Two main contributions of this paper are:

• Rather than focusing on complex optimization problems, we study invariance through con-
volution integrals in the group space.

• We show how to perform the related computations by simplifying the convolutions over the
transformation group to integrals over real space.

In this way, we are able to cater to a considerably broader spectrum of transformations. This result
is very broad and, in specific scenarios, it can be used to analyze invariance in affinely generated
transformations, such as the Roto-translation transformation.

Figure 1: Original letters and its affine invariant CAPTCHA.

1.1 PRELIMINARIES

This section establishes the foundational concepts, terminology, and context along with some il-
lustrative examples. These preliminaries set the stage for the main contributions and discussions
presented in the following sections.

Ensuring the equivariance of artificial neural networks (NNs) with respect to a group G is an es-
sential characteristic, as it guarantees that applying transformations to the input preserves all infor-
mation, merely shifting it to different network locations. It has been determined that when aiming
for equivariant NNs, the sole viable choice is to employ layers in which the linear operator is de-
fined through group convolutions. The journey to this conclusion commences with the conventional
definition of neural networks layers given by

y = σ (Kwf(x) + b) , (1)
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where x ∈ X represents the input vector, and f denotes the input signal, for example in an image
input, x is the location of pixels and f is the value that image takes in each pixel. Moreover,
Kw : X → Y stands as a linear map parameterized by the weight vector w, with b ∈ Y as a bias
term, and σ is the activation function. The kernel operator Kw is also defined as follows

Kwf =

∫
X
k(x,y)f(x)dµX (x),

where Kw : L2(X ) → L2(Y), dµX is a Radon measure on X , k denotes the kernel function, and
f ∈ L2(X ) (square integrable function). To broaden the application of this explanation to the notion
of group convolutional neural networks, we revisit a number of crucial definitions.

Definition 1 (Group). A group (G, ·) is a set G equipped with a binary operator represented by a
dot symbol. The dot operator is associative ((g1 · g2) · g3 = g1 · (g2 · g3)), has an identity element
(e). Moreover, every element of the set has an inverse element (g · g−1 = g−1 · g = e).

In this context, the set comprises functions, such as translations or rotations. The group operation
operates on elements of this set through addition or multiplication (Herstein, 1991). We also need
to define normal groups. A normal group is a subgroup N of a group G such that, for every element
g in G, the conjugate gNg−1 is contained within N .

Example 1 (Translation group). The translation group in R2 is denoted by (R2, ·) consists of all
possible translations and is equipped with the below group product and group inverse:

g · g′ = (x+ x′)

g−1 = −x,

where g = (x) and g−1 = (−x) and x,x′ ∈ R2.

One important example of groups are Lie groups, which are defined as follows:

Definition 2 (Lie groups). Special case of groups are Lie groups, which are symmetries of Rieman-
nian manifolds.

Roto-translation symmetries of Euclidean spaces are examples of Lie groups, which is explained in
the next example.

Example 2 (Roto-translation group). The roto-translation group in R2 is denoted by SE(2). The
group SE(2) = R2 ⋊SO(2) (where ⋊ denotes semidirect product. In a direct product G = H ×K,
both H and K are normal in G. Semidirect products are a relaxation of direct products where only
one of the two subgroups must be normal) consists of translations vectors in R2, and rotations in
SO(2) and is equipped with the group product and group inverse:

g.g′ = (x,Rθ) · (x′,Rθ′) = (Rθx
′ + x,Rθ+θ′)

g−1 = (−R−1
θ x,R−1

θ ),

for g = (x,Rθ), g′ = (x′,Rθ′), and

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

The group operator provides instructions on how to act on the group elements, ensuring that the
result remains within the group. Of particular interest are symmetry groups, where each element in
the set represents a symmetry transformation. When the group acts on a specific space, it is referred
to as a group action.

Definition 3 (Group action). Let χ be a set. If G is a group with identity element e, then a group
action α of G on χ is a function, α : G×χ → χ, that satisfies identity and compatibility conditions
(e⊙ x = x, g ⊙ (h⊙ x) = (g · h)⊙ x) for all g, h ∈ G and all x ∈ χ.
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For example the action of group G = SO(d) on space χ = Rd could be denoted by g ⊙ x = Rx,
where x ∈ Rd and R ∈ SO(d). For the set of points, we perform transformation through group
products. While in the convolution kernel, we perform transformation via group representations.
Therefore we need to understand representations. The multiplication within a group instructs us
on merging transformations, yet it does not provide guidance on utilizing these transformations on
other entities like vectors or signals. To address this, we require the concept of group action and
group representations. Nevertheless, frequently, our attention is predominantly directed towards
linear group actions operating on vector spaces, and these actions are termed representations.

Definition 4 (Representation). A representation is an invertible linear transformation ρ(g) : V →
V parameterized by group elements g, h ∈ G that acts on some vector space V , which follows the
group structure (it is a group homomorphism) via

ρ(g)ρ(h)v = ρ(g · h)v

for v ∈ V .

Definition 5 (Regular representation). Let f ∈ L2(X ). Then the regular representation of G acting
on L2(X ) is given by

ρ(g)f(x) = f
(
g−1x

)
.

Example 3 (Regular representation of roto-translation group). Let f ∈ L2(R2) be a two dimen-
sional image, G = SE(2) denotes the roto-translation group then

ρ(g)f(y) = f(R−1
θ y − x).

We continue this part with some additional definitions that we need in the next section.

Definition 6 (Coset). Let H ⊂ G be a subgroup of G. Then gH denotes a coset given by

gH =
{
g · h | h ∈ H

}
.

Definition 7 (Quotient Space ). Let H ⊂ G be a subgroup of G. Then G/H denotes the quotient
space that is defined as the collection of unique cosets gH ⊂ G. Elements of G/H are thus cosets
that represents an equivalence class of transformations for which g ∼ g̃ are equivalent if there
exsists a h ∈ H such that g = g̃h.

Definition 8 (Stabilizer). Let G acts on X via the action ⊙. For every x ∈ X , the stabilizer
subgroup of G with respect to the point x is denoted with StabG(x) is the set of all elements in G
that fix x

StabG(x) =
{
g ∈ G | g ⊙ x = x

}
.

Moreover from (Bekkers, 2019) we know that, if X be a homogeneous space of G. Then X can be
identified with G/H with H = StabG (x0) for any x0 ∈ X . Finally we have ϵ-Affine invariance
definition.

Definition 9 (ϵ-Affine invariance). We say that functions f1, f2 ∈ L(R2) are ϵ-Affine invariant if
there exists A ∈ G2 so that ∥f1 − ρ(A)f2∥1 < ϵ or supx |f1(x)− ρ(A)f2(x)| < ϵ.

For simplicity in notation we do not use · and ⊙ symbols in the next sections. Also in this paper we
use g and h to denote group elements and f and k to denote functions.

1.2 GROUP CONVOLUTIONAL NEURAL NETWORKS ARCHITECTURE

One conventional method to build group convolutional neural networks is to apply isotropic convo-
lutions for Equation (1). An isotropic Rd convolution layer maps between planar signals L2

(
Rd

)
with K a planar correlation given by

(Kf)(y) =

∫
Rd

1

|deth|
k(x− y)f(x)dx,

and in which k satisfies

for all h ∈ H : k(x) =
1

|deth|
k
(
h−1x

)
. (2)
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Applying isotropic convolutions is limiting because they are constrained by the shape of the kernels.
One approach to overcome this limitation, is to lift the signals to the group G. Lifting of the input
signal, not only addresses the constraints of kernels as noted by (Bekkers, 2019) but also offers
advantages in enhancing the performance of image processing, as highlighted in the work by (Smets
et al., 2023). When we apply lifting we must look for stabilizer StabG when G acts on G. In this
case we have

H = StabG(g) =
{
x ∈ G|xg = g

}
= e.

As a result, Equation (2) is fulfilled for all kernels, and there are no longer any limitations imposed
on the choice of kernels.
Definition 10 (Lifting layer (X = Rd,Y = G)). Let G = (x, h), where x ∈ R2 and h ∈ GL2(R).
Also let k : R2 → R be a compact supported distribution. A lifting layer maps from L2

(
Rd

)
to

L2(G) on the group G. A lifting correlation is given by

(Kf)(g) =

∫
Rd

1

|deth|
k
(
g−1x̃

)
f(x̃)dx̃.

Example 4 (Lifting for Kronecker delta kernel). Let

k = δ(x,0d×d) =

{
1 if x = 0 ∈ Rd;

0 otherwise.

Then for g = (x, h) we have
g−1x̃ = h−1x̃− x.

Therefore,

k(g−1x̃) = δ(h−1x̃− x,0d×d) =

{
1 if x̃ = hx;

0 otherwise.
This results that the lifting layer is as the below

(Kf)(g) =
f(hx)

|deth|
,

which matches with ρ(g)f when g belongs to special linear group SL(d).

We also need to discuss this fact that the lifting layer integral exists. A function f on R is called
locally integrable if f is integrable on every bounded interval [a, b] for a < b in R. If k ∈ C∞

c (R)
and f is locally integrable, then

(f ∗ k)(y) =
∫ ∞

−∞
f(t)k(y − t)dt,

exists and is infinitely differentiable on R. First of all the input f is usually a picture and therefore
the function f is bounded. On the other hand the value of lifted functions on cosets is equal to that
of f . Therefore the lifted function is bounded as well. We further know that the kernel is locally
supported, which results the integrability. After lifting layer we will apply convolution layer which
is defined as follows.
Definition 11 (Group convolution layer (X = Y = G)). A group convolution layer maps between
G-feature maps in L2(G). A group convolution is given by

(f ∗ k)(h) =
∫
G

f(h)k
(
h−1g

)
dλ(g),

where g ∈ G and λ is a Haar measure.

We finally need another layer to again maps to feature maps in L2(Rd), which can be used to imply
smoothness of the output.
Definition 12 (Projection layer). A projection layer maps between G-feature maps in L2(G) back
to planar feature maps in L2(Rd)

(Kf)(x) =

∫
H̃

f(x, h̃)dh̃. (3)
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2 MAIN RESULT

This section reviews the main result of this paper. In the way we explore affine invariant spaces and
investigate the convolution integration over G2.

2.1 PROBLEM STATEMENT

Our goal is to study invariance in affine transformations in continuous-domain convolutional neu-
ral networks. An affine transformation basically combines linear transformations and translations.
Affine transformations are denoted as follows

G2 =
{
[x,A] : x ∈ R2,A ∈ GL2(R)

}
,

where
[x,A] : z 7→ x+Az.

The identity is [0, I], and, therefore, for all B ∈ GL2(R) we have [y,B]−1 = [−B−1y,B−1].

The affine transformation is important as we may face affine type distortions due proximity of the
camera with respect to the object. For example, this type of affine distortion could manifest in remote
sensing images, as well as in camera imagery which can include various perspective distortions (?).
It is important to note that in an affine transformation, parallel lines in the original image continue
to remain parallel in the transformed image. However, the transformation can introduce distortion
in the angles between lines.

This paper explores the use of convolutional neural networks in handling affine transformations, fo-
cusing specifically on cases where the transformation matrix A belongs to the general linear group
GL2(R). We diverge from the use of isometric convolutions, opting instead for the application of the
lifting-projection method, which we elucidate comprehensively. While prior investigations have fo-
cused on compact groups such as SO(2), it is important to highlight that the GL2(R) group does not
fall under the category of compact groups. As a result, we are unable to apply the Clebsch-Gordan
theory to this scenario. The Clebsch-Gordan theory typically addresses criteria for categorizing ker-
nels. In contrast to the traditional approach used to establish the equivalence of two input signals,
which relies on solving a challenging optimization problem on the intricate Lie group G2 when
dealing with transformations, we opted for a different criterion. Our alternative method focuses on
analyzing the convolution of the lifted forms of the signals f1 and f2 for achieving G2 invariance.
We also need to introduce an extra step that encompasses performing convolutions on G2 and ad-
dress the unique challenges associated with this, including techniques for handling integrations over
G2. The next theorem asserts that, lifting does not change the affine invariance of input signals
Theorem 1. Let f1, f2 : R2 → R are input signals and let there exists an g ∈ G2 so that sup |(f1−
ρ(g−1)f2| < ϵ then

sup |(Kf1)(g)− ρ(g−1)(Kf2)(g)| < ϵ∥k∥R
2

1 .

Proof. We know that
∫
R2

k(g−1x)f(x)
| deth| dx =

∫
R2 k(x)f(gx)dx, then we have

sup
g′

∣∣((Kf1)− ρ
(
g−1

)
(Kf1)

)
(g′)

∣∣
= sup

g′

∣∣∣∣∫
R2

(k(x)f1(g
′x)dx− k(x)f1(gg

′x)dx

∣∣∣∣
≤ sup

g′

∫
R2

|k(x)||f1(g′x)− f1(gg
′x)|,

by setting g′x = y for the last term in above we have

sup
g′

∫
R2

|k(x)||f1(g′x)− f1(gg
′x)| ≤ ϵ

∫
R2

|k(x)|dx = ϵ∥k∥R
2

1 .
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Now we provide the main theorems of this paper. The first main theorem states that the invariance
of two input signals is related to convolution of lifting of those signals.
Theorem 2. Let (Kf1), (Kf2) : G2 → R be the lifting of f1, f2 : R2 → R and let there exists an
h̃ ∈ G2 so that ∥(Kf1)(g)− ρ(h̃)(Kf2)(g)∥sup < ϵ then

∥(Kf1) ∗ k − ρ(h̃)(Kf2) ∗ k∥G2
sup < ϵ∥k∥G2

1

holds for every kernel k and vice-versa. Where ∥f∥G2
1 =

∫
G2

|f |dµG2 .

Proof. We have

∥(Kf1) ∗ k − ρ(h̃)(Kf2) ∗ k∥G2
sup = sup

∣∣∣ ∫
G2

(Kf1)(g)k(h
−1(g))− ρ(h̃)(Kf2)(g)k(h

−1g)dµG2
(g)

∣∣∣
≤ sup

∫
G2

∣∣∣(Kf1)(g)k(h
−1(h))− ρ(h̃)(Kf2)(g)k(h

−1g)
∣∣∣dµG2

(g)

≤ sup

∫
G2

∣∣∣(Kf1)(g)− ρ(h̃)(Kf2)(g)
∣∣∣∣∣∣k(h−1(g))

∣∣∣dµG2(g)

≤ ϵ∥k∥G2
1 .

The second part of the theorem results by selecting k = δ(g − h′).

The aforementioned finding indicates that to assess the equivalence of two signals, it is necessary
to perform a convolutional integration across G2. We investigate this problem in the next section.
Now we provide the below theorem which states that the function c(K,k) : C(R2,R) → R defined
by

∫
G2

(Kf) ∗ k dµG2
(g) can be used for characterization of invariant affine functions.

Theorem 3. if (Kf1), (Kf2) : G2 → R are lifting of input signals and there exists a h̃ ∈ G2 such
that ∥(Kf1)− ρ(h̃)(Kf2)∥G2

1 < ϵ. Then we have∣∣∣ ∫
G2

(
(Kf1) ∗ k − (Kf2) ∗ k

)
(h)dµG2

(h)
∣∣∣≤ ϵ∥k∥G2

1

Proof. We know that∣∣∣ ∫
G2

(
(Kf1) ∗ k − (Kf2) ∗ k

)
(h)dµG2(h)

∣∣∣=∣∣∣ ∫
G2

∫
G2

(
(Kf1)(g)k(h

−1g)
)
dµG2(g)dµG2(h)−

∫
G2

∫
G2

(
(Kf2)(g)k(h

−1g)
)
dµG2(g)dµG2(h)

∣∣∣.
Then for the second term in the above equation we have and replacing g with h̃g we have∫

G2

∫
G2

(
(Kf2)(g)k(h

−1g)
)
dµG2(g)dµG2(h)

=

∫
G2

∫
G2

(
(Kf2)(h̃

−1g)k(h−1h̃−1g)
)
dµG2(g)dµG2(h)

=

∫
G2

∫
G2

(
(Kf2)(h̃

−1g)k((h̃h)−1g)
)
dµG2(g)dµG2(h),

if we set
f(h) =

∫
G2

(
(Kf2)(h̃

−1g)k((h̃h)−1g)
)
dµG2

(g),

then ∫
G2

∫
G2

(
(Kf2)(h̃

−1g)k((h̃h)−1g)
)
dµG2

(g)dµG2
(h)

=

∫
G2

f(h)dµG2
(h) =

∫
G2

f(h̃h)dµG2
(h)

=

∫
G2

∫
G2

(
(Kf2)(h̃

−1g)k(h−1g)
)
dµG2

(g)dµG2
(h),
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therefore,

∣∣∣ ∫
G2

∫
G2

(
(Kf1)(g)k(h

−1g)
)
dµG2

(g)dµG2
(h)−

∫
G2

∫
G2

(
(Kf2)(g)k(h

−1g)
)
dµG2

(g)dµG2
(h)

∣∣∣=∣∣∣ ∫
G2

∫
G2

(
(Kf1)(g)k(h

−1g)
)
dµG2

(g)dµG2
(h)−

∫
G2

∫
G2

(
(Kf2)(h̃

−1g)k(h−1g)
)
dµG2

(g)dµG2
(h)

∣∣∣=∣∣∣ ∫
G2

∫
G2

(
(Kf1)(g)− (Kf2)(h̃

−1g)
)
k(h−1g)dµG2(g)dµG2(h)

∣∣∣=∣∣∣ ∫
G2

(
(Kf1)− (Kf2) ◦ h̃−1

)
∗ k dµG2(h)

∣∣∣
≤

∫
G2

∣∣∣((Kf1)− (Kf2) ◦ h̃−1
)
∗ k

∣∣∣dµG2
(h) =

∥∥∥((Kf1)− (Kf2) ◦ h̃−1
)
∗ k

∥∥∥G2

1
≤ ϵ∥k∥G2

1 .

2.2 CONVOLUTION COMPUTATION

Before illustrating how to compute the convolution over the group G2, we remark some ingredients
which is essential to compute the convolution over G2. We finally show that the convolution over
G2 can be computed through Fourier transform and integration over real valued space.

In our study, we adopt a straightforward approach to calculate the G2-invariant convolution for a
broader kernel, which can be formulated as follows:

∫
G2

f([x,A])k([y,B]−1[x,A])dµG2
. (4)

Using the Stone–Weierstrass theorem, in the setup of continuous functions with respect to sup-norm,
C(G2,R) = C(GL2(R) ⋉ R2,R), which asserts that summation of separable functions are dense
in C(G2,R), we reduce the kernel sets to functions of the below form

k(y,A) =

M∑
i=1

k1i(y)k2i(A).

This reduction help us to benefit Fourier transforms to simplify some parts of our calculations. We
use QR parametrization of GL2(R) which aids us in utilizing numerical approaches, for example are
introduced in (Eshkuvatov et al., 2013). Now, we illustrate the outcomes presented in (Schindler,
1993; Milad & Taylor, 2023), which are pertinent to our calculations. Let

K0 =

{(
s −t
t s

)
: s, t ∈ R, s2 + t2 > 0

}
,

and

H(1,0) =

{(
1 0
u v

)
: u, v ∈ R, v ̸= 0

}
.

It is shown that GL2(R) = K0H(1,0),K0 ∩ H(1,0) = I , where I denotes the identity matrix, and
(M ,C) → MC is a homeomorphism of K0×H(1,0) with GL2(R). From (Milad & Taylor, 2023)
we have ∫

Gn

f dµGn
=

∫
GLn(R)

∫
Rn

f [x,A]
dxdµGLn(R)(A)

|det(A)|
, for all f ∈ Cc (Gn) , (5)

where Cc(G) denotes the space of continuous C-valued functions of compact support on G. For any
integrable function f on GL2(R), the Haar integral on GL2(R) can be expressed as

∫
GL2(R)

f dµGL2(R) =

∫
K0

∫
H(1,0)

f(MC)|det(C)|dµH(1,0)
dµK0 . (6)
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The map [u, v] →
(

1 0
u v

)
is an isomorphism of the group G1 = R ⋊ R∗ with H(1,0). When

n = 1,GL1(R) can be identified with R∗ and G1 identified with R⋊R. We recall that
∫
R∗ fdµR∗ =∫

R f(b) db|b| , where the integral on the right hand side is the Lebesgue integral on R, and

∫
G1

f dµG1 =

∫
R

∫
R
f [y, b]

dydb

b2
. (7)

2.3 INTEGRAL OVER G2

A difficult aspect in the implementation of group convolutional neural networks involves performing
convolutions across the group. This segment addresses this particular challenge by delving into
the problem, which we will break down into the more manageable tasks of calculating Fourier
transforms and conducting integrations in real-valued space. We have the below theorem for the
integration over G2

Theorem 4. Let A =

(
a b
c d

)
∈ GL2(R) and let the kernel is separable meaning that

k(x,A) = k1(x)k2(A) and consider the one to one transform between H and H∗ so that
H∗(s, t, u, v,B,y) := Hf,k(a, b, c, d,B,y), where a = s − ut, c = t + us, b = −t/v, and
d = s/v, then we have

∫
G2

f([x,A])k([y,B]−1[x,A])dµG2 =

∫
R

∫
R

∫
R

∫
R
H∗(s, t, u, v,B,y)

dudv

|v|
dsdt

s2 + t2
.

where

Hf,k(A,B,y) =
k2(AB−1)

|det(A)||det(B−1)|
F−1

(
F (u)K1(B

⊤u)
)
.

The proof of this theorem is discussed in the appendix. Applying this result we can use the numerical
methods in (Eshkuvatov et al., 2013) to compute the former integral as it has singularity in s = 0, t =
0. Note that we can write K0 as R+ ⋊ SO(1) where(

s −t
t s

)
= (s2 + t2)×

(
r cos θ −r sin θ
r sin θ r cos θ

)
.

The final step that necessitates computation is the integration within the projection layer. In the
context of our affine transformation, the stabilizer is specifically GL2(R). We refrain from delving
into the intricacies of this process, as it bears resemblance to the earlier scenario.

3 CONCLUSION

This research explores how continuous-domain convolutional neural networks operate within affine
spaces formed by the generalized linear group GL2(R). Affine transformations combine linear trans-
formations and translations. These transformations are ubiquitous because they describe distortions
that occurs, for example, when a camera is close to the object being photographed. This study goes
further by examining affine-invariant spaces across the entire spectrum of invertible matrix space.
Unlike the conventional method for determining the invariance of two input signals, denoted as f1
and f2, under a specialized transformation involves solving a complex optimization problem on the
intricate Lie group G2, we adopted an alternative criterion, specifically examining the convolution
of the lifted versions of f1 and f2 for G2 invariance. We also applied an additional step, which
involves computing convolutions over G2 and addressing the associated challenges, including meth-
ods for performing integrations over G2. We explore invariance in convolutional neural networks,
and extend its scope beyond the limitations of isometric groups in Euclidean space.
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4 APPENDIX

PROOF OF THEOREM 4

Proof. We know that ∫
G2

f([x,A])k([y,B]−1[x,A])dµG2

=

∫
G2

f([x,A])k
(
B−1x−B−1y,AB−1

)
dµG2

.

Employing (5) we have

∫
G2

f([x,A])k(B−1x−B−1y,AB−1)dµG2

=

∫
GL2

∫
R2

f [x,A]k(B−1x−B−1y,AB−1)
dx1dx2

|det(A)|
dµGL2

,

we also set

Hf,k(A,B,y) :=

∫
R2

f [x,A]k(B−1x−B−1y,AB−1)
dx1dx2

|det(A)|
. (8)

From separability property of kernel we have k(x,A) = k1(x)k2(A). As a result

Hf,k(A,B,y) =

∫
R2

f [x,A]k1(B
−1x−B−1y)k2(AB−1)

dx1dx2

|det(A)|

=
k2(AB−1)

|det(A)|

∫
R2

f [x, A]k1(B
−1x−B−1y)dx1dx2

=
k2(AB−1)

|det(A)|

(
f ∗ (k1 ◦B−1)

)
=

k2(AB−1)

|det(A)|
F−1

(
F(f)F(k1 ◦B−1)

)
,

(9)

where F(·) denotes the Fourier transform. The next step is to find an explicit form for the Fourier
transform. We can apply the result from (Bracewell et al., 1993). Assume that F(k1) = K1(u) and
F(f) = F (u) then we have
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Hf,k(A,B,y) =
k2(AB−1)

|det(A)|| det(B−1)|
F−1

(
F (u)k1(B

⊤u)
)
.

Now we use decomposition of GL2(R) as K0⋉H(1, 0) in (Schindler, 1993; Milad & Taylor, 2023).

Proposition 1 (Proposition 5.1 of (Milad & Taylor, 2023)). If A =

(
a b
c d

)
∈ GL2(R), then A

can be uniquely decomposed as the product A = MACA with MA ∈ K0 and CA ∈ H(1,0). In
fact

MA =

(
s −t
t s

)
, with s =

d(ad− bc)

b2 + d2
, t =

−b(ad− bc)

b2 + d2
,

and

CA =

(
1 0
u v

)
, with u =

cd+ ab

(ad− bc)
, v =

b2 + d2

(ad− bc)
.

This factorization leads to a parallel factorization of G2.

Consider the one to one transform between H and H∗ so that H∗(s, t, u, v,B,y) :=
Hf,k(a, b, c, d,B,y), where a = s − ut, c = t + us, b = −t/v, and d = s/v. Employing the
above proposition and Equation (6) we can write

H ′(B,y) =

∫
GL2

Hf,k(A,B,y)dµGL2

=

∫
GL2

H∗(s(a, b, c, d), t(a, b, c, d), u(a, b, c, d), v(a, b, c, d),B,y)dµGL2 .

Therefore, we obtain∫
GL2

Hf,k(A,B,y)dµGL2
=

∫
K0

∫
H(1,0)

H∗(s, t, u, v,B,y)|v|dµH(1,0)
dµK0

,

as det(CA) = |v|. Then we define

H∗(s, t,B,y) =

∫
H(1,0)

H∗(s, t, u, v,B,y) det(CA)dµH(1,0)
(u, v)

=

∫
G1

H∗(s, t, u, v,B,y) det(CA)dµG1(u, v)

=

∫
R

∫
R
H∗(s, t, u, v,B,y)

dudv

|v|
.

The next step is to compute integration of H∗(s, t,B,y) over K0, which is equal to∫
R

∫
R
H∗(s, t,B,y)

dsdt

s2 + t2
. (10)
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