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Abstract

Large audio language models (LALMs) extend001
language understanding into the auditory do-002
main, yet their ability to perform low-level003
listening, such as pitch and duration detec-004
tion, remains underexplored. However, low-005
level listening is critical for real-world, out-of-006
distribution tasks where models must reason007
about unfamiliar sounds based on fine-grained008
acoustic cues. To address this gap, we intro-009
duce the World-of-Whale benchmark (WoW-010
Bench) to evaluate low-level auditory percep-011
tion and cognition using marine mammal vo-012
calizations. WoW-bench is composed of a013
Perception benchmark for categorizing novel014
sounds and a Cognition benchmark, inspired015
by Bloom’s taxonomy, to assess the abilities016
to remember, understand, apply, and analyze017
sound events. For the Cognition benchmark,018
we additionally introduce distractor questions019
to evaluate whether models are truly solving020
problems through listening rather than relying021
on other heuristics. Experiments with state-of-022
the-art LALMs show performance far below023
human levels, indicating a need for stronger024
auditory grounding in LALMs.1025

1 Introduction026

Humans naturally perceive, interpret, and reason027

about sound events in their environment. Motivated028

by the success of large language models (LLMs)029

in natural language understanding and reasoning,030

recent works have developed large audio-lanugage031

models (LALMs), that apply these capabilities to032

the auditory domain (Gong et al., 2024; Tang et al.,033

2024; Ghosh et al., 2024a; Chu et al., 2023; Bai034

et al., 2023). These models integrate an audio035

encoder with an LLM to support general audio036

understanding and instruction following across di-037

verse sound-related tasks. A number of bench-038

marks have been introduced to evaluate and ad-039

1Demo page: https://www.notion.so/
WoW-Bench-1f91364deb8e801aa6c2f5c939a7edfb

vance LALMs’ auditory understanding and reason- 040

ing, including compositional (Ghosh et al., 2024b), 041

deductive (Deshmukh et al., 2025b), and compar- 042

ative (Deshmukh et al., 2025c) reasoning. More 043

recently, broader benchmarks have been proposed 044

to evaluate a wider spectrum of auditory compre- 045

hension and reasoning skills (Sakshi et al., 2025). 046

However, the perceptual capability that precedes 047

the reasoning of LALMs’ auditory input remains 048

relatively underexplored, despite its foundational 049

importance for auditory understanding and reason- 050

ing. This gap is critical, as perceptual errors often 051

account for a substantial portion of failures in rea- 052

soning tasks (Sakshi et al., 2025). Current evalua- 053

tions of LALMs’ perceptual capabilities predomi- 054

nantly rely on audio classification tasks (Gemmeke 055

et al., 2017; Chen et al., 2020; Piczak, 2015; Yang 056

et al., 2024), which map acoustic signals to pre- 057

defined semantic labels such as “dog barking” or 058

“siren.” While these benchmarks assess a model’s 059

ability to perform semantic categorization, they 060

offer limited insight into whether models are at- 061

tending to fine-grained acoustic features, such as 062

pitch and duration. Humans naturally process these 063

acoustic cues prior to deriving semantic meaning 064

(Bregman, 1994). 065

These low-level acoustic features are essential 066

for forming auditory events and objects (Bregman, 067

1994; Moore, 2012). Focusing on this perspec- 068

tive, we define low-level listening as the percep- 069

tual ability to detect and differentiate elementary 070

acoustic attributes prior to semantic interpretation 071

or categorization (Bregman, 1994; Moore, 2012; 072

Nahum et al., 2008). Low-level listening also plays 073

a critical role in understanding and reasoning in 074

unfamiliar scenarios, particularly when combined 075

with knowledge about the acoustic characteristics 076

of novel events. Real world applications such 077

as industrial anomaly detection (Koizumi et al., 078

2020; Dohi et al., 2022), auditory surveillance sys- 079

tems (Crocco et al., 2016), and bioacoustic moni- 080
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Figure 1: World-of-Whale benchmark aims to evaluate low-level listening capabilities of LALMs using marine
mammal vocalizations, which are rarely represented in conventional datasets and span a broad acoustic range.
LALMs struggle with Cognition questions that humans can reliably solve by using low-level auditory perception.

toring (Bardeli et al., 2010) require strong out-of-081

distribution (OOD) generalization, as these tasks082

involve rare and anomalous sounds often absent083

from training data (Koizumi et al., 2020). Effective084

models should detect such unheard anomalies by085

combining knowledge about patterns and low-level086

acoustic cues such as high-frequency whines.087

Recognizing the importance and the relatively088

overlooked nature of low-level listening, we pro-089

pose the World-of-Whale Benchmark (WoW-090

Bench) to assess the fine-grained perceptual ca-091

pabilities of LALMs. Our benchmark focuses on092

marine mammal vocalizations, which span a broad093

acoustic range from 20 Hz to over 20 kHz, and094

exhibit diverse vocalization patterns such as click,095

whistle, and calls. Moreover, these vocalizations096

are rarely covered in conventional large-scale au-097

dio corpora, e.g., only one out of 527 AudioSet098

label distributions. By evaluating models in this un-099

derrepresented and acoustically rich out-of-domain100

setting, we aim to provide a more rigorous and101

fine-grained test of perceptual ability in LALMs.102

Our benchmark is structured into two compo-103

nents. First, we assess the perceptual generaliza-104

tion of LALMs by evaluating their ability to catego-105

rize sounds into less familiar classes based on low-106

level listening. Second, we examine their cognitive107

processing ability, focusing on how well models108

can interpret and decompose information gained109

through low-level auditory perception. Inspired110

by the taxonomy of cognitive hierarchy for learn-111

ing new concepts (Bloom et al., 1956; Anderson112

and Krathwohl, 2001), we systematically evaluate113

models’ abilities to remember, understand, apply,114

and analyze auditory information, as illustrated115

in Figure 1. Additionally, we introduce distractor116

questions to evaluate whether models are truly solv-117

ing tasks through listening rather than relying on118

shallow heuristics or linguistic priors. 119

Extensive experiments with existing LALMs re- 120

veal that both their perceptual generalization and 121

cognitive processing based on low-level listening 122

are limited. As shown in Figure 1, even the best- 123

performing model achieves significantly lower re- 124

sults than humans on the Cognition tasks, high- 125

lighting substantial room for improvement in the 126

low-level listening capabilities of LALMs. More- 127

over, qualitative analysis shows that models tend 128

to adopt a classify-first strategy and infer acous- 129

tic properties based on presumed categories rather 130

than listening to them, which can lead to incorrect 131

decisions. 132

2 Related Work 133

Large Audio-Language Models. Recent advances 134

in LALMs have substantially improved perfor- 135

mance on tasks requiring understanding and reason- 136

ing over general sound events. Pengi (Deshmukh 137

et al., 2023) is among the first to unify diverse au- 138

dio tasks under a single text generation framework 139

by connecting an audio encoder to a decoder-only 140

language model, achieving strong results across a 141

wide range of downstream tasks. Subsequently, a 142

number of LALMs have been introduced (Gong 143

et al., 2024, 2023; Tang et al., 2024; Kong et al., 144

2024; Chu et al., 2023, 2024; Ghosh et al., 2024a), 145

aligning pretrained audio encoders with large lan- 146

guage models and training on large-scale audio- 147

text datasets. These models can follow language 148

instructions and perform a wide range of audio 149

tasks, demonstrating strong performance on both 150

closed-ended tasks (e.g., audio classification) and 151

open-ended tasks (e.g., audio captioning and QA). 152

More recent efforts focus on enhancing the 153

reasoning capabilities of LALMs by introducing 154

carefully designed training corpora (Ghosh et al., 155
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2024a, 2025; Deshmukh et al., 2025a; Xie et al.,156

2025) or incorporating chain-of-thought prompting157

(Wei et al., 2022; Xie et al., 2025; Ma et al., 2025).158

While these approaches advance high-level reason-159

ing, comparatively little attention has been paid to160

low-level auditory perception of the models which161

serves as a foundation for robust reasoning and un-162

derstanding (Sakshi et al., 2025). In this work, we163

address this gap by proposing a new benchmark164

specifically designed to assess the low-level listen-165

ing abilities of state-of-the-art LALMs.166

Benchmarking Large Audio-Language Mod-167

els. Following the rapid development of LALMs,168

several benchmarks have been proposed to as-169

sess their capabilities across diverse understanding170

and reasoning abilities. These benchmarks evalu-171

ate compositional reasoning over complex sound172

events (Ghosh et al., 2024b,a), deductive reason-173

ing via textual entailment conditioned on audio174

inputs (Deshmukh et al., 2025b), and long-context175

understanding using long audio segments (Ghosh176

et al., 2025). Some benchmarks evaluate LALMs177

across a broad range of domains, including speech,178

vocal sounds, general audio, and music (Wang179

et al., 2025; Yang et al., 2024; Sakshi et al., 2025).180

Among these, AIRBench (Yang et al., 2024) and181

AudioBench (Wang et al., 2025) primarily focus182

on audio understanding and instruction-following183

tasks within the general sound event domain.184

However, these benchmarks primarily target rea-185

soning over the perceived sound events, while low-186

level listening abilities, which is how the model187

actually listens to and interprets acoustic input-188

remain largely unexplored. Among existing works,189

ADIFF (Deshmukh et al., 2025c) and MMAU (Sak-190

shi et al., 2025) place relatively greater emphasis191

on perception. ADIFF addresses comparative rea-192

soning by prompting models to describe the differ-193

ences between audio clips, while MMAU focuses194

on information extraction and reasoning across di-195

verse audio types. In contrast, our benchmark is196

specifically designed to evaluate how LALMs per-197

ceive and process novel acoustic events and fine-198

grained auditory details, thereby assessing their199

low-level listening capabilities.200

Bioacoustics, the study of how animals produce201

and receive sound, is essential for understanding202

animal behavior and monitoring ecosystems (Stow-203

ell, 2022). From a machine learning perspective, it204

offers a rich testbed for evaluating auditory percep-205

tion due to its diverse acoustic environments, wide206

frequency ranges, and overlapping vocalizations207

(Rauch et al., 2025). Leveraging these properties, 208

BirdSet (Rauch et al., 2025) introduces a large- 209

scale benchmark for avian vocalizations, highlight- 210

ing the potential of bioacoustic data for evaluating 211

model robustness and distributional generalization 212

in audio classification tasks. We extend this line 213

of work by focusing on marine mammal vocaliza- 214

tions, which span an exceptionally broad frequency 215

range, from 10 Hz to over 100 kHz (Google Re- 216

search, 2024), and are underrepresented in stan- 217

dard datasets, even compared to bird sounds. For 218

example, VGGSound (Chen et al., 2020) includes 219

over 10 species-specific labels for birds but only 2 220

coarse labels for marine mammals. These charac- 221

teristics make whale sounds a challenging domain 222

for robust evaluation of low-level listening and out- 223

of-distribution generalization in LALMs. Our work 224

differs from the domain adaptation of LALMs to 225

the bioacoustic domain (Robinson et al., 2025) in 226

that we aim to assess the detailed perceptual capa- 227

bilities of LALMs in novel auditory environments, 228

rather than focusing on the bioacoustics task itself. 229

3 World-of-Whale Benchmark 230

3.1 Overview 231

We introduce the World-of-Whale Benchmark 232

(WoW-Bench), designed to evaluate LALMs on 233

their ability to perceive and cognitively process 234

low-level acoustic details in unfamiliar and acous- 235

tically diverse scenarios. The benchmark has two 236

components: (1) The Perception benchmark that 237

tests the model’s ability to categorize unfamiliar 238

sound events based on low-level listening and their 239

internal knowledge (§3.2), and (2) The Cognition 240

benchmark that assesses whether models can cogni- 241

tively process fine-grained acoustic characteristics 242

and perceived events through low-level listening, as 243

illustrated in Figure 1.(§3.3). We further describe 244

the design of adversarial distractors used in the 245

Cognition benchmark in §3.4, which test whether 246

models are truly listening to solve the questions. 247

Compared to existing LALM benchmarks, 248

WoW-Bench is the first to explicitly focus on low- 249

level listening and perceptual ability in a controlled 250

OOD setup. As shown in Table 1, prior benchmarks 251

often rely on widely used datasets (Gemmeke 252

et al., 2017; Hershey et al., 2021; Kim et al., 2019; 253

Drossos et al., 2020) or content collected from sim- 254

ilar in-the-wild videos (Ju et al., 2024; Islam et al., 255

2024). Consequently, these benchmarks typically 256

feature similar distribution of sound events. In 257
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Dataset Target Ability
Low-level
Listening

Semantic Source #Test

CompA (2024b) Compositional reasoning Casual, Synthetic 0.6k
CompA-R-test (2024a) Complex reasoning Casual 1.6k
AIRBench (2024) Audio understanding & Instruction following Casual 4.5k∗

AudioBench 2025 Audio understanding & Instruction following Casual 8.9k∗

Audio Entailment (2025b) Deductive reasoning Casual 5.8k
ADIFF (2025c) Comparative reasoning Casual 10k
MMAU (2025) Information extraction & Reasoning Casual, Synthetic 3.3k∗

LongAudioBench (2025) Long context understanding Casual, Egocentric 2.4k

WoW-Bench
Perceptual generalization
& Cognition based on low-level listening

Marine Mammal (2016) 1.7k

Table 1: Comparison to existing LALM benchmarks. Low-level Listening indicates that the dataset evaluates a
model’s ability to process fine-grained acoustic attributes prior to semantic categorization. Casual indicates the
dataset corpora covers general sound events like human and music, e.g., Gemmeke et al. (2017); Kim et al. (2019);
Drossos et al. (2020); Ju et al. (2024). ∗ denotes the number of general audio-related questions in each test set.

contrast, WoW-Bench utilizes marine mammal vo-258

calizations, which are underrepresented in common259

corpora. For example, AudioSet contains only one260

relevant label, VGGSound (Chen et al., 2020) con-261

tains two, and both ESC-50 (Piczak, 2015) and262

FSD50K (Fonseca et al., 2021) contain none. This263

approach allows for the evaluation of whether mod-264

els can generalize beyond familiar data and attend265

to acoustic content, rather than relying solely on266

training priors.267

Identifying suitable OOD audio content is itself268

a non-trivial challenge, as the pretraining data of269

many LALMs already encompass a wide range of270

everyday sounds. We observed that even modest271

extensions, such as adding other animal vocaliza-272

tions from the VGGSound test set, can reduce the273

OOD nature of the task. For instance, when asked274

to classify animal species, Qwen2-Audio-Instruct’s275

accuracy increased markedly from 28.3% on WoW-276

Bench to 76% on the VGGSound-based variant277

(e.g., distinguishing Baltimore oriole from pigeon).278

Additionally, WoW-Bench spans a broad acoustic279

range from low-frequency sounds of 20 Hz to sig-280

nals exceeding 20 kHz, covering the entire human281

auditory spectrum. This makes WoW-Bench partic-282

ularly well-suited for robust evaluation of low-level283

listening and to fine-grained acoustic perception.284

WoW-Bench consists entirely of multiple-choice285

questions (MCQs) in light of two observations.286

While humans may struggle to generate accurate287

descriptions of unfamiliar sounds, they can often288

identify the correct option by comparing acous-289

tic details across choices using low-level listening.290

Moreover, MCQs enable standardized evaluation291

and are widely adopted for both LLM (Hendrycks292

et al., 2021; Yue et al., 2024) and LALM bench-293

marking (Yang et al., 2024; Sakshi et al., 2025).294

3.2 Perception Benchmark 295

The Perception benchmark is designed to judge 296

whether models can classify audio events with un- 297

familiar labels and acoustic characteristics, based 298

on low-level listening abilities and prior knowledge 299

regarding the problem domain. It measures the 300

perceptual generalization of LALMs to novel do- 301

mains, where successful classification depends not 302

on memorized patterns but on the model’s ability 303

to listen and interpret subtle acoustic features. 304

(1) The Species task requires models to classify 305

each audio clip of a vocalization into the correct 306

species category, such as humpback whale, killer 307

whale, or melon-headed whale. This task is analo- 308

gous to typical audio event classification and has 309

been a central focus in bioacoustics research. It 310

demands fine-grained auditory discrimination, as 311

vocalization differences between species are often 312

subtle. In our benchmark, we adopt a zero-shot 313

setting, requiring models to map fine-grained per- 314

ceptual cues to species-level knowledge, if such 315

knowledge exists within the model. 316

(2) The Vocalization task involves models select- 317

ing the most appropriate natural language descrip- 318

tion for a given vocalization. These descriptions 319

refer to vocalization types such as clicks, whistles, 320

or calls, and may also include acoustic character- 321

istics like “high-pitched” or “contains background 322

ship noise.” Similarly to the Species task, the Vo- 323

calization task requires models to capture low-level 324

acoustic details and map them to unfamiliar la- 325

bels. However, the vocalization labels are often 326

more intuitive, semantically interpretable, and di- 327

rectly related to the acoustic signal than the name 328

of species. As a result, this task relies more on 329

perceptual matching than on prior knowledge. 330

(3) The Both task requires models to select the op- 331
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tion that correctly describes both the species and332

the vocalization type for a given audio clip, for333

example,“Leopard Seal – Long Call.” This task334

presents a more challenging scenario by combining335

two subtasks and assessing compositional auditory336

perception. In this setup, models must capture337

different dimensions of acoustic information simul-338

taneously to perform successfully.339

3.3 Cognition Benchmark340

Motivated by Bloom’s taxonomy (Bloom et al.,341

1956; Anderson and Krathwohl, 2001), which de-342

fines a cognitive hierarchy of learning objectives,343

we design the Cognition benchmark comprising344

four subtask types to evaluate different aspects of345

of how LALMs process low-level acoustic details346

and perceived audio events.347

(1) The Remember level in the hierarchy involves348

recognizing and recalling previously encountered349

information. In this task, the model is given a ref-350

erence sound, followed by three additional sounds351

separated by silence. The model must identify352

which of the subsequent sounds is identical to the353

reference. This tests the model’s ability to recall354

the reference and recognize similarity based on355

acoustic characteristics across the segments, with-356

out relying on the understanding of sound events.357

(2) In Bloom’s taxonomy, the Understand level358

refers to the ability to interpret observed informa-359

tion. In our benchmark, we evaluate whether a360

model comprehends the underlying acoustic prop-361

erties of a sound by selecting the description that362

most accurately represents the low-level acoustic363

features. To reduce ambiguity, each choice includes364

both a perceptual pitch label and the corresponding365

frequency range, e.g., "upsweeping high-frequency366

tonal sound above 8 kHz."367

(3) The Apply level in the taxonomy denotes the368

capacity to utilize acquired knowledge in new sit-369

uations. Accordingly, our Apply task evaluates370

whether the model can transfer low-level listening371

abilities to novel contexts. Specifically, the evalua-372

tion consists of two parts; in each part, the model373

compares audio clips based on a core acoustic prop-374

erty, either pitch or duration. In the pitch-based sub-375

task (Apply–Frequency), the model receives three376

clips and identifies the one with either the highest377

or lowest pitch. In the duration-based subtask (Ap-378

ply–Duration), the model selects the sound with the379

longest or shortest duration. This task requires the380

model to utilize low-level perceptual information in381

a comparative setting, without engaging semantic382

understanding of the individual sounds. 383

(4) Finally, the Analyze level in Bloom’s taxon- 384

omy involves breaking information into parts and 385

examining their relationships. To assess this cogni- 386

tive skill, we investigate whether the model can 387

analyze transitions within complex acoustic se- 388

quences. In particular, we present the model with 389

an audio clip composed of two sounds without 390

any intervening silence and the model must iden- 391

tify and interpret the transition between the sounds. 392

We further divide the task into two subtasks: (i) 393

Analyze–Acoustics, which focuses on identifying 394

transitions based on low-level acoustic cues, such 395

as a shift from a low-frequency tone to a broad- 396

band pulse; and (ii) Analyze–Vocalization, which 397

involves detecting changes in higher-level auditory 398

characteristics like species and vocalization types, 399

such as a transition from a Beluga’s squeal to a 400

Common Dolphin’s whistle. We carefully construct 401

the answer choices so that attending to only one 402

part of the sequence is insufficient, requiring the 403

model to analyze the shift between segments. 404

3.4 Distractors and QA Robustness 405

Sakshi et al. (2025) replace audio inputs with ran- 406

dom noise and compare the performance with that 407

on real audio to assess whether models genuinely 408

attend to audio or rely primarily on language pri- 409

ors. However, we believe it is more informative 410

to observe how the model’s prediction changes in 411

response to altered audio input, rather than simply 412

verifying the correctness of responses. 413

Building on this perspective, we develop a more 414

targeted approach by introducing adversarial dis- 415

tractors tailored to each Cognition question type. 416

Each distractor incorporates audio that is qualita- 417

tively distinct from those of regular questions for 418

the same type, such that the less expected choice 419

within the context becomes the correct answer, aim- 420

ing to directly test whether the model is truly solv- 421

ing the task through listening. For example, in the 422

Apply–Frequency task, where the model is asked to 423

select the sound with the highest pitch (A. Sound 1, 424

B. Sound 2, C. Sound 3, D. All indistinguishable), 425

we present three identical sounds as input (i.e., the 426

distractor audio). In such case, the model may still 427

choose one of the labeled sounds, as option D can 428

be less expected given the question format. This 429

approach reveals whether the model relies on shal- 430

low heuristics or demonstrates genuine listening 431

abilities, thereby providing a more rigorous test of 432

the model’s perceptual abilities. 433
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We generate distractor variants by selecting a434

subset of non-distractor questions and replacing435

their audio components with distractor audio. We436

systematically design the distractors by inverting437

the expected pattern for each question type, thereby438

encouraging the model to rely on listening to solve439

the task. For instance, for question types that re-440

quire comparison across multiple audio samples,441

we reverse the common expectation that one of the442

labeled candidate sounds matches the correct an-443

swer. Therefore, in the Remember question type,444

all candidates differ from the reference, making445

“None of the above” the correct choice. Further446

details are provided in the Appendix B.2.447

3.5 Dataset Curation448

All audio samples are sourced from the Watkins449

Marine Mammal Sound Database (Sayigh et al.,450

2016). Except for manually constructed Remem-451

ber questions, all other questions are generated452

using a large language model and subsequently un-453

dergo rigorous human verification and reannotation.454

For each Perception task, we generate 100 ques-455

tions. For each Cognition task, including subtasks456

within Apply and Analyze, we generate 200 ques-457

tions, along with 50 adversarial distractor ques-458

tions per task. As a result, the final benchmark459

comprises 1,777 validated questions, forming a460

test-only dataset designed for zero-shot evaluation.461

A detailed description of the curation process and462

dataset statistics is provided in the Appendix B.3.463

4 Experiment464

4.1 Setup465

Models. We evaluate a range of LALMs capable466

of processing non-speech sound events, including467

LTU (Gong et al., 2024), LTU-AS (Gong et al.,468

2023), SALMONN (Tang et al., 2024), GAMA,469

and GAMA-IT (Ghosh et al., 2024a), as well as470

two instruction-following models from the Qwen-471

Audio series, Qwen-Audio-Chat (Chu et al., 2023)472

and Qwen2-Audio-Instruct (Chu et al., 2024), on473

our proposed benchmark. We also consider Au-474

dioFlamingo2 (Ghosh et al., 2025), recognized for475

its strong reasoning and long-context comprehen-476

sion, and Qwen2.5-Omni (Xu et al., 2025), a mul-477

timodal model which exhibits promising perfor-478

mance on audio tasks. For commercial LALMs,479

we evaluate three models from the Gemini series,480

specifically Gemini 1.5-Pro (Team et al., 2024),481

Gemini 2.0-Flash (Google DeepMind, 2024), and482

Gemini 2.5-Flash-Preview (Comanici et al., 2025), 483

multimodal models known for their strong general 484

audio processing capabilities. 485

Evaluation Strategy. We report the micro- 486

averaged accuracy across all questions in the bench- 487

mark, as well as each task and subtask. To ac- 488

count for varying instruction-following capabili- 489

ties of different LALMs, we experiment with mul- 490

tiple prompting strategies, e.g., “choose the cor- 491

rect option,” “return the answer letter”, and report 492

the score of the best-performing prompt for each 493

model. Since LALMs vary in their response for- 494

mats and do not consistently adhere to instructions 495

regarding formatting, we use GPT-4.1-mini to ex- 496

tract the final answer and determine its correctness. 497

More details of the evaluation prompts and answer 498

extraction are provided in Appendix C.3. 499

4.2 Results 500

The main evaluation results are presented in Ta- 501

ble 2. Overall, all models perform poorly on 502

the WoW-Bench. Even the best performing com- 503

mercial model, Gemini-2.5-Flash, remains below 504

50% accuracy. Most open-source models, except 505

Qwen2.5-Omni, perform at levels similar to ran- 506

dom chance. These findings highlight significant 507

limitations in both low-level listening and the asso- 508

ciated cognitive processing capabilities of LALMs. 509

The key findings are summarized below: 510

• Models often perform worse on Cognition 511

than Perception tasks, despite the former re- 512

quiring no prior knowledge about marine 513

mammals (§4.2.1). In contrast, humans per- 514

form significantly better on Cognition tasks 515

(§4.2.2). 516

• Performance varies substantially across tasks, 517

reflecting strengths and weaknesses in 518

each model’s low-level listening capabilities 519

(§4.2.1). 520

• The performance gap between distractor and 521

non-distractor questions highlights a limita- 522

tion in auditory grounding (§4.2.3). 523

• Qualitative examples show that models often 524

adopt a classify-first strategy, which can lead 525

to failure when perceptual grounding is re- 526

quired (§4.2.4). 527

• Model performance is not significantly af- 528

fected by acoustic range, even though many 529

LALMs usually works on limited acoustic 530

range (§4.2.5). 531
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Model Params Perception Cognition Total MMAUS V B All R U AF AD AA AV ND D All
Random 27.3 22.7 22.0 24.0 24.8 25.8 22.0 23.6 28.0 25.3 26.6 23.3 24.9 24.8 –
SALMONN (2024) 13B 24.2 14.4 8.0 15.5 26.8 18.8 32.0 26.4 0.0 3.3 21.9 2.7 18.0 17.6 41.0
LTU (2024) 7B 28.3 29.9 24.0 27.4 22.8 30.8 8.4 20.4 22.0 31.95 19.2 36.0 22.6 23.4 22.5
LTU-AS (2023) 7B 24.2 20.6 22.0 22.3 20.0 23.3 18.0 22.0 21.6 26.6 24.3 12.3 21.9 22.0 23.4
GAMA (2024a) 7B 21.2 29.9 24.0 25.0 23.6 22.5 21.6 22.0 20.4 23.2 14.8 51.3 22.2 22.7 41.4
GAMA-IT (2024a) 7B 19.2 24.7 22.0 22.0 19.6 25.0 18.0 18.8 26.8 24.5 12.3 60.7 22.1 22.1 43.2
Qwen-Audio-Chat (2023) 8.4B 24.2 36.1 19.0 26.4 30.0 30.4 40.0 24.0 33.2 34.0 38.9 4.67 31.9 31.0 55.3
Qwen2-Audio-Instruct (2024) 8.4B 28.3 41.2 19.0 29.4 19.2 30.0 33.2 25.2 27.6 44.8 31.0 25.7 29.9 29.8 55.0
Qwen2.5-Omni (2025) 10.7B 22.2 63.9 31.0 38.9 28.8 49.2 28.4 33.6 31.2 41.1 37.4 26.7 35.3 35.9 67.9
AudioFlamingo2 (2025) 3.3B 26.3 50.5 27.0 34.5 19.2 25.0 27.6 25.6 28.4 39.4 29.2 20.7 27.5 28.6 61.6
Gemini 1.5 Pro – 23.2 35.1 18.0 25.3 28.4 26.7 26.0 30.0 30.0 34.0 35.1 5.7 29.2 28.5 56.8
Gemini 2.0 Flash – 18.2 46.4 18.0 27.4 43.6 44.6 42.4 26.8 33.2 36.5 38.5 35.0 37.8 36.1 56.5
Gemini 2.5 Flash – 27.3 54.6 30.0 37.2 64.4 39.2 36.0 66.4 34.0 42.7 54.5 18.3 47.2 45.5 –

Table 2: Evaluation results on the WoW-Bench. Each acronym stands for Species, Vocalization, Both (Perception),
Remember, Understand, Apply-Frequency, Apply-Duration, Analyze-Acoustics, Analyze-Vocalization, Non-
Distractor, Distractor (Cognition), respectively. Last two columns report the overall score and their performance on
the Sound Test-Mini subset from MMAU (2025) as reference.

(a) Non-Distractor (b) Distractor

◼ Remember

◼ Understand 

◼ Apply-Frequency

◼ Apply-Duration 

◼ Analyze-Acoustics

◼ Analyze-Vocalization
100
(%)

80

60

40

20

0

Figure 2: Performance distribution across cognition
question types, grouped by the presence of distractors.
Each bar represents the interquartile range (Q1 to Q3)
of model performance. The three horizontal lines of
each bar correspond to the first quartile (Q1), median
(Q2), and third quartile (Q3). Circles denote individual
model scores, and the × marker indicates the mean.

4.2.1 How do models perform across different532

tasks?533

One might intuitively assume that the Cognition534

tasks would be easier than the Perception tasks,535

as they do not require prior knowledge of marine536

mammals and can be addressed by simply analyz-537

ing the provided audio clip. However, this assump-538

tion does not consistently hold true. Aside from the539

Gemini series models, many models perform worse540

on the seemingly simpler Cognition tasks. For ex-541

ample, AudioFlamingo2, one of the top-performing542

models on MMAU, achieves only 19.2% accuracy543

on the Remember task, lower than its performance544

on the Species task (26.3%) and even below the545

random baseline (24.8%). This suggests that audio-546

grounded cognitive processing remains severely547

underdeveloped in current LALMs.548

In the Perception benchmark, models typically549

exhibit higher performance on the Vocalization550

task, where labels such as “whistle” or “clicks” are551

60
(%)

40

20

15 30 45

75
(%)

50

25

Cognition Non-Distractor

Perception Distractor

 Models

20 40 60

(a) Influence of benchmark type (b) Influence of distractor presence

Figure 3: Distribution of models’ performance regard-
ing (a) benchmark type and (b) distractor presence,
where we observe the Pearson correlation of 0.75 and
-0.51, respectively.

more intuitively associated with the acoustic signal. 552

The performance on the Species and Both tasks 553

is close to random chance, indicating that models 554

either lack relevant species-level knowledge or fail 555

to capture the nuanced acoustic details necessary 556

for accurate differentiation. 557

The results on the Cognition benchmark show 558

a more diverse pattern, as illustrated in Figure 2. 559

The performance varies dramatically across both 560

tasks and models; while some models score near 561

zero on certain tasks, others exceed 50% accuracy. 562

This variability highlights the strengths and weak- 563

nesses of each model’s low-level listening ability. 564

For instance, Gemini-2.5-Flash achieves over 60% 565

accuracy on the Remember and Apply–Duration 566

tasks, both of which involve comparing multiple 567

audio segments. However, its performance drops to 568

36% on Apply–Frequency, which involves similar 569

comparative analysis, revealing a relative weakness 570

in processing pitch-based information. 571

Lastly, as shown in Figure 3-(a), models’ per- 572

formance on the Perception and Cognition tasks in 573

WoW-Bench exhibits positive correlation, suggest- 574

ing that both tasks rely on common low-level listen- 575
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ing capabilities. For comparison, we also include576

their performance on MMAU Sound Test mini-set577

in Table 2. Notably, a high score on MMAU does578

not necessarily translate to strong performance579

on WoW-Bench. For example, AudioFlamingo2580

and SALMONN perform worse than some mod-581

els on WoW-Bench, despite outperforming them582

on MMAU. This suggests that WoW-Bench intro-583

duces new challenges and evaluation criteria not584

captured by existing benchmarks.585

4.2.2 How do humans perform?586

As shown in Figure 1, human and model perfor-587

mance are comparable in the Perception bench-588

mark, as humans often struggle due to limited prior589

knowledge about marine mammals. However, in590

the Cognition tasks, humans significantly outper-591

form the models; for example, they achieve 97.1%592

on the Remember task, while the best Gemini-2.5593

model achieves only 57.1 %. These results demon-594

strate that the questions are well-constructed and595

reliable; they assess features that humans can read-596

ily identify through their low-level listening ability597

even in an unfamiliar domain, yet remain challeng-598

ing for current LALMs.599

To further evaluate the benchmark’s diagnostic600

value, we include listeners with strong backgrounds601

in audio signal processing. Expert listeners consis-602

tently outperform inexperienced participants Cog-603

nition tasks. This indicates that our benchmark604

tasks effectively capture cognitive processing of605

fine-grained acoustic properties. Details of the hu-606

man evaluation are provided in Appendix C.4.607

4.2.3 How do models perform on distractors?608

As shown in Table 2, models exhibit substantial609

performance discrepancy between distactor and610

non-distractor questions. Furthermore, The box611

plots in Figure 2 illustrate that the performance612

variation across models for each task type becomes613

more pronounced for distractor questions. This in-614

creased variability suggests that many models rely615

on linguistic priors or other heuristics rather than616

consistently attending to low-level acoustic fea-617

tures of the input. Figure 3-(b) additionally shows618

a negative correlation between model performance619

on distractor and non-distractor questions. Mod-620

els that achieve high accuracy on non-distractor621

questions often struggle with distractor variants,622

indicating a reliance on non-acoustic cues rather623

than robust auditory processing.624

(a) Perception / Vocalization

Q. Which type of vocalization is most likely identified in the sound recording?
A. Continuous modulated tones   B. High-pitched whistles
C. Single moan D. Series of rapid pulsed clicks

(SALMONN) The type of vocalization most likely identified in the sound recording is a high-
pitched whistle. 

(AudioFlamingo2) (c) single moan

(Qwen-2.5) C. Single moan

(Gemini-2.5) Based on the sound recording, the vocalization is a single, relatively low-pitched, 
sustained sound. Comparing this to the options:
(A) Continuous modulated tones: The sound is a single event, not a series of continuous tones.
(B) High-pitched whistles: The sound is low-pitched, not high-pitched.
(C) Single moan: A moan is a long, low sound, which fits the description of the vocalization 
heard.
(D) Series of rapid pulsed clicks: The sound is sustained and smooth, not pulsed or clicking.
Therefore, the most likely identification is a single moan.
Answer: C

(b) Cognition / Apply-Frequency

Q. Given the following sound sequence: (…) Which sound is most dominant in higher frequencies?
A. The first sound B. The second sound
C. The third sound D. All the sounds are identical in frequency range

(SALMONN) The third sound is most dominant in higher frequencies. 

(AudioFlamingo2) (a) the first sound

(Qwen-2.5) To determine which sound is most dominant in higher frequencies, we need to analyze 
the characteristics of each sound:
1. The first sound is described as "water running," which typically has has a lower frequency 
range, often associated with the sound of flowing water.
2. The second sound is described as "a vehicle engine running," which usually has has a mid-
frequency range, often associated with the sound of an engine idling.
3. The third sound is described as "a pig oinking," which typically has has a higher frequency 
range, often associated with the sound of a pig making noise.
Given this descriptions, the third sound, which is a pig oinking, is most likely to be the most 
dominant in higher frequencies.
Answer: C. The third sound

(Gemini-2.5) Based on listening to the audio, the first sound is a buzzing/whirring noise, the 
second sound is a sharp clicking/ratcheting noise, and the third sound is a low-pitched 
mooing sound.
Comparing the subjective frequency content:
- The first sound has energy across a range of frequencies, including some higher ones, but also 
lower tones.
- The second sound is characterized by sharp, distinct transients, which typically involve 
significant high-frequency components. It sounds 'crisp’.
- The third sound is clearly dominated by lower frequencies.
- The second sound subjectively appears to have the most dominant energy in the higher 
frequency range due to its sharp, percussive nature.
The final answer is $\\boxed{B}$

Figure 4: Qualitative examples of model responses
to (a) a Perception/Vocalization question and (b) a
Cognition/Apply-Frequency question.

4.2.4 How do models respond? 625

Figure 4 and Figure 5 illustrates LALM responses 626

to WoW-Bench questions. We observe consider- 627

able variation in answer formats across models, 628

with many providing direct responses without ex- 629

plicitly analyzing the underlying acoustic features. 630

Notably, in the Perception task, where the model is 631

asked to identify the type of vocalization, Gemini- 632

2.5 attempts to analyze low-level acoustic details 633

and match them to the provided answer choices. In 634

contrast, in the Cognition task involving frequency 635

comparison between three sounds, both, Gemini- 636

2.5 and Qwen2.5-Omni adopt a classification-first 637

approach: they initially assign each sound to a 638

high-level category such as crisp or pig oinking, 639

and then reason about acoustic attributes based on 640
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(c) Cognition (Distractor) / Apply-Frequency

Q. Given the following sound sequence: (…) Which sound is most dominant in higher frequencies?
A. Sound 1 B. Sound 2
C. Sound 3 D. All the same

(SALMONN) Sound 2 is most dominant in higher frequencies.

(AudioFlamingo2) (c) sound 3

(Qwen-2.5) A. Sound 1

(Gemini-2.5) The audio segment contains three distinct sound events separated by silences.
Sound 1 occurs from approximately 00:00 to 00:01. It is a sustained buzzing sound, likely from 
insects like cicadas.
Sound 2 occurs from approximately 00:02 to 00:03. It is also a sustained buzzing sound, similar 
to Sound 1.
Sound 3 occurs from approximately 00:05 to 00:05.5. It is a short, sharp sound, likely a cricket 
chirp or a bird chirping.

To determine which sound is most dominant in higher frequencies, we need to consider the 
spectral content of each sound.
Sounds 1 and 2 (the sustained buzz) contain energy across a range of frequencies, including higher 
ones, typical of cicadas.
Sound 3 (the short chirp) is perceived as having a higher pitch and a sharper attack. Cricket 
chirps often contain significant energy in the high-frequency range, sometimes exceeding 5 
kHz or higher, and the short, impulsive nature can make the high-frequency components stand out.

Comparing the perceived quality, the sharp, high-pitched nature of Sound 3 suggests that it has a 
greater dominance of energy in the higher frequencies compared to the broader, buzzing sound of 
Sounds 1 and 2.

Therefore, Sound 3 is most dominant in higher frequencies.
Answer: C

Figure 5: Qualitative example of a model response to
(c) a distractor question for Cognition/Apply-Frequency
task.

the inferred class, which can often lead to incor-641

rect comparisons. This category-first strategy also642

contributes to failure in a distractor-type question643

(Figure 5). For example, when all three sounds are644

acoustically identical, Gemini-2.5 incorrectly clas-645

sifies one as different and justifies its answer based646

on characteristics inferred from the misclassified647

result, despite the perceptual indistinguishability of648

all sounds.649

These findings suggest that even when the650

questions require fine-grained acoustic perception,651

LALMs tend to prioritize semantic classification652

over perceptual grounding. This tendency high-653

lights a key limitation in their ability to process and654

reason directly from low-level listening. Additional655

qualitative analyses are provided in Appendix A.1.656

4.2.5 Does acoustic range affect the657

performance?658

By utilizing the wide range of sample rates and659

durations of samples in WoW-Bench, we analyze660

how model performance varies with these acoustic661

properties. As shown in Figure 6, performance662

fluctuates with both duration and sample rate, but663

no sharp increase or drop is observed at any spe-664

cific threshold. This suggests that the benchmark665

fairly reflects the capabilities of open-source mod-666

els, which typically operate on 16 kHz audio. We667

60
(%)

40

20

─ Gemini-2.5   ─ Qwen-2.5   ─ AudioFlamingo2  ─ GAMA   ─ LTU   ─ SALMONN

1(sec) 4 7+1(kHz) 10 100

60
 (%)

40

20

16

(a) Influence of sampling rate (b) Influence of audio duration

Figure 6: Influence of audio property on accuracy,
namely (a) sampling rate and (b) duration.

hypothesize that this phenomenon arises from two 668

factors: (1) while a considerable number of vo- 669

calizations extend beyond 10 kHz (e.g., dolphin 670

whistles), a substantial portion of others have their 671

key components within the audible range that most 672

models can process, regardless of the original sam- 673

ple rate of the recordings; and (2) current mod- 674

els do not exhibit significantly improved low-level 675

listening performance even within their nominal 676

frequency range. 677

These findings suggest two directions for future 678

improvement: (1) enhancing perceptual fidelity 679

within the standard listening range to make better 680

use of accessible acoustic information, and (2) ex- 681

panding model capacity to process a broader acous- 682

tic spectrum, thereby improving generalization to 683

a wider range of real-world audio events. 684

5 Conclusion 685

We introduce WoW-Bench, a new benchmark 686

specifically designed to rigorously evaluate the fine- 687

grained, low-level listening, and cognitive capabili- 688

ties of acoustics-language modeling using marine 689

mammal vocalizations. These results highlight a 690

critical gap in current LALM architectures: de- 691

spite impressive progress in general audio under- 692

standing and instruction following, robust low-level 693

perception remains elusive. Our findings empha- 694

size the necessity for future research to focus on 695

improved auditory grounding and enhanced sensi- 696

tivity to acoustic detail in order to close the gap 697

between machine and human auditory cognition. 698

WoW-Bench provides a challenging testbed for ad- 699

vancing the next generation of multimodal models. 700
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Limitations701

While WoW-Bench provides a rigorous and inno-702

vative framework for assessing low-level listening703

and cognitive processing in large audio-language704

models (LALMs), several limitations should be705

acknowledged. First, the benchmark is currently re-706

stricted to marine mammal vocalizations. Although707

this focus is valuable for testing out-of-distribution708

generalization and robustness, it represents only709

a narrow segment of the complex diversity found710

in natural acoustic environments. As a result, our711

findings may not directly transfer to other domains712

such as terrestrial bioacoustics, human speech, or713

complex auditory scenes with overlapping sound714

sources and background noise.715

A further limitation concerns the task format.716

Our use of multiple-choice questions enables stan-717

dardized comparisons and the controlled introduc-718

tion of distractors, but may not fully capture the719

open-ended reasoning or generative abilities of720

modern audio-language models. There remains721

a gap between such discrete evaluation protocols722

and the continuous, often ambiguous nature of real-723

world auditory reasoning tasks.724

We encourage future research to expand the725

scope of evaluation, incorporate richer and more in-726

teractive assessment paradigms, and explore cross-727

domain and cross-modal generalization to advance728

the development of truly robust and perceptually729

grounded audio-language models.730

Ethical Considerations731

The creation and use of WoW-Bench raise sev-732

eral ethical considerations. All audio data in the733

benchmark are sourced from the publicly acces-734

sible Watkins Marine Mammal Sound Database,735

used with explicit permission for research purposes.736

Care has been taken to ensure that the dataset does737

not include any personally identifiable information738

or sensitive content. The potential deployment of739

audio-language models in ecological monitoring740

or conservation contexts must consider the ethical741

implications of automated decision-making, par-742

ticularly regarding false positives or negatives in743

species identification, which could impact policy744

or management actions.745

Understanding marine mammal vocalizations746

is not only of scientific interest but is also cru-747

cial for ecological monitoring and marine conser-748

vation. Marine mammals play key roles as sen-749

tinels of ocean health, and their acoustic behaviors750

provide unique insights into ecosystem dynamics, 751

species distributions, and the impacts of anthro- 752

pogenic activities such as shipping and climate 753

change. However, marine bio-acoustics remains 754

an under-resourced field, with limited availability 755

of annotated datasets, research funding, and tech- 756

nological tools compared to terrestrial or human- 757

focused bio-acoustics. Expanding the capabilities 758

of machine listening through responsible audio lan- 759

guage models can help bridge this gap, enabling 760

more scalable, continuous, and non-invasive moni- 761

toring of marine environments. 762
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A Additioanl Experimental Results980

A.1 Additional Qualitative Analysis981

We conducted a supplementary error-type analysis982

to provide more diagnostic insight. Specifically,983

we examined how the presence of certain words984

in Gemini 2.5’s responses correlates with answer985

correctness.986

The results are shown in Table 3. For Percep-987

tion-type questions, Gemini 2.5 performs relatively988

well when the response includes acoustic event989

descriptions such as “hum” or “chirp.” However,990

the model often struggles with identifying specific991

species, particularly dolphin vocalizations. For992

Cognition questions without distractors, the model993

performs better when its responses include tem-994

poral or presence-related terms such as “longest,”995

“silence,” or “occurs.” Interestingly, in contrast to996

Perception tasks, performance degrades when re-997

sponses include acoustic feature terms such as998

“repetitive”. For Distractor-type questions, the999

trend shifts again; overall performance is lower, but1000

the model shows slightly improved alignment when1001

using global contrastive terms such as “across,”1002

“consistent,” or “wide.” However, it tends to fail1003

in relative comparison, e.g., terms like “longest,”1004

“lower,” or “third,” which it handled relatively well1005

in non-distractor Cognition tasks.1006

These findings suggest that the reasoning chains1007

used in Cognition tasks differ meaningfully from1008

those used in Perception tasks, and that such reason-1009

ing fails to transfer to distractor conditions. This1010

supports our claim that distractor-type questions1011

pose a meaningful challenge and reveal limitations1012

in models’ generalization of reasoning strategies.1013

The error-type patterns we observe here are consis-1014

tent with trends seen in our qualitative analysis1015

For a more detailed analysis of distractor-type1016

questions, we manually annotated a sample of 441017

Remember-type items that Gemini 2.5 answered in-1018

correctly. We categorize the errors into four types:1019

• No Reasoning (NR): The model provides1020

only a bare answer without explanation, e.g.,1021

Answer: B. Sound 2.1022

• Semantic Categorization (S): The model se-1023

lects an answer based on high-level semantic1024

categories rather than acoustic properties, e.g.,1025

“The reference sound is a crying baby. Sound1026

1 is a mechanical sound. Sound 2 is a mechan-1027

ical sound. Sound 3 is a crying baby. Sound1028

3 is the same as the reference sound. Answer:1029

C”.1030

• Low-Level Grounding (L): The model rea- 1031

sons based on specific acoustic properties, 1032

e.g., “The reference sound is a steady, high- 1033

pitched tone. Sound 1 is a scratching or scrub- 1034

bing sound. Sound 2 is the same steady, high- 1035

pitched tone as the reference sound. Sound 3 1036

is a low-frequency, rhythmic tapping or click- 1037

ing sound. Sound 2 is the same as the refer- 1038

ence sound. Answer: B”. 1039

• Direct Comparison (C): The model engages 1040

in direct comparison with the reference sound, 1041

e.g., “The audio contains a reference sound 1042

followed by three other sounds. The reference 1043

sound is a short electronic blip. Sound 1 is 1044

different from the reference sound. Sound 2 1045

is different from the reference sound. Sound 3 1046

is identical to the reference sound. Therefore, 1047

Sound 3 is the same as the reference sound. 1048

Answer: C”. 1049

As shown in Table 4, we observe that when mod- 1050

els provide reasoning, semantic categorization is 1051

the most frequent strategy. This reflects a category- 1052

first behavior, as demonstrated in Figure 5, where 1053

the model first classifies the sounds and then infers 1054

acoustic characteristics based on those categories. 1055

Such behavior suggests that the model is relying on 1056

heuristic shortcuts rather than genuine perceptual 1057

grounding. While two sounds may belong to the 1058

same semantic category, they can still be acous- 1059

tically distinct. However, the model often treats 1060

them as identical solely based on category, failing 1061

to capture perceptual differences. This underscores 1062

the effectiveness of distractor-type questions in di- 1063

agnosing whether models are truly attending to 1064

low-level acoustic detail. 1065

A.2 Evaluation of Speech-based LALMs 1066

Our goal was to provide a broad and representa- 1067

tive evaluation of current LALMs, with a focus on 1068

models capable of processing general, non-speech 1069

sound events. We intentionally excluded speech- 1070

only language models, since our tasks target non- 1071

speech auditory processing. 1072

We additionally evaluated GPT-4o-Audio (Ope- 1073

nAI, 2025), but as shown in Table 5, its perfor- 1074

mance was substantially lower than that of Gemini- 1075

2.5-Flash across both the Perception and Cognition 1076

benchmarks. In several cases, GPT-4o-Audio pro- 1077

duced fallback responses such as “My capabilities 1078

include text-based information and analysis, but 1079

not audio-based identification,” indicating limited 1080
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(a) Perception (b) Non-distractor (c) Distractor

Word Fraction Accuracy Word Fraction Accuracy Word Fraction Accuracy

hum 25/40 0.6250 longest 152/182 0.8352 wide 29/52 0.5577
chirp 29/54 0.5370 reference 103/134 0.7687 across 20/40 0.5000
modulated 19/36 0.5278 duration 186/265 0.7019 consistent 12/29 0.4138
present 26/55 0.4727 silence 189/278 0.6799 present 11/32 0.3438
continuous 35/75 0.4667 end 91/146 0.6233 modulating 11/32 0.3438
(Average) 0.3716 0.5453 0.1833

(a) Perception (b) Non-distractor (c) Distractor

Word Fraction Accuracy Word Fraction Accuracy Word Fraction Accuracy
frequency 14/52 0.2692 broadband 119/334 0.3563 lower 3/35 0.0857
dolphin 35/131 0.2672 harmonic 43/123 0.3496 occur 5/62 0.0806
sperm 14/53 0.2642 repetitive 48/140 0.3429 third 3/61 0.0492
specie 23/103 0.2233 pulse 50/152 0.3289 comparing 4/115 0.0348
common 9/48 0.1875 modulating 45/140 0.3214 longest 1/42 0.0238
(Average) 0.3716 0.5453 0.1833

Table 3: Keyword-based accuracy for the Gemini 2.5 model. Each cell shows the fraction of correct responses
when the specified keyword appears in the model’s answer, broken down by question type: (a) Perception tasks, (b)
Cognition tasks without distractors, and (c) Cognition tasks with distractors

Category NR S L C Total
Count 16 16 2 10 44

Table 4: Counts of error types in 44 incorrectly an-
swered Remember-type distractor questions.R denotes
No Reasoning; S denotes Semantic Categorization; L
denotes Low-Level Grounding; C denotes Direct Com-
parison

ability to handle audio input. These observations1081

support our decision to focus on models explicitly1082

designed for general audio processing, rather than1083

those optimized primarily for speech.1084

B Details of WoW-Bench1085

B.1 Statistics of WoW-Bench1086

Our WoW-Bench consists of 1,777 rigorously vali-1087

dated question-answer pairs with audios. Percep-1088

tion benchmark consists of 296 pairs, with 99, 97,1089

and 100 pairs for Species, Vocalization, and Both1090

task, respectively. Each of the six tasks for non-1091

distractor cognition benchmark contains 200 pairs1092

except for Understand and Analyze-Vocalization,1093

for which we filtered out 10 and 9 pairs for their1094

quality. Lastly, regarding distractor-based cogni-1095

tion, we secure a total of 300 pairs, i.e., 50 for each1096

task type. The number of questions for each task1097

type is detailed in Table 6.1098

B.2 Distractor Design Process1099

We systematically design the distractors by invert-1100

ing the expected pattern for each question type,1101

thereby encouraging the model to rely on listen- 1102

ing to solve the task. For questions that require 1103

comparison across multiple audio samples, we in- 1104

vert the expectation that one of the labeled can- 1105

didate sounds corresponds to the correct answer. 1106

In Remember, all options differ from the refer- 1107

ence, making “None of the above” the correct an- 1108

swer. In Apply, all provided sounds are acousti- 1109

cally identical, and the model must correctly select 1110

“All are indistinguishable.” For tasks focused on 1111

understanding the acoustic characteristics of input, 1112

we reverse the expectation that the input contains 1113

meaningful acoustic content. In Understand, the 1114

reference audio is replaced with synthetic noise, 1115

requiring the model to avoid hallucinating a se- 1116

mantic interpretation. In Analyze–Acoustics, one 1117

segment of a sequence is replaced with noise, and 1118

the model must identify the disrupted transition. 1119

Lastly, in Analyze–Vocalization, which typically 1120

involves detecting species transitions, we eliminate 1121

such transitions by concatenating two identical or 1122

same-species vocalizations. The model must de- 1123

tect structural redundancy or similarity, rather than 1124

blindly assuming a cross-species transition. 1125

To ensure consistency of answer choices across 1126

distractor and non-distractor questions, we include 1127

the distractor-style options (e.g., “None match” or 1128

“All indistinguishable”) in Cognition questions. We 1129

generate distractor variants by selecting a subset of 1130

non-distractor questions and replacing their audio 1131

components with distractor audio. For noise-based 1132

distractors, we sample from a diverse set of syn- 1133
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Model Perception Cognition TotalS V B All R U AF AD AA AV ND D All
Gemini-2.5-Flash 27.3 54.6 30.0 37.2 64.4 39.2 36.0 66.4 34.0 42.7 54.5 18.3 47.2 45.5
GPT-4o-Audio 19.2 38.1 19.0 25.3 14.0 26.3 21.2 16.0 24.8 25.3 23.0 14.0 21.2 21.89

Table 5: Evaluation result of Gemini 2.5-Flash and GPT-40-Audio on the WoW-Bench.

Task Subtask ND D Total

Perception
Species 99 - 99
Vocalization 97 - 97
Both 100 - 100

Cognition

Remember 200 50 250
Understand 190 50 240
Apply-Frequency 200 50 250
Apply-Duration 200 50 250
Analyze-Acoustics 200 50 250
Analyze-Vocalization 191 50 241

Total 1477 300 1777

Table 6: Number of questions in WoW-Bench by task
type. ND denotes non-distractor questions, and D de-
notes distractor questions.

thetic noise types (e.g., white, pink, brown, blue)1134

that matches the duration and sampling rate of ran-1135

domly selected real audio clips to ensure consis-1136

tency in acoustic conditions.1137

B.3 Details of Data Curation1138

With the exception of Remember questions, which1139

are manually constructed by selecting candidate1140

sounds, all other questions are generated using1141

a large language model. We provide the model1142

with relevant background information and meta-1143

data of the audio clips as input. For questions that1144

require acoustic details not available in the meta-1145

data (i.e., Understand and Apply), we employ a1146

vision language model and additionally provide1147

spectrograms of the audio clips. For Analyze-1148

Acoustics, we reuse and adapt acoustic descrip-1149

tions previously generated and validated from the1150

Understand task to construct transition-based ques-1151

tions. For all question types, we use GPT-4o1152

(gpt-4o-2024-11-20) as both the large language1153

model and the vision language model.1154

For the Perception benchmark, we use metadata1155

such as species names and vocalization descrip-1156

tions to generate questions and answer choices1157

using GPT-4o (Hurst et al., 2024). For the Cog-1158

nition benchmark, Remember questions are con-1159

structed by manually selecting candidate sounds.1160

Since the Understand and Apply tasks require fine-1161

grained descriptions of acoustic features that can-1162

not be derived from metadata alone, we provide1163

spectrograms to GPT-4o along with detailed guid- 1164

ance for spectrogram interpretation to generate ap- 1165

propriate questions and answer choices. For An- 1166

alyze–Acoustics, we reuse and adapt acoustic de- 1167

scriptions previously generated and validated from 1168

the Understand task to construct transition-based 1169

questions. For Analyze–Species, metadata is used 1170

to create plausible transitions between species and 1171

vocalization types. In both Analyze tasks, GPT-4o 1172

is used to generate the final question and answer 1173

sets based on selected audio clips. 1174

For each Perception task, we generate 100 ques- 1175

tions. For the Cognition tasks, including the sub- 1176

tasks within Apply and Analyze, we generate 200 1177

questions along with 50 adversarial distractor ques- 1178

tions per task. We place greater emphasis on the 1179

Cognition tasks, as reflected by the higher number 1180

of Cognition questions, for two reasons: (1) the Per- 1181

ception questions partly rely on prior knowledge on 1182

marine mammals, which current LALMs may not 1183

be well-equipped to handle, and (2) the Cognition 1184

tasks are more solvable without such prior knowl- 1185

edge, relying primarily on low-level listening. As a 1186

result, we treat Cognition scores as a more reliable 1187

indicator of perceptual ability in isolation when 1188

reporting overall benchmark performance. 1189

All generated questions undergo rigorous hu- 1190

man verification and reannotation. Each generated 1191

question-answer pair is classified into one of three 1192

categories: (1) accept as is, (2) accept with revision, 1193

or (3) discard. Similar to the validation pipeline 1194

used in MMAU (Sakshi et al., 2025), each question 1195

is reviewed by three experienced annotators who 1196

cross-check the prompts and QA pairs against the 1197

associated metadata and audio clips. If the pair 1198

requires revision, annotators evaluate whether it 1199

can be rectified with minor edits, such as factual 1200

corrections or refinement of uninformative answer 1201

choices. If the issue is not fixable, for example, due 1202

to high ambiguity or incorrect source data, the pair 1203

is discarded. During this process, answer choices 1204

are also paraphrased to prevent models from ex- 1205

ploiting surface-level lexical cues 1206
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Q. What type of vocalization is most likely represented in 
the provided sound recording?
A. Hooting sounds
B. High-pitched trills
C. Modulated whistles
D. Continuous clicking

Vocalization

Q. Which species is identified from the sound recording? 
A. Northern Right Whale (Eubalaena glacialis)
B. Blue Whale (Balaenoptera musculus)
C. Sperm Whale (Physeter macrocephalus)
D. Humpback Whale (Megaptera novaeangliae)

Species

Q. Which species and vocalization type does the sound 
recording most likely represent?
A. Narwhal (Monodon monoceros) - Click series
B. Beluga Whale (Delphinapterus leucas) - Tonal whistles
C. Narwhal (Monodon monoceros) - Tonal whistles
D. Beluga Whale (Delphinapterus leucas) - Click series"

Both

Q. Based on the acoustic characteristics of the sound, 
which of the following best describes the main feature of 
the recording?
A. Repetitive short broadband bursts.
B. A continuous low-frequency tone around 400 Hz.
C. Modulated mid-frequency tones primarily between 

1–4 kHz.
D. A high-pitched modulating tone primarily above 8 kHz.

Understand

Q. Listen to a reference sound, then three more sounds —
Sound 1, Sound 2, and Sound 3 — with silences in 
between. Which sound is the same as the reference sound?
A. Sound 1
B. Sound 2
C. Sound 3
D. None of these sounds are the same as the reference.

Remember

Q. Given the following sound sequence: The first sound 
occurs before the first silence, the second sound occurs 
after the first silence, and the third sound occurs after the 
second silence. Which sound is most dominant in lower 
frequencies?
A. The first sound
B. The second sound
C. The third sound
D. All the same

Apply-Frequency

Q. Given the following sound sequence: The first sound 
occurs before the first silence, the second sound occurs 
after the first silence, and the third sound occurs after the 
second silence. Which sound has the longest duration?
A. The first sound,
B. The second sound
C. The third sound
D. All sounds are indistinguishable in duration

Apply-Duration

Q. How do the acoustic characteristics change throughout the audio recording?
A. The audio initiates with repetitive short broadband pulse-like sounds with no 

prominent tonal elements and then moves into a sequence of short, broadband 
impulses spaced at regular intervals.

B. The recording starts with a high-frequency modulating tonal sound primarily 
above 5 kHz and then shifts to broadband noise across a wide frequency range.

C. The audio begins with repetitive short broadband pulse-like sounds with no 
prominent tonal elements later shifts to broadband noise across a wide 
frequency range.

D. The sound begins with a high-frequency modulating tonal sound 
primarily above 5 kHz and is followed by a sequence of short, broadband 
impulses spaced at regular intervals.,

Analyze-Acoustics

Q. How does the species producing the vocalization change over 
time in the recording?
A. At first, the sound presents a Bottlenose Dolphin's tonal 
whistles then followed by a Sperm Whale's echolocation clicks.
B. At the start of the audio, there is a Spinner Dolphin's whistles 
and clicks which evolves into a Killer Whale's loud squeal.
C. The recording starts with a Humpback Whale's structured 
songs then followed by a Narwhal's tonal clicks.
D. The sound features only a single species vocalizing throughout.

Analyze-Vocalization

Perception Cognition

Figure 7: Example questions from each task type in WoW-Bench, shown alongside spectrograms of the correspond-
ing input audio.

B.4 Sample Questions of WoW-Bench1207

Figure 7 presents representative examples of WoW-1208

Bench questions across all types of tasks.1209

B.5 Clarification on Design Choices1210

Q. Why only marine mammal vocalizations? We1211

intentionally designed the benchmark using marine1212

mammal vocalizations to construct a meaningful1213

out-of-distribution (OOD) setup. In familiar sound1214

domains, LALMs often bypass low-level acoustic1215

perception by inferring answers based on high-level1216

semantic associations with known sounds. This1217

behavior undermines the evaluation of genuine low-1218

level listening capabilities, as shown in qualitative1219

examples in Figure 4, and Figure 5 .1220

Moreover, identifying suitable OOD audio con-1221

tent is non-trivial, as the pre-training data of many1222

LALMs already cover a broad range of every-1223

day sounds, including human speech and urban1224

noise. Even when we modestly extended the1225

dataset by adding other animal vocalizations from1226

the VGGSound test set and asked the model to1227

classify the animal species, performance signif-1228

icantly improved. For instance, Qwen2-Audio-1229

Instruct’s accuracy on the species classification task1230

increased from 28.3% in WoW-Bench to 76% in1231

the VGGSound-based set (e.g., Baltimore oriole,1232

pigeon, parrot). This result suggests that broad-1233

ening the sound categories may compromise the1234

OOD nature of the task and reduce the benchmark’s1235

ability to isolate low-level acoustic reasoning. We1236

believe that its focused and controlled design us-1237

ing marine mammal vocalizations enables a more 1238

precise evaluation of models’ low-level listening 1239

capabilities in genuinely OOD settings. 1240

Q. Why use only four levels from Bloom’s taxon- 1241

omy? Bloom’s taxonomy consists of six levels of 1242

cognitive objectives: Remember, Understand, Ap- 1243

ply, Analyze, Evaluate, and Create. Among these, 1244

Evaluate and Create are less suitable for model- 1245

ing low-level listening assessment, since they in- 1246

volve subjective judgment, which are difficult to 1247

score objectively, or creative synthesis of new au- 1248

dio. These levels go beyond the scope of low-level 1249

listening and the current capabilities of LALMs, 1250

which generally cannot generate non-speech audio. 1251

Therefore, we focus our benchmark on the first 1252

four levels, which are better aligned with the tasks 1253

requiring grounded, objective responses based on 1254

low-level listening. 1255

Q. Why multiple-choice question format? First, 1256

multiple-choice question (MCQ) format is widely 1257

adopted in prior LALM benchmarks (Sakshi et al., 1258

2025; Yang et al., 2024) due to its scalability, ob- 1259

jective evaluation, and ease of reproducibility. It 1260

enables fine-grained control over task structure and 1261

difficulty, and facilitates direct comparison across 1262

models without requiring prompt-specific evalua- 1263

tion metrics or human scoring. Second, the genera- 1264

tive description of marine mammal vocalizations 1265

poses a unique challenge. These sounds are dif- 1266

ficult to describe even for human annotators, and 1267

current models often default to familiar semantic 1268

categories instead of grounding their responses in 1269
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low-level acoustic properties. For example, when1270

prompted in a manner similar to the Understand1271

task to describe a marine mammal vocalization, the1272

model responded as follows1273

Gemini 2.5-Flash: Based on the audio1274

provided from 00:00 to 00:04, the acous-1275

tic characteristics are:1276

• Source: Avian Vocalizations1277

(specifically bird calls).1278

• Type: The calls are resonant, dis-1279

tinct, and have a somewhat squawk-1280

ing or crying quality, rather than be-1281

ing simple chirps or melodic songs.1282

• Pattern: There seems to be a no-1283

ticeable rhythmic or patterned qual-1284

ity to the sequence of calls.1285

• Number: It sounds like multiple1286

birds are vocalizing.1287

• Frequency: The sound primarily1288

occupies the mid-to-high frequency1289

range, typical of bird calls, but with1290

a resonant lower component in the1291

calls.1292

• Dynamics: Within this short clip,1293

the sound is relatively consistent in1294

volume.1295

Reference description: A series of mod-1296

ulated mid-to-high pitched tones primar-1297

ily between 2–8 kHz.1298

The model’s output combines high-level seman-1299

tic content (bird call) with limited references to low-1300

level acoustic features (mid-to-high frequency).1301

However, in a free-form format, such responses1302

are difficult to evaluate reliably, since they vary1303

in specificity and may omit key acoustic details1304

necessary for assessing perceptual grounding.1305

Third, while our benchmark adopts an MCQ for-1306

mat, it does not preclude open-ended reasoning.1307

Models such as Qwen 2.5-Omni and Gemini 2.51308

demonstrate clear intermediate reasoning steps be-1309

fore selecting a final answer as shown in Figure 4,1310

the MCQ structure simply constrains the output1311

space for evaluation purposes, while still allowing1312

models to engage in internal multi-step reasoning,1313

inference, and comparison.1314

Q. Why evaluate species task in a zero-shot set-1315

ting? The goal of the species task is to assess1316

whether models can leverage their knowledge about1317

whale species and their vocalizations, potentially 1318

acquired from text sources such as Wikipedia, in 1319

combination with low-level acoustic cues to make 1320

informed predictions. In our results, both mod- 1321

els and human participants perform near random 1322

chance, which confirms that the task domain effec- 1323

tively represents an OOD scenario. This OOD na- 1324

ture, along with the task’s design, highlights a valu- 1325

able direction for future work: explicitly bridging 1326

low-level auditory perception with external knowl- 1327

edge to address the performance gap in such chal- 1328

lenging scenarios. 1329

C Experimental Details 1330

C.1 Models 1331

We enumerate the models and implementations 1332

used in all of our experiments as follows: 1333

• SALMONN (Tang et al., 2024)2 (Apache- 1334

2.0) 1335

• LTU (Gong et al., 2024)3 (CC BY Attribution 1336

4.0 International) 1337

• LTU-AS (Gong et al., 2023)4 (CC BY Attri- 1338

bution 4.0 International) 1339

• GAMA (Ghosh et al., 2024a)5 (Apache-2.0) 1340

• Qwen-Audio-Chat (Chu et al., 2023)6 1341

(Tongyi Qianwen LICENSE AGREEMENT) 1342

• Qwen2.5-Omni-7B (Xu et al., 2025)7 1343

(Apache-2.0) 1344

• AudioFlamingo2 (Ghosh et al., 2025)8 (MIT 1345

License) 1346

• Gemini 1.5 Pro (Team et al., 2024)9 1347

• Gemini 2.0 Flash (Google DeepMind, 1348

2024)10 1349

• Gemini 2.5 Flash (Comanici et al., 2025)11 1350

2https://github.com/bytedance/SALMONN
3https://github.com/YuanGongND/ltu
4https://github.com/YuanGongND/ltu
5https://github.com/Sreyan88/GAMA
6https://github.com/QwenLM/Qwen-Audio
7https://github.com/QwenLM/Qwen2-Audio
8https://github.com/NVIDIA/audio-flamingo
9https://arxiv.org/abs/2403.05530

10https://cloud.google.com/vertex-ai/
generative-ai/docs/models/gemini/2-0-flash

11https://cloud.google.com/vertex-ai/
generative-ai/docs/models/gemini/2-5-flash
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• GPT-4o-Audio (OpenAI, 2025)121351

To the best of our knowledge, we confirm that1352

our use of aforementioned scientific artifacts is1353

fully compliant of their intended use. All reported1354

results are based on a single run per experiment,1355

where we use one NVIDIA RTX A6000 and 8 CPU1356

cores for running inference with open models.1357

C.2 Prompts1358

To ensure fair and standardized evaluation across1359

diverse audio-language models (LALMs), we de-1360

sign task-specific prompts for all inference tasks in1361

WoW-Bench. For multiple-choice questions, the1362

prompt structure clearly presents the question, au-1363

dio context, and the set of answer options, followed1364

by explicit instructions for answer selection. For1365

example, in the Perception and Cognition bench-1366

marks, a typical prompt is:1367

You will listen to a series of audio record-1368

ings. Based on what you hear, choose1369

the most appropriate answer from the1370

options below. Reply with the letter cor-1371

responding to your choice.1372

Depending on the capabilities and response ten-1373

dencies of each model, we experiment with minor1374

variations such as: “Please select the correct an-1375

swer,” “Return only the answer letter,” or “Explain1376

your reasoning, then provide the answer letter.” The1377

best-performing prompt for each model is selected1378

based on preliminary validation.1379

C.3 Automated Answer Extraction and GPT1380

Evaluation1381

Given the diverse response formats of LALMs, we1382

employ an automated extraction pipeline to reli-1383

ably determine model answers. Model outputs1384

are parsed using a lightweight regular expression1385

matcher to identify the final answer letter, regard-1386

less of the presence of additional text or reasoning.1387

For evaluation and quality assurance, we use1388

GPT-4 (or equivalent) to resolve ambiguous cases1389

where the model output does not clearly map to a1390

single answer choice. The evaluation prompt is as1391

follows:1392

Given the following question, options,1393

and the model’s response, identify the1394

answer letter (A, B, C, or D) selected by1395

12https://platform.openai.com/docs/models/
gpt-4o-audio-preview

the model. If no clear answer is provided, 1396

return “Invalid.” 1397

This automated approach ensures consistent and 1398

scalable evaluation, particularly for open-ended or 1399

verbose outputs. Ambiguous or invalid responses 1400

are excluded from accuracy calculations. 1401

C.4 Human Evaluation 1402

To quantitatively assess human performance on the 1403

WoW-Bench tasks, we conducted a targeted hu- 1404

man evaluation on a stratified subset of our dataset. 1405

From the full benchmark, we randomly sampled 1406

108 question-answer pairs to construct a “mini-test” 1407

set, validating that model performance statistics 1408

on this subset closely matched those observed on 1409

the entire dataset. This approach ensured that the 1410

selected subset was both representative and appro- 1411

priate for reliable human-model comparison. 1412

The 108 questions were divided into two ques- 1413

tionnaires, each comprising 54 items, as illustrated 1414

in Figure 8 Each questionnaire was independently 1415

completed by five participants, resulting in a total 1416

of ten unique annotators and 5 times redundancy 1417

for every question. In detail, we recruited five inex- 1418

perienced listeners and five participants with audio- 1419

related expertise (e.g., individuals with multiple 1420

publications in relevant areas). Detailed results 1421

across tasks and participant types are provided in 1422

Table 7. 1423

Participants were recruited on a voluntary basis 1424

and provided informed consent, with explicit com- 1425

munication regarding the use and anonymization 1426

of their response data. Annotators completed the 1427

survey remotely, in their environment of choice, 1428

and were free to pause or discontinue at any time to 1429

mitigate fatigue effects. The user interface was de- 1430

signed for clarity and accessibility: each question 1431

included audio playback controls, clearly labeled 1432

answer choices, and an optional “Uncertain about 1433

the correct answer” option to capture genuine un- 1434

certainty and discourage forced guessing. 1435

Detailed instructions were provided at the start 1436

of the survey, including recommendations for head- 1437

phone use and prohibitions on the use of search en- 1438

gines or external reference materials. To minimize 1439

potential bias, illustrative audio examples were pro- 1440

vided for technical terms such as “low frequency,” 1441

“high frequency,” and “broadband pulse,” allowing 1442

participants to anchor their perceptual judgments to 1443

auditory references rather than textual definitions. 1444

Participants were instructed to base their re- 1445
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Category Gemini 2.5-Flash (%) Non-Expert (%) Audio Expert (%) Human Total (%)

Perception 41.67 46.67 33.33 40.00
Cognition: Nondistractor 48.33 62.67 78.67 70.67
Cognition: Distractor 25.00 65.00 88.33 76.67
Remember 57.14 97.14 97.14 97.14
Understand 42.86 57.14 77.14 67.14
Apply–Frequency 21.43 65.71 85.71 75.71
Apply–Duration 57.14 80.00 94.29 87.14
Analyze–Acoustics 21.43 42.86 77.14 60.00
Analyze–Vocalization 50.00 37.14 57.14 47.14

Table 7: Detailed human evaluation results across the various task categories.

sponses solely on the presented audio and to avoid1446

making value-based or speculative judgments. Av-1447

erage completion time was less than one hour per1448

participant, and all participants received compen-1449

sation in accordance with the local legal minimum1450

wage to ensure ethical standards for research par-1451

ticipation. This proposed protocol was designed to1452

balance experimental rigor with participant well-1453

being, producing high-quality human baseline data1454

for comparison with model predictions.1455

19



Figure 8: Audio-to-text interface of the questionnaire for human evaluation.
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