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Abstract
The linear Fisher market (LFM) is a basic equi-
librium model from economics, which also has
application in fair and efficient resource alloca-
tion. First-price pacing equilibrium (FPPE) is
a model capturing budget-management mecha-
nisms in first-price auctions. In certain practi-
cal settings such as advertising auctions, there
is an interest in performing statistical inference
over these models. A popular methodology for
general statistical inference is the bootstrap pro-
cedure. Yet, for LFM and FPPE there is no ex-
isting theory for the valid application of boot-
strap procedures. In this paper, we introduce and
devise several statistically valid bootstrap infer-
ence procedures for LFM and FPPE. The most
challenging part is to bootstrap general FPPE,
which reduces to bootstrapping constrained M-
estimators, a largely unexplored problem. We are
able to devise a bootstrap procedure for FPPE
under mild degeneracy conditions by using the
powerful tool of epi-convergence theory. Exper-
iments with synthetic and semi-real data verify
our theory.

1. Introduction
The bootstrap (Efron & Tibshirani, 1994; Horowitz, 2001)
is an automatic method for producing confidence intervals
in statistical estimation. The theory of bootstrap has been
extended to many areas of statistics, such as models with
cube-root asymptotics (Cattaneo et al., 2020; Patra et al.,
2018), semi-parametric models (Cheng & Huang, 2010;
Ma & Kosorok, 2005) and so on. However, as far as we
are concerned, there is no theory of bootstrap for competi-
tive equilibrium settings.

In this paper, we study bootstrap inference in linear Fisher
market (LFM) and first-price pacing equilibrium (FPPE).

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.
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Fisher market equilibrium model has been used in the tech
industry, such as the allocation of impressions to content in
certain recommender systems (Murray et al., 2020), robust
and fair work allocation in content review (Allouah et al.,
2022); we refer readers to Kroer & Stier-Moses (2022) for
a comprehensive review. Outside the tech industry, Fisher
market equilibria also have applications to scheduling prob-
lems (Im et al., 2017), fair course seat allocation (Othman
et al., 2010; Budish et al., 2016), allocating donations to
food banks (Aleksandrov et al., 2015), sharing scarce com-
pute resources (Ghodsi et al., 2011; Parkes et al., 2015;
Kash et al., 2014; Devanur et al., 2018), and allocating
blood donations to blood banks (McElfresh et al., 2020).

FPPE is a model for budget management in online advertis-
ing platforms. In these platforms, advertisers report adver-
tising parameters, such as target audience, conversion loca-
tions, and budgets, and then the platform creates a proxy
bidder to bid in individual auctions to maximize advertiser
utilities and manage budgets. A common way to manage
budgets is pacing, in which the platform modifies the ad-
vertiser’s bids by applying a shading factor, referred to as
multiplicative pacing. In the case where each auction is a
first-price auction, FPPE captures the outcomes of pacing-
based budget-management systems. Conitzer et al. (2022a)
introduced the FPPE notion and showed that FPPE always
exists and is unique. Moreover, FPPE enjoys lots of nice
properties such as being revenue-maximizing among all
budget-feasible pacing strategies, shill-proof (the platform
does not benefit from adding fake bids under first-price auc-
tion mechanism) and revenue-monotone (revenue weakly
increases when adding bidders, items or budget).

Given the wide range of applications of LFM and FPPE,
an inferential theory for LFM and FPPE is useful. Boot-
strap, thanks to its convenience and conceptual simplicity,
is a natural candidate as an inferential tool. However, due
to the presence of an equilibrium structure in the dataset,
the validity of bootstrap requires careful theoretical treat-
ments, and practitioners should be cautious about the use
of bootstrap when data arise from market equilibrium. For
example, in Sec 4.2 we show that in the setting of first-
price auction platforms, the traditional multinomial boot-
strap may fail to consistently estimate the distribution of
interest. Given the simplicity of resampling, it is fair to say
bootstrap has been used in auction platforms as an infer-

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Bootstrapping Fisher Market Equilibrium and First-Price Pacing Equilibrium

ential tool. It is thus urgent to develop a statistically valid
bootstrap theory that accounts for the equilibrium effect in
the data.

Our contributions are threefold.

We characterize the full landscape of the asymptotics of
FPPE. The limit distribution of FPPE was studied in Liao
& Kroer (2023) under a strict complementarity condition.
Combining their results with a result of Shapiro (1989), we
complete the characterization of the asymptotics of FPPE
without strict complementarity, and show that it is captured
by a quadratic program. We derive a new closed-form ex-
pression for this quadratic program, and use it to derive
structural insights on the limit distribution in some special
cases. Characterizing the general case of FPPE asymptotics
is necessary in order to derive our bootstrap results, be-
cause we need to show that our bootstrapped distribution
converges to the asymptotic distribution of FPPE.

We develop bootstrap theory for LFM and FPPE. A
crucial fact for LFM and FPPE is that they both have
an Eisenberg-Gale (EG) convex program characterization,
and our bootstrap procedures rely on this program or its
quadratic approximation. For LFM we study three types of
bootstrap procedures: exchangeable bootstrap (Wellner &
Zhan, 1996), numerical bootstrap (Hong & Li, 2020) and
proximal bootstrap (Hong & Li, 2020). For FPPE the the-
ory is a bit involved. We identify a bootstrap failure when
some type of degenerate buyers are present in the market.
Then different bootstrap procedures are proposed under cer-
tain assumptions on the market structures: full expendi-
ture of budgets (I+ = ∅), absence of degenerate buyers
(I0 = ∅), or fully general FPPE. We summarize the results
in Tables 1 and 2.

Numerical experiments demonstrate the validity of the
theory. We provide simulations and a semi-synthetic ex-
periment based on a real-time bidding dataset from iPinYou
(Liao et al., 2014).

Exchangable BS Numerical BS Proximal BS

3 Thm 1 3 Thm 7 3 Thm 8

Table 1: Results for linear Fisher market.

Notations. The notation N (a,Σ) stands for a multivariate
Gaussian distribution with mean a and covariance Σ.

We use W = (W1, . . . ,Wt) to denote bootstrap weights
in the paper. Different distributions imposed on W corre-
spond to different bootstrap resampling schemes. In the
standard multinomial bootstrap W = (W1, . . . ,Wt) fol-
lows a multinomial with probabilities ( 1t , . . . ,

1
t ). In ex-

changeable bootstrap W is exchangeable: if for any per-
mutation π = (π1, . . . , πt) of (1, 2, . . . , t), the joint distri-

Num. BS Prox. BS new methods
I+ = ∅
(Sec 4.3) 3 Thm 3.1 3 Thm 3.2

I0 = ∅
(Sec 4.4) 7 NA 7 NA 3 Thm 4

general
(Sec 4.5) 7 NA 7 NA 3 Thm 6

Table 2: Results for first-price pacing equilibrium. NA
means not applicable. I+ = ∅ means full expenditure of
budgets. I0 = ∅ means absence of degenerate buyers.

bution of π (W ) = (Wπ1
, . . . ,Wπt

) is the same as that of
W . Given items (θτ )τ , we let Pt be the expectation oper-
ator Ptf = 1

t

∑t
τ=1f(θ

τ ). Given multinomial bootstrap
weights W and (θτ )τ , define the operator

P b
t f =

1

t

t∑
τ=1

Wτf(θ
τ ). (1)

We write P ex,b
t f = 1

t

∑t
τ=1Wτf(θ

τ ) for exchangeable
bootstrap weights.

Bootstrap Consistency Most of our results will be con-
cerned with the consistency of bootstrap procedures. To
that end, we introduce the following definition of consis-
tency. Given t data points, a bootstrap estimate Xt is a func-
tion of the data (θτ )tτ=1 and bootstrap weights W , where
the data and weights are assumed to be independent of each
other. We say the conditional distribution of (Xt)t consis-
tently estimates the distribution L, denoted Xt

p⇝L, if

sup
f∈BL1

∣∣E[f(Xt) | {θτ}t1]− EX∼L[f(X)]
∣∣ p→ 0 ,

where BL1 is the space of functions f : Rn → R with
supx |f(x)| ≤ 1 and |f(x)− f(y)| ≤ ∥x− y∥2.

We survey related work in App A.2.

2. Review of Fisher Market and FPPE
Both LFM and FPPE have a set of buyers and a set of
items being priced. Here we introduce some components
that both models share. We have n buyers and a possibly
continuous set of items Θ with an integrating measure dθ.
For example, Θ = [0, 1] with dθ being the Lebesgue mea-
sure on [0, 1]. Both LFM and FPPE require the following
elements.

• The budget bi of buyer i. Let b = (b1, . . . , bn).

• The valuation for buyer i is a function vi ∈ L1
+,

i.e., buyer i has valuation vi(θ) (value per unit sup-
ply) of item θ ∈ Θ. Let v : Θ → Rn,

2
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v(θ) = [v1(θ), . . . , vn(θ)]. We assume v̄ =
maxi supθ vi(θ) < ∞.

• The supplies of items are given by a function s ∈ L∞
+ ,

i.e., item θ ∈ Θ has s(θ) units of supply. Without loss
of generality, we assume a unit total supply

∫
Θ
sdθ =

1. Given g : Θ → R, we let E[g] =
∫
g(θ)s(θ) dθ

and Var[g] = E[g2] − (E[g])2. Given t i.i.d. draws
{θ1, . . . , θt} from s, let Ptg(·) = 1

t

∑t
τ=1g(θ

τ ).

Equilibria in both LFM and FPPE are characterized by an
EG convex program. In both cases, the dual EG objective
separates into per-item convex terms

F (θ, β) = max
i∈[n]

βivi(θ)−
n∑

i=1

bi log βi . (2)

and the population and sample EG objectives are

H(β) = E[F (θ, β)] , Ht(β) = PtF (·, β) . (3)

We comment on the differential structure of f(θ, β) =
maxi βivi(θ) since it plays a role in later sections. Func-
tion f(β, θ) is a convex function of β and its sub-
differential ∂βf(β, θ) is the convex hull of {viei :
index i such that βivi(θ) = maxk βkvk(θ)}, with ei being
the base vector in Rn. When maxi βivi(θ) is attained by
a unique i∗, the function f is differentiable. In that case,
the i-th entry of ∇βf(θ, β) is vi(θ) for i = i∗ and zero
otherwise.

2.1. Linear Fisher Markets (LFM)

In the LFM model, the goal is to divide items Θ in a fair and
efficient way. It is well known that the competitive equi-
librium from equal incomes (CEEI) mechanism produces
an allocation that is Pareto efficient, envy-free and propor-
tional (Nisan et al., 2007). LFM is also a useful tool for
modeling competition in an economy.

We now describe the competitive equilibrium concept.
Imagine there is a central policymaker that sets prices p(·)
for the items Θ. Upon observing the prices, the buyer i
maximizes their utility subject to the budget constraint.
Their demand set is the set of bundles that are optimal un-
der the prices:

Di(p) := argmax
xi:Θ→[0,1]

{∫
vixisdθ :

∫
pxisdθ ≤ bi

}
.

Of course, due to the supply constraint, if prices are too low,
there will be a supply shortage. On the other hand, if prices
are too high, a surplus occurs. A competitive equilibrium
is a set of prices and bundles such that all items are sold
exactly at their supply (or have price zero). We call such
an equilibrium the limit LFM equilibrium for the supply
function s (Gao & Kroer, 2023; Liao et al., 2023).

Definition 1 (Limit Linear Fisher Market Equilibrium).
The limit equilibrium, denoted LFM(b, v, s,Θ), is an
allocation-price tuple (x, p(·)) such that the following
holds.

1. Supply feasibility and market clearance:
∑

i xi ≤ 1
and

∫
p(1−

∑
i xi)sdθ = 0.

2. Buyer optimality: xi ∈ Di(p) all i.

Given the equilibrium quantities (x∗, p∗), let u∗
i =∫

visx
∗
i dθ be the buyer i utility, and β∗

i = bi/u
∗
i be the

buyer i inverse bang-per-buck. In an LFM, the equilibrium
quantities p∗, β∗, u∗ are unique. Under twice differentiabil-
ity (SMO; to be defined), the allocation x∗ is also unique.

Next we introduce the finite LFM, which models the data
we observe in a market. Let γ = {θ1, . . . , θt} be t i.i.d.
samples from the supply distribution s, each with supply
1/t. See App A.4 for a full definition. For a finite LFM,
let the equilibrium per-buyer inverse bang-per-bucks be de-
noted by βγ .

Definition 2 (Finite LFM, informal). The finite LFM equi-
librium, denoted L̂FM, is a limit LFM equilibrium where
the item set Θ is the finite set of observed items γ.

It is well-known (Eisenberg & Gale, 1959; Gao & Kroer,
2023) that the equilibrium inverse bang-per-buck β∗ in
an limit (resp. finite) LFM uniquely solves the population
(resp. sample) dual EG program

β∗ = argmin
β∈Rn

+

H(β) , βγ = argmin
β∈Rn

+

Ht(β) . (4)

The asymptotics of LFM were studied in Liao et al. (2023)
under twice differentiability (SMO; to be defined). Let H =

∇2H(β∗). They show
√
t(βγ − β∗)

d→ JLFM, where

JLFM = N
(
0,H−1E[∇F (·, β∗)∇F (·, β∗)T]H−1

)
. (5)

2.2. First-Price Pacing Equilibrium (FPPE)

The FPPE setting (Conitzer et al., 2022a) models an econ-
omy that typically occurs on internet advertising platforms:
the buyers (advertisers in the internet advertising setting)
are subject to budget constraints, and must participate in a
set of first-price auctions, each of which sells a single item.
Each buyer chooses a pacing multiplier βi ∈ [0, 1] that
scales down their bids in the auctions, and submits bids of
the form βivi(θ) for each item θ, with the goal of choosing
βi such that there is no unnecessary pacing, i.e. they spend
their budget exactly, or they spend less than their budget but
they do not scale down their bids. In the FPPE model, all
auctions occur simultaneously, and thus the buyers choose
a single βi that determines their bid in all auctions.

3
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Definition 3 (Limit FPPE, Gao & Kroer (2023); Conitzer
et al. (2022a)). A limit FPPE, denoted FPPE(b, v, s,Θ), is
the unique tuple (β, p(·)) ∈ [0, 1]n×L1

+(Θ) such that there
exist xi : Θ → [0, 1], i ∈ [n] satisfying

1. (First-price) Prices are determined by first-price auc-
tions: for all items θ ∈ Θ, p(θ) = maxi βivi(θ). Only
the highest bidders win: for all i and θ, xi(θ) > 0 im-
plies βivi(θ) = maxk βkvk(θ)

2. (Feasibility, market clearing) Let payi =∫
xi(θ)p(θ)s(θ) dθ. Buyers satisfy budgets: for

all i, payi ≤ bi. There is no overselling: for all θ,∑n
i=1xi(θ) ≤ 1. All items are fully allocated: for

all θ, p(θ) > 0 implies
∑n

i=1xi(θ) = 1.

3. (No unnecessary pacing) For all i, payi < bi implies
βi = 1.

FPPE is a hindsight and static solution concept for internet
ad auctions. Suppose we know all the items that are going
to show up on a platform. FPPE describes how we could
configure the βi’s in a way that ensures that all buyers sat-
isfy their budgets, while maintaining their expressed valua-
tion ratios between items. Typically, the βi’s are chosen by
a pacing algorithm that is run by the platform. FPPE has
many nice properties, such as the fact that it is a competitive
equilibrium, it is revenue-maximizing, revenue-monotone,
shill-proof, has a unique set of prices, and so on (Conitzer
et al., 2022a). We refer readers to Conitzer et al. (2022a);
Liao & Kroer (2023) for more context about the use of
FPPE in internet ad auctions.

Let β∗ and p∗ be the unique FPPE equilibrium multipli-
ers and prices. Revenue in the limit FPPE is REV∗ =∫
p∗(θ)s(θ) dθ . We let the leftover budget be denoted by

δ∗i = bi − payi. We say a buyer i is degenerate if β∗
i = 1

and δ∗i = 0.

In FPPE the following regularity condition is important.
Assumption 1 (SCS). There are no degenerate buyers, i.e.,
β∗
i = 1 implies δ∗i > 0.

This assumption is a strict complementary slackness condi-
tion since δ∗i is the dual variable of β∗

i in the EG program
introduced below. We will study the asymptotics of FPPE
without SCS. However, as we will see in Sec 4.4, condition
SCS is helpful for bootstrap inference.

We let γ = {θ1, . . . , θt} be t i.i.d. draws from s, each with
supply 1/t. They represent the items observed in an auction
market. The definition of a finite FPPE is parallel to that of
a limit FPPE, except that we change the supply function to
be a discrete distribution supported on the finite set γ.
Definition 4 (Finite FPPE, informal). A finite FPPE,
F̂PPE, is a limit FPPE where the item set is the finite set of
observed items γ. See App A.4 for the full definition.

It is well-known (Cole et al., 2017; Conitzer et al., 2022a;
Gao & Kroer, 2023) that β in a limit (resp. finite) FPPE
uniquely solves the population (resp. sample) dual EG pro-
gram

β∗ = argmin
β∈(0,1]n

H(β) , βγ = argmin
β∈(0,1]n

Ht(β) , (6)

where the objectives H and Ht is the same as Eq (4). The
difference between the LFM and FPPE convex programs is
that for FPPE we impose the constraint (0, 1]n.

The study of the asymptotics of FPPE was initiated by Liao
& Kroer (2023). Let JFPPE be the limit distribution of√
t(βγ − β∗), i.e.,

√
t(βγ − β∗)

d→ JFPPE . (7)

They show that, with the strict complementary slackness
assumption SCS, the distribution JFPPE simplifies to

N
(
0, (PHP )†Cov[∇F (·, β∗)](PHP )†

)
, (8)

where H = ∇2H(β∗) and P = Diag(1(β∗
i < 1)). We

will study the form of JFPPE assuming only twice differ-
entiability (SMO) and not SCS. We will characterize JFPPE
by a random quadratic program and provide several exam-
ples. Thus, a contribution of our paper is to remove the
strict complementarity slackness assumption and character-
ize the full landscape of FPPE asymptotics.

2.3. Smoothness Assumptions

The following assumption will be made throughout the pa-
per, for both LFM and FPPE.

Assumption 2 (SMO). The EG population objective H(·)
in Eq (3) is twice continuously differentiable in a neighbor-
hood of β∗.

Assumption 2 implies that the Hessian H = ∇2H(β∗) is
positive definite. Here β∗ is interpreted as the equilibrium
inverse bang-per-buck in a limit LFM, and equilibrium pac-
ing multipliers in a FPPE. See Liao & Kroer (2023); Liao
et al. (2023) for discussions of implications and concrete
examples of SMO holding.

Our research goal can now be stated as

Design bootstrap estimators of the distribution JLFM
(resp. JFPPE) given the observed market equilibrium
L̂FM (resp. F̂PPE).

Inference on other quantities that are differentiable func-
tions of β∗ can be achieved by the bootstrap delta
method (Kosorok (2008, Theorem 12.1), Vaart & Well-
ner (2023, Theorem 3.10.11)). For example, utilities
u∗
i = bi/β

∗
i and the Nash social welfare

∑
ibi log u

∗
i =

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Bootstrapping Fisher Market Equilibrium and First-Price Pacing Equilibrium∑
ibi log(bi/β

∗
i ) are smooth functions of β∗. Revenue∫

maxi{β∗
i vi(θ)}s(θ) dθ is also a smooth function of β∗.

For this reason, throughout the paper we will focus on in-
ference of β∗, i.e., the utility prices in LFM and pacing
multipliers in FPPE.

3. Bootstrapping Fisher Market Equilibrium
In this section we let βγ be the observed utility prices
in L̂FM(b, v, 1/t, γ), where γ consists of t i.i.d. draws
from supply s. As mentioned previously, βγ =
argminRn

+
Ht(β). The target distribution we want to es-

timate is JLFM in Eq (5).

3.1. Exchangeable Bootstrap

Define the exchangeable bootstrap by

βb
ex,LFM = argmin

β∈Rn
+

P ex,b
t F (·, β) . (9)

Compared with the convex program for LFM in Eq (4), the
exchangeable bootstrap replaces Pt with P ex,b

t . Exchange-
able bootstrap is considered a smooth alternative to the tra-
ditional multinomial bootstrap (i.e. sampling with replace-
ment) because it allows for a wider class of distributions
of bootstrap weights (Præstgaard & Wellner, 1993). Con-
cretely, we need the weights in the exchangeable bootstrap
to satisfy the following conditions.

Definition 5 (Exchangable bootstrap weights). (1) The ran-
dom vector W = (W1, . . . ,Wt)

T is exchangeable. (2)
Wτ ≥ 0, and

∑t
τ=1 Wτ = t. (3) W1 has finite (2 + ϵ)

moment for some ϵ > 0. (4) 1
t

∑t
τ=1 (Wτ − 1)

2 p→ c2 > 0
as t → ∞.

Exchangeable bootstrap incorporates many popular forms
of resampling as special cases such as the classical sam-
pling with replacement, sampling without replacement, and
normalized i.i.d. weights; see App A.3.

Theorem 1.
√
t(βb

ex,LFM − βγ)
p⇝ c · JLFM where the con-

stant c is defined in Def 5. Proof in App D.2.

The proof of Thm 1 is complicated by the fact that the EG
objective is nonsmooth due to the max operation in Eq (9).
Establishing Thm 1 requires using the exchangeable boot-
strap empirical process theory from Præstgaard & Wellner
(1993) and Wellner & Zhan (1996) to establish a form of
stochastic differentiability (Claim 1 in appendix), and ap-
plying the Taylor expansion-type analysis for nonsmooth
objective functions from Pollard (1985).

In practice, approximate LMF equilibrium and bootstrap
estimates suffice. Eq (9) need not be solved exactly; er-
ror in the objective up to order op(1/n) suffices, i.e.,
P ex,b
t F (·, βb

ex,LFM) ≤ minβ P
ex,b
t F (·, β) + op(1/n). And

βγ only needs to be an approximate Fisher market equilib-
rium: PtF (·, βγ) ≤ minβ PtF (·, β) + op(1/n). The proof
of Thm 1 can be extended to account for the extra error
from approximate optimization. In App A.5 we briefly re-
view two other valid bootstrap procedures, proximal boot-
strap, and numerical bootstrap, and the consistency theory
based on Hong & Li (2020) and Li (2023). Proximal boot-
strap has the advantage of solving quadratic programs only.
However, those two methods converge at a rate slower than
1/
√
t. In contrast, exchangeable bootstrap offers flexibil-

ity in choosing bootstrap weights, enjoys a 1/
√
t rate, and

does not need parameter tuning.

4. Bootstrapping FPPE
In this section we let βγ be the pacing multiplier in
F̂PPE(b, v, 1/t, γ), where γ consists of t i.i.d. draws
from supply s. As mentioned previously, βγ =
argmin(0,1]n Ht(β). The target distribution we want to es-
timate is JFPPE in Eq (7), the limit distribution of

√
t(βγ −

β∗).

Bootstrapping FPPE is a significantly harder problem due
to the presence of constraints in the EG program in Eq (6).
We investigate the full landscape of FPPE asymptotics, i.e.,
JFPPE, in Sec 4.1. In Sec 4.2, we show that the standard
multinomial bootstrap fails to estimate JFPPE consistently.
This also suggests that estimating JFPPE in full generality is
difficult. Because of this, we divide our study into an easier
case and the harder case. In the simpler case, we assume
that all buyers exhaust their budget; for this case we show in
Sec 4.3 that the bootstrap methods from Hong & Li (2020);
Li (2023) are valid. A more realistic case is when some
buyers do have leftover budgets. We design a bootstrap
for this case in Sec 4.4, under an additional assumption of
strong complementary slackness (SCS). Finally, to complete
the picture, we present a bootstrap-based confidence region
for fully general FPPE in Sec 4.5.

4.1. The Limit Distribution of General FPPE

The limit distribution of FPPE was studied in Liao & Kroer
(2023) under Assumption SCS. In this section, we charac-
terize the full landscape of the asymptotics of FPPE with-
out strict complementarity. The convex program character-
ization in this section is a direct corollary of noticing the
connection between the results of Shapiro (1989) and Liao
& Kroer (2023). Concretely, Theorem 3.3 from Shapiro
(1989) established asymptotic distribution results for gen-
eral constrained programs under equicontinuity conditions,
and the results of Liao & Kroer (2023) imply those equicon-
tinuity conditions for the EG objective in Eq (2). This is
how we derive the convex program characterization of the
asymptotics below. We then derive a new closed-form ex-

5
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pression for the convex program, which allows us to ana-
lyze the asymptotic structure for several example.

To describe JFPPE we need to introduce a quadratic pro-
gram. Let I = {i : β∗

i = 1} be the set of unpaced buyers
and Ic = [n] \ I . We further partition I into

I+ = {i : β∗
i = 1, δ∗i > 0} , I0 = {i : β∗

i = 1, δ∗i = 0} .

I+ is the set of buyers with strictly positive leftover bud-
gets, whereas I0 are the degenerate buyers. From an opti-
mization perspective, the set I+ corresponds to the strongly
active constraints in the program Eq (6), whose correspond-
ing Lagrange multipliers are strictly positive, while the set
I0 are the weakly active constraints, whose Lagrange mul-
tipliers are zero. With these notations, we note SCS is
the same as I0 = ∅, and that the condition that all buy-
ers exhaust their budgets is the same as I+ = ∅. Define
h : Rn → Rn,

h(ξ) = argmin
h∈Rn;hi=0,i∈I+;hi≤0,i∈I0

∥h+H−1ξ∥2H , (10)

where ∥a∥2H = aTHa. The program Eq (10) can be in-
terpreted as projecting the vector −H−1ξ onto the cone
{h : hi = 0, i ∈ I+;hi ≤ 0, j ∈ I0} w.r.t. the norm ∥·∥H.
The function h is continuous and positively homogeneous
of degree 1, i.e., h(tξ) = th(ξ) for t > 0, but not neces-
sarily linear. When I0 = ∅, i.e., SCS holds, the function
h(ξ) = −(PHP )†ξ.

Combining Theorem 3.3 from Shapiro (1989) with the
equicontinuity results of Liao & Kroer (2023), we have that
under the SMO assumption,

JFPPE = h
(
N

(
0,Cov[∇F (·, β∗)]

))
.

Below and in App A.6 we study the form of JFPPE under
some special cases by deriving closed-form expression of
the quadratic program Eq (10).

In the example below, we assume I+ = ∅ for simplic-
ity. Let D = Diag(H−1)1/2, ρ = D−1H−1D−1, Z =
−D−1H−1G. where G ∼ N (0,Cov[∇F (·, β∗)]). Intu-
itively, ρ is a normalized version of the inverse of the Hes-
sian. Denote entries of Z by [Z1, . . . , Zn]

T.
Example 1 (The case with |I0| = 1.). Let I+ = ∅, I0 =
{1} and Ic = {2, . . . , n}. Then JFPPE = −H−1G if Z1 <
0, otherwise, if Z1 ≥ 0, then

JFPPE = D


0

Z2 − ρ12Z1

...
Zn − ρ1nZ1

 . (11)

Ex 1 and Ex 6 in appendix illustrate an interesting phe-
nomenon that the limit marginal distribution of the degener-
ate buyers (those with β∗

i = 1 and δ∗i = 0) is a distribution

with some probability weight at 0 and the rest on the neg-
ative reals. This makes sense intuitively since in a finite
sample, βγ

i − β∗
i = βγ

i − 1 is always negative for i ∈ I0.
Another feature of JFPPE is that the limit distribution of√
t(βγ

i − 1) is degenerate (a point mass at zero) if i ∈ I+.
This also implies βγ

i − 1 = op(
1√
t
) if i ∈ I+.

4.2. Failure of Multinomial Bootstrap for FPPE

As described in Andrews (2000), standard multinomial
bootstrap might fail in constrained programs. In this sec-
tion, we show that this is the case for FPPE.

Consider a one-buyer FPPE. Let b1 = 1, E[v1] =∫
v1sdθ = 1 and s is the supply (a probability density).

Let γ = {θτ}τ be i.i.d. draws from s. Let βγ be the
pacing multiplier in F̂PPE(b, v, 1/t, γ) and β∗ be that in
FPPE(b, v, s,Θ).

Given the observed items, let {θτ,b}τ be the resampled
items (with replacement). For this instance, the boot-
strapped FPPE with standard multinomial weights is

βb = argmin
β1∈(0,1]

1

t

t∑
τ=1

β1v1(θ
τ,b)− b1 log β1 . (12)

Theorem 2 (Failure of Multinomial Bootstrap). The limit
conditional distribution of

√
t(βb − βγ) is not equal to the

limit distribution of
√
t(βγ − β∗). Proof in App D.6.

4.3. Bootstrapping FPPE with Poor Buyers

If FPPE has the additional structure that all buyers exhaust
their budgets, i.e., I+ = ∅, we can apply the numerical
bootstrap (Hong & Li, 2020) and the proximal bootstrap
(Li, 2023). Under this additional structure, Eq (10) be-
comes

JFPPE = argmin
h:hi≤0,i∈I0

∥h+H−1G∥2H

= argmin
h:hi≤0,i∈I0

hTG+ 1
2h

THh (13)

and G ∼ N (0,E[∇F (·, β∗)∇F (·, β∗)T]).

To obtain numerical bootstrap and proximal bootstrap esti-
mates, we require a smoothing parameter ϵt ↓ 0 such that
ϵt
√
t → ∞. Then, to get βb

nu,FPPE we solve

argmin
β∈(0,1]n

1

t

t∑
τ=1

(1 + ϵt
√
t(Wτ − 1))F (θτ , β) , (14)

and to get βb
pr,FPPE we solve

argmin
β∈[0,1]n

ϵt(G
b)T(β − βγ) + 1

2∥β − βγ∥2
Ĥ

, (15)
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where

Gb =
√
t(P b

t − Pt)DF (·, βγ) , Ĥ = (Ĥk,ℓ)k,ℓ . (16)

Here DF (·, βγ) is a deterministic element in the subdiffer-
ential ∂βF (·, βγ) 1. The term Gb estimates the Gaussian
random variable G in Eq (13). The numerical difference
estimator is Ĥk,ℓ = (∇̂2

kℓ,ηt
Ht)(β

γ), where

(∇̂2
kℓ,ηg)(·) = [g(·+ ηek + ηeℓ)− g(· − ηek + ηeℓ)

−g(·+ ηek − ηeℓ) + g(· − ηek − ηeℓ)]/(4η
2),

and Ht is the finite-sample EG objective in Eq (3). In prac-
tice, both Eqs (14) and (15) only need to be solved approx-
imately with error in the objective up to op(ϵ

2
t ). The prox-

imal bootstrap in Eq (15) is a bootstrap analogue of the
distribution in Eq (13).

The following theorem shows that in the budget-exhaustion
case, the numerical bootstrap and proximal bootstrap con-
verge to the correct limit distribution. The proofs can be
found in Appendices D.3 and D.5.

Theorem 3. If all buyers exhaust their budgets (I+ = ∅),
then

3.1 ϵ−1
t (βb

nu,FPPE − βγ)
p⇝ JFPPE .

3.2 If Ĥ
p→H, then ϵ−1

t (βb
pr,FPPE − βγ)

p⇝ JFPPE .

The proof proceeds by verifying conditions in Hong & Li
(2020) and Li (2023). Stochastic equicontinuity of cer-
tain processes is verified using results from Liao & Kroer
(2023).

4.4. Bootstrapping FPPE with SCS

In real-world auction markets such as those at internet
companies, some fraction of buyers do have leftover bud-
gets (Conitzer et al., 2022b). In this section, we give a boot-
strap estimate of JFPPE under SCS, in which we allow users
to have positive leftover budgets, but rule out degenerate
buyers. Condition SCS, equivalent to I0 = ∅, is realistic
because degenerate buyers are a measure-zero edge case.

Choose two vanishing sequences δt and ϵt. Define the es-
timated unpaced buyers Î+ = {i : βγ

i > 1 − δt} and the
reduced feasible set B̂ = {β ∈ [0, 1]n : βi = 1 for i ∈ Î+}.
The proposed bootstrap estimator is

βb = argmin
β∈B̂

ϵt(G
b)T(β − βγ) + 1

2∥β
γ − β∥2

Ĥ
, (17)

1 We avoid writing ∇F (·, βγ) because in a finite FPPE there
could be ties. And when ties happen for an item θ, EG objective
β 7→ F (θ, β) is not differentiable at βγ .

where Gb and Ĥ are defined in Eq (16). The estimator has
a nice geometric interpretation: we add certain appropriate
noise to βγ and then project back to the reduced feasible
set B̂. We call ϵt the bootstrap stepsize, whose effect is
investigated in App B.

Theorem 4. Let SCS hold in FPPE (I0 = ∅). Let δt ≍
1/
√
t, ϵt = o(1) and ϵt

√
t → ∞. If Ĥ

p→H, then ϵ−1
t (βb−

βγ)
p⇝ JFPPE. Proof in App D.7.

The estimator in Eq (17) is proposed following ideas from
Li (2023); Cattaneo et al. (2020), where the bootstrap is in
fact approximating the random quadratic program Eq (10).
Many existing works (Geyer, 1994; Hong & Li, 2020; Li,
2023) require that strongly active constraints do not occur,
and are thus not applicable for FPPE with buyers who have
leftover budgets. As with proximal bootstrap, our approach
requires solving quadratic programs only.

We briefly remark on the techniques used to prove Thm 4.
We combine the theory of weak convergence (Vaart &
Wellner, 2023) from statistics and epi-convergence the-
ory (Rockafellar, 1970) from optimization. The reason is
that weak convergence is a powerful tool to study asymp-
totics of statistical functionals, such as the argmin func-
tion, and epi-convergence is designed for studying con-
strained programs. Such an approach dates back to Geyer
(1994) and Molchanov (2005), and more recently was used
by Parker (2019) for constrained quantile regression, and
Hong & Li (2020) and Li (2023) in the context of boot-
strap.

Both proximal bootstrap (Eq (15)) and our proposed boot-
strap (Eq (17)) require a numerical difference estimate of
the Hessian (Eq (16)). We provide a theorem to guide the
choice of differencing stepsize.

Theorem 5 (Hessian estimation, informal). Consider the
finite difference estimate defined in Eq (16) with differenc-
ing stepsize ηt = o(1) and ηt

√
t → ∞. Under regularity

conditions, Ĥkℓ −Hkℓ ≍ η2t +
1

ηt

√
t
+ higher order terms.

Proof in App D.4.

By setting η2t = 1/(ηt
√
t) we obtain the optimal choice

ηt ≍ t−1/6. The proof of Thm 5 uses empirical process
theory to handle the nonsmoothness of the EG objective.

4.5. Confidence Regions for General FPPE

In Sections 4.3 and 4.4 we assumed either I0 or I+ to be
empty sets. Now we discuss bootstrap inference without
such assumptions. We can construct a confidence region
for β∗ using bootstrap test inversion. Suppose we have a
scalar statistic T (β∗, δ∗, θ1, . . . , θt), and an upper bound
estimate c ∈ R of the (1− α)-quantile of its limit distribu-
tion. Then the region {(β, δ) : T (β, δ, θ1, . . . , θt) ≤ c} is
an asymptotically-valid confidence region for (β∗, δ∗).

7
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Figure 1: Bootstrap vs finite-sample distribution of an 8-buyer 1000-item FPPE. Values are i.i.d. uniformly distributed,
and budgets are generated randomly in a way that the first three buyers have leftover budgets. Displayed are histograms of
β1, . . . , β8. Purple: 100 samples of ϵ−1

t (βb − βγ) according to Eq (17) given one FPPE. Yellow: 100 samples of√
t(βγ − β∗). Bootstrap distribution is very similar to FPPE distribution. The similarity is significant, because to obtain

the distributions of FPPE, we need to observe multiple market equilibria, to which we usually do not have access. The
bootstrap distribution, on the other hand, is generated based on just one finite FPPE.

First, we introduce a statistic based on the Lagrangian
of the EG program. The idea of using the Lagrangian
or Karush-Kuhn-Tucker (KKT) system for inference in
constrained programs also appears in Li (2023); Hsieh
et al. (2022). Consider the sample Lagrangian Lt(β, δ) =
Ht(β)− δT(1n −β) for β ∈ (0, 1]n and 0 ≤ δ ≤ b. Define
the statistic for some κ ∈ (0,∞]:

T γ(β, δ) = − inf
h∈Bκ

Xγ(β, δ, β + h/
√
t) , (18)

Xγ(β, δ, β′) = t
(
Lt(β

′, δ)− Lt(β, δ)
)
,

where Bκ = {h ∈ Rn : ∥h∥2 ≤ κ}. Given a threshold
value c, the statistic T γ induces the region

Cγ(c) = {(β, δ) : T γ(β, δ) ≤ c, β ∈ [0, 1]n, 0 ≤ δ ≤ b} .

The region can be constructed as follows. Fix a δ, and then
collect all approximate local minimizers of the Lagrangian
Lt(·, δ), i.e., β such that Lt(β, δ) ≤ infh∈Bκ Lt(β +
h√
t
, δ) + c

t . Next, we use bootstrap to estimate the distri-
bution of T γ(β∗, δ∗).

Xb(β) = (ϵt(G
b)T(β − βγ) + 1

2∥β
γ − β∥2

Ĥ
)/(ϵt)

2 ,

T b = − inf
β∈Rn

+

Xb(β) .

The function Xb(·) is in fact estimating a quadratic expan-
sion of Xγ(β∗, δ∗, ·). Now we are ready to introduce the
confidence region. Let cb1−α be the conditional (1 − α)-
quantile of T b. Then a confidence region for (β∗, δ∗) is
Cγ(cb1−α). Let T∞ be the limit distribution of T γ(β∗, δ∗).

Theorem 6. Suppose ϵt = o(1), ϵt
√
t → ∞, Ĥ

p→H. If
the CDF of T∞ is continuous at the (1− α)-th quantile of
T∞, then lim inft→∞ P((β∗, δ∗) ∈ Cγ(cb1−α)) ≥ 1 − α.
Proof in App D.8.

The condition on the continuity of the CDF is mild and
commonly seen in the literature. The cost that comes with
the general applicability of the confidence region Cγ(cb1−α)
is computational. To decide whether a point (β, δ) is in the
region one solves the optimization problem in Eq (18).

5. Experiments
We now conduct experiments to investigate the perfor-
mance of the bootstrap estimator Eq (17) in FPPE with SCS

conditions. We aim to (1) verify that the bootstrap produces
a consistent estimate of the FPPE asymptotic distribution,
and (2) study the effect on the bootstrap of the stepsize pa-
rameter ϵt and market parameters, such as the number of
items, number of buyers, proportion of budget-constrained
buyers, and the value distributions.

Synthetic experiments. In App B.1 we consider an ideal
scenario where buyers’ values are i.i.d. draws from some
distribution, i.e., v1, . . . , vn ∼iid Fv . To assess the ef-
fect of the tail of the value distributions, we take Fv to
be a uniform, exponential, or truncated normal distribution.
We visualize and compare two setups: 1) true resampling,
where the finite-sample distribution of

√
t(βγ − β∗), ob-

tained by repeatedly drawing independent FPPE instances,
and 2) bootstrap: ϵ−1

t (βb − βγ) as defined in Eq (17), ob-
tained by bootstrapping only one FPPE instance. We also
vary the bootstrap stepsize ϵt. Experiments confirm that
our bootstrap Eq (17) is consistent, fairly robust under a
wide range of market parameters when bootstrap stepsize
is chosen appropriately.

Semi-real experiments. In App B.2 we construct realis-
tic instances from real-world auction markets based on the
iPinYou dataset (Liao et al., 2014). The dataset contains
raw log data of the bid, impression, click, and conversion
history on the iPinYou platform. From the dataset we es-
timate the click-through rate of impressions using logistic
regression and simulate realistic advertisers’ values by per-
turbing the regression coefficients. We treat the sum of pac-
ing multipliers as the target parameter and use percentiles
of the bootstrap estimates based on Eq (17) to construct
confidence intervals. We assess the effect on the cover-
age rate of the number of items, number of advertisers, the
bootstrap stepsize ϵt, and the proportion of unpaced buyers.
These experiments show that our bootstrap is suitable for
realistic auction markets.
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6. Future Directions
A bootstrap theory for FPPE without regularity conditions
on either the buyers (e.g. Assumption 1) or the CDF as-
sumption in Thm 6 would be desirable. However, we sus-
pect that this will be a difficult task, since bootstrapping
completely general constrained convex programs remains
an open problem. Secondly, we saw in our experiments
that Hessian estimation is important for the performance of
our bootstrap methods. Thus, a better understanding of how
to perform Hessian estimation for the best performance on
real-world problems would be useful. In practice it would
also be highly desirable to have a bootstrap theory that has
some form of guarantees under nonstationary input data.

Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Omitted Main Text
A.1. Notations

Let A = [A1; . . . ;An] denote the matrix constructed by stacking Ai from top to bottom. Vectors are column vectors by
default. For a matrix H , a vector G, an index set I ⊂ [n], we let HII = (Hij)i∈I,j∈I to denote the |I| × |I| matrix
consisting of entries in H , and GI be the subvector with entries indexed by I . We let Rn

+ = [0,∞)n. Furthermore, we let
A† be the Moore-Penrose pseudo inverse of a matrix A. Denote by ej the j-th unit vector.

For a measurable space (Θ,dθ), we let Lp (and Lp
+, resp.) denote the set of (nonnegative, resp.) Lp functions on Θ w.r.t the

integrating measure dθ for any p ∈ [1,∞] (including p = ∞). We treat all functions that agree on all but a measure-zero
set as the same. For a sequence of random variables {Xn}, we say Xn = Op(1) if for any ϵ > 0 there exists a finite
Mϵ and a finite Nϵ such that P(|Xn| > Mϵ) < ϵ for all n ≥ Nϵ. We say Xn = op(1) if Xn converges to zero in probability.

Symbol Meaning
d→ convergence in distribution of random vectors
⇝ weak convergence in metric space
p⇝ weak conditional convergence in metric space

b, bi budgets
β∗, βγ , βb pacing multipliers

ei the i-th basis vector
ϵt stepsize parameter in numerical bootstrap and proximal bootstrap and the proposed bootstrap Eq (17)
ηt differencing stepsize in finite-difference estimator of Hessian

δ∗, δ∗i leftover budget
δt constraint slackness in the proposed bootstrap Eq (17)

Di(p) demand set in a Fisher market
F and DF F is the EG objective defined in Eq (2), and DF a deterministic selection of subgradients

Cov(∇F (·, β∗)) E[(∇F (·, β∗)− E[∇F (·, β∗)])(∇F (·, β∗)− E[∇F (·, β∗)])T]
γ observed item set in LFM and FPPE

G,Gb a normal random variable N (0,Cov(∇F (·, β∗))) and its bootstrap estimate
h the quadratic program in Eq (10)

H, Ĥ the Hessian matrix of H at β∗, and its finite-difference estimator
H,Ht population and sample dual EG objective
I , Ic The set of unpaced (β∗

i = 1) and paced buyers (β∗
i < 1) buyers, respectively

I0, I+ The set of unpaced buyers with δ∗i = 0 and δ∗i > 0, respectively
JLFM, JFPPE limit distributions of interest, defined in Eqs (5) and (7)

ℓ∞(K) the space of bounded functions f : K → R
p price function in Fisher market and FPPE
P matrix whose diagonal is 1(β∗

i < 1), i ∈ [n]

Pt, P
ex,b
t , P b

t expectation operators for the empirical distribution, exchangeable bootstrap distribution,
and the classical multinomial bootstrap distribution

u∗, u∗
i equilibrium utility values in LFM and FPPE

s(·) supply function (a probability density)
v, vi, vi(θ) valuation functions

x∗, x∗
i equilibrium allocations in LFM and FPPE

A.2. Related Work

Statistical Inference in Equilibrium Models. Liao et al. (2023); Liao & Kroer (2023) study statistical properties of LFM
and FPPE, respectively. Wager & Xu (2021); Munro et al. (2021); Sahoo & Wager (2022) take a mean-field game modeling
approach and perform policy learning with a gradient descent method. Johari et al. (2022) study a Markov chain model
of two-sided platform and investigate the effect of bias under different market balance condition. Munro (2023) considers
global treatment effects in a market where the allocation mechanism exhibits certain structures. Different from these work,
this paper focuses on estimating the asymptotic distribution of the market equilibrium, uses bootstrap to conduct inference
and develops its statistical theory in the specific models of LFM and FPPE.
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Bootstrapping M -estimators/mathematical programs. There is a line of research on bootstrapping M -estimators
(Lahiri, 1992; Giné, 1992; Wellner & Zhan, 1996; Bose & Chatterjee, 2001; Lee, 2012; Patra et al., 2018; Cattaneo et al.,
2020). For constrained M -estimators, one needs to be cautious about bootstrap procedures since they could produce incon-
sistent estimates of the target distribution (Andrews, 2000). Bootstrapping constrained estimators is studied in Li (2023)
and Hong & Li (2020); in these works it is assumed that there are no strongly active constraints. In the FPPE setting
strongly active constraints do occur, and we use epi-convergence theory to remedy this.

A.3. Examples of Exchangeable Bootstrap

Example 2. The multinomial bootstrap corresponds to sampling with replacement. It satisfies Def 5 with the constant
c2 = 1.
Example 3. Sample without replacement. Let h = ⌊αt⌋ be the number of samples not chosen for some α ∈ (0, 1).
Concretely, let wτ = t

t−h for 1 ≤ τ ≤ t − h and 0 otherwise. Then W is the vector of (w1, . . . , wt) ordered at random
independent of data. Def 5 is satisfied with the constant c2 = α/(1− α).
Example 4. I.i.d. weights. Let w1, . . . , wt be i.i.d. draws from some distribution with finite (2 + ϵ) moment, and w̄ =
1
t

∑t
τ=1wτ . Define the bootstrap weights Wτ = wτ/w̄. Def 5 is satisfied with the constant c2 = Var(w1)/(E[w1])

2.

For more examples of exchangeable bootstrap weights we refer readers to Præstgaard & Wellner (1993) and Cheng (2015).
The wide range of bootstrap weights allowed by Def 5 provides flexibility for practical application.

A.4. Definition of Finite LFM and FPPE

Here we give a formal definition of finite LFM and FPPE. Let vτi = vi(θ
τ ) be the valuation for the τ ’th sampled item.

Definition 6 (Finite LFM). The finite observed LFM, denoted L̂FM(b, v, σ, γ), is a allocation-price tuple (x, p) ∈ Rt×n
+ ×

Rn
+ such that the following hold:

1. Supply feasibility and market clearance:
∑

ix
τ
i ≤ 1 and

∑
τ p

τ (1−
∑

ix
τ
i ) = 0.

2. Buyer optimality: xi ∈ Di(p) = argmaxxi
{
∑

τ x
τ
i v

τ
i : σ

∑
τ x

τ
i p

τ ≤ bi, 0 ≤ xτ
i ≤ 1}, the demand set given the

prices.

Suppose we have a finite LFM equilibrium (x, p) = L̂FM(b, v, σ = 1/t, γ). Then uγ
i = σ

∑t
τ=1x

τ
i v

τ
i is the utility of buyer

i in equilibrium, and βγ
i = bi/u

γ
i is the utility price of buyer i.

Definition 7 (Finite FPPE, Conitzer et al. (2022a)). The finite observed FPPE, F̂PPE(b, v, σ, γ), is the unique tuple
(β, p) ∈ [0, 1]n × Rt

+ such that there exists xτ
i ∈ [0, 1] satisfying:

1. (First-price) For all τ , pτ = maxi βiv
τ
i . For all i and τ , xτ

i > 0 implies βiv
τ
i = maxk βkv

τ
k .

2. (Supply and budget feasible) For all i, σ
∑

τ x
τ
i p

τ ≤ bi. For all τ ,
∑

ix
τ
i ≤ 1.

3. (Market clearing) For all τ , pτ > 0 implies
∑

ix
τ
i = 1.

4. (No unnecessary pacing) For all i, σ
∑

τ x
τ
i p

τ < bi implies βi = 1.

A.5. Numerical Bootstrap and Proximal Bootstrap for LFM

We briefly review two valid bootstrap procedures and the consistency theory based on Hong & Li (2020); Li (2023). In this
section we only consider multinomial bootstrap weights.

Given a sequence ϵt of positive numbers converging zero, the numerical bootstrap estimator is defined as

βb
nu,LFM = argmin

β∈Rn
+

(Pt + ϵt
√
t(P b

t − Pt))F (·, β)

= argmin
β∈Rn

+

1

t

t∑
τ=1

(1 + ϵt
√
t(Wτ − 1))F (θτ , β)

14
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Theorem 7. Let ϵt = o(1) and ϵt
√
t → ∞. Then ϵ−1

t (βb
nu,LFM − βγ)

p⇝ JLFM.

The proof is in App D.3.

Numerical bootstrap does not offer computational benefits, since it requires solving EG programs. However, as we see in
Sec 4.3 the idea of proximal bootstrap extends to a special case of FPPE where all buyers spend their budgets. The regular
multinomial bootstrap is recovered by setting ϵt = 1/

√
t.

To describe proximal bootstrap, we define

Gb =
√
t(P b

t − Pt)DF (·, βγ)

and the numerical difference estimator of the Hessian matrix Ĥ, whose (k, ℓ)-th entry is Ĥk,ℓ = (∇̂2
kℓ,ηt

Ht)(β
γ), where

(∇̂2
kℓ,ϵg)(·) = [g(· + ϵek + ϵeℓ) − g(· − ϵek + ϵeℓ) − g(· + ϵek − ϵeℓ) + g(· − ϵek − ϵeℓ)]/(4ϵ

2). And DF (·, βγ) is a
deterministic element in ∂F (·, βγ).

The proximal bootstrap estimator is defined as

βb
pr,LFM = argmin

β∈Rn
+

{ϵt(Gb)T(β − βγ) +
1

2
∥βγ − β∥2

Ĥ
} (19)

Theorem 8. Let ϵt
√
t → ∞ and ϵt ↓ 0. Then ϵ−1

t (βb
pr,LFM − βγ)

p⇝ JLFM.

The proof is in App D.5.

Proximal bootstrap is clearly computationally cheap since it only requires solving an unconstrained convex quadratic pro-
gram (as opposed to the exponential cone program for EG). On the other hand, the numerical bootstrap requires estimation
of the Hessian matrix. See Thm 5 for a discussion of stepsize selection when using finite difference methods to estimate
the Hessian.

A.6. Examples of FPPE limit distributions

Example 5 (The case with I0 = ∅, SCS holds). Suppose |I| = k. Assume I0 = ∅, I+ = {1, . . . , k}. Let H̃ = HIcIc , a
square matrix of size (n− k) and G̃ = GIc . Then

JFPPE = [0k×1;−H̃−1G̃] (20)

which is the same as Eq (8). This agrees with the result from Liao & Kroer (2023).

Example 6 (The case with |I0| = 2.). Let I+ = ∅, I0 = {1, 2} and Ic = {3, . . . , n}. Then

JFPPE =



DZ = −H−1G if Z1 < 0, Z2 < 0

D


0

Z2 − ρ12Z1

...
Zn − ρ1nZ1

 if Z1 ≥ 0, Z2 − ρ12Z1 < 0

D



Z1 − ρ21Z2

0

Z3 − ρ23Z2

...
Zn − ρ2nZ2

 if Z2 ≥ 0, Z1 − ρ21Z2 < 0

[02×1;−H̃−1G̃] o.w.

, (21)

where H̃ = HIcIc and G̃ = GIc . We present the derivation in App A.6.
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DERIVING CLOSED-FORM EXPRESSION FOR JFPPE

We recall a few definitions regarding the constraints. Let I = {i : β∗
i = 1}, Ic = [n] \ I . We further partition I into

I+ = {i : β∗
i = 1, δ∗i > 0}, I0 = {i : β∗

i = 1, δ∗i = 0}.

Let A (resp. B) be a matrix whose rows are eT
i , i ∈ I+ (resp. i ∈ I0). So A is a |I+| × n matrix and B is |I0| × n.

A combinatorial expression of JFPPE is available. One can solve the quadratic program Eq (10), which contains linear
inequality constraints, by solving at most 2|I0| linearly constrained programs. First, one create a candidate linearly con-
strained program by turning some inequality constraints to be equality ones, and then record the optimal objective value.
Then the smallest value out of all 2|I0| candidate programs must be the same as the original program.

Given G, let Qj and hj be the optimal value and the optimal solution to the program

min
h∈Rn

(h+H−1G)TH(h+H−1G) s.t. [A;Bj ]h = 0. (22)

Here Bj consists of some (possibly zero) rows of B, j = 1, . . . , 2|I0|.

The program Eq (22) is just projecting the vector −H−1G onto the linear subspace spanned by Γj = [A;Bj ] w.r.t. the
norm ∥·∥H. With this geometric interpretation, it is easy to write down the solution. Define the projection matrix Pj =
I −H−1ΓT

j(ΓjH
−1ΓT

j)
−1Γj . Then the closed-form expressions for Qj and hj are

Qj = ∥(I − Pj)H
−1G∥2H = (H−1G)TΓT

j(ΓjH
−1ΓT

j)
−1Γj(H

−1G)

hj = −PjH
−1G,

Then it is obvious that

JFPPE = hj(G) = −Pj(G)H
−1G (23)

where j(G) = argminj{Qj : Bhj ≤ 0}. Equivalently,

JFPPE = (24)

2|I0|∑
j=1

−
(
1(Bhj ≤ 0)

2|I0|∏
ℓ=1

1(Qj ≤ Qℓ or Bhℓ ̸≤ 0)

)
PjH

−1G (25)

a random vector of length n. Only one of the term will be selected for each realization of G. The representation allows us
to derive the exact distribution in some cases.

Omitted details in Ex 6. We show J in Eq (24) reduces to the claimed expression Eq (21).

Consider the programs

min
h∈Rn

(h+H−1G)TH(h+H−1G)

subject to no constraints (Q1)
or subject to hTe1 = 0 (Q2)
or subject to hTe2 = 0 (Q3)
or subject to hTe1 = 0, hTe2 = 0 (Q4)

For Q1 the optimal solution is h1 = −H−1G.

For Q2, the optimal value is Q2 = (H−1G)Te1(e
T
1H

−1e1)
−1eT

1(H
−1G) = (GTH−1e1)

2/(H−1)211 = Z2
1 and the optimal

16
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solution h2 is

h2 = −[I −H−1e1(e
T

1H
−1e1)

−1eT

t ]H
−1G

=


0

(H−1)21
(H−1)11

−1
...

. . .
(H−1)n1

(H−1)11
−1

H−1G

= D


0

Z2 − ρ12Z1

...
Zn − ρ1nZ1


where we recall Z = −D−1H−1G = [Z1, . . . , Zn]

T. For Q3, the optimal value is Z2
2 and the optimal solution h3 is the

third display in Eq (21).

For Q4, the optimal solution h4 is the fourth display in Eq (21).

We consider the indicator part for j = 2 in Eq (24), i.e., the expression

1(Bh2 ≤ 0)

4∏
ℓ=1

1(Q2 ≤ Qℓ or Bhℓ ̸≤ 0)

Then B = [eT
1; e

T
2]. Note Bh1 = [Z1/

√
(H−1)11, Z2/

√
(H−1)22]

T, Bh2 = [0, Z2 − ρ12Z1]
T, Bh3 = [Z1 − ρ12Z2, 0]

T.
Obviously, both Q2, Q3 ≥ Q1, and both Q2, Q3 ≤ Q4. It can be shown

1(Bh2 ≤ 0)1(Q1 ≥ Q2 or Bh1 ̸≤ 0)1(Q3 ≥ Q2 or Bh3 ̸≤ 0)1(Q4 ≥ Q2 or Bh4 ̸≤ 0)

= 1(Bh2 ≤ 0)1(Bh1 ̸≤ 0)1(Q3 ≥ Q2 or Bh3 ̸≤ 0)× 1

= 1(Z2 − ρ12Z1 ≤ 0)1(Z1 ≥ 0)1(Z2
2 ≥ Z2

1 or Z1 − ρ12Z2 > 0) almost surely
= 1(Z2 − ρ12Z1 ≤ 0)1(Z1 ≥ 0) almost surely,

where the last equality follows by a case-by-case analysis. The indicator parts for j = 1, 3, 4 are analyzed similarly.

B. Experiments
B.1. Simulation: Verify Bootstrap Consistency for FPPE

In this section we verify the consistency of our bootstrap estimators, and investigate the effect of the bootstrap stepsize ϵt
(in Eq (17)) on the quality of bootstrap approximation in FPPE on fully synthetic data.

We consider an 8-buyer FPPE instance with 100 items sampled with i.i.d. values. Budgets of buyers are selected so that the
first three buyers are unpaced (β = 1). This is to model the fact that in reality there could be buyers with leftover budgets.
We use dual averaging (Xiao, 2010; Gao & Kroer, 2020; Liao et al., 2022) to compute the limit FPPE pacing multiplierβ∗.
Finite FPPEs are computed with MOSEK. We draw 100 finite FPPEs and obtain the finite FPPE distribution by plotting the
histogram of

√
t(βγ−β∗). We call this true resampling, which would not be possible in practice. Finally, we then generate

a single FPPE and resample 100 bootstrapped β’s according to Eq (17), obtaining the bootstrap distribution estimate. To
experiment with different tail behaviors for values, we run three sets of experiments: uniform, exponential and truncated
normal values. We also vary the choice of bootstrap stepsize ϵt = t−d.

Results In Figures 2 to 4 we present the finite-sample distribution of βγ and βb. Each column corresponds to the pacing
multiplier of a buyer, and each row corresponds to a choice of d. First, we observe that with a suitable choice of d, the
bootstrap distribution is a good approximation to that of finite FPPE with true resampling. For buyers with β∗

i = 1 the
proposed bootstrap is able to correctly identify them. For buyers with β∗

i < 1, bootstrap correctly captures the range and the
shape of the distribution. This result is significant, because to obtain the distributions of FPPE, we need to observe multiple
market equilibria, to which we usually do not have access. The bootstrap distribution, on the other hand, is generated based
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on just one finite FPPE. Second, we also observe that if ϵt is too large (d too small), the quality of approximation degrades.
In particular, in the bottom rows of plots for uniform and normal values, bootstrap tends to ignore the right part of the
distribution of finite FPPEs.
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t ( * ) vs 1
t ( b ),8 buyers, 1000 items, uniform values, 100 FPPEs, 100 bootstraps, t = t d

Figure 2: Comparison of Bootstrap and FPPE finite item distribution.

B.2. Semi-Real Data

In this section we apply our bootstrap estimator to a real-world dataset, the iPinYou dataset (Liao et al., 2014).

The data. The iPinYou dataset (Liao et al., 2014) contains raw log data of the bid, impression, click, and conversion
history on the iPinYou platform in the weeks of March 11–17, June 8–15 and October 19–27. We use the impression
and click data of 5 advertisers on June 6, 2013, containing a total of 1.8 million impressions and 1,200 clicks. As in the
main text, let i ∈ {1, 2, 3, 4, 5} index advertisers (buyers) and let τ index impressions/users (items in FPPE terminology).
The five advertiser are labeled by number and their categories are revealed: 1459 (Chinese e-commerce), 3358 (software),
3386 (international e-commerce) and 3476 (tire). From the raw log data, the following dataset can be extracted. The
response variable is a binary variable CLICKτ

i ∈ {0, 1} that indicates whether the user clicked the ad or not. The relevant
predictors include a categorical variable ADEXCHANGE of three levels that records from which ad-exchange the impression
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was generated, a categorical variable REGION of 35 levels indicating provinces of user IPs, and finally 44 boolean variables,
USERTAG’s, indicating whether a user belongs to certain user groups defined based on demographic, geographic and other
information. We select the top-10 most frequent user tags and denote them by USERTAG1, . . . , USERTAG10 ∈ {0, 1}. Both
ADEXCHANGE and USERTAG are masked in the dataset, and we do not know their real-world meanings.

Simulate advertisers with logistic regression. The raw data contains only five advertisers. In order to simulate more realistic
advertiser values, we fit a logistic regression and then perturb the fitted coefficients to generate more advertisers. We posit
the following logistic regression model for click-through rates (CTRs). For a user τ that saw the ad of advertiser i, the click
process is governed by

CTRτ
i = P(CLICKτ

i = 1 | θτ ) = 1

1 + exp(wT
i θ

τ )

θτ = [1, ADEXCHANGE2, ADEXCHANGE3, REGION2, . . . , REGION35, USERTAG1, . . . , USERTAG10] ∈ {1} × {0, 1}46

where the weight vectors wi ∈ R47 are the coefficients to be estimated from the data. Note that ADEXCHANGE1 and REGION1

are absorbed in the intercept. By running 5 logistic regressions, we obtain regression coefficients w1, w2, . . . , w5. To
visualize the fitted regression, in Figure 5 we show the estimated click-through rate distributions of the five advertisers. The
diagonal plots are the histogram of CTRs, and the off-diagonal panels are the pair-wise scatter plots of CTRs. To generate
more advertisers, we take a convex combination of the coefficients wi’s, add uniform noise, and obtain a new parameter,
say w′. Given an item, the CTR of the newly generated advertisers will be 1

1+exp(θTw′)
. The limit value distribution in

Def 3 is the historical distribution of the simulated advertisers’ predicted CTRs of the 1.8 million impressions.

Experiment setup. In this section we aim to produce confidence interval of the sum
∑

iβ
∗
i with the bootstrap estimator

Eq (17). Firstly, the sum equals n times the average price-per-utility of advertisers, a measure of efficiency of the system.
Secondly, since most quantities in FPPE, such as revenue and social welfare, are smooth functions of pacing multipliers ,
being able to perform inference about a linear combination of β’s indicates the ability to infer first-order estimates of those
quantities.

The estimator requires an initial consistent estimate of the Hessian matrix, which is implemented with finite difference in
Eq (16) with differencing stepsize ϵ = t−0.4. The estimator also requires a bootstrap stepsize ϵt = t−d. We try d over the
grid {0.4, 0.3, 0.2, 0.1, 0.05}.

An experiment has parameters (t, n, d, α). Here t ∈ {100, 300, 500} is the number of items and n ∈ {10, 20, 30, 50} the
number of advertisers. Parameter d is the exponent of the bootstrap stepsize, and α ∈ {0.1, 0.3, 0.5} is the proportion of
advertisers that are not budget-constrained (i.e., β = 1). To control α in the experiments, we select budgets as follows. Give
infinite budgets to the first ⌊αn⌋ advertisers. Initialize the rest of the advertisers’ budgets randomly, and keep decreasing
their budgets until their pacing multipliers are strictly less than 1. For the experiment (t, n, d, α), we first compute the
pacing multiplier in the limit market using dual averaging (Xiao, 2010; Gao et al., 2021; Liao et al., 2022). In one simulation
of the experiment (t, n, d, α), we sample one FPPE by drawing values from the limit value distribution. Now given
one FPPE, we generate bootstrapped pacing multipliers {βb,1, . . . , βb,B} by Eq (17). We calculate the set of sums S =

{sb,1, . . . , sb,B} where sb,1 =
∑

iβ
b,1
i and so on. To obtain a confidence interval with nominal coverage 95%, we let ℓ, u be

the 2.5% and 97.5% percentiles of S. We report the coverage rate and the width of [ℓ, u] in Table 3. We perform B = 100
bootstrap replications in each simulation. The reported coverage rate for an experiment with parameters (t, n, d, α) is
averaged over 100 simulations.

Results. For an appropriate choice of d ∈ [0.2, 0.3], the finite-sample coverage rate agrees with the nominal coverage
95%. Although our theory suggests that as long as d < 1/2, the bootstrapped distribution is asymptotically consistent,
parameter d does affect finite-sample coverage. Too small a d (for example, 0.10 or 0.05) results in over-coverage and
a large d results in under-coverage. We also observe that for d = 0.4 and n = 50, the finite-sample coverage rate is
undesirable for item size t = 100. Reassuringly, it increases to a nominal coverage of 95% as item size increases. We
also see that the width of the confidence interval decreases as the number of items increases while maintaining nominal
coverage. This is expected since the interval width decreases at a rate of 1/

√
t. Finally, for appropriately chosen d and

item size t, the proportion of unpaced advertisers α does not affect finite-sample coverage rates, which demonstrates the
robustness of the proposed bootstrap estimator.
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Figure 3: Comparison of Bootstrap and FPPE finite item distribution.
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Figure 4: Comparison of Bootstrap and FPPE finite item distribution.
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C. Review of Weak Epi-Convergence
The Hoffman-Jørgensen weak convergence theory is a powerful tool to study the asymptotics convergence of statistical
functional, especially the argmin functional. To apply the theory to specific applications, one needs to instantiate it with a
metric space, usually a space of functions, verify continuity or some form of differentiability of the statistical functional and
the weak convergence of certain processes, and then finally invoke continuous mapping theorem or functional delta method.
Common choices of metric spaces include the space of bounded functions (on some metric space) with the uniform metric
(Van der Vaart, 2000; Kosorok, 2008; Billingsley, 2013), the space of locally bounded functions on Rn with the topology of
uniform convergence on compacta (Kim & Pollard, 1990) or the topology of induced by the hypi-semimetric (Bücher et al.,
2014), the space of positive signed measures or point measures on the real line with an appropriate metric (Resnick, 2008),
the space of bounded real-valued continuous functions on Rn with the usual sup-norm (Giné & Nickl, 2008), or the space
of cadlag (left limit right continuous) functions on R with the Skorohod J1 metric (Skorokhod, 1956; Pollard, 2012). To
study asymptotics of constrained minimizers, a suitable choice of metric space is the space of extended real-valued lower
semi-continuous functions with the metric that induces the topology of epi-convergence. Such an approach dates back to
Geyer (1994) and Molchanov (2005), and used in Chernozhukov & Hong (2004) for nonregular models and Chernozhukov
et al. (2007) for set estimation, and more recently is used by Parker (2019) for constrained quantile regression, and Hong
& Li (2020) and Li (2023) in the context of bootstrap.

To begin with, we introduce the concept of epi-convergence and its probabilistic extensions. Consider

Ln = {f : Rn → R̄ : f is proper lower semi-continuous (lsc)},
C Sn = {A : A is a nonempty closed set in Rn}.

For f : Rn → R̄, we let epi f = {(x, v) ∈ Rn+1 : f(x) ≤ v} be its epi-graph. Also for C a nonempty closed subset of
Rn+1, and a point v ∈ Rn+1, let dC(v) = inf{∥u− v∥2 : u ∈ C} be the distance of v to the set C, and for nonempty sets
A and B, define dρ(A,B) = max {|dA(v)− dB(v)| : ∥v∥2 ≤ ρ}. Define the Attouch-Wets metric on C Sn+1 by

dAW(A,B) =

∫ ∞

0

dρ(A,B) exp(−ρ) dρ (26)

And for f, g ∈ Ln, define the metric depi (f, g) = dAW(epi f, epi g). In C Sn, the topology induced by dAW is equiva-
lent to Wijsman topology and the topology of Painlevé-Kuratowski set convergence (Römisch, 2004). The metric space
(C Sn, dAW) is complete and separable (Rockafellar & Wets, 2009, Theorem 4.42, Proposition 4.45). Also, the metric
space (Ln, depi ) is complete and separable (Rockafellar & Wets, 2009, Theorem 7.58). We say a sequence of functions
ft ∈ Ln epi-converges to f ∈ Ln if depi (ft, f) → 0.

Definition 8 (Epi-convergence in probability). Let Zt : Ω × Rn → R̄ and Z : Ω × Rn → R̄ be random lsc, extended

real-valued functions. We write Zt
epi−→Z in probability if for any ϵ > 0 it holds P(ω : depi (Zt(ω, ·), Z(ω, ·)) > ϵ) → 0 as

t → ∞.

Definition 9 (Epi-convergence in distribution, Knight (1999)). We say Zt
epi⇝Z if for any closed rectangles R1, . . . , Rk

with open interiors Ro
1, . . . , R

o
k, it holds the random vector (infRj

Zt(·), j = 1, . . . , k)
d→ (infRj

Z(·), j = 1, . . . , k) and

(infRo
j
Zt(·), j = 1, . . . , k)

d→ (infRo
j
Z(·), j = 1, . . . , k), or equivalently, for any real numbers a1, . . . , ak,

P
(

inf
u∈R1

Z(u) > a1, · · · , inf
u∈Rk

Z(u) > ak

)
≤ lim inf

t→∞
P
(

inf
u∈R1

Zt(u) > a1, · · · , inf
u∈Rk

Zt(u) > ak

)
≤ lim sup

t→∞
P
(

inf
u∈Ro

1

Zt(u) ≥ a1, · · · , inf
u∈Ro

k

Zt(u) ≥ ak

)
≤ P

(
inf

u∈Ro
1

Z(u) ≥ a1, · · · , inf
u∈Ro

k

Z(u) ≥ ak

)

By Corollary 2.4 from Pflug (1991), Zt
epi⇝Z is equivalent to the weak convergence of epiZt to epiZ in the metric space

(C Sn+1, dAW ).
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Figure 5: Click-through rate (in 0.01%) distributions from logistic regression.
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The following lemma is Slutsky’s theorem (Kosorok, 2008, Theorem 7.15) specialized to the space (Ln, depi ).

Lemma 1. Let (Zt)t, (Yt)t and Z be random lsc, extended real-valued functions and Y be a deterministic element in Ln.

If Yt
epi−→Y in probability and Zt

epi⇝Z. Then Zt + Yt
epi⇝Z + Y .

We also introduce a bootstrap version of weak epi-convergence following Section 2.2.3 in Kosorok (2008). A bootstrap
version of continuous mapping theorem can also be stated (Hong & Li, 2020).

Definition 10 (Conditional weak epi-convergence in probability). Let BL denote the space of Lipschitz functions f :
(Ln, dAW) → R with Lipschitz parameter equal 1, i.e., sup |f | ≤ 1 and |f(x) − f(y)| ≤ dAW (x, y). And suppose Zt =
Zt(X,W ) is defined on a product probability space, where W represents bootstrap weights, and X represents data. The
process Zt converges to Z in the sense of weak epi-convergence conditionally in probability if supf∈BL |EW [f(Zt)|X]−
E[f(Z)]| → 0 in probability, along with certain measurability conditions.

D. Proofs
D.1. Stochastic Equicontinuity Results for the EG Objective

Let ϵt = o(1) and K be a compact set. Let DF (θ, β) ∈ ∂F (θ, β) be a deterministic element of the subgradient. Note by
SMO D∗

F (·) = DF (·, β∗) = ∇F (·, β∗). We also let F (β) = F (·, β). Note that in the following claims, we do not need
∇H(β∗) = 0. They work for any β∗ at which H is continuously differentiable in a neighborhood.

Claim 1.

sup
h∈K

(Pt − P )(F (β∗ + ϵth)− F (β∗)− ϵth
TD∗

F (·)) = op(ϵt/
√
t)

sup
h∈K

(P ex,b
t − Pt)(F (β∗ + ϵth)− F (β∗)− ϵth

TD∗
F (·)) = op(ϵt/

√
t)

Proof of Claim 1. Let r1,F (·, β) = F (·, β)− F (·, β∗)−D∗
F (·)T(β − β∗).

By SMO there is a neighborhood of β∗, say N , on which H is differentiable. Then for any β ∈ N , the set {θ : β 7→
f(θ, β) differentiable at β} is measure one. Choose t large enough so that the ball {β : ∥β − β∗∥2 ≤ δt} is contained in
N . By a mean value theorem for locally Lipschitz functions, (Clarke, 1990, Theorem 2.3.7), it holds (Pt − P )(F (β) −
F (β∗)) = ζT(β − β∗) where ζ ∈ ∂(Pt − P )F (β̃) and β̃ lies on the segment joining β and β∗. By β̃ ∈ N , it holds
ζ = (Pt − P )DF (·, β̃). Then the desired claim is equivalent to

sup
∥β−β∗∥2≤δt

(Pt − P )r1,F (·, β)
1√
t
∥β − β∗∥2

= sup
∥β−β∗∥2≤δt

(Pt − P )(DF (·, β̃)−DF (·, β∗))T(β̃ − β∗)
1√
t
∥β − β∗∥2

≤ sup
∥β−β∗∥2≤δt

∥
√
t(Pt − P )(DF (·, β̃)−DF (·, β∗))∥2 = op(1) (27)

where the last equality is due to Liao & Kroer (2023).

The assumption on the bootstrap weights (Def 5) implies that a bootstrap version of Eq (27) holds, i.e.,
sup∥β−β∗∥2≤δt ∥

√
t(P ex,b

t − Pt)(DF (·, β̃) − DF (·, β∗))∥2 = op(1) (Wellner & Zhan, 1996, Lemma 4.1). The same
argument goes through for the proof of bootstrap differentiability. We finish the proof of the lemma.

Claim 2.

sup
∥h−s∥2=o(1),s,h∈K

(Pt − P )(F (β∗ + ϵth)− F (β∗ + ϵts)) = op(ϵt/
√
t)

sup
∥h−s∥2=o(1),s,h∈K

(P ex,b
t − Pt)(F (β∗ + ϵth)− F (β∗ + ϵts)) = op(ϵt/

√
t)

Proof. This is implied by Claim 1.
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Claim 3.

sup
h∈K

Pt(F (β∗ + ϵth)− F (β∗)− ϵth
TD∗(·)− ϵ2th

THh) = op(ϵt/
√
t+ ϵ2t )

Proof. Let r2,F (h) = F (·, β∗ + h)− F (·, β∗)−DF (·, β∗)Th− 1
2h

THh.

Split the LHS by suph |Ptr2,F (ϵth)| ≤ suph |Pr2,F (ϵth)| + suph |(Pt − P )r2,F (ϵth)|. The first term is o(ϵ2t ) by twice
differentiability. The second term is bounded by op(ϵt/

√
t) as in Claim 1.

Notations in the proof sections. Define the demeaned and the centered function F̃ (·, β) = F (·, β) − E[F (θ, β)] and
F̄ (·, β) = F (·, β)− F (·, β∗). Let Hb(β) = P b

t F (·, β) be the bootstrapped EG objective.

D.2. Proof of Thm 1

Proof of Thm 1. In the proof, we use βb to denote the exchangeable bootstrap estimator Eq (9) and use P b
t to denote the

bootstrap empirical operator with exchangeable weights (Def 5).

Step 1. Show βb p→β∗. The consistency of the bootstrap estimator is implied by uniform convergence of Hb(·) to H(·)
and uniqueness of β∗. For proof, we refer readers to the proof of Theorem 3.5 from Giné (1992).

Step 2. Show βb − β∗ = Op(1/
√
t).

Define

∆γ = H−1(Pt − P )DF (·, β∗),

∆b = H−1(P b
t − Pt)DF (·, β∗).

Let r1,F (·, β) = F (·, β)− F (·, β∗)−D∗
F (·)T(β − β∗), D∗

F (·) = DF (·, β∗) = ∇F (·, β∗).

We begin with the optimality of βb and then apply the definition of r. For ease of notation, we let F (β) = F (·, β). We
have

0 ≥ P ex,b
t (F (βb)− F (β∗))

= (P ex,b
t − Pt + Pt − P )(F (βb)− F (β∗)) + P (F (βb)− F (β∗))

= (∆b +∆γ)TH(βb − β∗) + P (F (βb)− F (β∗)) (28)

+ (P ex,b
t − Pt + Pt − P )r1,F (·, βb)

≥ (∆b +∆γ + op(1))
T(βb − β∗) + c · ∥βb − β∗∥22 (29)

where in the last inequality we used (i) (P ex,b
t − Pt)r1,F (·, βb) = op(

1√
t
+ ∥βb − β∗∥2) · ∥βb − β∗∥2 = op(1)∥βb − β∗∥2

by Claim 1, (ii) (Pt − P )r1,F (·, βb) = op(1)∥βb − β∗∥2 by Claim 1, and (iii) β 7→ PF (·, β) is locally strongly convex
at β∗, and so there is a neighborhood of β∗ and a constant c > 0 such that P (F (β) − F (β∗)) ≥ c∥β − β∗∥22 for all β
in this neighborhood. The expression Eq (29) now becomes 0 ≥ Op(t

−1/2)∥βb − β∗∥2 + c∥βb − β∗∥22. Since the case
βb − β∗ = 0 can be easily excluded, we divide both sides by ∥βb − β∗∥2 and conclude that (βb − β∗) = Op(1/

√
t).

Step 3. Find the asymptotic distribution. Since βb is the minimizer of P ex,b
t F over Rn

+, defining F̄ (β) = F (·, β)−F (·, β∗),
we have

0 ≥ P ex,b
t (F̄ (βb)− F̄ (∆b +∆γ + β∗))

= [(P ex,b
t − Pt) + (Pt − P )](F̄ (βb)− F̄ (∆b +∆γ + β∗)) + P (F̄ (βb)− F̄ (∆b +∆γ + β∗))

= (∆b +∆γ)TH(βb − β∗ − (∆b +∆γ)) +
1

2
∥βb − β∗∥2H − 1

2
∥∆b +∆γ∥2H

+ [(P ex,b
t − Pt) + (Pt − P )](r1,F (·, βb)− r1,F (·,∆b +∆γ + β∗))

=
1

2
∥∆b +∆γ + (βb − β∗)∥2H + op(1/t)
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where in the last line we used (i) (P ex,b
t − Pt)r1,F (·, β) = op(1/t) for any random β such that β = β∗ + Op(1/

√
t)

by Claim 1, (ii) (Pt − P )r1,F (·, β) = op(1/t) for any random β such that β = β∗ + Op(1/
√
t) by Claim 1, and (iii)

PF̄ (β) = 1
2∥β − β∗∥2H + o(∥β − β∗∥22) for β → β∗ due to ∇H(β∗) = 0.

Rearranging gives t∥∆b +∆γ + (βb − β∗)∥22 = op(1). Next , using βγ − β∗ = −∆γ + op(1/
√
t) (Liao & Kroer, 2023)

we have
√
t(βb − βγ) = −

√
t∆b + op(1)

By an exchangeable bootstrap CLT (Præstgaard & Wellner, 1993), we know
√
t∆b d→ c ·

H−1N (0,E[∇F (·, β∗)∇F (·, β∗)T]) conditional on almost all data sequence γ, where c is the constant defined in
Def 5. This concludes the proof.

D.3. Proof of Numerical Bootstrap (Thm 7 and Thm 3.1)

Theorem 7. Let ϵt = o(1) and ϵt
√
t → ∞. Then ϵ−1

t (βb
nu,LFM − βγ)

p⇝ JLFM.

Proof of Thm 7 . We verify the assumptions in Theorem 4.1 of the numerical bootstrap paper (Hong & Li, 2020).

For Thm 7, let B = Rn
++, βb be βb

nu,LFM, and β∗ be the equilibrium pacing multiplier in Fisher market. We restate the
assumptions in Theorem 4.1 of (Hong & Li, 2020) in our notations.

(i) Ht(β
γ) ≤ infB Ht + op(1/t), and Hb

t (β
b) ≤ infB Hb

t + o∗p(ϵ
2
t ).

(ii) βγ p→β∗, and βb − βγ = o∗p(1).

(iii) β∗ is an interior point of B.

(iv) The class {F (·, β)− F (·, β∗) : ∥β − β∗∥2 ≤ R} is uniformly manageable.

(v) H is twice differentiable at β∗ with positive definite Hessian H.

(vi) The limit Σ(s, t) = limϵ↓0
1
ϵ2E

[(
F̃ (·, β∗ + ϵs)− F̃ (·, β∗)

)(
F̃ (·, β∗ + ϵt)− F̃ (·, β∗)

)]
exists for each s, t.

(vii) For all δ > 0 it holds limϵ↓0
1
ϵE[(F (·, β∗ + ϵs)− F (·, β∗))1(|F (·, β∗ + ϵs)− F (·, β∗)| > δ)] = 0, where F̃ (·, β) =

F (·, β)− E[F (θ, β)].

(viii) Let GR(·) = sup∥β−β∗∥2≤R |F (·, β)− F (·, β∗)|. As R → 0, E[G2
R] = O(R2).

(ix)
√
tϵt → ∞ and ϵt ↓ 0.

(x) E[G2
R1(RGR > η)] = o(R2) for all η > 0.

(xi) There is a neighborhood of β∗ such that E[|F (·, β)− F (·, β′)|] = O(∥β − β′∥22) for β, β′ in this neighborhood.

Implicit in the paper, it is also required that the gradient of the population objective is zero at optimum. This is true for
Fisher market.

We now verify these conditions. Condition (i) holds because we consider exact minimizers. Condition (ii): The βγ−β∗ p→ 0

part has been verified in Liao & Kroer (2023). It remains to show the βb−βγ p→ 0 part. Since β 7→ P b
t F (·, β) converges to

H in probability pointwise and that β 7→ P b
t F (·, β) is convex, it holds that the convergence is uniform over compact sets.

By uniqueness of β∗ it holds βb p→β∗. Condition (iii) naturally holds for the linear Fisher market. Condition (iv) requires
that there is an R0 > 0 such that the function class {F (·, β) − F (·, β∗) : ∥β − β∗∥2 ≤ R} is uniformly manageable for
all R ≤ R0. It holds because the class {θ 7→ f(θ, β) − f(θ, β∗) : β ∈ B} is uniformly manageable, which is verified in
Liao & Kroer (2023). Condition (v) is assumed in SMO. In condition (vi) the function Σ is the covariance kernel for some
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Gaussian process. We show Σ(s, t) = sTE[∇F̃ (·, β∗)∇F̃ (·, β∗)T]t = sTE[∇F (·, β∗)∇F (·, β∗)T]t. By the dominated
convergence theorem, we can pass the limit inside the expectation and obtain

lim
ϵ↓0

E[(F̃ (·, β∗ + ϵt)− F̃ (·, β∗))(F̃ (·, β∗ + ϵs)− F̃ (·, β∗))]/ϵ2

= tTE[∇F̃ (·, β∗)∇F̃ (·, β∗)T]s

Condition (vii): by dominated convergence theorem we can move the limit inside expectation.

lim
ϵ↓0

∣∣∣∣1ϵE[(F (·, β∗ + ϵs)− F (·, β∗))1(|F (·, β∗ + ϵs)− F (·, β∗)| > δ)]

∣∣∣∣
≤ E

[
lim
ϵ↓0

∣∣∣1
ϵ
(F (·, β∗ + ϵs)− F (·, β∗))

∣∣∣1(|F (·, β∗ + ϵs)− F (·, β∗)| > δ)

]
≤ L∥s∥2E

[
lim
ϵ↓0

1(|F (·, β∗ + ϵs)− F (·, β∗)| > δ)
]
= 0

where the last equality holds because β 7→ F (θ, β) is continuous for all θ. Now we show conditions (viii) and (x).
Consider the set

∏n
i=1[β

∗
i /2, 1]. On this set, for all θ, the function β 7→ F (θ, β) is Lipschitz with parameter L = v̄+2

√
n

w.r.t. ℓ2 norm. So for R small enough the ball {β : ∥β − β∗∥2 ≤ R} is contained in the set
∏n

i=1[β
∗
i /2, 1]. The

first requirement follows by noting E[G2
R] ≤ L2R2 = O(R2). The second requirement follows from the arguments

limR→0 E[G
2
R

R2 1(RGR > η)] ≤ E[L2 · limR→0 1(GR > η/R)] = 0 where the last equality holds due to GR being
bounded for R small enough. Condition (ix) requires that ϵt

√
t → ∞, which is assumed. Condition (xi): Inspecting the

proof this condition is used to show Claim 2, which we proved separately.

Now we can invoke Theorem 4.1 from Hong & Li (2020) and conclude ϵ−1
t (βb

nu,LFM − βγ)
p⇝ JLFM.

Proof of Thm 3.1. For Thm 3.1, let B = [0, 1]n. Let βb refer to βb
nu,FPPE, and β∗ be the equilibrium pacing multiplier

in FPPE. As before, it is implicitly assumed in Hong & Li (2020) that the gradient of H equals zero at β∗. This is true
for FPPE if and only if all buyers spend their budgets. Theorem 4.2 from Hong & Li (2020) requires that all conditions
stated above except (i) and (iii) hold, and that β∗ uniquely minimizes H over B, which is true in FPPE. Now we can
invoke Theorem 4.2 from Hong & Li (2020) and conclude ϵ−1

t (βb
nu,FPPE − βγ)

p⇝ JFPPE. Note that under the assumption
that all buyers spend their budgets, the limit distribution simplifies to JFPPE = argminh∈C GTh + 1

2h
THh where G ∼

N (0,E[∇F (·, β∗)∇F (·, β∗)T]) and C = {h ∈ Rn : hi ≤ 0, i ∈ I0}

D.4. Proof of Thm 5 and formal statement

Below we start by giving a more formal version of Thm 5 and then prove it.

Theorem 9 (Hessian estimation). Assume H(·) is four times continuously differentiable in a neighborhood of β∗. Consider
the finite difference estimate defined in Eq (16) with differencing stepsize ηt = o(1) and ηt

√
t → ∞. For some intermediate

quantity Ȟkℓ, it holds Ĥkℓ − Ȟkℓ = op(η
2
t + 1√

tη2
t

) + Op(
1√
t
), E[(Ȟkℓ −Hkℓ)

2] = Θ(η4t +
1

tη2
t
) + o(η4t + 1

tη2
t
) where

the Op(1/
√
t) part does not depend on ηt. Proof in App D.4.

Proof of Thm 5 and Thm 9. The proof follows the idea in Lemma 2 from Cattaneo et al. (2020). The main difference is
their result is for cube-root asymptotics, while our setting is the usual square-root asymptotics. Define

Ȟkℓ = (∇̂2
kℓ,ηt

Ht)(β
∗), H̄kℓ(β) = (∇̂2

kℓ,ηt
H)(β)

Then Ĥkℓ − Ȟkℓ = R+ S where

R = Ĥkℓ − Ȟkℓ − H̄kℓ(β
γ) + H̄kℓ(β

∗) = ∇̂2
kℓ,ηt

[(Ht −H)(βγ)− (Ht −H)(β∗)], S = H̄kℓ(β
γ)− H̄kℓ(β

∗).

It will be shown that (i) R = op(1/(
√
tηt)), (ii) S = Op(

1√
t
)+op(η

2
t ), and (iii) E[(Hkℓ− Ȟkℓ)

2] = Θ(η4t +
1

tη2
t
)+o(η4t +

1
tη2

t
).
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To show (i), by Claim 2,

η−1
t

√
t sup

Tt

(Pt − P )(F (·, β∗ + t1ηt)− F (·, β∗ + t2ηt)) = op(1) (30)

where the supremum runs over the set Tt = {(t1, t2) : ∥t1∥, ∥t2∥ ≤ M, ∥t1 − t2∥ ≤ δt} for some M > 0 and δt ↓ 0.
Alternatively, the claim Eq (30) can be proved following the proof of Theorem 4.1 from Hong & Li (2020) or Lemma 4.6
from Kim & Pollard (1990). With this bound, letting δ = (βγ − β∗)/ηt = op(1), terms such as

(Pt − P )(F (·, βγ + ηt(ek + eℓ))− F (·, β∗ + ηt(ek + eℓ)))

= (Pt − P )(F (·, β∗ + ηt(δ + ek + eℓ︸ ︷︷ ︸
t1

))− F (·, β∗ + ηt(ek + eℓ︸ ︷︷ ︸
t2

)))

≤ sup
Tt

(Pt − P )(F (·, β∗ + t1ηt)− F (·, β∗ + t2ηt))

= op(ηt/
√
t)

can be upper bounded as above. And so R = 1
η2
t
op(ηt/

√
t) = op(1/

√
tη2t ).

To show (ii), by Taylor’s theorem, S = (∇β∇2
kℓH(β)|β=β∗)T(βγ − β∗) + op(η

2
t ) = Op(

1√
t
) + op(ηt), and the Op(1/

√
t)

term does not involve ηt.

Finally, to show (iii), we calculate the bias and variance of Ȟkℓ. Let d(·) = F (·, β∗ + ηt(ek + eℓ))− F (·, β∗ + ηt(−ek +
eℓ)) − F (·, β∗ + ηt(ek − eℓ)) + F (·, β∗ + ηt(−ek − eℓ)). Then Ȟkℓ = 1

4η2
t
Ptd(·). For the bias, following the proof of

Lemma 2 from Cattaneo et al. (2020), by Taylor’s theorem,

E[Ȟkℓ −Hkℓ] =
1

6
(∇2

k∇2
kℓH(β∗) +∇2

ℓ∇2
kℓH(β∗))η2t + o(η2t )

To see this, let g(ϵ) = H(β∗ + ϵh) − H(β∗). Then g(0) = 0. Also let H(β) = ∇2H(β). Now g(1)(ϵ) = ∇H(β∗ +
ϵh)Th, g(2)(ϵ) = hTH(β∗ + ϵh)h, g(3)(ϵ) =

∑n
i=1h

2
ih

T∇βHii(β
∗ + ϵh) + 2

∑
i<j hihjh

T∇βH(β∗ + ϵh), and g(4) =∑n
i=1h

2
ih

T∇2
βHii(β

∗ + ϵh)h+ 2
∑

i<j hihjh
T∇2

βH(β∗ + ϵh)h.

For the variance, note Var(Ȟkℓ) =
1

16tη4
t
Var(d(·)) = 1

16tη4
t
E[d(·)2] +O(1/t). Next,

η−2
t E[(F (·, β∗ + ηt(ek + eℓ))− F (·, β∗))2] → (ek + eℓ)

TE[∇F (·, β∗)⊗2](ek + eℓ)

and so E[d(·)2] = Θ(η2t ). Conclude that

Var(Ȟkℓ) = Θ(
1

tη2t
) +O(1/t).

D.5. Proof of Proximal Bootstrap (Thm 8 and Thm 3.2)

Proof of Thm 8. As t → ∞, ϵ−1
t (βb − βγ) = −Ĥ−1Gb with probability approaching 1 due to ϵt = o(1) and ϵt

√
t → ∞.

Next, Gb =
√
t(P b

t − Pt)DF (·, βγ) =
√
t(P b

t − Pt)(DF (·, βγ) − DF (·, β∗)) +
√
t(P b

t − Pt)DF (·, β∗) =
√
t(P b

t −
Pt)DF (·, β∗) + op(1)

d→N (0,E[∇F (·, β∗)∇F (·, β∗)T]) conditional on data, by Wellner & Zhan (1996, Lemma 4.1).
Also Ĥ

p→H and by continuity of matrix inverse, Ĥ−1 p→H−1. We conclude ϵ−1
t (βb − βγ) converges in distribution to

JLFM conditionally in probability.

Proof of Thm 3.2. We present proof following the idea in the working paper of Li (2023). In fact, most of the conditions
required in that paper have been established in Liao & Kroer (2023), such as stochastic equicontinuity of certain processes.

Let B = [0, 1]n. Let βb refer to βb
nu,FPPE, and β∗ be the equilibrium pacing multiplier in FPPE. It is assumed in Li (2023)

that the gradient of H equals zero at β∗. This is true for FPPE if and only if all buyers spend their budgets, i.e., I+ = ∅.
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Step 1. Show βb p→β∗. Since ϵt → 0 and Gb = Op(1), we have ϵtG
b = op(1). Then for each β ∈ Rn

ϵt(G
b)Tβ +

1

2
∥βγ − β∥2

Ĥ
+ χ(β ∈ [0, 1]n)

=
1

2
∥β∗ − β∥2

Ĥ
+ χ(β ∈ [0, 1]n) +

(
ϵt(G

b)Tβ + (β∗ − β)TĤ(βγ − β∗) +
1

2
∥βγ − β∗∥2

Ĥ

)
=

1

2
∥β∗ − β∥2

Ĥ
+ χ(β ∈ [0, 1]n) + op(1)

p→ 1

2
∥β∗ − β∥2H + χ(β ∈ [0, 1]n)

By convexity, it implies uniform convergence on compact sets in probability. Since β∗ uniquely minimize β 7→ ∥β∗ −
β∥2H + χ(β ∈ [0, 1]n), we conclude βb p→β∗ (Newey & McFadden, 1994, Theorem 2.7).

Step 2. Identify the limit distribution of βb. Note that when I+ = ∅, E[∇F (·, β∗)] = 0. Define Xt(h) = (Gb)T(h +
β∗−βγ

ϵt
) + 1

2∥h + β∗−βγ

ϵt
∥2
Ĥ

. We first show Xt(h) ⇝ GTh + 1
2h

THh in ℓ∞(K) for any compact K ⊂ Rn, where
G ∼ N (0,E[∇F (·, β∗)∇F (·, β∗)T]). The proof is identical to the proof of Claim 4 and is omitted here. Next, by a
change of variable h = ϵ−1

t (β − β∗), the inclusion β ∈ [0, 1] becomes h ∈ ([0, 1]n − β∗)/ϵt, and

ϵ−1
t (βb − β∗) = argmin

h∈([0,1]n−β∗)/ϵt

Xt(h)
d→ argmin

h∈Rn:hi≤0,i∈I0

GTh+
1

2
hTHh = JFPPE

where the last equality uses I+ = ∅ and thus ([0, 1]n − β∗)/ϵt
epi−→{h ∈ Rn : hi ≤ 0, i ∈ I0}. We conclude the proof of

Thm 3.2.

D.6. Proof of Thm 2

The limit FPPE is β∗
1 = 1 and δ∗1 = 0. The observed FPPE is βγ

1 = min{1, 1/v̄t} where v̄t = 1
t

∑t
τ=1v1(θ

τ ). The
bootstrapped FPPE Eq (12) is βb

1 = min{1, 1/v̄t,b} where v̄t,b = 1
t

∑t
τ=1v1(θ

τ,b).

First, we derive the limit distribution of the observed FPPE. We have
√
t(βγ

1 − 1) =
1

v̄t
min{

√
t(1− v̄t), 0} d→ min{Z, 0} = JFPPE.

where Z ∼ N (0,Var(v1)). In the above we used v̄t
p→E[v1] = 1, Slutsky’s Theorem,

√
t(1−v̄t)

d→Z, and the continuous
mapping theorem.

Now we analyze the limit distribution of the bootstrapped FPPE. Define the set Ac = {lim supt
√
t(1 − v̄t) > c} for any

c > 0. By the law of the iterated logarithm,

P
(
lim sup
t→∞

√
t(1− v̄t)√
2 log log t

= 1

)
= 1,

and thus P(Ac) = 1 for all 0 < c < ∞. Note that it holds v̄t,b− 1
p→ 0 and

√
t(v̄t,b− v̄t)

d→N (0,Var(v1)) conditional on
observed items (by triangular-array versions of the law of large numbers and the central limit theorem, see Theorem 2.2.6
and Theorem 3.4.10 from Durrett (2019)). On the event Ac , we can choose a subsequence {tk}k , such that

√
tk(1−v̄tk) ≥

c for all k. Now let t be an element of this subsequence. Then we have
√
t(βb

1 − βγ
1 ) =

√
t(min{1, 1/v̄t,b} −min{1, 1/v̄t})

≥
√
t(min{1, 1/v̄t,b} − 1)

=
1

v̄t,b
min{0,

√
t(v̄t − v̄t,b + 1− v̄t)}

≥ 1

v̄t,b
min{0,

√
t(v̄t − v̄t,b) + c}

d→ min{0, Z + c} ≥ min{0, Z},

where we used Slutsky’s theorem for the convergence in probability. The last inequality is strict with strictly positive proba-
bility. We conclude that the standard multinomial bootstrap

√
t(βb−βγ) fails to converge to the desired distribution JFPPE.
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D.7. Proof of Thm 4

Proof of Thm 4. Define the estimated critical cone

Ĉ = {h : hi =
1− β∗

i

δt
for i ∈ Î+}

Recall under SCS the critical cone is C = {h ∈ Rn : hi = 0, i ∈ I+}.

Step 1. We show that the critical cone is correctly estimated in the sense that

χ(· ∈ Ĉ)
epi−→χ(· ∈ C) in probability (31)

The claim is equivalent to dAW (Ĉ, C)
p→ 0, where dAW is defined in Eq (26). For any ϵ > 0, the event {dAW (Ĉ, C) > ϵ}

is equivalent to {Î+ ̸= I+}. First we bound P(Î+ ̸= I+).

P(Î+ ̸= I+) = P(∃i ∈ I+, 1− βγ
i > δt, or ∃i ∈ Ic, 1− βγ

i < δt)

≤
∑
i∈I+

P(1− βγ
i > δt) +

∑
i∈Ic

P(1− βγ
i < δt)

For i ∈ I+, by βγ
i − 1 = op(

1√
t
), we have P(1 − βγ

i > δt) = P(op(1) > δt
√
t) → 0 since δt

√
t → c > 0. For i ∈ Ic,

since β∗
i − 1 < 0, P(1− βγ

i < δt) = P(β∗
i − βγ

i < β∗
i − 1 + δt) = P(op(1) < β∗

i − 1 + δt) → 0 by δt ↓ 0. We conclude

P(Î+ ̸= I+) → 0 and so χ(· ∈ Ĉ)
epi−→χ(· ∈ C) in probability.

Step 2. Next, we show βb p→β∗. Since ϵt → 0 and Gb = Op(1), we have ϵtG
b = op(1). Then for each β ∈ Rn

ϵtG
b +

1

2
∥βγ − β∥2

Ĥ
+ χ(β ∈ B̂)

=
1

2
∥β∗ − β∥2

Ĥ
+ χ(β ∈ B̂) +

(
ϵtG

b + (β∗ − β)TĤ(βγ − β∗) +
1

2
∥βγ − β∗∥2

Ĥ

)
=

1

2
∥β∗ − β∥2

Ĥ
+ χ(β ∈ B̂) + op(1)

p→ 1

2
∥β∗ − β∥2H + χ(β ∈ B′)

where B′ = {β ∈ [0, 1]n : βi = 1, i ∈ I+}. By convexity, it implies uniform convergence on compact sets in probability.
Since β∗ uniquely minimize ∥β∗ − β∥2H + χ(β ∈ B), we conclude βb p→β∗ (Newey & McFadden, 1994, Theorem 2.7).

Step 3. Identify the limit distribution of βb.

Note ϵ−1
t (βb − βγ) = ϵ−1

t (βb − β∗) + ϵ−1
t (β∗ − βγ) = ϵ−1

t (βb − β∗) + op(1), it suffices to show ϵ−1
t (βb − β∗)

p⇝ JFPPE.

First with a change of variable h = ϵ−1
t (β− β∗) and so ϵ−1

t (β− βγ) = h+ ϵ−1
t (β∗ − βγ), dividing the objective function

by ϵ2t , the bootstrap estimator in Eq (17), with probability approaching one, can be written as

βb − β∗

ϵt
= argmin

h∈Rn

{
(Gb)T(h+

β∗ − βγ

ϵt
) +

1

2
∥h+

β∗ − βγ

ϵt
∥2
Ĥ︸ ︷︷ ︸

:=Xt(h)

+χ(h ∈ Ĉ)

}

Claim 4. Xt(h)⇝ (
p⇝ )GTh+ 1

2h
THh in ℓ∞(K) for any compact K ⊂ Rn.

By Knight (1999), we know convergence in distribution with respect to the topology of uniform convergence on compact

sets implies weak epi-convergence, and so Xt
epi⇝GTh+ 1

2h
THh. Combining Xt

epi⇝GTh+ 1
2h

THh, Eq (31) and Lemma 1,
we have

Xt(h) + χ(h ∈ Ĉ)
epi⇝GTh+

1

2
∥h∥2H + χ(h ∈ C)
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The above implies conditional weak epi-convergence in probability of the processes h 7→ Xt(h) + χ(h ∈ Ĉ). A bootstrap
version of the continuous mapping theorem can be stated for conditional weak epi-convergence in probability (Hong & Li,
2020). Then ϵ−1

t (βb − β∗)
p⇝ argminh∈C GTh+ 1

2h
THh, which is exactly JFPPE.

Proof of Claim 4. First, we show for any compact set K ∈ Rn,

sup
h∈K

|Xt(h)− ((Gb)Th+
1

2
∥h∥2H)| = op(1) (32)

Note the LHS can be upper bounded by

(Gb)T(βγ − β∗)ϵ−1
t +

1

2
∥βγ − β∗∥2Hϵ−2

t + sup
K

hTĤ(βγ − β∗)ϵ−1
t + sup

K
hT(Ĥ −H)h

We just need to show (Gb)T(βγ − β∗) = op(ϵt), ∥βγ − β∗∥
Ĥ

= op(ϵ
2
t ) and supK hTĤ(βγ − β∗) = op(ϵt) and

supK |hTHh − hTĤh| = op(1) (Thm 5). This holds by Gb = Op(1), βγ − β∗ = Op(1/
√
t), ∥H − Ĥ∥2 = op(1)

and 1/
√
t = o(ϵt).

Next we show for any compact K ⊂ Rn,

(Gb)Th+
1

2
∥h∥2

Ĥ
⇝ GTh+

1

2
∥h∥2H in ℓ∞(K) (33)

where G ∼ N (0,Cov(∇F (·, β∗))). It suffices to show Gb d→G and Ĥ
p→H. In Thm 5 is has been shown that Ĥ −H =

op(1). Note Gb =
√
t(P b

t −Pt)DF (·, βγ) =
√
t(P b

t −Pt)(DF (·, βγ)−DF (·, β∗))+
√
t(P b

t −Pt)DF (·, β∗) =
√
t(P b

t −
Pt)DF (·, β∗) + op(1) by Wellner & Zhan (1996, Lemma 4.1). We conclude Gb d→G and Xt ⇝ hTG+ 1

2h
THh. To show

conditional convergence
p⇝ , one can use arguments analogous to Theorem 2.9.6 in Van der Vaart (2000).

D.8. Proof of Thm 6

Proof of Thm 6. Let T b,∞ be the conditional limit distribution of T b, and T∞ be the limit distribution of T γ(β∗, δ∗). The
proof relies on the following result. For two real-valued random variables X and Y , we say X is stochastically dominated
by Y , denoted X ≤st Y if P(X > x) ≤ P(Y > x) for all x ∈ R.

Theorem 10. For all κ ∈ (0,∞), T∞ ≤st T
b,∞. When κ = ∞, T∞ = T b,∞.

We recall a result regarding quantiles.

Lemma 2 (Lemma 21.1 from Van der Vaart (2000)). Let F (x) = P(X ≤ x) be the CDF of a real-valued random variable
X . And let F−1(p) = inf(x ∈ R : F (x) ≥ p) for p ∈ (0, 1) be the quantile. Then F (F−1(p)) ≥ p for p ∈ (0, 1). Equality
holds if F is continuous at F−1(q).

Recall the following condition

the CDF of T∞ is continuous at the (1− α)-th quantile of T∞. (34)

Let c1−α be the (1−α)-th quantile of T∞. Then Lemma 2 implies that P(T∞ ≤ c1−α−ϵ) ≥ 1−α− ϵ for all ϵ ≥ 0 small
enough. The assumption in Eq (34) implies P(T∞ ≤ c1−α) = 1− α.

For any ϵ > 0, let A be the event {γ : P(T b ≤ c1−α | γ) − (1 − α) ≤ ϵ}. Let cb1−α be that the (1 − α)-th quantile of T b

conditional on γ.

First we show P(A) → 1. By T b,∞ ≥st T
∞ we know P(T b,∞ ≤ c1−α) ≤ P(T∞ ≤ c1−α) = 1− α. Then

P(Ac) = P(P(T b ≤ c1−α | γ)− (1− α) > ϵ)

≤ P(P(T b ≤ c1−α | γ)− P(T b,∞ ≤ c1−α) > ϵ) → 0
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due to T b p⇝T b,∞. Under event A, we have c1−α−ϵ ≤ cb1−α. To see this note P(T∞ ≤ cb1−α | γ) ≥ P(T b ≤ cb1−α)− ϵ ≥
1− α− ϵ. Then

P
(
(β∗, δ∗) ∈ Cγ(cb1−α)

)
= P(T γ(β∗, δ∗) ≤ cb1−α)

≥ P(T γ(β∗, δ∗) ≤ cb1−α, A)

≥ P(T γ(β∗, δ∗) ≤ c1−α−ϵ, A)

≥ P(T γ(β∗, δ∗) ≤ c1−α−ϵ)− P(Ac) ≥ 1− α− ϵ+ o(1)

where the last line follows from P(T γ(β∗, δ∗) ≤ c1−α−ϵ) → P(T∞ ≤ c1−α−ϵ) ≥ 1−α− ϵ and P(Ac) → 0. Since ϵ > 0
is arbitrary, we conclude lim inf P((β∗, δ∗) ∈ Cγ(cb1−α)) ≥ 1− α.

Proof of Thm 10. We study the asymptotic distributions of T γ(β∗, δ∗) and T b. Recall ∇H(β∗) = −δ∗.

Step 1. We will show

t(Lt(β
∗ + h√

t
, δ∗)− Lt(β

∗, δ∗))⇝ hTG+
1

2
hTHh

in ℓ∞(K) for any compact K ⊂ Rn.

t(Lt(β
∗ + h√

t
, δ∗)− Lt(β

∗, δ∗))

= t(Ht(β
∗ + h√

t
)−Ht(β

∗) + (δ∗)T( h√
t
))

=
√
t(Pt − P )(∇F (·, β∗))Th+

1

2
hTHh+ op(1)

⇝ hTG+
1

2
hTHh in ℓ∞(K)

where G ∼ N (0,Cov(∇F (·, β∗))), op(1) term is uniform over h ∈ K by Claim 3. Applying a continuous mapping
theorem

T γ(β∗, δ∗) = − inf
h∈Bκ

t(Lt(β
∗ + h√

t
)− Lt(β

∗))

d→ − inf
h∈Bκ

(GTh+
1

2
hTHh) =: T

Step 2. In Claim 4, we have shown

Xb(β∗ + ϵth)
p⇝GTh+

1

2
hTHh

in ℓ∞(K) for any compact K ∈ Rn. Next we study the asymptotic distribution of T b.

T b = − inf
β∈Rn

+

Xb(β)

= − inf
h∈(Rn

+−β∗)/ϵt
Xb(β∗ + ϵth)

p⇝ − inf
h∈Rn

(GTh+
1

2
hTHh) =: T b,∞

where the last line follows due to β∗ lying in the interior of Rn
+, and a bootstrap version of continuous mapping theorem;

see Theorem 10.8 in Kosorok (2008). We can see for each draw of G, we have the dominance relationship T b,∞ ≥ T . We
conclude the (1− α)-quantile of T b,∞ is greater than or equal to that of T .

The claim that when κ = ∞, T b p⇝T∞ is obvious.
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Bootstrapping Fisher Market Equilibrium and First-Price Pacing Equilibrium

Remark 1. One could also use the statistic

T γ(β) = inf
0≤δ≤b,δT(1n−β)=0

(
Lt(β, δ)− inf

h∈Bκ

Lt(β + h/
√
t, δ)

)

and the region {β ∈ (0, 1]n : T γ(β) ≤ ι} to do inference on just β. Noting T γ(β∗) ≤ Lt(β
∗, δ∗) − infh∈Bκ Lt(β

∗ +
h/

√
t, δ∗), we can estimate an upper bound of the quantile of its limit distribution by bootstrap.
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