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Abstract

In a model inversion (MI) attack, an adversary abuses access to a machine learning
(ML) model to infer and reconstruct private training data. Remarkable progress has
been made in the white-box and black-box setups, where the adversary has access
to the complete model or the model’s soft output respectively. However, there is
very limited study in the most challenging but practically important setup: Label-
only MI attacks, where the adversary only has access to the model’s predicted label
(hard label) without confidence scores nor any other model information.
In this work, we propose LOKT, a novel approach for label-only MI attacks. Our
idea is based on transfer of knowledge from the opaque target model to surrogate
models. Subsequently, using these surrogate models, our approach can harness ad-
vanced white-box attacks. We propose knowledge transfer based on generative mod-
elling, and introduce a new model, Target model-assisted ACGAN (T-ACGAN), for
effective knowledge transfer. Our method casts the challenging label-only MI into
the more tractable white-box setup. We provide analysis to support that surrogate
models based on our approach serve as effective proxies for the target model for MI.
Our experiments show that our method significantly outperforms existing SOTA
Label-only MI attack by more than 15% across all MI benchmarks. Further-
more, our method compares favorably in terms of query budget. Our study high-
lights rising privacy threats for ML models even when minimal information (i.e.,
hard labels) is exposed. Our code, demo, models and reconstructed data are avail-
able at our project page: https://ngoc-nguyen-0.github.io/lokt/

1 Introduction

Model inversion (MI) attacks aim to infer and reconstruct sensitive private samples used in the
training of models. MI and their privacy implications have attracted considerable attention recently
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The model subject to MI is referred to as target model. There are three
categories of MI attacks: (1) White-box MI, where complete target model information is accessible
by the adversary [1, 2, 3, 5, 7, 10]; (2) Black-box MI, where target model’s soft labels are accessible
[4, 12, 10, 13]; (3) Label-only MI, where only target model’s hard labels are accessible [6]. This
paper focuses on label-only MI, which is the most challenging setup as only limited information
(hard labels) is available (Fig. 1).

In most existing work, MI attack is formulated as an optimization problem to seek reconstructions
that maximize the likelihood under the target model [1, 2, 3, 6]. For DNNs, the optimization problems
are highly non-linear. When the sensitive private samples are high-dimensional samples (e.g. face
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images), the optimizations are ill-posed, even in white-box setups. To overcome such issues, recent
MI [1, 2, 3, 5, 10, 7, 6, 11] learn distributional priors from public data via GANs [14, 15, 16, 17], and
solve the optimization problems over GAN latent space rather than the unconstrained image space.
For example, MI attacks on face recognition systems could leverage GANs to learn face manifolds
from public face images which have no identity intersection with private training images. White-box
attacks based on public data and GANs have achieved remarkable success [1, 2, 3, 7, 11]. We follow
existing work and recent label-only MI [6] and leverage public data in our method. Furthermore,
similar to existing work, we use face recognition models as examples of target models.

Research gap. Different from white-box attack, study on label-only attack is limited despite its
practical importance, e.g., many practical ML models only expose predicted labels. Focusing on
label-only attack and with no knowledge of internal workings of target model nor its confidence score,
BREPMI [6] takes a black-box search approach to explore the search space iteratively (Fig. 1(a)). To
seek reconstructions with high likelihood under target model, [6] proposes to query target model and
observe the model’s hard label predictions, and update search directions using Boundary Repelling in
order to move towards centers of decision regions, where high likelihood reconstructions could be
found. However, black-box search in the high-dimensional latent space is extremely challenging.

In this paper, we propose a new approach for Label-Only MI attack using Knowledge Transfer
(LOKT). Instead of performing a black-box search approach as demonstrated in [6] and directly
searching high-likelihood reconstruction from the opaque target model (Fig. 1(a)), which could be
particularly challenging for high-dimensional search space, we propose a different approach. Our
approach aims to transfer the decision knowledge of the target model to surrogate models, for which
complete model information is accessible. Subsequently, with these surrogate models, we could
harness SOTA white box attacks to seek high-likelihood reconstructions (Fig. 1(b)). To obtain the
surrogate models, we explore generative modeling [18, 19, 20, 21, 22]. In particular, we propose a new
Target model-assisted ACGAN, T-ACGAN, which extends ACGAN [23] and leverages our unique
problem setup where we have access to the predicted labels of the target model as shown in Fig. 1(d).
In particular, by effectively leveraging the target model in discriminator/classifier training, we can
explore synthetic data for decision knowledge transfer from the target model to the surrogate model.
With T-ACGAN capturing the data manifold of public samples, synthetic data is diverse and abundant.
We hypothesize that such rich synthetic data could lead to improved decision knowledge transfer.
Moreover, as training progresses, T-ACGAN generator learns to improve its conditional generative
capabilities, enabling it to produce more balanced synthetic data for surrogate model learning. We
explore several surrogate model designs. In one configuration, we employ the discriminator/ classifier
of T-ACGAN as the surrogate model. In an alternative design, we utilize the generator of T-ACGAN
to train different surrogate model variants. It’s noteworthy that the generator of T-ACGAN can be
readily employed for white-box attacks, and its conditional generation capabilities can effectively
reduce the search space during inversion. In addition, we perform analysis to support that our
surrogate models are effective proxies for the opaque target model for MI. (Fig. 1(e)). Overall,
our T-ACGAN renders improved surrogate models, resulting in a significant boost in MI attack
accuracy (Fig. 1(f)) and reduced number of queries compared to previous SOTA approach. Our
contributions are:

• We propose LOKT, a new label-only MI by transferring decision knowledge from the target model
to surrogate models and performing white-box attacks on the surrogate models (Sec. 4). Our
proposed approach is the first to address label-only MI via white-box attacks.

• We propose a new T-ACGAN to leverage generative modeling and the target model for effective
knowledge transfer (Sec. 4).

• We perform analysis to support that our surrogate models are effective proxies for the target model
for MI (Sec. 5).

• We conduct extensive experiments and ablation to support our claims. Experimental results show
that our approach can achieve significant improvement compared to existing SOTA MI attacks (Sec.
6). Additional experiments/ analysis are in Supplementary.

2 Related work

Model Inversion (MI) has particularly alarming consequences in security-sensitive domains, such as
face recognition [24, 25, 26, 27], medical diagnosis [28, 29, 30]. Fredrikson et al. [31] introduces the
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Figure 1: Overview and our contributions. (a) Under Label-only model inversion (MI) attack,
the Target model T is opaque. (b) Stage 1: As our first contribution, we propose a knowledge
transfer scheme to render surrogate model(s). (b) Stage 2: Then, we cast the Label-only MI
attack as a white-box MI attack on surrogate model(s) S. (c) This casting can ease the challenging
problem setup of label-only MI attack into a white-box MI attack. To our knowledge, our proposed
approach is the first to address label-only MI via white-box MI attacks. (d) We propose T-ACGAN
to leverage generative modeling and the target model for effective knowledge transfer to render
surrogate model(s). Knowledge transfer renders D (Discriminator) as a surrogate model, and further
generated samples of T-ACGAN can be used to train additional surrogate variant S (Sec. 4.3). (e)
Our analysis demonstrates that S is an effective proxy for T for MI attack (details in Sec.5). In
particular, white-box MI attack on S mimics the white-box attack on opaque T . (f) Our proposed
approach significantly improves the Label-only MI attack (e.g. ≈ 20% improvement in standard
CelebA benchmark compared to existing SOTA [6]) resulting in significant improvement in private
data reconstruction. Best viewed in color.

first MI attack for simple linear regression models. Recently, several works extend MI for complex
DNNs under different setups. For white-box setup, [1] proposes Generative Model Inversion (GMI)
to leverage public data and GAN[32, 33] to constrain the search space. [2] proposes Knowledge-
Enriched Distributional Model Inversion (KEDMI) to train an inversion-specific GAN for the attack.
[3] proposes Variational Model Inversion (VMI) to apply variational objectives for the attack. Very
recent work [7] proposes Pseudo Label-Guided MI (PLG-MI) to apply model’s soft output to train
a conditional GAN (cGAN)[34] for white-box attack. LOMMA[11] proposes a better objective
function for MI and model augmentation to address MI overfitting. For black-box attack, where
model’s soft output is available, [4] proposes to train an inversion model and a decoder to generate
target images using predicted scores of the inversion model. [12] proposes an adversarial approach for
black-box MI. For label-only attack, [6] proposes BREPMI, the first label-only MI using a black-box
Boundary Repelling search. See Supplementary for further discussion of related work.

3 Problem setup

Given a target model T , the goal of MI is to infer private training data Dpriv by abusing access to
model T . More specifically, given a target class/ identity label y, the adversary aims to reconstruct
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an image x which is similar to the images of class y in Dpriv. Most MI formulate the inversion as
optimization problems to seek the highest likelihood reconstructions for identity y under T . As direct
searching for x in the unconstrained image space is ill-posed, many MI attacks [1, 2, 3, 7, 6] leverage
public dataset Dpub that is the same domain as Dpriv , e.g., Dpriv and Dpub are facial image datasets.
GAN [14] is applied to learn distributional prior from Dpub, and the adversary searches the GAN
latent space instead of the unconstrained image space for high-likelihood reconstructions under T :

max
z

logPT (y|G(z)) (1)

Here, G is the generator, and PT (y|.) is the likelihood of an input for identity y under target model T .
White-box attacks apply gradient ascent and some regularization [1, 2, 3, 7] to solve Eq. 1, whereas
label-only attack BREPMI [6] applies black-box search to tackle Eq. 1. In this paper, we also tackle
Eq. 1 under label-only setup, i.e. only the predicted label is available.

4 Approach

Our proposed label-only MI consists of two stages. In stage 1, we learn surrogate models. In stage 2,
we apply SOTA white-box attack on the surrogate models. To learn surrogate models, we explore an
approach based on GAN and propose a new Target model-assisted ACGAN (T-ACGAN) for effective
transfer of decision knowledge. Our T-ACGAN learns the generator G and the discriminator D with
classifier head C. In one setup, we directly take C ◦D as the surrogate model*. In another setup, we
apply G to generate synthetic data to train another surrogate model S or an ensemble of S. Then, we
apply SOTA white-box attack on C ◦D, S or the ensemble of S. In our experiments, we show that
using C ◦D in a white-box attack can already outperform existing SOTA label-only attack. Using S
or an ensemble of S can further improve attack performance. The G obtained from our T-ACGAN
can be readily leveraged in the attack stage.

4.1 Baseline

Before discussing our proposed approach, we first discuss a simple baseline for comparison. Given
the public data, one could directly use the target model T to label the data and learn the surrogate
model S. For xp ∈ Dpub, we construct (xp, ỹ), where ỹ = T (xp) is pseudo label of private identity.
We obtain the dataset D̃pub with samples (xp, ỹ), i.e. D̃pub is the public dataset with pseudo labels.
We apply D̃pub to train S. However, this algorithm suffers from class imbalance. In particular, some
private identities could have less resemblance to xp ∈ Dpub. As a result, for some ỹ, there is only
a small number of xp classified into it, and D̃pub is class imbalanced. When using D̃pub to train S,
minority classes may not gain adequate decision knowledge under T and could perform sub-optimally.
In our experiments, we also apply techniques to mitigate the class imbalance in D̃pub. However, the
performance of this baseline approach is inadequate as we will show in the experiments.

4.2 Review of ACGAN

In standard ACGAN [23], we are given a real training dataset with label, i.e., Dreal with samples
(xr, y). The generator G takes a random noise vector z and a class label y as inputs to generate a fake
sample xf . The discriminator D outputs both a probability distribution over sources P (s|x) = D(x),
where s ∈ {Real, Fake}, and a probability distribution over the class labels, i.e., P (c|x) = C◦D(x),
and c is one of the classes. For real training sample xr of label y and fake sample xf = G(z, y) with
conditional information y, the loss functions for D, C and G are:

LD,C = −E[logP (s = Fake|xf )]− E[logP (s = Real|xr)]

− E[logP (c = y|xf )]− E[logP (c = y|xr)]
(2)

LG = E[logP (s = Fake|xf )]− E[logP (c = y|xf )] (3)

*With a slight abuse of notation we use D to represent the entire discriminator and the discriminator up to
and including the penultimate layer in the context of C ◦D.
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4.3 Our Proposed T-ACGAN and Learning of Surrogate Model

Unlike standard ACGAN setup where we have access to labelled data Dreal with samples (xr, y),
in our setup, we have access to real public data without label: Dpub with samples xp. Importantly,
we can leverage the target model T to provide pseudo labels for generated samples xf = G(z, y),
which are diverse and abundant. Our proposed T-ACGAN aims to take advantage of T to provide
more diverse and accurate pseudo labelled samples during the training.

D and C Learning. Our T-ACGAN leverages T to assign pseudo labels to the diverse generated
samples xf = G(z, y), i.e., ỹ = T (xf ). We apply samples xp and (xf , ỹ) to learn D and C:

LD,C = −E[logP (s = Fake|xf )]− E[logP (s = Real|xp)]

− E[logP (c = ỹ|xf )]
(4)

In Eq. 4, the term E[logP (c = ỹ|xf )] = E[logP (c = ỹ|G(z, y))] is different from ACGAN and
may look intriguing. Instead of using y as class supervision to train D and C as in ACGAN (Eq. 2),
our T-ACGAN takes advantage of T to apply ỹ = T (G(z, y)) to train D and C, as ỹ is more accurate
conditional information compared with y especially during the initial epochs. With Eq. 4, our method
transfers the decision knowledge of T into D and C via diverse generated samples. Furthermore, as
we can generate diverse pseudo labelled samples (xf , ỹ) using T and G, pseudo labelled data based
on xp can be omitted. In our experiment, we show that we can achieve good performance using
diverse samples (xf , ỹ). In T-ACGAN, we utilize public data xp only for real/fake discrimination.

G Learning. We follow ACGAN training for G, i.e. Eq. 3. With D and C trained with decision
knowledge of T in the above step, they provide feedbacks to G to improve its conditional generation
in the private label space of T . In our experiment, we analyze y in xf = G(z, y) and ỹ = T (xf ). As
training progresses, G improves its conditional generation, and y and ỹ become more aligned. Note
that, as T outputs only hard labels, T cannot be readily applied to provide feedback for G learning.

Surrogate Model. With alternating D and C learning and G learning, we obtain D, C and G. We
explore three methods to obtain the surrogate model. • (i) We directly take C ◦D in T-ACGAN as
the surrogate model and apply a white-box attack on C ◦D. This can be justified as C ◦D is trained
based on decision knowledge of T to classify a sample into identities of private training data. • (ii)
We apply G of T-ACGAN to generate dataset D̃fake with samples (xf , ỹ), where xf = G(z, y) and
ỹ = T (xf ). We apply D̃fake to train another surrogate model S. • (iii) We use the same dataset
D̃fake in (ii) to train an ensemble of S of different architectures. As pointed out in [11], using an
ensemble of S could improve white-box attack performance.

White-box Attack. With surrogate model C ◦D, S or an ensemble of S, any white-box attack can
be applied. In our experiments, we show that our surrogate models are effective across a range of
white-box attacks (See the Supplementary). Furthermore, G in T-ACGAN can be readily leveraged
for performing the attack. Particularly, based on G(z, y) obtained in the above steps, we could reduce
the search space during inversion to the latent region corresponding to the target identity y, leading to
more efficient search and improved attack accuracy [7].

5 Analysis for justification of surrogate models

In this section, we provide an analysis to justify why our surrogate model could be an effective proxy
for T under MI, i.e., the results of white-box MI attack on our surrogate model be good approximation
to that of white-box MI attack on T . Note that results of white-box MI on T cannot be obtained
directly as T exposes only hard labels. To simplify the presentation, we focus our discussion on S.
As discussed in Sec. 3, most MI attacks formulate inversion as an optimization problem of seeking
reconstructions that achieve highest likelihood under target model. Therefore, when we carry out MI
on S with SOTA white-box approaches, we expect to obtain high-likelihood reconstructions under S
(or high-likelihood generated samples of GAN under S, see Eq. 1). We use PS and PT to denote
likelihood of a sample under S and T respectively.

In what follows, we provide analysis to support that S based on our approach would possess an
important property of good proxy for T . Property P1: For high-likelihood samples under S, it is
likely that they also have high likelihood under T . See Fig. 1(e) for distribution of generated samples’
PT conditioning on those with high PS . It can be observed that many have high PT . Particularly, it is
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uncommon for high-likelihood samples under S to have low likelihood under T (see Fig. 1(e) only a
few samples have low PT ).

With Property P1, the result obtained by white-box on S (which is a high likelihood sample under
S) is likely to have a high likelihood under T and could be a good approximation to the result of
white-box on T (which is a high likelihood sample under T ). In Fig. 1(e), P1 can be clearly observed†.
Therefore, S using our approach would possess P1 and would be a good proxy for T for MI.

Why would S possess property P1? This could be intriguing. After all, T does not expose any
likelihood information. The labels of samples assigned by T are the only information available to S
during training of S. It does not appear that S can discern low or high-likelihood samples under T .

To discuss why S would possess P1, we apply findings and analysis framework of Arpit et al. [35]
regarding the general learning dynamics of DNNs. [35] presents a data-centric study of DNN learning
with SGD-variants. In [35], “easy samples” are ones that fit better some patterns in the data (and
correspondingly “hard samples”). The easy and hard samples exhibit high and low likelihoods in
DNNs resp. as discussed in [35]. Furthermore, an important finding from [35] is that, in DNNs
learning, the models learn simple and general patterns of the data first in the training stage to fit the
easy samples.

We apply the framework of [35] to understand our learning of S and the reason why S would possess
P1. Fig. 2(a) illustrates easy and hard samples in our problem: patterns of face identities can
be observed in some samples (easy samples), while other samples (hard samples) exhibit diverse
appearance. Similar to [35], Fig. 2(b) shows that these easy and hard face samples tend to have high
and low likelihood under T . Fig. 2(c) shows the learning of S on these easy and hard samples at
different epochs. Consistent with the “DNNs Learn Patterns First” finding in [35], S learns general
identity patterns first to fit the easy samples. Therefore, PS of easy samples improve at a faster
pace in the training, and many of them achieve high PS . As easy samples tend to have high PT , we
observe P1 in S. For the hard samples (which tend to have low PT ), it is uncommon for S to achieve
high likelihood on them as they do not fit easily to the pattern learned by S.

6 Experiments

In this section, we present extensive experiment results and ablation studies: (i) We show that our
proposed T-ACGAN can lead to better surrogate models compared to alternative approaches (Sec.
6.2). (ii) We show that our proposed approach LOKT can significantly outperform the existing
SOTA label-only MI attack (Sec. 6.3). (iii) We present additional results (Sec. 6.4) to demonstrate
the efficacy of LOKT against SOTA MI defense methods. We further show that LOKT compares
favorably in terms of query budget compared to existing SOTA. Additional experiments/analysis
provided in Supplementary.

6.1 Experimental Setup

Table 1: Details of target model
T . To showcase the effectiveness of
our proposed method, we conduct
a comprehensive set of 30 experi-
ments, covering 10 different setups.

Dpriv
T

Architecture # classes

CelebA

FaceNet64 [36]

1,000
IR152 [37]
VGG16 [38]
BiDO-HSIC [39]
MID [9]

Facescrub FaceNet64 [36] 200
Pubfig83 FaceNet64 50

To ensure a fair comparison, we adopt the exact experimental
setup used in BREPMI [6]. In what follows, we provide details
of the experimental setup.

Dataset. We use three datasets, namely CelebA [40], Face-
scrub [41], and Pubfig83 [42]. We further study Label-Only MI
attacks under distribution shift using FFHQ dataset [43] which
contains images that vary in terms of background, ethnicity,
and age. Following [2, 6], we divide each dataset (CelebA/
Facescrub/ Pubfig83) into two non-overlapping sets: private
set Dpriv for training the target model T , and public set Dpub

for training GAN/T-ACGAN. More details on datasets and
attacked identities can be found in Supplementary.

Target Models. Following [2, 6], we use 3 target models T
including VGG16 [38], IR152 [37], and FaceNet64 [36]. All target models are provided in [2, 6].

†Fig. 1(e) are PT and PS of xf = G(z, y) from our T-ACGAN. More details in Supp.
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Figure 2: We apply the framework of [35] to analyze learning dynamics of S to reason why S
possesses property P1, and therefore could be an effective proxy for T under MI. We analyze
generated samples xf from our T-ACGAN for 3 identities (IDs 20, 16, 36). Note that xf analysis
is relevant as generated samples are used in MI attacks. (a): We analyze face embeddings of xf

extracted from publicly available SOTA face recognition model here. Different clusters and different
distances from cluster centroids can be observed, suggesting patterns of face identities in some
samples (easy samples) while diverse appearance in other samples (hard samples). We use distances
from centroids to identify easy samples xe

f and hard samples xh
f (easy samples are indicated using

transparent blue circle for each ID in the visualization). Visualization of xe
f and xh

f in image space
further demonstrates identity patterns in xe

f and diverse appearance in xh
f . (b): Similar to [35], we

observe that xe
f and xh

f tend to have high and low likelihood under T (PT ) resp (training data). (c):
We track likelihood under S (PS) for xe

f and xh
f during the training of S. As training progresses,

PS of xe
f and xh

f improve, and samples move up vertically (note that PT of samples do not change).
Consistent with the “DNNs Learn Patterns First” finding in [35], S learns general identity patterns
first to fit the easy samples. Therefore, PS of xe

f improve at a faster pace in the training, and many of
them achieve high PS at epoch = 200. As xe

f tend to have high PT , we observe property P1 in S. For
xh
f (many of them tend to have low PT ), it is uncommon for S to achieve high likelihood on them as

they do not fit easily to the pattern learned by S. See Supplementary for additional details and
analysis. Best viewed in color.

Additionally, we use the following methods/ models for evaluating the attack performance under
SOTA MI defense methods: • BiDO-HSIC [39]‡. • MID [9]§. The details are included in Table 1.

Evaluation Metrics. Following [6, 11, 2], we use the following metrics to quantitatively evaluate the
performance of MI attacks. Further, we also conduct user studies to assess the quality of reconstructed
data (Sec. 6.5).

• Attack Accuracy (Attack acc.): Following [1, 2, 6], we utilize an evaluation model, E, which
employs a distinct architecture and is trained on Dpriv

¶. E serves as a proxy for human inspection
[1]. Higher attack accuracy indicates superior performance.

• KNN Distance (KNN dt.): The KNN distance indicates the shortest distance between the recon-
structed image of a specific identity and its private images. Specifically, the shortest distance is
computed using the l2 distance in the feature space, using the evaluation model’s penultimate layer.

‡https://github.com/AlanPeng0897/Defend_MI
§https://github.com/Jiachen-T-Wang/mi-defense
¶Following previous work, E can also be trained on Dpriv and samples from additional identities. This

could improve generalization of E for accurate evaluation.
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A smaller KNN distance signifies that the reconstructed images are more closely aligned with the
private images of the target identity.

6.2 Training surrogate model with different algorithms

In this section, we demonstrate that our proposed T-ACGAN can lead to better surrogate models
for MI. We describe a set of alternative approaches that can be used to train surrogate models using
Dpub and compare the performance of these approaches with our proposed method. Specifically, we
consider a set of five algorithms, which can be broadly classified into three categories, for learning
the surrogate model S:

• Directly use the public dataset Dpub. We present two methods to train S: • Direct I. We train
S using the public dataset labelled with target model, i.e. D̃pub with samples (xp, ỹ), xp ∈ Dpub,
ỹ = T (xp); see Sec. 4.1. • Direct II. We apply data augmentation to D̃pub of Direct I to reduce
the class imbalance in Direct I, followed by training S using the newly more balanced dataset.

• Training an ACGAN. We provide two versions: • ACGAN I. We train an ACGAN model on
D̃pub used in Direct I. • ACGAN II. We train an ACGAN model on augmented D̃pub used in
Direct II. As C ◦D in ACGAN serves as a classifier, we use C ◦D for MI attacks.

• Training proposed T-ACGAN. We use our proposed method described in Section 4.3 to train
T-ACGAN. Similar to ACGAN I and II, we use C ◦D after training T-ACGAN for the attack.

Table 2: We compare different ap-
proaches to train surrogate model for
MI attacks. We utilize the following
settings: T = FaceNet64, Dpriv =
CelebA, Dpub = CelebA, and em-
ploy the KEDMI[2] for MI attacks.

Algorithm Attack acc. ↑ KNN dt. ↓
Direct I 5.87 ± 1.65 1936.12
Direct II 9.60 ± 2.22 1890.16
ACGAN I 6.47 ± 2.15 1771.26
ACGAN II 7.87 ± 3.10 1785.20
T-ACGAN 42.07 ± 3.46 1473.99

For this comparison, we utilize the following settings: T =
FaceNet64, Dpriv = CelebA, Dpub = CelebA. Both ACGAN
and T-ACGAN adopt the SNResnet architecture [34, 44]. To
ensure a fair comparison, we use the same architecture as
C ◦D in ACGAN and T-ACGAN for the surrogate model S in
Direct I and Direct II. Detailed architecture specifications can
be found in the Supplementary. After training the models, we
employ the widely-used KEDMI [2] as the white-box attack
on the trained surrogate models. Table 2 presents the results.
The effectiveness of T-ACGAN in training surrogate models
for MI attacks can be observed.

6.3 Comparison against SOTA label-only MI attack

Standard MI attack setup. In this section, we present the results obtained from the standard attack
setup on three datasets: CelebA, Facescrub, and Pubfig83, as detailed in Table 3. We evaluate three
designs of surrogate: • (i) We directly use C ◦D from our T-ACGAN as the surrogate model. The
architecture of T-ACGAN can be found in the supplementary material. • (ii) We utilize the synthetic
data generated by G of our T-ACGAN and label it using the target classifier T to train another
surrogate model, denoted as S = Densenet-161 [45]. • (iii) We employ the same data as in (ii)
to train an ensemble of surrogate models, denoted as Sen, using different architectures including
Densenet-121, Densenet-161, and Densenet-169.

We compare our results with the state-of-the-art (SOTA) label-only MI attack BREPMI [6]. To
conduct our attacks, we utilize white-box PLGMI [7] on the surrogate models. Since PLGMI
performs attacks using a conditional GAN trained with white-box access of the target classifier, we
replace it with our T-ACGAN, which becomes available for use after training the surrogate models.

Our proposed method LOKT demonstrates a significant improvement in Attack accuracy and KNN
distance compared to the SOTA label-only MI attack BREPMI [6]. Our top 1 attack accuracies are
better than BREPMI from from 17.2% to 29.87% across all setups when we utilize the ensemble Sen.

Fig. 1 (f) presents a visual comparison of various methods under the setup Dpriv = CelebA, Dpub

= CelebA. More results are available in the Supplementary. Results clearly indicate that LOKT
produces images that are closer to the ground truth (private data) compared to BREPMI [6]. This
outcome provides strong evidence of the effectiveness of our approach in generating realistic images
that closely resemble private data, which is critical for conducting successful MI attacks.

MI attacks under large distribution shift. Table 3 compares the MI attack results in the large
distribution shift setup, where we use Dpub = FFHQ, Dpriv = CelebA/ Facescrub/ Pubfig83, and
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Table 3: We conduct comprehensive experiments to compare our proposed method LOKT and
existing SOTA BREPMI [6] across standard MI attack benchmarks. Specifically, we evaluate the
performance of our three proposed designs of surrogate, namely C ◦D, S, and Sen, while BREPMI
performs black-box search on T directly. We highlight the best results in each setup in bold.

Setup Attack Attack acc. ↑ KNN dt. ↓ Setup Attack Attack acc. ↑ KNN dt. ↓

T = FaceNet64
Dpriv = CelebA
Dpub = CelebA

BREPMI 73.93 ± 4.98 1284.41
T = FaceNet64
Dpriv = Pubfig83
Dpub = Pubfig83

BREPMI 55.60 ± 4.34 1012.83

LOKT
C ◦D 81.00 ± 4.79 1298.63

LOKT
C ◦D 74.80 ± 5.93 924.58

S 92.80 ± 2.59 1207.25 S 61.60 ± 3.58 993.44
Sen 93.93 ± 2.78 1181.72 Sen 80.00 ± 3.16 883.52

T = IR152
Dpriv = CelebA
Dpub = CelebA

BREPMI 71.47 ± 5.32 1277.23
T = FaceNet64
Dpriv = Pubfig83
Dpub = FFHQ

BREPMI 72.80 ± 3.90 971.51

LOKT
C ◦D 72.07 ± 4.03 1358.94

LOKT
C ◦D 85.60 ± 2.61 914.15

S 89.80 ± 2.33 1220.00 S 88.40 ± 2.97 920.99
Sen 92.13 ± 2.06 1206.78 Sen 94.40 ± 3.85 862.24

T = VGG16
Dpriv = CelebA
Dpub = CelebA

BREPMI 57.40 ± 4.92 1376.94
T = FaceNet64
Dpriv = Facescrub
Dpub = Facescrub

BREPMI 40.20 ± 6.60 1236.4

LOKT
C ◦D 71.33 ± 4.39 1364.47

LOKT
C ◦D 45.70 ± 4.00 1296.29

S 85.60 ± 3.03 1252.09 S 53.20 ± 5.29 1280.70
Sen 87.27 ± 1.97 1246.71 Sen 58.60 ± 4.86 1225.13

T = FaceNet64
Dpriv = CelebA
Dpub = FFHQ

BREPMI 43.00 ± 5.14 1470.55
T = FaceNet64
Dpriv = Facescrub
Dpub = FFHQ

BREPMI 37.30 ± 3.99 1456.59

LOKT
C ◦D 43.27 ± 3.53 1516.18

LOKT
C ◦D 44.50 ± 5.98 1403.73

S 59.13 ± 2.77 1437.86 S 47.20 ± 4.39 1404.85
Sen 62.07 ± 3.89 1428.04 Sen 53.70 ± 4.57 1338.67

Table 4: We report Label-only MI Attack results
under SOTA defense models namely BiDO [39]
and MID [9]. We use Dpriv = CelebA, Dpub =
CelebA. We highlight the best results in bold.

Setup Attack Attack acc. ↑ KNN dt. ↓
T = BiDO [39]
Dpriv = CelebA
Dpub = CelebA

BREPMI[6] 37.40 ± 3.66 1500.45

LOKT
C ◦D 45.73 ± 5.94 1493.48
S 58.53 ± 4.87 1427.22
Sen 60.73 ± 3.07 1395.93

T = MID [9]
Dpriv = CelebA
Dpub = CelebA

BREPMI[6] 39.20 ± 4.19 1458.61

LOKT
C ◦D 44.13 ± 3.54 1475.73
S 55.33 ± 4.40 1393.76
Sen 60.33 ± 4.76 1374.34

Table 5: The comparison of the number
of queries (in millions) used by LOKT and
BREPMI [6]. The attacks using S and Sen con-
sume additional 500k queries comparing to C◦D
to label the synthetic images to train S and Sen.
Our results show that we use fewer number of
queries than BREPMI in all setups.
T LOKT C ◦D LOKT S/Sen BREPMI
FaceNet64 12.16 12.66 17.98
IR152 12.16 12.66 18.06
VGG16 12.16 12.66 18.12
BiDO-HSIC 12.16 12.66 18.39
MID 12.16 12.66 18.25

T = FaceNet64. The attack results of BREPMI drop significantly (by 30.93% for CelebA and 2.9%
for Facescrub), while the results for Pubfig83 notably increase, which can be attributed to the small
size of the Pubfig83 dataset [6]. Our proposed method outperforms BREPMI, with the top 1 attack
accuracies increase from 16.40% to 21.60% for all setups. Moreover, the KNN distance indicates
that our reconstructed images are closer to the private data than those reconstructed by BREPMI.

6.4 Additional results

MI attack results using MI defense model. We investigate the attacks on the MI defense model
(see Table 4). Specifically, we utilize the SOTA defense model BiDO-HSIC [39] and MID [9]. Our
results indicate that BiDO-HSIC successfully reduce the effectiveness of the white-box SOTA attack,
PLGMI, by 9.57% (See the result in the Supplementary). In the label-only setup, the performance
of BREPMI becomes relatively low with attack accuracy of only 37.40% for BiDO-HSIC [39] and
39.20% for MID [9]. In contrast, our approach achieves a much higher attack accuracy of 60.73% and
60.33%, almost doubling the performance of BREPMI. These results demonstrate that our approach
is effective in conducting MI attacks on MI defense models, even in scenarios where the adversary
has limited information about the target classifier.

High resolution. We conduct the experiment with high resolution images which has not been
addressed yet for label-only setup [6]. In particular, we train a new target classifier T = Resnet-152
using CelebA setup with the image size = 128×128. For fair comparison between BREPMI and our
proposed method, T-ACGAN has the same GAN architectures used by BREPMI. The details of the
architecture can be found in the Supplementary.

The results are shown in Table 6. LOKT outperforms BREPMI, with top 1 accuracy surpassing
BREPMI by 20.27%. Our inverted images are closer to private training samples than BREPMI
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Table 6: We conduct the experiment with higher
resolution images. We use T = Resnet-152, Dpriv

= CelebA, Dpub = CelebA, image size = 128×128.
The natural accuracy of T is 86.07%. We highlight
the best results in bold.

Setup Attack Attack acc. ↑ KNN dt. ↓
T = IR152
Dpriv = CelebA
Dpub = CelebA

BREPMI[6] 50.33 ± 4.71 1389.09

LOKT
C ◦D 66.87 ± 3.93 1356.53
S 66.80 ± 3.83 1341.04
Sen 70.60 ± 4.43 1320.16

Table 7: User study results. Our human study
reveals that users distinctly favor our approach,
with 64.30% user preference for images recon-
structed using our proposed approach, LOKT,
compared to BREPMI’s lower 35.70% user pref-
erence.

Method User Preference (↑)
BREPMI 35.70%
LOKT 64.30%

(smaller KNN distance). We believe our study can provide new insight on the effectiveness of SOTA
label-only attack at a higher resolution of 128×128, paving the way to future label-only model
inversion attacks at resolutions beyond 128×128.

Query budget. In this experiment, we compare query budget between our proposed method and
BREPMI [2]. In the BREPMI, queries to the target classifier T are required to identify the initial
points for attacking and estimate the gradients during the attack. In our method, queries to T
are required to label the synthetic data during the training of T-ACGAN to obtain C ◦ D, and
additional 500k queries to label generated images of T-ACGAN to train S and the ensemble Sen. For
comparison, as shown in Table 5, we use Dpriv = CelebA and Dpub = CelebA. The results show
that our proposed method requires 30% fewer queries compared to BREPMI.

6.5 User study

User study setup. In this section, we go beyond objective metrics and consider subjective evaluation
of MI attacks. In particular, we conduct a human study to understand the efficacy of our proposed
method, LOKT, compared to BREPMI. We follow the setup by [10] for human study and use Amazon
Mechanical Turk (MTurk) for experiments. The user interface is provided in the Supplementary.
In this study, users are shown 5 real images of a person (identity) as reference. Then users are
required to compare the 5 real images with two inverted images: one from our method (LOKT), the
other from BREPMI. We use Dpriv = CelebA, Dpub = CelebA and T = FaceNet64. Following [10],
we randomly selected 50 identities with 10 unique users evaluating each task accounting to 1000
comparison pairs.

User study results. We report the user study results in Table 7. Our human study reveals that
users distinctly favor our approach, with 64.30% user preference for images reconstructed using
our proposed approach, in contrast to BREPMI’s lower 35.70% user preference. These subjective
evaluations further show the efficacy of our proposed method, LOKT, in the challenging label-only
MI setup.

7 Discussion

Conclusion. Instead of performing a black-box search approach as in existing SOTA, we propose a
new label-only MI approach (LOKT) by transferring decision knowledge from the target model to
surrogate models and performing white-box attacks on the surrogate models. To obtain the surrogate
models, we propose a new T-ACGAN to leverage generative modeling and the target model for
effective knowledge transfer. Using findings of general learning dynamics of DNNs, we conduct
analysis to support that our surrogate models are effective proxies for the target model under MI.
We perform extensive experiments and ablation to support our claims and demonstrate significant
improvement over existing SOTA.

Broader Impacts. Understanding model inversion attacks holds significance as AI models continue
to see widespread deployment across various applications. By studying and understanding the
approaches and methodologies for model inversion, researchers can develop good practices in
deploying AI models and robust defense mechanisms for different applications esp. those involving
sensitive training data. It is important to emphasize that the objective of model inversion research is
to raise awareness of potential privacy threats and bolster our collective defenses.

Limitations. While our experiments are extensive compared to previous works, practical applica-
tions involve different types of private training datasets such as healthcare data. Nevertheless, our
assumptions are general, and we believe our findings can be applied to a broader range of applications.
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