
Streaming Bayes GFlowNets

Tiago da Silva
Getulio Vargas Foundation
tiago.henrique@fgv.br

Daniel Augusto de Souza
University College London

daniel.souza.21@ucl.ac.uk

Diego Mesquita
Getulio Vargas Foundation
diego.mesquita@fgv.br

Abstract

Bayes’ rule naturally allows for inference refinement in a streaming fashion, with-
out the need to recompute posteriors from scratch whenever new data arrives. In
principle, Bayesian streaming is straightforward: we update our prior with the
available data and use the resulting posterior as a prior when processing the next
data chunk. In practice, however, this recipe entails i) approximating an intractable
posterior at each time step; and ii) encapsulating results appropriately to allow
for posterior propagation. For continuous state spaces, variational inference (VI)
is particularly convenient due to its scalability and the tractability of variational
posteriors, For discrete state spaces, however, state-of-the-art VI results in ana-
lytically intractable approximations that are ill-suited for streaming settings. To
enable streaming Bayesian inference over discrete parameter spaces, we propose
streaming Bayes GFlowNets (abbreviated as SB-GFlowNets) by leveraging the re-
cently proposed GFlowNets — a powerful class of amortized samplers for discrete
compositional objects. Notably, SB-GFlowNet approximates the initial posterior
using a standard GFlowNet and subsequently updates it using a tailored procedure
that requires only the newly observed data. Our case studies in linear preference
learning and phylogenetic inference showcase the effectiveness of SB-GFlowNets
in sampling from an unnormalized posterior in a streaming setting. As expected,
we also observe that SB-GFlowNets is significantly faster than repeatedly training
a GFlowNet from scratch to sample from the full posterior.

1 Introduction
One of the foundations of the Big Data revolution in the sciences and engineering is the use of
streaming data that is continuously collected and meant to be processed as it arrives. Many of the
large statistical models in use were first formulated for the batched i.i.d. data setting and updating
such models in this setting is a challenge of its own, as it would naively require us to revisit all past
data at each update to avoid forgetting. [19, 39] In this context, Bayesian inference appears as a
natural starting point to learning in the streaming data setting due to its innate property of coherence
[5], which allows learning can happen continuously, independently of how the data is chunked into
packages or ordered. More specifically, given a prior distribution p(θ) and a data generating likelihood
p(yi | θ), the posterior distribution over a set of data p(θ | y1, y2) ∝ p(y2 | θ)p(y1 | θ)p(θ), can be
written as p(y2 | θ)p(θ | y1), where first we compute the posterior over y1 and then used as a prior to
compute the posterior over y2. As conveniently summarized by Lindley [33]: “Today’s posterior is
tomorrow’s prior".

Nonetheless, Bayesian inference is notoriously known for being hard to obtain closed-form solutions.
The gold standard of approximate methods, Markov chain Monte Carlo (MCMC), requires that
the prior and likelihood distributions probability density/mass functions can be evaluated, however,

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

as it can only obtain samples from posterior, using the previous posterior as the prior of the next
time-step requires additional work [6]. Thus, variational inference (VI), another popular approximate
Bayes method, appears as the best fit as its foundation lies in directly parameterizing the approximate
posterior distribution instead of relying on empirical distributions of samples.

Importantly, many problems of interest are built upon a discrete set of parameters. In Bayesian
phylogenetic inference (BPI), for example, we are concerned with topologies of phylogenetic trees
describing the evolutionary genetic history of a population. This is a especially compelling application
of streaming Bayes, allowing researchers to update posteriors over the phylogenetic trees as they de-
code new nucleobases in genetic sequences — without reprocessing previously decoded nucleobases.
In practice, phylogenetic analyses might involve hundreds of thousands of nucleobases.

Nonetheless, popular methods for VI over discrete posteriors typically rely on gradient-based opti-
mization (e.g., to maximize evidence lower bounds), requiring the modeling of discrete parameters as
transformed versions of latent continuous ones [20, 25, 36]. For methods using VI, a discrete posterior
distribution with support over a set of size N would require variational posteriors of dimension N ,
implying either the storage of large covariance matrices of order N2, in the case of continuous
reparameterizations, or the use of massively simplifying assumptions such as mean-field, reducing
the expressivity of the variational posterior. As an example of support size for discrete distributions,
the number of graphs with N nodes grows asymptotically as

√
2N(N−1)/N ! [16].

In this work, we leverage Generative Flow Networks (GFlowNets) [2, 3, 30] to efficiently address
the implementation of approximate Bayesian models defined on a discrete set of parameters within
a streaming data setting. In summary, GFlowNets are a family of amortized VI methods for high-
dimensional discrete parameter spaces, that learn the policies of a finite-horizon Markov decision
process (MDP) by minimizing a loss function enforcing a balance condition. The condition, in
turn, provably ensures that the samples generated from the MDP are correctly distributed. Notably,
despite their successful deployment in solving a wide range of problems ([11, 12, 22–24, 32, 34, 63]),
previous approaches assumed that the target (posterior) distribution did not change in time. Hence,
this is the first work handling the training of GFlowNets in dynamic environments.

More specifically, we propose two novel training schemes to enable GFlowNets on streaming settings.
The first consists of directly enforcing a streaming balance condition, which induces a least-squares
loss that can be optimized in an off-policy fashion, potentially avoiding issues such as mode collapse.
Alternatively, we leverage the well-known relationship between GFlowNets and VI to develop an
on-policy divergence-minimizing algorithm that often exhibits faster training convergence when the
target distribution is not very sparse. We also analyze theoretically how local errors accumulate
through posterior propagation, providing upper bounds on the approximation quality of models
learned using both of our update schemes.

In summary, our main contributions are:

1. We propose a streaming balance condition and a corresponding provably correct algorithm
enabling the training of GFlowNets in a streaming data setting (Algorithm 1), without the
need to revisit past data;

2. We devise an alternative VI algorithm employing low-variance gradient estimators to train
to update GFlowNets in streaming fashion (Section 3). ;

3. We theoretically analyze how inaccuracies of individual updates propagate to subsequent
posterior approximations, bounding the approximation errors accumulated through repeated
streaming updates of the model (Section 4);

4. We demonstrate the correctness and effectiveness of our method in a series of streaming
tasks, such as Bayesian linear preference learning with integer-valued features (Section 5.2)
and online Bayesian phylogenetic inference (Section 5.3).

2 Preliminaries
Notation and definitions. Let X be a set of compositional objects (e.g., trees with nine nodes)
and S ⊇ X be an extension of X (e.g., forests with nine nodes). Define G = (S,A) as a directed
acyclic graph (DAG) with nodes in S, adjacency matrix A, and the following properties: (i) G is
weakly connected; (ii) there is an unique state so ∈ S \ X without any incoming edges; and (iii)
there are no edges leaving x for every x ∈ X . We call S the set of states, G the state graph, and

2

X the set of terminal states; so is called the initial state. A forward policy over G is a function
pF (v, w) : S × S → R+ such that it defines a probability distribution over S with support on v’s
children in G. A backward policy is a forward policy over G⊺ = (S,A⊺). To alleviate notation, we
denote the set of trajectories that ends in x as {τ | τ ⇝ x}, and define a probability distribution in
this set as pF (τ) =

∏
i pF (si, si+1) and the probability of the backwards trajectory condition on the

end point x as pB(τ | x) =
∏

i pB(si+1, si).

GFlowNets. We define a GFlowNet as a tuple G = (G, pF , pB , Z) specifying a state graph G,
forward pF and backward pB policies, and an estimate Z of a normalizing constant. A GFlowNet
induces a probability distribution over X through its forward policy, p⊤(x) :=

∑
τ⇝x pF (τ). When

there is no risk of ambiguity, we will generally omit G from this notation. We also drop Z when
training the GFlowNet with a criterion that does not require it. Following the common convention,
we parameterize the forward network by a neural network, and the backward policy at each state is
left fixed as a uniform distribution.

The task a GFlowNet is trained for is to match its induced distribution p⊤(x) with a target distribution
π(x) ∝ π̃(x), where π̃(x) is an unnormalized distribution. In practice, the agreement between p⊤ and
π can be enforced by a balance condition over trajectories, avoiding references to p⊤. For instance,
we may enforce trajectory balance (TB) condition, ZpF (τ) = pB(τ | x)π̃(x) for all τ ⇝ x, to
estimate the parameters of the GFlowNet by minimizing

LTB(G) = E
τ∼ξ

[(
log

ZpF (τ)

pB(τ | x)π̃(x)

)2
]
, (1)

where ξ is a base policy with full support on the space of complete trajectories, i.e., trajectories
starting at so and terminating at sf . Then, we can use the following unbiased estimate to compute the
GFlowNet’s marginal distribution over terminal states p⊤:

p⊤(x) = Eτ∼pB(·|x)

[
pF (τ)

pB(τ |x)

]
≈ 1

K

∑
1≤i≤k

pF (τi)

pB(τi|x)
. (2)

For a thorough review of GFlowNets, please refer to [3].

GFlowNets and VI. Malkin et al. [38] showed that the training of GFlowNets may be framed as
a variational inference on the target pB(τ) ∝ π̃(x)pB(τ |x) with pF as the proposal distribution.
Through the data processing inequality, they showed that the minimization of the Kullback-Leibler
(KL) divergence between trajectory-level distributions pF and pB incurred in a marginal p⊤ over X
matching the target, namely, DKL[pF ||pB] ≥ DKL[p⊤||π]. Then, they demonstrated the equivalence
between the gradients of the on-policy TB loss and the KL divergence, and that the latter is a
sound learning objective for GFlowNets. Here, we build upon this construction to design a KL
divergence-based algorithm for updating GFlowNets in a streaming context.

Problem description. We assume that the data is drawn from a distribution f(·|x) indexed by a
parameter x ∈ X and we define π(x) as a prior distribution over X . Let (Di)i≥1 be a sequence of
continually collected independent data sets and πt(x|D1, . . . ,Dt) ∝ f(D1, . . . ,Dt|x)π(x) := π̃t(x)
be the posterior conditioned on the first t data sets. Note that, due to coherence, we can also write
π̃t(x) = f(Dt|x)π̃t−1(x).

3 Streaming Bayes GFlowNets
In this section, we propose streaming Bayes GFlowNets (SB-GFlowNets) as an extension of
GFlowNets to handle streaming data. In essence, an SB-GFlowNet Gt+1 avoids evaluating π̃t+1(x),
which would require revisiting all the previous data, by maintaining an SB-GFlowNet Gt which
targets previous posterior π̃t(x), allowing the target distribution of Gt+1 to be f(Dt+1|x)p(t)⊺ (x),
where p(t)⊺ (x) is the induced distribution of Gt, thus avoiding the storage of previous data sets.

We propose two strategies for matching the target distribution, enforcing the streaming balance
(SB) condition (Section 3.1) and applying KL streaming updates (Section 3.2). Importantly, both
methods require only newly observed data Dt+1 and the previously trained model, Gt to update the
posterior approximation, without revisiting past data batches D1:t. These conditions are extensions
of TB condition and KL criterion proposed for the batched data case, each with its own strengths
and weaknesses. Subsequently, we provide both a theoretical analysis (Section 4) and experimental
validation (Section 5) for SB-GFLowNets.

3

3.1 Streaming balance condition.
In streaming settings,training a GFlowNet to sample from π̃t+1 ∝ f(Dt, . . . , D1|x)π(x) by naively
enforcing the TB condition entails numerous evaluations of the complete likelihood. However, as-
suming we have previously trained a GFlowNet to sample from π̃t(x), we propose a more convenient
balance condition that does not refer explicitly to previously-seen data.

Definition 1 (Streaming balance condition). Let Gt = (G, p(t)F , p
(t)
B , Zt) be a GFlowNet trained to

sample proportionally to the posterior π̃t(x). The streaming balance (SB) condition for the GFlowNet
Gt+1 = (G, p(t+1)

F , p
(t+1)
B , Zt+1), conditioned on Gt, is defined as

Zt+1p
(t+1)
F (τ) =

f(Dt+1|x)p(t)F (τ)Zt

p
(t)
B (τ |x)

p
(t+1)
B (τ |x), (3)

in which f(Dt+1|x) is the model’s likelihood. When the backward policy does not depend on t, e.g.,
is fixed as an uniform policy, Equation 3 reduces to Zt+1p

(t+1)
F (τ) = Ztp

(t)
F (τ)f(Dt+1|x).

Intuitively, if we consider the TB conditions for the GFlowNets Gt and Gt+1:

Ztp
(t)
F (τ) = π̃t(x)p

(t)
B (τ |x) and Zt+1p

(t+1)
F (τ) = f(Dt+1|x)π̃t(x)p

(t+1)
B (τ |x),

we can re-arrange the identity for Gt to obtain the unnormalized posterior a time t, i.e., π̃t = Ztp
(t)
F /p(t)

B

and, then, apply this to the TB condition of Gt+1 yielding Equation 3.

Naturally, the SB condition gives rise to a loss function by considering the log-squared ratio between
the left- and right-hand sides of Equation 3, namely:

LSB(Gt+1;Gt) = E
τ∼ξ

(log Zt+1p
(t+1)
F (τ)

p
(t+1)
B (τ |x)

· p
(t)
B (τ |x)

Ztp
(t)
F (τ)

· 1

f(Dt+1|x)

)2
, (4)

for a distribution ξ of full-support over trajectories. Importantly, Proposition 1 ensures that this
approach results in a model sampling proportionally to π̃t+1(x).

Proposition 1 (Soundness of LSB). Assume p
(t)
⊤ (x) ∝ π̃t(x). Then, if LSB(Gt+1;Gt) = 0, then

p
(t+1)
⊤ (x) samples objects from X proportionally to π̃t+1(x).

Please refer to Algorithm 1 in the supplement for a detailed description of the training of a SB-
GFlowNet by minimizing LSB .

3.2 Divergence-based updates of SB-GFlowNets.
In practice, estimating logZt by learning is not straight-forward and, if not done properly, may
severely damage the quality of the approximation. Divergence-based objectives provide ways to train
GFlowNets without relying on estimates of logZt. Indeed, as we show in our experimental results
(Section 5), minimizing a divergence-based objective often leads to a better approximation than
conventional approaches. However, unlike TB which allows the use of arbitrary base policies, these
approaches normally require the use of p⊺(x) as the base policy which may lead to mode collapse
depending on target distributions [6, 38].

So, as discussed in Section 2, recall that a GFlowNet may equivalently be interpreted as a hierarchical
variational model using pF (τ) as an approximation to pB(τ) ∝ π̃(x)pB(τ |x) allowing GFlowNets to
be trained by minimizing any divergence between pF and pB [38]. Based on this insight, we propose
the following divergence-based training criterion for streaming GFlowNets:

Definition 2 (Divergence-based streaming update). Let Gt = (G, p(t)F , p
(t)
B) be a GFlowNet balanced

sampling proportional to π̃t. For Gt+1 = (G, p(t+1)
F , p

(t+1)
B) and target distribution πt+1, define the

unnormalized distribution p(τ) ∝ p
(t)
F (τ)f(Dt+1|x) over trajectories. Then, if C

= denotes equality
up to an additive constant,

LKL(Gt+1;Gt) = E
τ∼p

(t+1)
F

[
log

p
(t+1)
F (τ)

p
(t)
F (τ)f(Dt+1|x)

]
C
= DKL

[
p
(t+1)
F (τ)||p(τ)

]
, (5)

is called the KL’s streaming criterion.

4

Note that when LKL vanishes, p
(t+1)
F (τ) ∝ p

(t)
F (τ)f(Dt+1|x) for all τ ⇝ x and x ∈ X .

Then,
p
(t+1)
⊤ (x) =

∑
τ→x

p
(t+1)
F (τ) ∝ p

(t)
⊤ (x)f(Dt|x).

Consequently, minimizing LKL is a sound objective for learning to sample from πt+1 when p
(t)
⊤ (x) =

πt(x). In Section 4, we quantitatively relate the accuracy of p(t+1)
⊤ with that of p(t)⊤ when using either

Equation (4) or Equation (5) as learning objectives for the SB-GFlowNet.

Low-variance gradient estimators forDKL. Score matching estimates of the divergence’s gradients,
∇θDKL, are of high variance, negatively affecting the convergence speed of the trained model
[42, 46, 57]. To circumvent this issue, we rely upon the REINFORCE leave-one-out (RLOO)
gradient estimator [41], which employs a sample-dependent control variate to significantly reduce the
noiseness of the estimated gradients. More specifically, define γ(τ) = log p

(t+1)
F (τ)/p(t)

F (τ)f(Dt+1|x)

and let τ1, . . . , τk be independently sampled trajectories from p
(t+1)
F . Also, denote by θ the parameters

of p(t+1)
F . In this context, the RLOO estimator for the gradient of KL’s streaming criterion is

1

k

∑
1≤i≤k

∇θγ(τi) +
1

k

∑
1≤i≤k

γ(τi)−
1

k − 1

∑
1≤j≤k,j ̸=i

γ(τj)

∇θ log p
(t+1)
F (τ), (6)

which is an unbiased estimate for ∇θEτ∼pt+1
F

[γ(τ)]. Importantly, RLOO is straightforwardly repre-
sented as a vector-Jacobian product. Thus, it can be swiftly computed in standard reverse-mode au-
todifferentiation packages [47], adding a negligible computational overhead to the algorithm.

4 Theoretical analysis
While posterior propagation is computationally convenient, preventing training from scratch repeat-
edly, we should also expect errors to propagate through updates. To better understand the behavior
of SB-GFlowNets, we analyze how choosing sub-optimal SB-GFlowNet at time t influences our
approximation’s quality at time t + 1. We quantify goodness-of-fit of SB-GFlowNets’ sampling
distribution wrt target both in terms of TV and of their expected distance in log space. Since the
SB loss and KL updates incur different parameterizations, we analyze separately the cases in which
SB-GFlowNets are trained using each loss.

Overall, we establish that the accuracy of a SB-GFlowNet’s sampling distribution p
(t+1)
⊤ at time t+1

depends on how close the new forward policy p
(t+1)
F is from being optimal, on the size of the new

data chunk Dt+1, and on the goodness-of-fit of the previous estimate p
(t)
⊤ . As expected, our analysis

suggests that the negative effects of poorly learned p
(t)
⊤ are negligible when the size of a data chunk

is relatively large. Also, when the previous SB-GFlowNet Gt is a poor approximation to the true
posterior πt, we discuss the benefits of using an earlier and potentially more accurate checkpoint Gs

with s < t as a reference for training Gt+1.

4.1 Analysis for SB loss-based training
We first analyze how errors propagate when training SB-GFlowNets by directly enforcing the SB
condition, i.e., minimizing Equation 4. To this effect, recall using the SB loss implies learning an
estimate of the partition function Zt as well as the forward policy p

(t)
F at each time step t. In partic-

ular, Proposition 2 measures the consequences of an inaccurately learned p
(t)
F and of insufficiently

minimizing the SB loss on the (t+ 1)th approximation.

Proposition 2. Let Gt = (G, p(t)F , p
(t)
B , Zt) and Gt+1 = (G, p(t+1)

F , p
(t+1)
B , Zt+1) be pair of

GFlowNets. Let also πt+1(x) ∝ πt(x)f(Dt+1|x) and recall that π : X → R+ is our prior dis-
tribution. Defining Z⋆

k :=
∑

x π(x)
∏k

i=1 f(Di|x) for any k > 0, and letting (p̂
(t+1)
F , p̂

(t+1)
B , Ẑt+1)

be the optimal solution to Equation 4 satisfying the SB condition. Then,

δ
πt+1

LS

(
p
(t+1)
⊤ , πt+1

)
≤ δ

πt+1

LS

(
p
(t+1)
⊤ , p̂t+1

⊺

)
+

∣∣∣∣∣log Ẑt+1

Z⋆
t+1

∣∣∣∣∣︸ ︷︷ ︸
Estimation error

+ δ
πt+1

LS

(
p
(t)
⊤ , πt

)
+

∣∣∣∣log Zt

Z⋆
t

∣∣∣∣︸ ︷︷ ︸
Accuracy of p(t)⊤

,

5

where δξLS(p, q) :=
(
Ex∼ξ[log p(x)− log q(x)]2

)1/2
.

As expected, Proposition 2 underlines the importance of starting with a good approximation from
the tth stage and of properly solving the learning problem at the (t+ 1)th stage in order to obtain
an accurate approximation to πt+1. In particular, this result reveals the detrimental effect of an
inadequately estimated partition function on the quality of GFlowNet’s streaming updates.

Complementary, Proposition 3 provides an upper bound the TV distance between p
(t+1)
F and

p
(t+1)
B (τ) := p

(t+1)
B (τ |x)πt+1(x). Besides corroborating the conclusions of Proposition 2, the ex-

plicit dependence of the TV upper bound on ofDt+1 allows for analyzing it as a function of the newly
observed data set’s likelihood f(Dt+1|x). In particular, consider the case in which |Dt+1| → ∞.
Then, since f(Dt+1|x)→ 0 uniformly on x and, for many models, f(Dt+1|x̂)/f(Dt+1|y)→∞ for
y /∈ argmaxx f(D|x). Then, the accuracy of p(t)⊤ becomes negligible to the overall approximation
of the full posterior when the newly observed data set Dt+1 is relatively large and the second term in
Proposition 3 approximately vanishes.

Proposition 3. Let TV (p, q) := 1
2

∑
x∈X |p(x) − q(x)| be the TV distance between probability

distributions p and q. Then, under the same setting of Proposition 2,

TV
(
p
(t+1)
⊤ , πt+1

)
≤ TV

(
p
(t+1)
⊤ , p̂(t+1)

⊺

)
+

1

2
· f(Dt+1|x̂) ·

∑
x∈X

∣∣∣∣ Zt

Zt+1
p
(t)
⊤ (x)− Z⋆

t

Z⋆
t+1

πt(x)

∣∣∣∣ ,
in which x̂ ∈ argmaxx∈X f(Dt+1|x) is the maximum likelihood instance in X for Dt+1.

4.2 Analysis for KL streaming criterion-based training
We now turn to the case in which SB-GFlowNets are trained with KL streaming updates, sequentially
minimizing Equation 5 — in which case we only learn the forward a backward policy networks.
More specifically, Proposition 4 provides an upper bound on the TV distance between p

(t+1)
⊤ and

πt+1 as a function of f(Dt+1|x), p(t)⊤ ’s closeness to πt, and the learning objective.

Proposition 4. Recall that p(τ) ∝ p
(t)
F (τ)f(Dt+1|x). Thus, under the notations of Proposition 2,

TV
(
p
(t+1)
⊤ , πt+1

)
≤ 1

2

√
DKL

[
p
(t+1)
F ||p

]
︸ ︷︷ ︸

Estimation error

+TV

(
p
(t)
⊤ (·)f(Dt+1|·)

E
y∼p

(t)
⊤

[f(Dt|y)]
,
πt(·)f(Dt+1|·)
Ey∼πt [f(Dt|y)]

)
︸ ︷︷ ︸

Accuracy of p(t)⊤

. (7)

In spite of considering a different learning objective compared to Proposition 3, Proposition 4 rein-
forces the importance of properly optimizing the loss in each time step — due to its compounding
impact on SB-GFlowNet’s accuracy. Nonetheless, the quality of πt is roughly negligible when the ob-
served data set f(Dt+1|·) dominates the shape of p(t)⊤ (·)f(Dt+1|·) — and of πt(·)f(Dt+1|·).

5 Experiments
We show that SB-GFlowNets can accurately learn the posterior distribution conditioned on the stream-
ing data for one toy and two practically relevant applications. To start with, Section 5.1 illustrates the
applicability of SB-GFlowNets in the context of set generation. Nextly, Section 5.2 showcases the
correctness of SB-GFlowNets in the problem of Bayesian linear preference learning with integer-
valued features [8]. Then, Section 5.3 indicates the potential of SB-GFlowNets for carrying out online
Bayesian inference over phylogenetic trees [13, 15, 58]. Finally, Section 5.4 touches on the problem
of Bayesian structure learning with streaming data. To the best of our knowledge, SB-GFlowNets
are the first method enabling variational inference over discrete parameter spaces within a streaming
setting, as previous approaches either relied on intractable continuous relaxations [20, 25, 36] or
scaled poorly in the size of the target’s support [55]. We provide further implementation details
regarding model configurations and experimental settings in Appendix C.

5.1 Set generation
Problem description. We first remark that, if R1, . . . , Rk+1 are positive functions on X , the
problem of streaming Bayesian inference may be generalized to the problem of sampling from

6

1.5 3.0
×10−3

1.5

3.0

×10−3

2.5 5.0
×10−3

2.5

5.0
×10−3

0.5 1.0
×10−2

0.5

1.0
×10−2

0.5 1.0
×10−2

0.5

1.0
×10−2

0.6 1.2
×10−2

0.6

1.2
×10−2

1 2
×10−2

1

2

×10−2

1 2
×10−2

1

2

×10−2

1.5 3.0
×10−2

1.5

3.0

×10−2

p
(t)
> (x)

π
t(
x

)

Figure 1: SB-GFlowNets learn an accurate approximation to a changing target distribution in a
streaming setting for the task of set generation. Each plot depicts the target and learned distributions
from the first (left-most) to the last (right-most) streaming update.

X proportionally to the product
∏k+1

i=1 Ri by having only access to Rk+1 and to a GFlowNet
approximating

∏k
i=1 Ri. Indeed, in the context Bayesian inference, this correspondence is achieved

by defining Ri(x) := f(Di|x) for i > 1 and R1(x) = f(D1|x)π(x). Thus, to demonstrate the
effectiveness of SB-GFlowNets and highlight the benefits and pitfalls of each proposed training
scheme, we consider the set generation task — a popular toy experiment in the GFlowNet literature
[3, 44, 53]. In this task, X is the space of sets with S elements extracted from a fixed deposit
I = {1, . . . , d}. Then, for i ∈ {1, . . . ,K}, we define fi : I → R and let logRi(x) =

∑
e∈x fi(e)

be the ith log-reward of a set x.

Experimental setup. We fix d = 24 and S = 18. To define Ri, we independently sample fi(d) from
an uniform distribution on [−5, 5]. Correspondingly, we define R(α)

i := R
1/α
i as the tempered reward,

noting that R(α)
i becomes increasingly sparse as α→ 0.

Table 1: TV between the GFlowNet and the target. TB
outperforms KL for sparse targets (small α).

α 1.00 0.75 0.50
TB 0.21±0.06 0.28±0.10 0.36±0.24

KL 0.13±0.03 0.17±0.04 0.55±0.38

Results. Table 1 highlights the differences be-
tween our two training schemes in terms of the
target’s temperature. For relatively sparse tar-
gets (with α < 1), the benefits of off-policy
sampling enacted by the minimization of the TB
loss lead to a better performance relatively to
the KL-minimizing algorithm. Indeed, the on-policy exploration employed by the latter potentially
hinders the model’s capabilities of finding the sparsely distributed high-probability regions of the
target, slowing down the training convergence and potentially leading to mode collapse [38]. Also,
albeit one could implement an IS estimator for off-policy training under the KL criterion, our early
experiments suggested that the increased gradient variance outweighed the gains from enhanced
exploration. Ultimately, the choice of an appropriate learning objective for training GFlowNets
will depend on the application. For training SB-GFlowNets, Figure 1 shows that both TB and KL
minimization result in accurate approximations to the changing posterior.

5.2 Linear preference learning with integer-valued features
Problem description. Consider a collection of instances {yi} endowed with a transitive and complete
preference relation ⪰; we assume that each yi ∈ {1, 0}d is a binary feature vector. Naturally, the
preference relation ⪰ is represented as a mapping u such that y ≻ y′ if and only if u(y) > u(y′);
uncovering u is the major goal of preference learning methods. Similarly to [8, 21], we here assume
that u is a linear function, u(y) = xT y, for a integer-valued vector x and that we have access to a
data set y = {(yi1, yi2, pi)}i denoting whether yi1 is preferred to yi2 (pi = 1) or otherwise (pi = 0)
for a fixed individual. Subsequently, we define the probabilistic model

p(pi = 1|x, (yi1, yi2)) := σ(u(yi1)− u(yi2)) = σ
(
xT (yi1 − yi2)

)
, (8)

in which σ is the sigmoid function, and a prior distribution π(x) over x [18]; the intuition is that a
larger difference between yi1 and yi2’s utilities makes the event in which yi1 is preferred over yi2
more likely. Our goal is to infer the individual’s preferences based on the posterior π(x|y) for some
unseen pair (ỹ1, ỹj), i.e., to estimate the predictive distribution p(ỹ|(ỹ1, ỹ2),y).

Experimental setup. We assume x ∈ [[0, 4]]d and d = 24. At each iteration of the streaming process,
we sample a novel subset of the 2d−1 · (2d − 1) pairs of d-dimensional binary feature vectors and use
them to update the GFlowNet. The prior on x is a factorized truncated Poisson with λ = 3.

7

0.5 1.0
×10−4

0.5

1.0

×10−4

0.5 1.0
×10−4

0.5

1.0

×10−4

0.6 1.2
×10−4

0.6

1.2
×10−4

0.6 1.2
×10−4

0.6

1.2

×10−4

0.6 1.2
×10−4

0.6

1.2

×10−4

0.8 1.6
×10−4

0.8

1.6

×10−4

0.8 1.6
×10−4

0.8

1.6

×10−4

1 2
×10−4

1

2
×10−4

p
(t)
> (x)

π
t(
x

)

Figure 2: SB-GFlowNet accurately learns the posterior over the utility’s parameters in a
streaming setting. Each plot compares the marginal distribution learned by SB-GFlowNet (horizontal
axis) and the targeted posterior distribution (vertical axis) at increasingly advanced stages of the
streaming process, i.e., from π1(·|D1) (left-most) to π8(·|D1:8) (right-most).

0 4
t

12

16

−
lo

g
p(

x
te

st
|x

1
:t
)

0 4
t

32

40

E β
(t

)
∼
p
>
[‖β

(t
)
−
β
‖2 2

]

Figure 3: Predictive performance of SB-GFlowNets
in terms of pred. NLL and avg. MSE. SB-GFlowNets
behaves similarly to the ground-truth, wrt how the
NLL evolves as a function of data chunks.

Results. Figure 2 shows SB-GFlowNet correctly
samples form the posterior in a streaming setting.
Note, in particular, that the GFlowNet maintains a
high distributional accuracy throughout the stream-
ing iterations. Correspondingly, the predictive
log-likelihood of a fixed held out data set mono-
tonically increases as a function of the amount of
data consumed by the SB-GFlowNet, as shown in
Figure 3; this behavior, also exhibited by the true
posterior [54], emphasizes the similarity between
the learned and targeted distributions.

5.3 Online Bayesian phylogenetic inference
Problem description. Bayesian phylogenetic inference (BPI) [29, 59] aims to infer structural
properties of evolutionary trees given molecular sequences such as DNA and RNA. Formally, let
{S1, . . . , SN} be a collection of N DNA sequences of size M , Si ∈ {A, T,C,G}M , one for each bio-
logical species. We define a phylogeny as a tuple T = (t,b) comprising a rooted tree topology t and its
non-negative branch lengths b. In this context, a rooted tree topology is a complete binary tree having
N labeled leaves corresponding to the considered species and N − 1 unlabeled internal nodes corre-
sponding to their ancestors. To carry out Bayesian inference over the space of phylogenies, we adopt
Jukes & Cantor’s nucleotide substitution model (JC69; [26]) to define a observational model over the
observed DNA sequences; to calculate the likelihood, we use Felsenstein’s algorithm [15].

Crucially, despite the popularity of BPI methods, the development of new sequencing technologies has
swiftly led to the enlargement of already sizeable sequence databases. In this scenario, maintaining
an up-to-date estimate of the posterior became an increasingly difficult task due to the necessity
of re-estimating the full posterior from scratch every time a new batch of data is collected. In the
following, we show that GFlowNets, which have recently shown SOTA performance in BPI [63], can
also accurately update the posterior on phylogenetic trees given additional sequences.

Experimental setup. We generate the data by simulating JC69’s model for a collection of N = 7
species and a substitution rate of λ = 5·10−1 (see [58], Chapter 1). At each iteration, we sample a new
DNA subsequence of size 102 for each species and update SB-GFlowNet according to Algorithm 1.
For Table 2, |D1| = 103 and |D2| = 102. The prior is an uniform distibution over phylogenies.

0 3 6
t

−8

−6

−4

−
lo

g
p(

T
tr

ue
|x

1
:t
)

0 3 6
t

4

8

E T
∼
p
>
[‖π

(T
)
−
p >

(T
)‖

1
] ×10−5

Figure 4: SB-GFlowNet’s accurate fit to the true pos-
terior in terms of the probability of the true phylogeny
(left) and of the learned model’s accuracy (right).

Results. Figure 4 (left) shows that the learned
posterior distribution gets increasingly concen-
trated on the true phylogenetic tree; this behav-
ior, which is inherent to posteriors over phyloge-
nies under uniform priors [50], emphasizes the
similarity between the learned and targeted dis-
tributions for SB-GFlowNets. Figure 4 (right),
on the other hand, also suggets that the model’s
accuracy decreases as a function of the number
of streaming updates. Nonetheless, we believe
that this is predominantly caused by the poste-
rior’s increasing sparsity due to the expanding data sets [50], which makes it more difficult for the
GFlowNet to learn a good approximation [11], instead of by an intrinsic limitation of SB-GFlowNets.
An investigation of this phenomenon and of the conditions upon which re-train the SB-GFlowNet

8

Table 2: SB-GFlowNet significantly accelerates the training of GFlowNets in a streaming setting.
Indeed, SB-GFlowNets achieve an accuracy comparable to a GFlowNet trained from scratch to
sample from π2(·|D1:2) in less than half the time (measured in seconds per 20k epochs).

Number of leaves

Model 7 9 11

GFlowNet 2846.88 s 3779.11 s 4821.74 s
SB-GFlowNet (ours) 1279.68 s 1714.49 s 2303.99 s

Relative accuracy gain (TV) 0.00±0.04 −0.02±0.04 0.00±0.01

based on an earlier checkpoint due to the accumulated unreliability of the streaming updates, as
described by Proposition 4, is left application-dependent and is thereby left to future endeavors.
Finally, Table 2 shows that SB-GFlowNets, which avoids evaluating the full posterior, more than
halve the training time required by a standard GFlowNet, while achieving a similar performance in
terms of the total variation (TV) distance between the learned and target distributions.

5.4 Bayesian structure learning

1 2 3
×10−4

1

2

3

E
xa

ct
po

st
er

io
r ×10−4 t = 1

2 4
×10−4

2.5

5.0
×10−4 t = 2

2.5 5.0
×10−4

2.5

5.0

×10−4 t = 3

2.5 5.0
×10−4

2.5

5.0

×10−4 t = 4

2.5 5.0 7.5
×10−4

2.5

5.0

7.5

×10−4 t = 5

0.5 1.0
×10−3

0.5

1.0
×10−3 t = 6

Streaming DAG-GFlowNet

Figure 5: SB-GFlowNets accurately learns a distribution over DAGs for causal discovery in each
time step. At each update, an additional dataset of 200 points was sampled from the true model. For
this problem, we implemented a DAG-GFlowNet on 5-variable data sets, similarly to [11, Figure 3].

Problem description. Let X ∈ Rn×d be a data set distributed according to a linear Gaussian
structural equation model (SEM), i.e., X = βX + ϵ, in which β ∈ Rd×d is a (sparse) matrix and
ϵ ∈ Rn×d are nd i.i.d. samples from a normal distribution. We assume that the adjacency matrix
induced by β, [β ̸= 0] ∈ {1, 0}d×d, characterizes a directed acyclic graph on the dataset’s variables.
In this case, the linear Gaussian SEM represents a Bayesian network, and it is the goal of Bayesian
structure learning algorithms to find such a network based on the observed X [11]. Although this
problem has been studied beyond the constraints of linear models governed by Gaussian distributions
[12], we focus on a simplified setting in this section. In particular, given a sequence {Xt}t≥1 of
i.i.d. realizations of a linear Gaussian SEM, we define a belief distribution over Bayesian networks
N = ({1, . . . , d},A) on variables {1, . . . , d} and adjacency matrix A as

logRt(N) = max
β : [β ̸=0]=A

ℓ (β|Xt) and R1:t(N) =
∏

1≤i≤t

Rt(N), (9)

in which ℓ(β|Xt) is the log-likelihood of Xt under the linear Gaussian SEM parameterized by β.
SB-GFlowNets can naturally handle streaming inference for this model by casting each Rt as a
subposterior distribution — in the same fashion of the set generation task in Section 5.1.

0 2 4 6
Streaming updates

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty
m

as
s

on
th

e
tr

ue
D

A
G

Figure 6: The probability
mass on the true DAG in-
creases as more samples are
added to SB-GFlowNet.

Experimental setup. Likewise Deleu et al. [11, Figure 5], we evaluate
SB-GFlowNets on models with d = 5 variables. Also, we sample a new
200-sized data set from a fixed linear Gaussian SEM for each streaming
update of the GFlowNet. To ensure that the generated samples are valid
DAGs, we adopt Deleu et al. [11]’s DAG-GFlowNet.

Results. Our results corroborate the findings of Section 5.3. On the
one hand, Figure 5 highlights that our SB-GFlowNet can accurately
learn a distribution over DAGs across a range of streaming updates. On
the other hand, Figure 5 shows that the probability mass assigned by
the SB-GFlowNet to the true DAG responsible for the data-generating
process increases as more samples are incorporated into the belief
distribution. Hence, SB-GFlowNets abide by the desiradata of a
streaming algorithm for Bayesian inference.

9

6 Related works
Applications of GFlowNets. GFlowNets [2, 3, 30] were originally proposed as reinforcement
learning algorithms to train a stochastic policy to sample states proportionally to a prescribed
reward function, From this point on, GFlowNets were widely applied to problems as diverse
as probabilistic modeling [23, 60], combinatorial optimization [61], Bayesian causal discovery
[11, 12] and phylogenetic inference [63], symbolic regression [32], stochastic control [30], language
modeling [22], and Bayesian deep learning [34]. Recently, there is an increasing literature concerned
with the possibility of composing multiple pre-trained GFlowNets to fit them to specific applications
[17] and to accelerate training convergence [31]. In this context, we show how the composition
of two GFlowNets through the SB condition leads to an efficient learning algorithm for Bayesian
inference under a streaming setting.

Streaming Variational Bayes. Streaming, Distributed, Asynchronous (SDA) Bayes [6] was
originally presented as a general framework for implementing variational inference algorithms in
a streaming setting. Similarly to our work, it was based upon the principle that, if the variational
distribution q(t)(x) is a good approximation to the unnormalized posterior π̃t(x), then q(t+1)(x)
may be optimized to approximate q(t)(x)f(Dt|x) instead of f(Dt|x)π̃t(x). This framework
was instantiated to accommodate, for example, the learning of Gaussian processes [7], of tensor
factorization [14], of feature models [51] and, jointly with SMC, nonlinear state-space models [62].
Nonetheless, our work is the first one to enable the training of GFlowNets in a streaming setting
and, due to the relationship between GFlowNets and variational inference algorithms presented by
[38], may be viewed as an instance of SDA-Bayes tailored to inferential problems on a combinatorial
support. In the realm of approximate Bayesian inference, Akhound-Sadegh et al. [1], Berner et al.
[4], Sendera et al. [52], Zhang and Matsen [59] propose advancements in diffusion-based sampling
methods, which we believe could be extended to the context of approximate streaming Bayesian
inference via the techniques presented in this work. On the other hand, Mittal et al. [40] introduces an
neural network-based approach for approximate Bayesian inference that amortizes over exchangeable
data sets to handle posterior inference in novel data. Also, Richter and Berner [48], Richter et al.
[49] develop a low-variance gradient estimator for carrying out variational inference derived from
the log-variance loss, which could be employed as an alternative to our KL-based objective for
streaming updates of GFlowNets. On a broader scale, Cranmer et al. [9] reviews approximate
Bayesian methodology under the lens of simulation-based inference.

7 Conclusions, limitations, and outlook
Conclusions. We proposed the first method for carrying out approximate Bayesian inference
over discrete distributions within a streaming setting, called SB-GFlowNet. We proposed two
training/update schemes for SB-GFlowNet, as well as a theoretical analysis accounting for the
compounding effect of errors due to posterior propagation. Our experimental evaluation showcases
SB-GFlowNet‘s effectiveness in accurately sampling from the target posterior — while still achieving
a significant reduction in training time relative to standard GFlowNets.

Limitations. Proposition 2 and Proposition 4 suggest that an inappropriate approximation to πt may
be propagated through time and lead to increasingly inaccurate models. This phenomenon, known
as catasthropic forgetting in the online literature [19, 39], may eventually demand retraining of the
current SB-GFlowNet based on an earlier checkpoint or on the full posterior. We also note that unlike
traditional variational methods, where the expressiveness of the approximation family is explicitly
chosen, the expressiveness implied by different parametrizations of GFlowNets is not clear. We
believe this is a fruitful avenue for future investigation.

Outlook and future works As our proposal provides generic and efficient streaming variational
inference solution for discrete parameters, we believe it will allow the use of streaming discrete
Bayesian inference to more datasets and to less explored research domains. In this work, we proposed
two training criteria based on the trajectory balance condition and the KL criterion, nonetheless, these
are not the only training schemes for GFlowNets, we believe other proposed criteria such as detailed
balance [3] or the sub-trajectory balance [35] could be adapted for the streaming setting as well.
Additionally, due to the flexibility of GFlowNets in sampling unnormalized distributions, our proposal
can be extended to different divergences and generalized likelihoods to improve the predictive quality
of the learned posteriors [28]. Finally, the problem of updating a GFlowNet when the size of the
generated object changes, e.g., when a new species is observed during BPI, remains open.

10

Acknowledgements
This work was supported by the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Es-
tado do Rio de Janeiro FAPERJ (SEI-260003/000709/2023), the São Paulo Research Foundation
FAPESP (2023/00815-6), the Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq
(404336/2023-0), and the Silicon Valley Community Foundation through the University Blockchain
Research Initiative (Grant #2022-199610).

References
[1] T. Akhound-Sadegh, J. Rector-Brooks, A. J. Bose, S. Mittal, P. Lemos, C.-H. Liu, M. Sendera,

S. Ravanbakhsh, G. Gidel, Y. Bengio, N. Malkin, and A. Tong. Iterated denoising energy
matching for sampling from Boltzmann densities. arXiv preprint arxiv:2402.06121, 2024.

[2] E. Bengio, M. Jain, M. Korablyov, D. Precup, and Y. Bengio. Flow network based generative
models for non-iterative diverse candidate generation. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[3] Y. Bengio, S. Lahlou, T. Deleu, E. J. Hu, M. Tiwari, and E. Bengio. GFlowNet foundations.
Journal of Machine Learning Research (JMLR), 24(210), 2023.

[4] J. Berner, L. Richter, and K. Ullrich. An optimal control perspective on diffusion-based
generative modeling. arXiv preprint arxiv:2211.01364, 2024.

[5] P. G. Bissiri, C. Holmes, and S. Walker. A general framework for updating belief distributions.
Journal of the Royal Statistical Society: Series B (Methodological), 78(5), 2016.

[6] T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M. I. Jordan. Streaming variational
Bayes. In Advances in Neural Information Processing Systems (NeurIPS), 2013.

[7] T. D. Bui, C. Nguyen, and R. E. Turner. Streaming sparse Gaussian process approximations.
Advances in Neural Information Processing Systems (NeurIPS), 2017.

[8] T. J. Cole. Algorithm AS 281: Scaling and rounding regression coefficients to integers. Applied
Statistics, 42(1), 1993.

[9] K. Cranmer, J. Brehmer, and G. Louppe. The frontier of simulation-based inference. Proceedings
of the National Academy of Sciences, 117(48), 2020.

[10] I. Csiszár and J. Körner. Information theory: coding theorems for discrete memoryless systems.
Cambridge University Press, 2011.

[11] T. Deleu, A. Góis, C. C. Emezue, M. Rankawat, S. Lacoste-Julien, S. Bauer, and Y. Bengio.
Bayesian structure learning with generative flow networks. In Conference on Uncertainty in
Artificial Intelligence (UAI), 2022.

[12] T. Deleu, M. Nishikawa-Toomey, J. Subramanian, N. Malkin, L. Charlin, and Y. Bengio. Joint
Bayesian inference of graphical structure and parameters with a single generative flow network.
In Advances in Neural Information Processing Systems (NeurIPS), 2023.

[13] V. Dinh, A. E. Darling, and F. A. Matsen, IV. Online Bayesian phylogenetic inference: Theoret-
ical foundations via sequential Monte Carlo. Systematic Biology, 67(3), 2017.

[14] S. Fang, Z. Wang, Z. Pan, J. Liu, and S. Zhe. Streaming Bayesian deep tensor factorization. In
International Conference on Machine Learning (ICML), 2021.

[15] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach.
Journal of Molecular Evolution, 17, 1981.

[16] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 1 edition,
2009.

[17] T. Garipov, S. D. Peuter, G. Yang, V. Garg, S. Kaski, and T. S. Jaakkola. Compositional
sculpting of iterative generative processes. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

11

[18] J. González, Z. Dai, A. Damianou, and N. D. Lawrence. Preferential Bayesian optimization. In
International Conference on Machine Learning (ICML), 2017.

[19] I. J. Goodfellow, M. Mirza, X. Da, A. C. Courville, and Y. Bengio. An empirical investigation
of catastrophic forgeting in gradient-based neural networks. In International Conference on
Learning Representations (ICLR), 2014.

[20] J. Han, F. Ding, X. Liu, L. Torresani, J. Peng, and Q. Liu. Stein variational inference for discrete
distributions. In International Conference on Artificial Intelligence and Statistics (AISTATS),
2020.

[21] J. C. Hornberger, H. Habraken, and D. A. Bloch. Minimum data needed on patient preferences
for accurate, efficient medical decision making. Medical Care, 33(3), 1995.

[22] E. J. Hu, M. Jain, E. Elmoznino, Y. Kaddar, G. Lajoie, Y. Bengio, and N. Malkin. Amortizing
intractable inference in large language models. arXiv preprint arxiv:2310.04363, 2023.

[23] E. J. Hu, N. Malkin, M. Jain, K. E. Everett, A. Graikos, and Y. Bengio. GFlowNet-EM
for learning compositional latent variable models. In International Conference on Machine
Learning (ICML), 2023.

[24] M. Jain, S. C. Raparthy, A. Hernandez-Garcia, J. Rector-Brooks, Y. Bengio, S. Miret, and
E. Bengio. Multi-objective GFlowNets. In International Conference on Machine Learning
(ICML), 2023.

[25] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with Gumbel-softmax. In
International Conference on Learning Representations (ICLR), 2017.

[26] T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In Mammalian Protein Metabolism.
Academic Press, 1969.

[27] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arxiv:1412.6980, 2014.

[28] J. Knoblauch, J. Jewson, and T. Damoulas. An optimization-centric view on Bayes’ rule:
Reviewing and generalizing variational inference. Journal of Machine Learning Research
(JMLR), 23(132), 2022.

[29] O. Kviman, R. Molén, and J. Lagergren. Improved variational Bayesian phylogenetic inference
using mixtures. arXiv preprint arxiv:2310.00941, 2023.

[30] S. Lahlou, T. Deleu, P. Lemos, D. Zhang, A. Volokhova, A. Hernández-García, L. N. Ezzine,
Y. Bengio, and N. Malkin. A theory of continuous generative flow networks. In International
Conference on Machine Learning (ICML), 2023.

[31] E. Lau, N. M. Vemgal, D. Precup, and E. Bengio. DGFN: Double generative flow networks. In
NeurIPS 2023 Generative AI and Biology (GenBio) Workshop, 2023.

[32] S. Li, I. Marinescu, and S. Musslick. Gfn-sr: Symbolic regression with generative flow networks.
arXiv preprint arxiv:2312.00396, 2023.

[33] D. V. Lindley. Bayesian statistics: A review. SIAM, 1972.

[34] D. Liu, M. Jain, B. F. P. Dossou, Q. Shen, S. Lahlou, A. Goyal, N. Malkin, C. C. Emezue,
D. Zhang, N. Hassen, X. Ji, K. Kawaguchi, and Y. Bengio. GFlowOut: Dropout with generative
flow networks. In International Conference on Machine Learning (ICML), 2023.

[35] K. Madan, J. Rector-Brooks, M. Korablyov, E. Bengio, M. Jain, A. C. Nica, T. Bosc, Y. Bengio,
and N. Malkin. Learning GFlowNets from partial episodes for improved convergence and
stability. In International Conference on Machine Learning (ICML), 2022.

[36] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of
discrete random variables. In International Conference on Learning Representations (ICLR),
2017.

12

[37] N. Malkin, M. Jain, E. Bengio, C. Sun, and Y. Bengio. Trajectory balance: Improved credit
assignment in GFlowNets. In Advances in Neural Information Processing Systems (NeurIPS),
2022.

[38] N. Malkin, S. Lahlou, T. Deleu, X. Ji, E. Hu, K. Everett, D. Zhang, and Y. Bengio. GFlowNets
and variational inference. International Conference on Learning Representations (ICLR), 2023.

[39] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of Learning and Motivation, volume 24. Academic
Press, 1989.

[40] S. Mittal, N. L. Bracher, G. Lajoie, P. Jaini, and M. A. Brubaker. Exploring exchangeable
dataset amortization for Bayesian posterior inference. In ICML 2023 Workshop on Structured
Probabilistic Inference / Generative Modeling, 2023.

[41] A. Mnih and D. Rezende. Variational inference for Monte Carlo objectives. In International
Conference on Machine Learning (ICML), 2016.

[42] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih. Monte Carlo gradient estimation in machine
learning. Journal of Machine Learning Research (JMLR), 21(132), 2020.

[43] M. Newman. Networks. Oxford University Press, 2018.

[44] L. Pan, N. Malkin, D. Zhang, and Y. Bengio. Better training of GFlowNets with local credit and
incomplete trajectories. In International Conference on Machine Learning (ICML), 2023.

[45] L. Pan, D. Zhang, M. Jain, L. Huang, and Y. Bengio. Stochastic generative flow networks. In
Conference on Uncertainty in Artificial Intelligence (UAI), 2023.

[46] M. Papini, D. Binaghi, G. Canonaco, M. Pirotta, and M. Restelli. Stochastic variance-reduced
policy gradient. In International Conference on Machine Learning (ICML), 2018.

[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[48] L. Richter and J. Berner. Improved sampling via learned diffusions. arXiv preprint
arxiv:2307.01198, 2023.

[49] L. Richter, A. Boustati, N. Nüsken, F. Ruiz, and O. D. Akyildiz. Vargrad: a low-variance
gradient estimator for variational inference. Advances in Neural Information Processing
Systems (NeurIPS), 33, 2020.

[50] A. RoyChoudhury, A. Willis, and J. Bunge. Consistency of a phylogenetic tree maximum
likelihood estimator. Journal of Statistical Planning and Inference, 161, 2015.

[51] R. Schaeffer, Y. Du, G. K. Liu, and I. Fiete. Streaming inference for infinite feature models. In
International Conference on Machine Learning (ICML), 2022.

[52] M. Sendera, M. Kim, S. Mittal, P. Lemos, L. Scimeca, J. Rector-Brooks, A. Adam, Y. Bengio,
and N. Malkin. On diffusion models for amortized inference: Benchmarking and improving
stochastic control and sampling. arXiv preprint arxiv:2307.01198, 2024.

[53] M. W. Shen, E. Bengio, E. Hajiramezanali, A. Loukas, K. Cho, and T. Biancalani. Towards
understanding and improving GFlowNet training. In International Conference on Machine
Learning (ICML), 2023.

[54] A. M. Walker. On the asymptotic behaviour of posterior distributions. Journal of the Royal
Statistical Society: Series B (Methodological), 31(1), 1969.

[55] M. T. Wojnowicz, S. Aeron, E. L. Miller, and M. Hughes. Easy variational inference for
categorical models via an independent binary approximation. In International Conference on
Machine Learning (ICML), 2022.

13

[56] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? Interna-
tional Conference on Learning Representations (ICLR), 2019.

[57] P. Xu, F. Gao, and Q. Gu. An improved convergence analysis of stochastic variance-reduced
policy gradient. In Conference on Uncertainty in Artificial Intelligence (UAI), 2020.

[58] Z. Yang. Molecular Evolution: A Statistical Approach. Oxford University Press, 2014.

[59] C. Zhang and F. A. Matsen, IV. Variational Bayesian phylogenetic inference. In International
Conference on Learning Representations (ICLR), 2019.

[60] D. Zhang, N. Malkin, Z. Liu, A. Volokhova, A. Courville, and Y. Bengio. Generative flow
networks for discrete probabilistic modeling. In International Conference on Machine Learning
(ICML), 2022.

[61] D. Zhang, H. Dai, N. Malkin, A. Courville, Y. Bengio, and L. Pan. Let the flows tell: Solving
graph combinatorial optimization problems with GFlowNets. In Advances in Neural Information
Processing Systems (NeurIPS), 2023.

[62] Y. Zhao, J. Nassar, I. Jordan, M. Bugallo, and I. M. Park. Streaming variational Monte Carlo.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1), 2023.

[63] M. Y. Zhou, Z. Yan, E. Layne, N. Malkin, D. Zhang, M. Jain, M. Blanchette, and Y. Bengio.
PhyloGFN: Phylogenetic inference with generative flow networks. In International Conference
on Learning Representations (ICLR), 2024.

14

Algorithm 1 Training a SB-GFlowNet by minimizing LSB

Require: (Dt)T≥t≥1 streaming data sets, f(·|x) a likelihood model parametrized by x, π(x) a prior
distribution over X

Ensure: GT samples proportionally to
(∏T

t=1 f(Dt|x)
)
π(x)

G1 ←(p1F , p
1
B , Z1) := argmin

pF ,pB ,Z
Eτ∼ξ [LTB(τ ; pF , pB , Z)] ▷ Roughly minimize LTB via SGD

for t in {2, . . . , T} do ▷ Roughly minimize LSB via SGD
Gt ← (p

(t)
F , p

(t)
B , Zt) := argmin

pF ,pB ,Z
E
τ∼p

(t−1)
⊤

[LSB(τ ; pF , pB , Z;Gt−1)]

end for

A Training of SB-GFlowNets
Algorithm 1 outlines the training of a SB-GFlowNet by minimizing the SB loss. As we described in
the text, the first GFlowNet is trained conventionally by approximately minimizing either the TB loss
or the KL divergence between the forward and backward policies. Then, the subsequent models are
trained by the approximate minimization of either the SB loss or streaming balance criterion. Notably,
the problem of streaming update may be framed as the learning of GFlowNets with stochastic rewards
[45], which are not determistically associated to the terminal states.

B Proofs
B.1 Proof of Proposition 1

We are assuming that p(t)⊤ ∝ πt and that Eτ∼ξ[LSB(τ)] = 0 for a distribution ξ of full support. Thus,
LSB(τ) = 0 for all τ . As a consequence,

p
(t+1)
F (τ) =

(
p
(t+1)
B (τ |x)
p
(t)
B (τ |x)

)
· Zt

Zt+1
· p(t)F (τ)f(Dt+1|x). (10)

By assumption, (p(t)F , p
(t)
B , Zt) satisfy the trajectory balance condition with respect to πt, therefore,

Zt · p(t)F (τ) = p
(t)
B (τ |x)πt(x). Thus,

p
(t+1)
F (τ)

p
(t+1)
B (τ |x)

= Zt+1πt(x)f(Dt+1|x). (11)

Finally, by summing over τ ⇝ x:

p
(t+1)
⊤ (x) := E

τ∼p
(t+1)
B (·|x)

[
p
(t+1)
F (τ)

p
(t+1)
B (τ |x)

]
∝ πt(x)f(Dt+1|x) (12)

∝ πt+1(x). (13)

B.2 Proof of Proposition 2

Firstly, we note that δξLS(p, q) is a metric. Thus, by the triangle inequality,

δ
πt+1

LS

(
p
(t+1)
⊤ , πt+1

)
≤ δ

πt+1

LS

(
p
(t+1)
⊤ , p̂

(t+1)
⊤

)
+ δ

πt+1

LS

(
p̂
(t+1)
⊤ , πt+1

)
. (14)

The first term of the right-hand-side of the preceding equation corresponds to the estimation er-
ror associated to the GFlowNet’s learning problem. For the second term, note that p̂(t+1)

⊤ (x) =
Zt

Ẑt+1
p
(t)
⊤ (x)f(Dt+1|x) by assumption (p̂(t+1)

⊤ satisfies the SB condition). Thus,

log p̂
(t+1)
⊤ (x)− log πt+1(x) = log

Zt

Ẑt+1

+ log p
(t)
⊤ (x)f(Dt+1|x)− log

Z⋆
t πt(x)

Z⋆
t+1

f(Dt+1|x)

= log
Z⋆
t+1

Ẑt+1

+ log
Zt

Z⋆
t

+ log
p
(t)
⊤ (x)

πt(x)
.

15

The result follows by a further application of the triangle inequality to δ
πt+1

LS

(
p
(t+1),⋆
⊤ , πt+1

)
,

namely,

δ
πt+1

LS

(
p̂
(t+1)
⊤ , πt+1

)
= Ex∼πt+1

(log Z⋆
t+1

Ẑt+1

+ log
Zt

Z⋆
t

+ log
p
(t)
⊤ (x)

πt(x)

)2
1/2

≤
∣∣∣∣∣log Ẑt+1

Z⋆
t+1

∣∣∣∣∣+
∣∣∣∣log Zt

Z⋆
t

∣∣∣∣+ δ
πt+1

LS

(
p
(t)
⊤ , πt

)
.

(15)

Proposition 2 is obtained by plugging Equation 15 into Equation 14.

B.3 Proof of Proposition 3
This result, which follows from reasoning similar to the one in Proposition 2 above, aims to show
the dependence of the model’s performance on the newly observed dataset. In this sense, notice
that

TV
(
p
(t+1)
⊤ , πt+1

)
≤ TV

(
p
(t+1)
⊤ , p̂

(t+1)
⊤

)
+ TV

(
p̂
(t+1)
⊤ , πt+1

)
. (16)

Thus, since p̂
(t+1)
⊤ (x) = Zt

Ẑt+1
p
(t)
⊤ (x)f(Dt+1|x),

TV
(
p̂
(t+1)
⊤ , πt

)
=

1

2

∑
x∈X

∣∣∣p(t+1)
⊤ (x)− πt+1(x)

∣∣∣
=

1

2

∑
x∈X

f(Dt+1|x)
∣∣∣∣ Zt

Ẑt+1

p
(t)
⊤ (x)− Z⋆

t

Z⋆
t+1

πt(x)

∣∣∣∣
≤ 1

2
f(Dt+1|x̂)

∑
x∈X

∣∣∣∣ Zt

Ẑt+1

p
(t)
⊤ (x)− Z⋆

t

Z⋆
t+1

πt(x)

∣∣∣∣ .
(17)

The result follows by plugging Equation 17 into Equation 16.

B.4 Proof of Proposition 4
This result follows from the successive application of the triangle, Pinsker‘s [10] and Jensen’s
inequality applied to the KL divergence. More specifically, first note that the optimal distribution under
the KL streaming criterion satisfies p̂(t+1)

⊤ ∝ p
(t)
⊤ f(Dt+1|x). Then, by the triangle inequality,

TV
(
p
(t+1)
⊤ , πt+1

)
≤ TV

(
p
(t+1)
⊤ , p̂

(t+1)
⊤

)
+ TV

(
p̂
(t+1)
⊤ , πt+1

)
. (18)

For the first term, note that

TV
(
p
(t+1)
⊤ , p̂

(t+1)
⊤

)
≤ 1

2

√
DKL

[
p
(t+1)
⊤ ||p̂(t+1)

⊤

]
≤ 1

2

√
DKL

[
p
(t+1)
F ||p

]
, (19)

since p̂(t+1)
F ∝ p by definition; recall that p(τ) = p

(t)
F (τ)f(Dt+1|x). Here, the first inequality follows

from Pinsker’s inequality and the second one, from the data-processing inequality. For the second
term, note that

p̂
(t+1)
⊤ (x) =

p
(t)
⊤ (x)f(Dt+1|x)∑

y∈X p
(t)
⊤ (y)f(Dt+1|y)

=
p
(t)
⊤ (x)f(Dt+1|x)

E
y∈p

(t)
⊤

[f(Dt+1|x)]
, (20)

with a corresponding representation of πt+1 as a function of πt and f(Dt+1|x). The result follows
by pluggin Equation 20 and Equation 19 into Equation 18.

C Experimental details
We provide below details for reproducing our experiments for each considered generative task. To
approximately solve the optimization problem outlined in Algorithm 1, we employed the Adam
optimizer [27] with a learning rate of 10−3 for the pF ’s parameters and 10−1 for logZt, following rec-
ommendations from [37]. Also, we linearly decreased the learning rate during training. Experiments
were run in a cluster equipped with A100 and V100 GPUs, using a single GPU per run.

16

Figure 7: Illustration of the task of generating sets of size |S| = 2 with elements in {1, 2, 3}.
On each streaming update, a novel reward function R

(α)
i is observed; a small value of α entails

a more sparse and harder-to-sample-from distribution. Terminal states X are illustrated in green
and non-terminal states are depicted in blue. At the tth iteration, we learn a generative model p(t)⊤
sampling S ∈ X proportionally to

∏
1≤i≤t R

(α)
t (S).

C.1 Set generation
Experimental setup. We fixed d = 24 and S = 18. To parameterize the forward policy, we imple-
mented an two-layer neural network with a 128-dimensional latent embedding. For the streaming
updates, we fixed α = 1 and randomly sampled the objects’ utilities at each novel iteration. We
trained the model by minimizing the KL streaming criterion.

GFlowNet’s design. To generate a set x ∈ X , we iteratively add elements randomly sampled from
I to an initially empty x until x has size S; see Figure 7. The forward policy is parameterized as a
two-layer neural network and the backward policy is fixed as an uniform distribution.

C.2 Linear preference learning with integer-valued features
Experimental setup. We assume that x ∈ [[0, 4]]d and d = 24 and that the data was simulated from
the observational model. At each streaming round, a novel and independent data set was simulated
and the model was trained by minimizing the SB loss. To parameterize the forward policy, we
implemented an MLP with 2 64-dimensional layers receiving the padded parameter x as an input and
returning a probability distribution over [[0, 4]].

GFlowNet’s design. The generative process implemented by the GFlowNet consists of, starting at an
initially empty state xo, iteratively sampling a value from [[0, 10]] and appending this value to the
current state until its length reaches d. To parameterize the forward policy, we use an MLP with two
64-dimensional layers that receives the padded state as a fixed-size input.

C.3 Online Bayesian phylogenetic inference
Experimental setup. We assume the observational data follow the J&C69 mutation model with
an instantaneous mutation rate of λ = 5 · 10−3. The data was synthetically generated from the
corresponding observational model conditioned on a randomly sampled tree with 7 leaves, and this
process was repeated at each streaming round. To illustrate the computational gains enacted by the
implementation of SB-GFlowNets in Table 2, we considered updating a GFlowNet trained on an
initially large data set according to the newly observed and relatively small biological sequences,
which is a common challenge faced by practitioners. Then, by avoiding the additional log-likelihood
evaluations, we achieved significantly faster inference.

GFlowNet’s design. A state consists of a forest of complete binary trees. Initially, all leaves are
roots of their own singleton trees and, at each iteration of the generative process, we select two trees
and join their roots to a newly added unlabelled node. This procedure is finished when all leaves are
connected; see [63, Figure 1] for an illustration of this generative process. To parameterize pF , we
use a graph isomorphism network (GIN; [56]); the backward policy is fixed as uniform.

C.4 Bayesian structure learning
Experimental setup. We sample each component of the error terms ϵ from a zero-centered Gaussian
distribution with standard deviation σ = 5 · 10−2. Also, we select a random Bayesian network from a
directed configuration model [43] and draw the components β from a corresponding standard Gaussian
distribution to define the true data-generating process. To parameterize the policy network, we use an
MLP with 2 128-dimensional layers receiving the DAG’s flattened adjacency matrix as input.

17

GFlowNet’s design. We adopt Deleu et al. [11]’s DAG-GFlowNet. In a nutshell, the generative
process starts at an edgeless graph and each transition either adds an edge to the current state or
triggers a stop. To ensure the acyclicity of the generated samples, we follow [11, Appendix C] and
iteratively update a binary vector m ∈ {1, 0}d×d indicating which edges in the adjacency matrix
can be safely added to the current state without forming cycles.

D On the permutation invariance of SB-GFlowNets

0.02 0.04 0.06

0.01

0.02

0.03

0.04

0.05

0.06

D 2
th

en
D 1

First GFN did not converge during training

0.02 0.04 0.06

0.01

0.02

0.03

0.04

0.05

0.06

First GFN converged during training

D1 then D2

(a) Phylogenetic inference.

0.1 0.2 0.3 0.4

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
2

th
en
R

1

First GFN did not converge during training

0.1 0.2 0.3 0.4

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

First GFN converged during training

R1 then R2

(b) Set generation.

Figure 8: Permutation invariance of SB-GFlowNets for phylogenetics (a) and set generation (b).
When the first GFlowNet is not adequately trained, the learned distribution after two streaming
updates depends on the ordering of the observed datasets (left (a), left (b)). In contrast, when both
the first and second GFlowNets are accurate, the resulting distribution is approximately invariant
to the data permutation (right (a), right (b)).

Exchangeability is a natural property of each case study we presented in the main text. We thus ask:
are SB-GFlowNets permutation invariant? Clearly, the distribution learned by a SB-GFlowNet does
not depend on the order in which the data sets are observed when the SB condition is satisfied at each
streaming update; this is a direct consequence of Proposition 1. On the other hand, permutation in-
variance is not guaranteed when the learning objectives are only imperfectly minimized; see Figure 8
for an extreme example. To the best of our knowledge, however, this sensibility to data ordering
is a property of every approximate streaming Bayesian inference method, e.g., [6, 13].

18

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims are supported by proofs in Appendix B and experiments in Sec-
tion 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The middle paragraph in Section 7 discusses limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

19

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Assumptions are clearly stated in the statements, and Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details are provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce

20

the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Provided in a zip file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In general, plots count on error bars and tables count on standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: First paragraph of Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our submission follows the NeurIPS ethical guidelines.

Guidelines:

22

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a perspective on broader impacts in Section 7, but do not foresee
any direct negative societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not foresee any direct risk stemming from our work.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

23

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: All code was made by the authors

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No experiments with human subjects.

24

paperswithcode.com/datasets

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No experiments with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Preliminaries
	Streaming Bayes GFlowNets
	Streaming balance condition.
	Divergence-based updates of SB-GFlowNets.

	Theoretical analysis
	Analysis for SB loss-based training
	Analysis for KL streaming criterion-based training

	Experiments
	Set generation
	Linear preference learning with integer-valued features
	Online Bayesian phylogenetic inference
	Bayesian structure learning

	Related works
	Conclusions, limitations, and outlook
	Training of SB-GFlowNets
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4

	Experimental details
	Set generation
	Linear preference learning with integer-valued features
	Online Bayesian phylogenetic inference
	Bayesian structure learning

	On the permutation invariance of SB-GFlowNets

