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Abstract— Accurate and agile trajectory tracking in sub-gram
Micro Aerial Vehicles (MAVs) is challenging, as the small scale of
the robot induces large model uncertainties, demanding robust
feedback controllers, while the fast dynamics and computational
constraints prevent the deployment of computationally expensive
strategies. In this work, we present an approach for agile and
computationally efficient trajectory tracking on the MIT SoftFly
[1], a sub-gram MAV (0.7 grams). Our strategy employs a
cascaded control scheme, where an adaptive attitude controller
is combined with a neural network (NN) policy trained to imitate
a trajectory tracking robust tube model predictive controller
(RTMPC). The NN policy is obtained using our recent work [2],
which enables the policy to preserve the robustness of RTMPC,
but at a fraction of its computational cost. We experimentally
evaluate our approach, achieving position Root Mean Square
Errors (RMSEs) lower than 1.8 cm even in the more challenging
maneuvers, obtaining a 60% reduction in maximum position
error compared to [3], and demonstrating robustness to large
external disturbances.

I. INTRODUCTION

Flying insects exhibit incredibly agile flight abilities, being
capable of performing a flip in only 0.4 ms [4], flying under
large wind disturbances [5]–[7], and withstanding collisions
[8], [9]. Insect-scale flapping-wing MAVs [1], [10]–[12] have
the potential to replicate these robustness and agile flight
properties, extending their applications to tight and narrow
spaces that become difficult for larger scale MAVs [13]–[17].
A key capability needed for the deployment of sub-gram
MAVs in real-world missions is the ability to accurately track
desired agile trajectories while being robust to real-world
uncertainties, such as collisions and wind disturbances.

However, achieving robust, accurate, and agile trajectory
tracking in sub-gram MAVs has significant challenges. First,
their exceptionally fast dynamics [3] demand high-rate feed-
back control loops to ensure stability and rapid disturbance
rejection, while the small payload limits onboard computation
capabilities. Additionally, in order to maximize the lifespan
of the robot components, control actions need to be planned
in a way that is aware of actuation constraints. For instance,
soft dielectric elastomer actuators (DEAs) suffer dielectric
breakdown under a high electric field, posing a hard restraint
on the maximum operating voltage [18]. Furthermore, the
lifetime of passively-rotating wing hinges can be substantially
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Fig. 1: Composite image showing a 7.5-second flight where the MIT SoftFly [1], a
soft-actuated, insect-scale MAV, follows a vertical circle with 5 cm radius. The robot
is controlled by a neural network (NN) policy, trained to reproduce the response of
a robust model predictive controller. Thanks to its computational efficiency, the NN
controls the robot at 2 kHz while running on a small offboard computer.

extended under moderate control inputs. Lastly, manufacturing
imperfection due to the small scale, and hard-to-model
unsteady flapping-wing aerodynamics make it difficult to
identify accurate models for simulation and control. Existing
sub-gram MAVs have demonstrated promising agile flight
capabilities [3], [19], [20], but none of the existing controllers
explicitly account for environment and model uncertainties,
and for actuation constraints and usage.

An agile trajectory tracking strategy that has found success
on larger-scale MAVs (e.g., palm-sized quadrotors) consists
of decoupling position and attitude control via a cascaded
scheme, where a fast feedback loop (inner) controls the
attitude of the MAV, while a potentially slower loop (outer)
tracks the desired trajectory by generating commands for
the attitude controller. An outer loop controller that enables
agile, robust, actuation-aware trajectory tracking is model
predictive control (MPC) [21]–[27]. This strategy generates
actions by minimizing an objective function that explicitly
trades tracking accuracy for actuation usage, taking into
account the state and actuation constraints. This is achieved
by solving a constrained optimization problem online, where
a model of the robot is employed to plan along a predefined
temporal horizon by taking into account the effects of future
actions. Robust variants of MPC, such as robust tube model
predictive controller (RTMPC) [23], [28], can additionally
take into account uncertainties (disturbances, model errors)
when generating their plans and control actions. This is done
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by employing an auxiliary (ancillary) controller capable of
maintaining the system within some distance (“cross-section”
of a tube) from the nominal plan regardless of the realization
of uncertainty. While MPC and RTMPC enable impressive
performance on complex, agile robots, their computational
cost limits the opportunities for onboard, high-rate deployment
on computationally constrained platforms.

In this work, we present and experimentally demonstrate
a computationally efficient method for accurate, robust,
MPC-based trajectory tracking on sub-gram-MAVs. Our
method uses a cascaded control scheme, where the attitude
is controlled via the geometric attitude controller in [29],
which presents a large region of attraction (initial attitude
error should be <180 deg). This controller is additionally
modified with a parametric adaptation scheme, where a torque
observer estimates and compensates for the effects of slowly
varying torque disturbances. Agile, robust, and real-time
implementable trajectory tracking is achieved by employing
a computationally efficient deep-NN policy, trained to imitate
the response of a RTMPC, given a desired trajectory and
the current state of the robot. The NN policy is obtained
using our recent Imitation Learning (IL) method [2], which
uses a high-fidelity simulator and properties of the controller
to generate training data. A key benefit of our method [2]
is the ability to train a computationally efficient policy in
a computationally efficient way (e.g., a new policy can be
obtained in a few minutes), greatly accelerating the tuning
phase of the NN controller. We experimentally evaluate our
robust, agile trajectory tracking approach on the MIT sub-
gram-MAV SoftFly [3], demonstrating that our method can
consistently achieve low position tracking error on a variety of
trajectories, which include a circular trajectory (Figure 1) and
a ramp, while running at 2 kHz on a Baseline Target Machine,
SpeedGoat offboard computer. We additionally demonstrate
that our strategy is robust to large external disturbances,
intentionally applied while the robot tracks a given trajectory.
In summary, our work presents the following contributions:

• We present the first computationally-efficient strategy
for robust, MPC-like control of sub-gram MAVs. Our
approach employs a deep-learned NN policy that is
trained to reproduce a trajectory tracking RTMPC,
leveraging our previous IL work [2].

• We present a cascaded control strategy, where the attitude
controller in [29] is modified with a model adaptation
method to compensate for the effects of uncertainties.

• We perform an experimental evaluation on the MIT
SoftFly [3], an agile sub-gram MAV (0.7 g), showing
a 60% reduction in maximum trajectory tracking errors
over [3], while being real-time implementable (2 kHz)
on a small computational platform.

II. ROBOT DESIGN AND MODEL

Reference frames. We consider an inertial reference frame
W = {Wx,Wy,W z} and a body-fixed frame B =
{Bx,By,Bz} attached to the Center of Mass (CoM) of the
robot, as shown in Figure 2.

lxly
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Iz
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Fig. 2: CAD model of sub-gram MAV SoftFly that consists of four soft artificial
muscles (DEAs). We additionally show the following reference frames: inertial W
(grey), body-fixed B (red), yaw-fixed frame I (orange) used for control.

Mechanical design. The sub-gram flapping-wing robot
(Figure 2) consists of four individually-controlled DEAs [1],
[18] with newly-designed enhanced-endurance wing hinges
[30]. Unlike natural flying insects that actively control wing
stroke and pitch motions [31], our robot leverages system
resonance (400 Hz) and passive fluid-wing interaction to
generate lift forces and support flight. [1], [18]. This design
allows each of the four robot modules to generate lift forces
without producing significant torques.
Actuation model. The voltage inputs to the actuator are
controlled to produce desired time-averaged lift forces, and
a linear voltage-to-lift-force mapping, fi = αivi + βi, is
implemented as previously shown in [1], [18]. The time-
averaged lift force fi produce by each actuator i, with i =
1, . . . , 4, is utilized in the model for control purpose since
the wing inertia is order of magnitude smaller than that of
the robot thorax. These forces can be mapped to the total
torque produced by the actuators τcmd,x and τcmd,y (around
Bx and By, respectively) and fcmd as the total thrust force
on Bz via a linear mapping (mixer or allocation matrix) A:


fcmd
τcmd,x
τcmd,y


 = A



f1
...
f4


 , A =




1 1 1 1
−ly ly ly −ly
−lx −lx lx lx


 , (1)

where lx, ly represent the distance of the actuators from the
CoM of the robot, as shown in Figure 2. This configuration
(actuators’ placement and near-resonant-frequency operating
condition) does not generate controlled torques with respect
to the body z-axis.
Translational and rotational dynamics. The MAV is
modeled as a rigid body with six degrees of freedom, with
mass m and diagonal inertia tensor J, subject to gravitational
acceleration g. The following set of Newton-Euler equations
describes the robot’s dynamics:

m v̇ =fcmdRBz−mgW z+ f drag + f ext,

J ω̇ =− ω × J ω + τ cmd + τ drag + τ ext,

ṗ = v,

Ṙ =R ω∧.

(2)

Position p ∈ R3 and velocity v ∈ R3 are expressed in W ;
a rotation matrix R ∈ SO(3) defines the attitude, and the
angular velocity ω is expressed in B; ω∧ denotes the skew-
symmetric matrix of ω. We assume that the dynamics are
affected by external force and torque f ext ∈ R3 and τ ext ∈ R3,
capturing the effects of unknown disturbances, such as the
forces/torques applied by the power tethers, imperfections
in the assembly and mismatches of model parameters (e.g,
mass). Assuming no wind in the environment, we also include

3384



Torque
Observer

Robust Traj.
Tracking NN

Controller Attitude
Controller

Mixer
Matrix

State
Estimator

Fig. 3: Cascaded architecture for the proposed robust trajectory tracking control strategy.
The robust trajectory tracking NN controller constitutes the outer loop, and its task is
to track a desired trajectory xdes

0 , . . . ,xdes
N by generating setpoints Rd, ωd for the

cascaded attitude controller. The attitude controller and the torque observer constitute
the inner loop. Thanks to the robustness and adaptive properties of the outer and inner
loops, our approach can withstand the external force/torque disturbances fext, τext.

an isotropic drag force f drag = −cDv v and torque τ drag =
−cDω ω, with cDv > 0, cDω > 0.

III. FLIGHT CONTROL STRATEGY

We decouple trajectory tracking and attitude control via
a cascaded scheme, as shown in Figure 3. Given an N + 1-
step reference trajectory Xdes, a trajectory tracking controller
generates desired thrust fcmd, attitude Rd and angular velocity
ωd setpoints. A nested attitude controller then tracks the
attitude commands by generating a desired torque τcmd and
by leveraging the estimated torque disturbance τ̂ext provided
by a torque observer. The commands τcmd, fcmd are converted
(in the Mixer Matrix) to desired mean lift forces f1, . . . , f4
using the Moore-Penrose inverse A† of (1).

In the following paragraphs, we describe, first, the adaptive
attitude controller (Section III-A). Then, we present the
computationally expensive trajectory-tracking RTMPC (Sec-
tion III-B) and, last, the computationally efficient procedure
to generate the computationally efficient, robust NN tracking
policy (Section III-C) used to control the real robot.

A. Attitude Control and Adaptation Strategy

Attitude control law. The control law employed to regulate
the attitude of the robot is based on the Geometric attitude
controller in [29]:

τ cmd =−KReR −Kωeω + ω × J ω

− J(ω∧R�Rdωd −R�Rd ω̇d)− τ̂ext,
(3)

where KR,Kω of size 3× 3 are diagonal matrices, tuning
parameters of the controller, and the attitude error eR and its
time derivative eω are defined as in [29]:

eR =
1

2
(R�

d R−R�Rd)
∨, eω = ω −R�Rd ωd. (4)

The symbol (r∧)∨ = r denotes the operation transforming
a 3 × 3 skew-symmetric matrix r∧ in a vector r ∈ R3.
Different from [29], we assume ω̇d = 03. While this
could result in larger tracking errors under very aggressive
attitude changes, it avoids taking derivatives of potentially
discontinuous angular velocity commands, reducing actuation
noise. We additionally augment (3) with the adaptive term
τ̂ext, which is computed via a torque observer. We note that
only the first two components of τ cmd are used for control,
as the actuators cannot produce torque τcmd,z .
Torque observer. We compensate for the effects of un-
certainties in the rotational dynamics by estimating torque

disturbances τ ext via a steady state Kalman filter. These distur-
bances are assumed to be slowly varying when expressed in
the body frame B. The state of the filter is xo = [ω�, τ�

ext]
�.

We assume that the rotational dynamics, employed to compute
the prediction (a priori) step, evolve according to:

ω̇ = J−1(uo + τ ext) + ηω, τ̇ ext = ητ , (5)

where ηω, ητ are assumed to be zero-mean Gaussian
noise, whose covariance is a tuning parameter of the filter.
Additionally, the prediction step is performed assuming the
control input uo = τ cmd − ω × J ω, which enables us to
take into account the nonlinear gyroscopic effects ω × J ω
while using a computationally efficient linear observer. The
measurement update (a posteriori) uses angular velocity
measurements zo = ωm + ηm, assumed corrupted by an
additive zero mean Gaussian noise ηm, whose covariance
can be identified from data or adjusted as a tuning parameter.

B. Robust Tube MPC for Trajectory Tracking

In this part, first we present the hover-linearized vehicle
model employed for control design (Section III-B.1). We then
present the optimization problem solved by a linear RTMPC
(Section III-B.2) and the compensation schemes to account
for the effects of linearization (Section III-B.3).

1) Linearized Model: We linearize the dynamics (2) around
hover using a procedure that largely follows [25], [32]. The
key differences are highlighted in the following.

First, for interpretability, we represent the attitude of the
MAV via the Euler angles yaw ψ, pitch θ, roll φ (intrinsic
rotations around the z-y-x). The corresponding rotation matrix
can be obtained as R = Rz(ψ)Ry(θ)Rx(φ), where Rj(α)
denotes a rotation of α around the j-th axis. Additionally,
we express the dynamics (2) in a yaw-fixed frame I , so that
Ix is aligned with Wx. The roll Iφ and pitch Iθ angles (and
their first derivative Iϕ, Iϑ) expressed in I can be expressed
in B via the rotation matrix RBI :[

φ
θ

]
= RBI

[
Iφ

Iθ

]
, RBI =

[
cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

]
. (6)

The state x of the linearized model is chosen to be:

x = [p�, v�, Iφ, Iθ, Iδφcmd, Iδθcmd]
�, (7)

where Iδφcmd, Iδθcmd denote the linearized commanded atti-
tude. We chose the control input u to be:

u = [Iϕcmd, Iϑcmd, δfcmd]
�, (8)

where δfcmd denotes the linearized commanded thrust, and
Iϕcmd and Iϑcmd are the commanded roll and pitch rates.
The choice of x and u differs from [2], [25] as the control
input consist in the roll, pitch rates rather than θcmd, φcmd;
this is done to avoid discontinuities in θcmd, φcmd, and to feed-
forward angular velocity commands to the attitude controller.

The linear translational dynamics are obtained by lin-
earization of the translational dynamics in (2) around hover.
Linearizing the closed-loop rotational dynamics is more
challenging, as they should include the linearization of the
attitude controller. Following [32], we model the closed-loop

3385



attitude dynamics around hover expressed in I as:

I θ̇ =
1

τθ
(kθ Iθcmd − Iθ), I θ̇cmd = Iϑcmd,

I ϕ̇ =
1

τϕ
(kϕ Iϕcmd − Iϕ), I ϕ̇cmd = Iφcmd,

(9)

where kϕ, kθ are gains of the commanded roll and pitch
angles, while τϕ, τθ are the respective time constants. These
parameters can be obtained via system identification.

Last, we model the unknown external force disturbance
f ext in (2) as a source of bounded uncertainty, assumed
to be ∥fext∥∞ < f̄ext. This introduces an additive bounded
uncertainty w ∈ W, with:

W := {w = [0⊤
3 , f

⊤
ext,0

⊤
4 ]

⊤ | ∥fext∥∞ < f̄ext}. (10)

Via discretization with sampling period Tc, we obtain the
following linear, uncertain state space model:

xt+1 = Axt +But +wk, (11)

subject to actuation and state constrains U = {u ∈ R3|umin ≤
u ≤ umax}, and X = {x ∈ R10|xmin ≤ x ≤ xmax}.

2) Controller Formulation: The trajectory tracking
RTMPC is based on [28], with the objective function modified
to track a desired trajectory.
Optimization problem. At every timestep t, RTMPC takes as
input the current state of the robot xt and a N+1-step desired
trajectory Xdes

t = {xdes
0|t, . . . ,x

des
N |t}, where xdes

i|t indicates the
desired state at the future time t+ i, as given at the current
time t. It then computes a sequence of reference states X̄t =
{x̄0|t, . . . , x̄N |t} and actions Ūt = {ū0|t, . . . , ūN−1|t}, that
will not cause constrain violations (“safe”) regardless of the
realization of w ∈ W. This is achieved by solving:

Ū∗
t , X̄

∗
t = argmin

Ūt,X̄t

∥eN |t∥2Px
+
N−1∑
i=0

∥ei|t∥2Qx
+ ∥ui|t∥2Ru

subject to x̄i+1|t = Ax̄i|t +Būi|t, (12)
x̄i|t ∈ X⊖ Z, ūi|t ∈ U⊖KZ,
xt ∈ Z⊕ x̄0|t, i = 0, . . . , N − 1

where ei|t = x̄i|t − xdes
i|t is the tracking error. The positive

definite matrices Qx, Ru define the trade-off between devia-
tions from the desired trajectory and actuation usage, while
∥eN |t∥2Px

is the terminal cost. Px and K are obtained by
formulating an infinite horizon optimal control LQR problem
using A, B, Qx and Ru and by solving the associated
algebraic Riccati equation [33]. ⊕, ⊖ denote set addition
(Minkowski sum) and subtraction (Pontryagin difference). As
often done in practice [32], we do not include a terminal set
constraints, but we make sure to select a sufficiently long
prediction horizon to achieve recursive feasibility.
Tube and ancillary controller. A control input for the real
system is generated by RTMPC via an ancillary controller:

ut = ū∗
t +K(xt − x̄∗

t ), (13)

where ū∗
0|t = ū∗

t and x̄∗
0|t = x̄∗

t . This controller ensures
that the system remains inside a tube (with “cross-section”
Z) centered around x̄∗

t regardless of the realization of the
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Fig. 4: Imitation learning strategy employed to learn a robust neural network (NN)
from robust tube model predictive controller (RTMPC). Key idea is to collect RTMPC
demonstrations in simulation and to leverage properties of RTMPC to augment the
collected demonstrations with data that improve the robustness of the trained policy.

disturbances in W, provided that the state of the system
starts in such tube (constraint xt ∈ Z ⊕ x̄0|t). The set Z
is a disturbance invariant set for the closed-loop system
AK := A+BK, satisfying the property that ∀xt ∈ Z,
∀wt ∈ W, ∀t ∈ N+, xt+1 = AKxt +wt ∈ Z. In our work,
we compute an approximation of Z by computing the largest
deviations from the origin of AK by performing Monte-Carlo
simulations, with disturbances uniformly sampled from W.

3) Compensation schemes and attitude setpoints: Follow-
ing [32], we apply a compensation scheme to the commands:

fcmd =
δfcmd + g

cos(ϕ) cos(θ)
,

[
ϕcmd
θcmd

]
=

g

fcmd

[
δϕcmd
δθcmd

]
. (14)

This desired orientation θcmd, ϕcmd is converted to a desired
rotation matrix Rd, setpoint for the attitude controller, setting
the desired yaw angle to the current yaw angle ψcmd = ψ.
Last, the desired angular velocity ωd is computed from the
desired yaw, pitch, roll rates q̇ = [ψ̇cmd, ϑcmd, φcmd]

⊤ via [34]
ωd = Eψ,θ,ϕq̇, with

Eψ,θ,ϕ =

0 − sin(ψ) cos(ψ) sin(θ)
0 cos(ψ) sin(ψ) cos(θ)
1 0 − sin(θ)

 , (15)

and assuming the desired yaw rate ψ̇cmd = 0.

C. Robust Tracking NN Policy

The procedure to generate a computationally efficient NN
policy capable of reproducing the response of the trajectory
tracking RTMPC in Section III-B is summarized in Figure 4.
Policy input-output. The deep NN policy that we intend to
train is denoted as πθ, with parameters θ. Its input-outputs
are the same as the ones of RTMPC in Section III-B:

ut = πθ(xt,X
des
t ). (16)

Policy training. Our approach, based on our previous work
[2], consists in the following steps:

1) We design a high-fidelity simulator implementing a
discretized model (discretization period Ts) of the nonlinear
dynamics (2) and the control architecture consisting of the
attitude controller (Section III-A) and RTMPC (Section III-B).
In the simulator, we assume that the MAV is not subject to
disturbances, setting fext = 03 and τext = 03, and therefore
we do not simulate the torque observer.

2) Given a desired trajectory, we collect a T + 1-step
demonstration T by simulating the entire system con-
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Fig. 5: Performance of the proposed flight control strategy in Task 1 (T1), where the robot follows a 3.5 s ramp trajectory on x-y-z. The experiment is repeated three times, and
the results are included in the shaded lines, with the exception of the roll and pitch angles, for clarity. These results highlight the accuracy of the proposed trajectory tracking
error, which achieves a 0.6 cm position tracking RMSE on x-y, and 0.2 cm on z.

TABLE I: Position Root Mean Squared Errors (RMSE) and Maximum Absolute Errors (MAE) when tracking a ramp (T1), a ramp with disturbances (T2) and a circle (T3). All
the values are computed after takeoff (t > 0.5 s).

T1: Ramp (3 runs, 2.5 s) T2 (1 run, 7.0 s) T3: Circle (3 runs, 7.5 s)
RMSE (cm, ↓) MAE (cm, ↓) RMSE MAE RMSE (cm, ↓) MAE (cm, ↓)

Axis AVG MIN MAX AVG MIN MAX (cm, ↓) (cm, ↓) AVG MIN MAX AVG MIN MAX

x 0.6 0.4 0.9 1.1 0.7 1.5 0.7 2.5 1.0 0.8 1.4 2.0 1.7 2.6
y 0.8 0.7 0.9 1.5 1.3 1.6 1.0 2.1 1.5 1.3 1.8 2.8 2.5 3.1
z 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.6 0.5 0.8

trolled by RTMPC. At every timestep t of the demon-
stration, we store the inputs, output of RTMPC, with
the addition of the safe plans ū∗

t , x̄
∗
t , obtaining T =

{(x0,u0, ū
∗
0, x̄

∗
0,X

des
0 ), . . . , (xT ,uT , ū

∗
T , x̄

∗
T ,X

des
T )}.

3) We generate a dataset of (inputs, output) of the
controller, using the data obtained from the collected demon-
stration T . The obtained dataset D has the form D =
{({x0,X

des
0 },u0), . . . , ({xT ,Xdes

T },uT )}.
4) For every timestep t in T , we augment the dataset D

by generating Naugm extra (state, action) pairs (x+
i,t,u

+
i,t) by

uniformly sampling extra states from the tube (x+
i,t ∈ x̄∗

t ⊕Z),
and by computing the corresponding actions u+

i,t with the
ancillary controller:

u+
i,t = ū∗

t +K(x+
i,t − x̄∗

t ). (17)

The extra datasets D+
t = {({x+

i,t,X
des
i,t },u

+
i,t)

Naugm
i=1 }, t =

0, . . . , T are then combined with D, obtaining the training
dataset. This data augmentation procedure [2] generates data
that can compensate for the effects of uncertainties in W.
This procedure has also the potential to reduce the time
needed for the data collection phase over other existing IL
methods, as (17) can be computed efficiently. We note that
step 2− 4 should be repeated for every possible trajectory
the policy needs to learn to follow, using IL methods such as
Behavior Cloning (BC) or Dataset-Aggregation (DAgger) [2],
[35]. However, as shown in our previous work [2], if a set
of sufficiently representative trajectories is collected during
training, then the policy is capable to execute new slightly
different trajectories, achieving generalization capabilities.

5) The optimal parameters θ∗ for the policy (16) are then
found by training the policy on the collected and augmented
dataset, minimizing the Mean Squared Error (MSE) loss.

IV. EXPERIMENTAL EVALUATION

The robustness and performance of the described flight
controllers are experimentally evaluated on the soft-actuated

MIT SoftFly [3]. We consider two trajectories of increasing
difficulty, a position ramp, where we additionally perturb the
MAV with external disturbances, and a circular trajectory.

Experimental setup. The flight experiments are performed
in an environment equipped with 6 motion-capturing cameras
(Vantage V5, Vicon). This system provides positions and
orientations of the robot, and velocities are obtained via
numerical differentiation. The controller runs at 2 kHz on
the Baseline Target Machine (Speedgoat) using the Simulink
Real-Time operating system; its commands are converted to
sinusoidal signals for flapping motion at 10 kHz. Voltage
amplifiers (677B, Trek) are connected to the controller and
produce amplified control voltages to the robot.

Controller and training parameters. The parameters for
the controllers are obtained via system identification, also
leveraging [36], [37]. The RTMPC has a 1-second long
prediction horizon, with N = 50 and Tc = 0.02; we set f̄ext
to correspond to 15% of the weight force acting on the robot.
State and actuation constraints capture safety and actuation
limits of the robot (e.g., max actual/commanded roll/pitch
< 25 deg, ∥δfcmd∥ < 80%mg). The employed policy is a
feed-forward, fully connected NN with 2-hidden layers, 32
neurons per layer (as in our previous work [2], where this size
has been shown to be capable to learn multiple trajectories).
Its input size is 310 (current state, and reference trajectory
containing desired position, velocity across the prediction
horizon N ), and its output size is 3. During the experiments,
we slightly tune the parameters Qx,Ru,KR,Kω to study
how sensitive is our approach to tuning changes, without
observing large performance variations. We train a policy
for each type of trajectory (ramp, circle), using the ADAM
optimizer, with a learning rate η = 0.001, for 15 epochs. Data
augmentation is performed by using Naugm = 200. Training
each policy takes about 1 minute (for T = 350 steps) on a
Intel i9-10920 (12 cores) with two Nvidia RTX 3090 GPUs.
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Fig. 6: Robustness of the proposed flight control strategy when applying large force/torque disturbances to the MAV while tracking a 6.0 s ramp trajectory on x-y-z, our Task
2 (T2). These results highlight that the robot is not destabilized by the large disturbances, achieving an impressive 0.3 cm MAE on the z axis. The fast attitude dynamics
additionally enable the robot to recover in only 200 ms.

A. Task 1: Position Ramps

First, we consider a position ramp of 3 cm along the three
axes of the W , with a duration of 1 s. The total flight time in
the experiment is of 3 s, and we repeat the experiment three
times. This is a task of medium difficulty, as the robot needs
to simultaneously roll, pitch and accelerate along z, but the
maneuver covers a small distance (5.2 cm). Figure 5 (a) shows
a time-lapse of the maneuver. Table I reports the position
tracking RMSE (computed after take-off, starting at t0 = 0.5),
and shows that we can consistently achieve sub-centimeter
RMSE on all the axes, with a maximum absolute error (MAE)
smaller than 1.6 cm. This is a 60% reduction over the 4.0 cm
MAE on x-y reported in [3] for a hover task. Remarkably, the
altitude MAE is only 0.2 cm, with a similar reduction (60%)
over [3] (0.5 cm). Figure 5 shows the robot’s desired and
actual position and attitude across multiple runs (shaded lines),
demonstrating repeatability. Figure 5 additionally highlights
the role of the torque observer, which estimates a position-
dependent disturbance, possibly caused by the forces applied
by the power cables, or by the safety tether.

B. Task 2: Rejection of Large External Disturbances

Next, we increase the complexity of the task by intention-
ally applying strong disturbances with a stick to the safety
tether (Figure 6 (a)), while tracking the same ramp trajectory
in Task 1. This causes accelerations > 0.25 g. Figure 6
reports position, attitude, and estimated disturbances, where
the contact periods have been highlighted in orange. Table I
reports RMSE and MAE. From Figure 6 (b) we highlight
that a) the position of the robot remains close to the reference
(< 2.5 cm MAE on x-y) and, surprisingly, the altitude is
almost unperturbed (0.3 cm MAE). b) the robot, thanks to its
small inertia, recovers quickly from the large disturbances,
being capable to permanently reduce (after impact, until the
next impact) its acceleration by 50% in less than 200 ms;
c) despite the impulse-like nature of the applied disturbance,
the torque observer detects some of its effects.

C. Task 3: Circular Trajectory

Last, we track a circular trajectory along the x-z axis of
W for three times. The trajectory has a duration of 7.5 s
(including takeoff), with a desired velocity of 5.2 cm/s, and
the circle has a radius of 5.0 cm. A composite image of
the experiment is shown in Figure 1. Figure 7 provides a
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Fig. 7: Performance in Task 3 (T3), where the robot tracks a long (7.5 s) circular
trajectory, with a wide (5.0 cm) radius. The experiment has been repeated three times,
and the results are included in the shaded lines. These results highlight the high and
repeatable accuracy during agile flight of the RTMPC-like NN policy controlling the
robot, as well as the role of the torque observer, which is capable to estimate and
compensate for the effects of large rotational uncertainties. A composite image of the
trajectory is shown in Figure 1.

qualitative evaluation of the performance of our approach,
while Table I reports the RMSE of position tracking across
the three runs. These results highlight that: a) in line with
Task 1, our approach consistently achieves mm-level accuracy
in altitude tracking (3 mm average RMSE on z), and cm-
level accuracy in x-y position tracking (RMSE < 1.8 cm,
MAE < 3.1 cm); b) the external torque observer plays an
important role in detecting and compensating external torque
disturbances, which corresponds to approximately 30% of
the maximum torque control authority around Bx.

V. CONCLUSIONS

This work has presented the first robust MPC-like neural
network policy capable of experimentally controlling a
sub-gram MAV [3]. In our experimental evaluations, the
proposed policy achieved high control rates (2 kHz) on
a small offboard computer, while demonstrating small (<
1.8 cm) RMS tracking errors, and the ability to withstand
large external disturbances. These results open up novel
and exciting opportunities for agile control of sub-gram
MAVs. First, the demonstrated robustness and computational
efficiency paves the way for onboard deployment under real-
world uncertainties. Second, the newly-developed trajectory
tracking capabilities enable data collection at different flight
regimes, for model discovery and identification [36], [37].
Last, as the computational cost of a learned neural-network
policy grows favorably with respect to state size, we can use
larger, more sophisticated models for control design, further
exploiting the nimble characteristics of sub-gram MAVs.
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