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Abstract

We investigate how Accumulated Local Effects (ALE), a model-agnostic explana-
tion method, can be adapted to visualize the influence of node feature values in link
prediction tasks using Graph Neural Networks (GNNs), specifically Graph Convo-
lutional Networks and Graph Attention Networks. A key challenge addressed in
this work is the complex interactions of nodes during message passing within GNN
layers, complicating the direct application of ALE. Since a straightforward solution
of modifying only one node at once substantially increases computation time, we
propose an approximate method that mitigates this challenge. Our findings reveal
that although the approximate method offers computational efficiency, the exact
method yields more stable explanations, particularly when smaller data subsets are
used. However, the explanations produced with the approximate method are not
significantly different from the ones obtained with the exact method. Additionally,
we analyze how varying parameters affect the accuracy of ALE estimation for both
approaches.

1 Introduction

This study investigates the application of Accumulated Local Effects (ALE) [1], a model-agnostic
explanation method, to Graph Neural Networks (GNNs) trained for link prediction. ALE visual-
izes the impact of a specific feature’s value on the model’s prediction. Unlike GNNExplainer [2]
and PGExplainer [3], which highlight important subgraphs and feature subsets for predictions, or
counterfactual methods like GCFExplainer [4], which identify minimal graph alterations to change
predictions, ALE provides a different perspective on model behavior. By focusing on individual fea-
ture effects, ALE could serve as a valuable complementary tool for GNN explainability, particularly
given its broader applicability beyond the GNN domain.

ALE calculation involves modifying specific feature values and assessing the model’s predictions on
this altered dataset to measure the impact of these changes. While this process is straightforward for
tabular data, where multiple points can be modified simultaneously, it presents unique challenges
for GNNs. During message passing GNN layers update the node’s embedding with the information
about its neighbors, which is passed along the edges and later aggregated [5]. Hence, a prediction
made for the nodes is influenced by their neighbors. If, during ALE calculation, many nodes would
be modified simultaneously, they could influence each other’s prediction in an undesirable way. On
the other hand, modifying nodes one by one is highly time-consuming.

This work tries to estimate the scope of the aforementioned effect and answer the question: does
ignoring this effect and calculating the prediction as it is done with tabular data significantly affect
the explanation?
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We obtain the ALE estimation both by ignoring and accounting for this effect, and then compare
the results from these two approaches. Additionally, we calculate ALE for various parameter sets to
analyze how these parameters influence the accuracy of the ALE estimation.

The code used to produce the results described in this work can be found at https: //github.com/
Kaczyniec/ALE-and-GNNs.

2 Accumulated Local Effects

Accumulated Local Effects (ALE) plots provide a way to visualize the effect of a feature on the
predictions of a machine-learning model by accumulating local changes in the predictions as the
feature values vary [1]. It is an alternative to Partial Dependence Plots [6] and addresses some of
its limitations, such as the sensitivity to feature correlations and the inability to accurately capture
interactions between features. The core idea is to measure the local effect of a feature by looking
at the changes in predictions when the feature value changes slightly, and then accumulating these
changes across the range of the feature. In this expression, the derivative fS(XS , XC) represents the
local effect of XS on the model prediction, and this effect is accumulated over the range from xmin,S
to the current value xS :

gS,ALE(xS) =

∫ xS

xmin,S

E[fS(XS , XC)|XS = zS ]dzS − constant (1)

The empirical estimation of Accumulated Local Effects is given by:

ĝS(xS) ≡
∑
h

1

nS(h)

∑
{i:xi,S∈NS(h)}

[f(zh,S , xC)− f(zh−1,S , xC)] (2)

In this formula, the summation aggregates the local differences in the model’s predictions as the
feature XS transitions from one interval to another. Values zh,S and zh−1,S correspond to the border
of the feature xS interval, and nS(h) represents the number of observations within the hth interval.

Originally, ALE is centered by subtracting ALE [1] averaged over all possible values of the feature,
making it easier to interpret the contribution of each feature relative to its average effect. For the sake
of simplicity of analysis, this procedure will not be applied here.

3 Methodology

3.1 Modification of ALE for link prediction

In the task of link prediction, the model returns the probability of an edge existing between two given
nodes, v and u. This requires a slight adjustment of the ALE method. Instead of modifying features
for both nodes involved in the potential link, we focus on altering the features of only one node,
which we designate as v. The other node, u, remains unmodified. In this way, ALE visualizes the
effect of the node feature’s value on the existence of edges between the modified node and the rest of
the dataset.

Graph datasets can be large. Due to this, averaging across all of the nodes present in the dataset could
not be feasible. Hence, we take only a subset of size m of nodes, for which we modify the feature
XS we are interested in. We then choose the subset U of size k of nodes, against which we evaluate
the link probability for each modified node.

Estimation of ALE from Eq. (2) is modified in Eq. (3) in order to account for the link prediction task
and averaging over only a subset of the nodes:

ĝS(xS) ≡
∑
h

1

k

∑
u∈U

1

m

∑
v(xi,S ,xi,C):
xi,S∈NS(h)

[f(v(zh,S , xi,C), u)− f(v(zh−1,S , xi,C), u)] (3)

The sum over v is taken over the nodes with XS in the interval h. The middle sum (which did not
appear in Eq. (2)) is taken over nodes u, which can have an edge with v. It is divided by the number
of these nodes.
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Algorithms To explore the effect of nodes’ interaction during message passing on explanation, we
implement two versions of ALE. In the first "approximate" version, the node features are treated as
the tabular dataset, and for one interval, the model’s prediction is computed simultaneously. The fact
that they influence each other while message passing is ignored. This version is further called the
approximate version. In the second “exact” version, the value of the explained feature is changed for
each examined node at a time, in isolation from the other nodes. The algorithms are presented in the
Appendix A.

ALE parameters Due to the computational constraints, we calculated the explanations for values
of parameters k and m being the power of 2 between 16 and 1024.

’Gold standard’ There exists a need for some form of a gold standard to which single explanations
could be compared.

The most accurate estimation of ALE was created by averaging the exact explanation for different
values of k and m. For every value of the parameters, the intervals (and the first sum in Eq. (3)) remain
the same. The latter averages cannot be simply added since the sum of averages is not necessarily
the average of sums. However, if the ALE is multiplied by the km, only the sums remain, and the
expression becomes additive. In this way, we can sum the predictions obtained during every run of
the experiment. We divide it by the number of all predictions in the interval and, in this way, obtain
ALE combined from multiple small runs.

In result, the following formula is obtained:

gS(xS) =

∑
i kimigS,ki,mi

(xS)∑
i kimi

(4)

In this way, multiple ALE profiles can be aggregated into one ALE profile corresponding to the
ALE, which would be obtained if predictions from multiple runs were calculated during one ALE
estimation.

4 Datasets

We used two datasets. The first one is a citation network of 159,734 Artificial Intelligence research
papers from the S2ORC corpus [7] with 227,565 citations between them, enriched with author
affiliation data from OpenAlex [8][9]. The second dataset is CD1-E_no2 - a 3D vessel graph of
mouse brain vasculature containing 1,664,811 nodes and 2,150,326 edges [10]. In the citation dataset,
the explained feature is the fraction of authors affiliated with Big Tech companies, allowing for an
investigation into the influence of private sector affiliation on citation patterns. In the vessel graph
dataset we explain the z-coordinate of nodes to explore the relationship between brain height and
vessel connectivity.

5 Models

The models were trained for the task of link prediction: given two nodes, the model should return
if there exists a link between them. A GNN encoder, either two 256-dimensional layers of Graph
Convolutional Network (GCN) [11] or Graph Attention Network (GAT) [12], was used to obtain
node embeddings, and the dot product of the embeddings was calculated to predict link probability
via a sigmoid function. Binary cross-entropy was used as the loss function, with batch normalization
[13] applied after both layers. The models were implemented using PyTorch Geometric [14].

The negative sampling of edges was performed, with number of negative samples equal to the number
of positive samples. The Citations dataset models were trained for 15 epochs on a CPU, while the
CD1-E_no2 dataset was trained for 50 epochs on a GPU.

6 Results

χ2 Test To determine whether the ALE curves from both methods differ or if they can be used in-
terchangeably, we applied a χ2 test adjusted for comparing arbitrary curves [15]. The null hypothesis
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Figure 1: ALE curve calculated for the fraction of authors affiliated with Big Techs. The hue
corresponds to the number of edges taken into account during calculating ALE profile. The red line
is the ’gold standard’ - the average of the exact predictions weighted with the number of predictions
taken into account (see Appendix 3.1), and the blue line is the weighted average of approximate
predictions.

assumed that the ALE profiles came from the same distribution. As recommended by Hristova and
Wimley [15], the degrees of freedom were set to the number of points in the curve. At a significance
level of α = 0.05, the null hypothesis would be rejected if the χ2 value exceeded 11.07. For the
Citations dataset, the χ2 values for the ALE curves were 7.165 for the GCN model and 5.413 for the
GAT model. For the CD1-E_no2 dataset, the χ2 values were 17.439 for the GCN model and 1.296
for the GAT model. A statistically significant difference between the curves was observed only for
the GCN model trained on the CD1-E_no2 dataset.

Permutation Test We conducted a permutation test to assess whether the exact and approximate
explanations differ significantly. The null hypothesis stated that both groups were sampled from
the same distribution. The test statistic was the weighted average ALE profile, and the difference
was measured as the root mean squared error between the averaged profiles of the two groups. The
p-value was the percentage of tests where the difference between the test statistics of the two groups
exceeded that of the original group split. A total of n = 10, 000 splits of ALE curves into two groups
were randomly generated.

For the Citations dataset, the p-value for explanations of GCN model was 0.407, and for GAT model
- 0.898. For the CD1-E_no2 dataset, it was 0.195 for GCN model and 0.155 for GAT model. No
p-value was smaller than the significance level α = 0.05. Hence, the null hypothesis stating that
samples are taken from the same distribution was not rejected in any case.

Parameters’ impact There exists a bigger variability for the single runs of approximate ALE than
exact ALE. It can be observed in Fig. 1, 6, and 7. The smaller the number of nodes taken into account,
the stronger this effect.

Fig. 2 and 3 show that the higher the k parameter, the smaller the RMSE between approximate ALE
and the ’gold standard’. However, this effect is not visible for the exact ALE. From the same plots,
we conclude that the higher the time of explanation (proportional to the m parameter), the better the
exact ALE.
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RMSE vs time of computation for citations dataset

Figure 2: RMSE between runs and ’gold standard’ plotted against time of explanation for Citations
dataset. The red dots are the exact ALE and the blue dots are the approximate ALE. The hue
corresponds to k. The time of exact explanation is roughly proportional to the m parameter.
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Figure 3: The Root Mean Square Error between runs and ’gold standard’ plotted against time of
explanation for CD1-E_no2 dataset. The red dots are the exact ALE and the blue dots are the
approximate ALE. The hue corresponds to k. The time of exact explanation is roughly proportional
to the m parameter. This explanations were performed on GPU.

7 Discussion

The results of χ2 tests showed that in 3 out of 4 different models, the results obtained with both
methods were not significantly different. The permutation test did not show differences between the
approximate and exact methods’ results in any case.

For the exact method of ALE calculation in link prediction tasks in GNNs, it is more beneficial to
increase the m parameter than k parameter. In this way, more nodes with modified feature’s value
are taken into account. This comes at the time expense since computation scales linearly with the
number of nodes in the interval.

Although the approximate method of explanation has greater variability between single runs, it could
be used in time-sensitive scenarios. This variability can be reduced by increasing the predicted
number of edges (by increasing k and m parameters).
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7.1 Relationship between explanations and real-life phenomena

Fig. 1 and 6 show that the probability of being cited increases with the fraction of authors affiliated
with Big Techs. This relation between the article’s popularity and authors’ affiliation is consistent
with the literature on this topic [16]. However, it does not support the conclusions of the PageRank
and node degree analysis of Giziński et al. [9], which revealed that the most popular were articles
with authors affiliated both with Big Techs and Academia. The latter analysis was performed on
the Citations dataset, which is also used in this work. This discrepancy between the two analyses
could stem from differences in the methodologies used or from the possibility that our models did not
capture more complex relationships present in the data.

Additionally, Fig. 7 shows that the probability of a link forming increases with the z-coordinate,
whereas Fig. 8 suggests the opposite—a decreasing probability. This contradiction may arise from
the two models learning opposing relationships between the z-coordinate and the likelihood of an
edge forming between nodes.

These results underscore the utility of ALE (Accumulated Local Effects) in assessing how node
features influence GNN predictions. However, it’s important to note that explainability tools like
ALE reveal only what the models have learned, not necessarily the underlying real-world phenomena.

8 Conclusions

We show how, in most cases, the explanations produced with the approximate method are not
significantly different from the explanations produced with the exact method. This leads us to the
conclusion that, especially in time-sensitive situations, the node interaction effects can be ignored.
However, the exact explanations are usually not only more accurate but also more stable.

The k parameter - the number of nodes possibly having an edge with a modified node - has a clear
impact on the accuracy while using the approximate method, but we do not observe a similar impact
with the exact method.

8.1 Limitations

The scope of models was restricted to the link prediction task, excluding other tasks such as node
classification, edge classification, or graph classification. Additionally, only two GNN architectures
were evaluated.

ALE was applied exclusively to continuous variables, limiting its applicability to categorical node
features. This restricts the analysis to a smaller number of node features in graph datasets.

The datasets are rather sparse. The interaction between modified nodes should intuitively increase
with the density of the graph.

We did not provide formal proof for the observed phenomena. The approximation effects could
potentially be influenced by the network’s density and the number of message-passing layers, though
this relationship was not analytically explored.
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A Algorithms

Algorithm 1: ALE Exact Version
Input: Model M , Dataset D, Feature index f ,

Number of bins N
Output: Accumulated Local Effects (ALE)

values

Initialize empty list ALE;
Divide feature values into N bins;
for each bin bi do

Get nodes in bin bi;
for each node nj in bi do

/* Additional loop in Exact
version */

Set feature f of nj to lower bin edge;
Compute prediction Plow;
Set feature f of nj to upper bin edge;
Compute prediction Phigh;
Compute difference
D = Phigh − Plow;

Store D;
Compute average difference for bin bi and

update ALE;
Return ALE;

Algorithm 2: ALE Approximate Version
Input: Model M , Dataset D, Feature index f ,

Number of bins N
Output: Accumulated Local Effects (ALE)

values

Initialize empty list ALE;
Divide feature values into N bins;
for each bin bi do

Get nodes in bin bi;
Set feature f of all nodes in bi to lower bin

edge;
Compute prediction Plow;
Set feature f of all nodes in bi to upper bin

edge;
Compute prediction Phigh;
Compute average difference
D = Phigh − Plow;

Update ALE with D;
Return ALE;

B Example of modified nodes’ interaction

Figure 4 presents a hypothetical scenario in which modified nodes could affect each others’ prediction
produced by a two-layer GNN similar to the ones used in this article. Figure 5 is a modified version
where the nodes would not affect each other embedding. All nodes inside of the dotted circle are
connected with the node in the center of this circle by a path no longer than 2. Only information
from the nodes inside the dotted circle can affect the embedding of the central node produced by a
model with two layers of GCN or GAT. In the first layer, information from the node’s neighbors is
passed through the edges and aggregated. In the second layer, the same happens, but the neighbors
embedding already contains information about neighbors’ neighbors.

The more nodes are modified, the bigger the chance that some of them will be connected by a path
short enough to influence each other. Hence, the disturbance coming from the interaction of modified
nodes should rise with the number of modified nodes.

C Models

The models on the CD1-E_no2 dataset were trained on a GPU L40 with 24GB. Adam optimizer was
used. The learning rate for GCN models was 10−6 and for GAT models was 10−5.

D ALE profiles
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Figure 4: An exemplary graph where two modi-
fied features (blue and red) would affect each
other during inference through the two-layer
GNN.

Figure 5: Modification of Fig. 4, where the sec-
ond node was added on the path between the blue
and red nodes. The blue and red nodes would no
longer affect each other’s embedding.

Model Dataset F1 AUC ROC
GAT Citations 0.683 0.635
GCN Citations 0.703 0.759
GAT CD1-E_no2 0.741 –
GCN CD1-E_no2 0.833 –

Table 1: Metrics for models trained on the Citation and CD1-E_no2 datasets. AUC ROC is only
applicable to the Citation dataset.

Figure 6: ALE curve calculated for the fraction of authors affiliated with Big Techs. The red line is
the gold standard, and the blue line is the weighted average of approximate predictions.
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Figure 7: ALE curve calculated for the z coordinate in GCN model trained on CD1-E_no2 dataset.
The red line is the gold standard, and the blue line is the weighted average of approximate predictions.

Figure 8: ALE curve calculated for the z coordinate in GAT model trained on CD1-E_no2 dataset.
The red line is the gold standard and the blue line is the weighted average of approximate predictions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We tried to accurately summarize in the abstract and introduction the key
findings, objectives, and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper has Limitations section, which describes methodological challenges
and underlines what was the scope of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details of the models’ architecture, and the algorithm for approxi-
mate and exact ALE.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

The code is in the Github repository: https://github.com/Kaczyniec/
ALE-and-GNNs.
Dataset CD1-E_no2 was made available on Github by its authors [10]. S2ORC database is
in open access[7]. OpenAlex database is in open access as well [8].

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We tried to specify hyperparameters and other training details in the article
and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We performed statistical tests (χ2 and permutation test) in order to test whether
the two methods produce significantly different ALE profiles. We report results related to
time and parameters without the error bars due to the choice of visualisation and exploratory
nature of the considerations involving parameters.

Guidelines:

• The answer NA means that the paper does not include experiments.

13

https://github.com/Kaczyniec/ALE-and-GNNs
https://github.com/Kaczyniec/ALE-and-GNNs
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In case of CD1-E_no2 dataset we provided GPU details. Information about
explanation time is available on the Fig. 2 and 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read and followed the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We firmly believe that explainability tools like ALE can be important in diag-
nosing problems with ML models, which becomes increasingly critical as AI applications
broaden in our daily lives. ALE differs from other methods used in GNN explainability and,
in this way, complements them.
The choice of the Citations dataset was driven by our curiosity about Big Tech’s impact on
AI research, what has wide societal impacts.
We also include a subsection in the Discussion section highlighting how ALE can be
interpreted. There, we emphasize that explainability tools describe models and do not
necessarily represent real-life phenomena.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe this study poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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Justification: We strived to credit the owners of the assets and mention the authors of the
assets were applicable.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No assets (except code) were introduced. The code’s README is in prepa-
ration. We believe that the experiments can be replicated with the current description of
the code, but we are in the process of preparing more detailed instructions on how to run
experiments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing nor research with human subjects was performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No research with human subjects was performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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