
Published as a conference paper at ICLR 2023

TIME SERIES AS IMAGES: VISION TRANSFORMER FOR
IRREGULARLY SAMPLED TIME SERIES

Zekun Li, Shiyang Li, Xifeng Yan
University of California, Santa Barbara
{zekunli, shiyangli, xyan}@cs.ucsb.edu

ABSTRACT

Irregularly sampled time series are becoming increasingly prevalent in various
domains, especially in medical applications. Although different highly-customized
methods have been proposed to tackle irregularity, how to effectively model their
complicated dynamics and high sparsity is still an open problem. This paper studies
the problem from a whole new perspective: transforming irregularly sampled time
series into line graph images and adapting powerful vision transformers to perform
time series classification in the same way as image classification. Our approach
largely simplifies algorithm designs without assuming prior knowledge and can
be potentially extended as a general-purpose framework. Despite its simplicity,
we show that it substantially outperforms state-of-the-art specialized algorithms
on several popular healthcare and human activity datasets. Our code and data are
available at https://github.com/Leezekun/ViTST.

1 INTRODUCTION

Time series data are ubiquitous in a wide range of domains, including healthcare, finance, traffic
and climate science. With the advances in deep learning architectures such as LSTM (Graves,
2012), Temporal Convolutional Network (TCN) (Lea et al., 2017), and Transformer (Vaswani et al.,
2017), numerous algorithms have been developed for time series modeling. However, these methods
typically assume fully observed data points at regular intervals and fixed-size numerical inputs. They
cannot deal with irregularly sampled ones, a sequence of samples with irregular intervals between
their observation times. To tackle this challenge, highly specialized models were developed, which
require a considerable amount of prior knowledge in the model architecture choice and design (Marlin
et al., 2012; Lipton et al., 2016; Che et al., 2018; Horn et al., 2020; Zhang et al., 2022a; Shukla &
Marlin, 2020; Zhang et al., 2022b).

The recently emerging transformer-based vision models, most notably Vision Transformers (Doso-
vitskiy et al., 2020)1, have demonstrated strong performance on various vision tasks such as image
classification and object detection. In this paper, we raise a simple question: Since pretrained
vision transformers have exceeded humans in various image recognition tasks, can they “visually”
capture temporal patterns in the visualized time series data? To answer this question, we explore
the following minimalist approach: transform the irregularly sampled multivariate time series into
line graphs (Fig. 1), arrange these line graphs into a standard RGB image, and finetune a pretrained
vision transformer to perceive the image and perform the classification task. We dub this approach
ViTST, short for Vision Time Series Transformer. The line graph images could encode two kinds
of informative patterns in multivariate time series: (1) the temporal dynamics of each variable in
its corresponding line graph; and (2) the correlation of variables across different line graphs. We
assume that vision transformers can capture pattern (1) via modeling local patch interactions within a
single time series line graph images and pattern (2) from global patch interactions across different
line graphs.

Experimental results show that our approach ViTST outperforms previous SOTA results by 2.4 and
1.2 AUROC points on two irregularly sampled healthcare datasets P19 (Reyna et al., 2019) and

1In this paper, we refer to vision transformers as a type of pretrained vision models based on Transformer,
including ViT (Dosovitskiy et al., 2020), Swin Transformer (Liu et al., 2021), DeiT (Touvron et al., 2021), to
name a few.
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Figure 1: Illustration of our approach ViTST. The example is from a healthcare dataset P12 (Gold-
berger et al., 2000), which provides the irregularly sampled observations of 36 variables for patients
(we only show 4 variables here for simplicity). Each column in the table is an observation of a
variable, with the observed time and value. We plot separate line graphs for each variable and arrange
them into an image, which is then fed into the vision transformer to perform the classification task.

P12 (Goldberger et al., 2000), and 6.8 F1 score points on a human activity dataset PAM (Reiss &
Stricker, 2012). The results demonstrate the effectiveness of our approach, which is in contrast to its
simplicity. ViTST can also be potentially extended as a general-purpose framework for time series
modeling. It also attains excellent results compared with SOTA algorithms designed for regular time
series modeling, demonstrating its generality. We believe this paper could open up a new direction
and encourage the utilization of fast-evolving and well-studied computer vision techniques in the
time series domain, such as better model architecture (Liu et al., 2022), data augmentation (Shorten &
Khoshgoftaar, 2019), interpretability (Chefer et al., 2021), self-supervised learning (He et al., 2022),
to name a few.

2 APPROACH

As illustrated in Fig. 1, ViTST consists of two steps: (1) transform multivariate time series into
a concatenated line graph image; (2) utilize the vision transformer as an image classifier for the
classification task. To begin with, we present some basic notations and problem formulation.

Notation. Let D = {(Si, yi)|i = 1, · · · , N} denote a time series dataset containing N samples.
Every data sample is associated with a label yi ∈ {1, · · · , C}, where C is the number of classes.
Each multivariate time series Si consists of observations of D variables at most (some might have no
observations). The observations for each variable d are given by a sequence of tuples with observed
time and value [(td1, v

d
1), (t

d
2, v

d
2), · · · , (tdnd

, vdnd
)], where nd is the number of observations for variable

d. If the intervals between observation times [td1, t
d
2, · · · , tdnd

] are different across variables or samples,
Si is an irregularly sampled time series. Otherwise, it is regular time series.

Problem Formulation. Given the dataset D = {(Si, yi)|i = 1, · · · , N} containing N multivariate
time series, we aim to predict the label ŷi ∈ {1, · · · , C} for each time series Si.

2.1 TIME SERIES TO IMAGE TRANSFORMATION

Time Series Line Graph. Time series line graph is a widely-used data visualization method to
illustrate temporal data points at successive intervals. Each point on the line graph corresponds to an
observation with an observed time and value. The horizontal axis is used to plot timestamps, and the
vertical axis is used to plot values. Straight lines connect the points on the graph in the order of time,
where the missing value interpolation is done automatically. We use markers “⋆” to indicate the data
point in the line. As the scale of different variables varies greatly, we plot the observations of each
variable in an individual line graph, as shown in Fig. 1. The scales of each line graph gi,d are kept the
same across different time series Si. Different colors are used for each line graph to distinguish them.

Image Creation. Given a set of time series line graphs Gi = {g1, g2, · · · , gD} for time series Si,
we place them in a single image xi using a pre-defined grid layout, in which the line graph of each
variable is in a grid cell. Similar to (Fan et al., 2021), we experimentally found that a compact layout
(i.e., square grid) leads to consistently good performance. Specifically, given the D time series line
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graphs for a time series Si, we place them in a grid, whose size is l× l when l×(l−1) < D <= l× l,
and l × (l + 1) when l × l < D <= l × (l + 1). For example, there are 34, 36, and 17 variables in
P19, P12, and PAM datasets, respectively. The default grid layouts are thus 6× 6, 6× 6, and 4× 5.
If the grid is not full, the cells at the end of the grid are left blank. More details on image creation and
examples are provided in Appendix D.3.

2.2 VISION TRANSFORMERS FOR TIME SERIES MODELING

Given the image xi transformed from time series Si, we leverage an image classifier to perceive the
image and perform the classification task. The time series patterns in a line graph image involve both
local (i.e., the temporal dynamics of a single variable in a line graph) and global (the correlation
among variables across different line graphs) contexts. To better capture these patterns, we choose
the recently developed vision transformers, which show strong abilities to capture local and global
dependencies (Dosovitskiy et al., 2020; Liu et al., 2021).

shifted

Figure 2: Illustration of the shifted window
approach of Swin Transformer. The self-
attention is calculated within each window
(grey box). When the window is within a
single line graph, the local interactions are
captured. After shifting, the window contains
patches from different line graphs, and thus
global cross-variable interactions are modeled.

Preliminary. Vision Transformer (ViT) (Dosovit-
skiy et al., 2020) is originally adapted from NLP. An
image is split into fix-sized patches, each linearly
embedded and augmented with position embeddings.
The resulting sequence of vectors is fed into a stan-
dard Transformer encoder to obtain patch represen-
tations. An extra classification token is added to
the sequence to perform classification or other tasks.
ViT models global inter-unit interactions between
each pair of patches, which faces efficiency issues
when dealing with high-resolution images.

Swin Transformer, on the other hand, has a hier-
archical architecture that contains multi-level fea-
ture maps and computes self-attention locally within
non-overlapping windows, significantly reducing the
computation complexity and improving the recog-
nition performance. As illustrated in Fig. 2, the
self-attention is calculated within each non-overlapping window. When the sliding window is within
a single line graph for variable d, the local intra-variable interactions and temporal dynamics of the
variable d are captured. The shifted window block SW-MSA enables the connection of different
windows. After shifting, the window spans across different line graphs. With multiple stages of
blocks, the global interactions among the patches from all the line graphs can be modeled, and thus
the correlation between different variables is learned. We evaluate our idea using ViT and Swin in
this work and use Swin as the default backbone vision model if not specified. Note that any other
vision model can be applied under this framework.

Inference. We use the vision transformers to predict the labels of time series in the same way as
image classification. The outputs of Swin Transformer blocks at the final stage are used as the patch
representations, upon which a flattened layer with a linear head is applied to obtain the prediction
ŷi. As for ViT, the representation of the additional classification token at the final layer is used for
prediction. We use the cross-entropy loss when fine-tuning the model on the classification task.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets and Metrics. We conduct experiments using two popular healthcare datasets P19 and
P12, and one human activity dataset PAM (Reiss & Stricker, 2012). We used the processed data
provided by Raindrop (Zhang et al., 2022a)2. More details are given in Appendix B.1. We employed
the same five data splits for all comparison baselines, as provided. The evaluation metrics were
consistent across all experiments, including the Area Under a ROC Curve (AUROC) and Area Under

2https://github.com/mims-harvard/Raindrop
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Table 1: Comparison with the baseline methods on irregularly sampled time series classification task.
Bold indicates the best performer, while underline represents the second best.

P19 P12 PAM
Methods AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

Transformer 80.7 ± 3.8 42.7 ± 7.7 83.3 ± 0.7 47.9 ± 3.6 83.5 ± 1.5 84.8 ± 1.5 86.0 ± 1.2 85.0 ± 1.3
Trans-mean 83.7 ± 1.8 45.8 ± 3.2 82.6 ± 2.0 46.3 ± 4.0 83.7 ± 2.3 84.9 ± 2.6 86.4 ± 2.1 85.1 ± 2.4
GRU-D 83.9 ±1.7 46.9 ± 2.1 81.9 ± 2.1 46.1 ± 4.7 83.3 ± 1.6 84.6 ± 1.2 85.2 ± 1.6 84.8 ± 1.2
SeFT 81.2 ± 2.3 41.9 ± 3.1 73.9 ± 2.5 31.1 ± 4.1 67.1 ± 2.2 70.0 ± 2.4 68.2 ± 1.5 68.5 ± 1.8
mTAND 84.4 ± 1.3 50.6 ± 2.0 84.2 ± 0.8 48.2 ± 3.4 74.6 ± 4.3 74.3 ± 4.0 79.5 ± 2.8 76.8 ± 3.4
IP-Net 84.6 ± 1.3 38.1 ± 3.7 82.6 ± 1.4 47.6 ± 3.1 74.3 ± 3.8 75.6 ± 2.1 77.9 ± 2.2 76.6 ± 2.8
DGM2-O 86.7 ± 3.4 44.7 ± 11.7 84.4 ± 1.6 47.3 ± 3.6 82.4 ± 2.3 85.2 ± 1.2 83.9 ± 2.3 84.3 ± 1.8
MTGNN 81.9 ± 6.2 39.9 ± 8.9 74.4 ± 6.7 35.5 ± 6.0 83.4 ± 1.9 85.2 ± 1.7 86.1 ± 1.9 85.9 ± 2.4
Raindrop 87.0 ± 2.3 51.8 ± 5.5 82.8 ± 1.7 44.0 ± 3.0 88.5 ± 1.5 89.9 ± 1.5 89.9 ± 1.5 89.8 ± 1.0

VITST-ViT 87.9 ± 2.5 51.6 ± 3.7 84.8 ± 1.3 48.1 ± 3.8 93.4 ± 0.7 94.7 ± 0.9 94.1 ± 0.7 94.3 ± 0.7
VITST-Swin 89.4 ± 1.9 52.8 ± 3.8 85.6 ± 1.1 49.8 ± 2.5 96.1 ± 0.7 96.8 ± 1.1 96.5 ± 0.7 96.6 ± 0.9

Precision-Recall Curve (AUPRC) for the imbalanced datasets P12 and P19. For the PAM dataset,
which has a more balanced class distribution, we reported Accuracy, Precision, Recall, and F1 score.

Baselines. We compare our approach with several state-of-the-art methods specialized for irregularly
sampled time series: Transformer (Vaswani et al., 2017), Trans-mean (Transformer with an imputation
method that replaces the missing value with the average observed value of the variable), GRU-D (Che
et al., 2018), SeFT (Horn et al., 2020), mTAND (Shukla & Marlin, 2020), IP-Net (Shukla & Marlin,
2018), and Raindrop (Zhang et al., 2022a). Raindrop is the best-performing method before this work.
Besides, two methods initially designed for forecasting tasks are also compared, including DGM2-
O (Wu et al., 2021b) and MTGNN (Wu et al., 2020). The implementations and hyperparameter
settings of these baselines all follow Raindrop (Zhang et al., 2022a). The performances are averaged
on 5 different data splits, which are kept the same across all the compared methods.

Implementation. We use the Matplotlib package to draw the line graphs and save them as standard
RGB images. The grid layouts of data in P19, P12, and PAM dataset are 6 × 6, 6 × 6, and 4 × 5.
We set the size of each grid cell (line graph) as 64 × 64, and thus the image sizes are 384 × 384,
384×384, and 256×320, respectively. One can also directly set the image size to any size, regardless
of the grid cell size. We use the checkpoints of ViT3 and Swin Transformer4 pre-trained on the
ImageNet-21K dataset.

3.2 MAIN RESULTS

As seen from Table 1, under our framework, ViT and Swin Transformer both outperform the
specialized state-of-the-art algorithms on all these three datasets, which suggests the effectiveness
of our proposed framework that utilizes vision transformers for time series modeling. On the P19
and P12 datasets, ViTST-Swin improves the state-of-the-art results by 2.4 and 1.2 AUROC points,
respectively. As for the PAM dataset, the improvement is even more significant: 7.6 points in
Accuracy, 6.9 points in Precision, 6.6 points in Recall, and 6.8 points in F1 score. The larger
improvement on the PAM dataset might be due to the lower missing ratio of PAM (60.0%) than P19
(94.9%) and P12 (88.4%), meaning that there are more observed values to better recover the fully
observed line graphs and reflect patterns (see Fig. 3 for created images from these three datasets).

4 CONCLUSION AND FUTURE WORK

In this paper, we introduced a new perspective for irregularly sample multivariate time series modeling
by transforming them into images, which enables the use of powerful vision transformers. This
approach is simple and general since any type of time series can be transformed into line graph
images and handled. Despite its simplicity, our approach demonstrates strong performance against
highly specialized state-of-the-art methods on several popular healthcare datasets. Our approach can
also be potentially extended as a general-purpose framework for various time series tasks, which we
leave for future work. We believe this work could open up a new direction and encourage the reuse
of fast-evolving computer vision techniques in the time series modeling domain.

3https://huggingface.co/google/vit-base-patch16-224-21k
4https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k
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APPENDIX

A RELATED WORK

Irregularly Sampled Time Series. An irregularly sampled time series is a sequence of observations
with irregular intervals between observation times. In a multivariate setting, different variables
within the same time series may not align. Such characteristics have posed a significant challenge
to the standard time series modeling methods, which typically assume fully observed and regularly
sampled data points. A common approach to handle irregular sampling is to convert continuous-time
observations into fixed time intervals (Marlin et al., 2012; Lipton et al., 2016). To incorporate the
dynamics between observations, GRU-D (Che et al., 2018) decays the hidden states based on gated
recurrent units (GRU) (Chung et al., 2014), which takes as input the observations’ values and also
times. (Pham et al., 2017) modified the forget gate of LSTM (Graves, 2012) to better account for
irregularity. Similarly, (Yoon et al., 2017) proposed an approach based on multi-directional RNN,
which can capture the inter- and intra-steam patterns. Besides the recurrent and differential equation-
based model architectures, recent work has explored attention-based models. Transformer (Vaswani
et al., 2017) is naturally able to handle arbitrary sequences of observations. ATTAIN (Zhang, 2019)
incorporates attention mechanism with LSTM to model the time irregularity between observations.
SeFT (Horn et al., 2020) maps the irregular time series into a set of observations based on differentiable
set functions and utilizes an attention mechanism for classification. mTAND (Shukla & Marlin, 2020)
presented a multi-time attention network, which learns continuous-time embeddings coupled with a
multi-time attention mechanism to deal with the continuous-time inputs. UTDE (Zhang et al., 2022b)
integrated embeddings from mTAND and classical imputed time series with learnable gates to take
their advantages for tackling complex temporal patterns. Raindrop (Zhang et al., 2022a) modeled the
irregularly sampled time series as graphs and utilized graph neural networks to model the relationships
between different variables. Overall, these methods are all highly specialized for irregular time series.
In this work, we explore a simple and general vision transformer-based approach for irregularly
sampled time series modeling without using dedicated model architecture modifications.

Numerical Time Series Modeling Methods with Transformer. Transformers possess superior
abilities to capture long-range dependencies in sequential data, making them appealing to time
series modeling (Li et al., 2019). A surge of transformer-based methods have been proposed and
successfully applied to various time series modeling tasks, such as forecasting (Li et al., 2019; Zhou
et al., 2021; Wu et al., 2021a; Zhou et al., 2022), classification (Zerveas et al., 2021), and anomaly
detection (Xu et al., 2021). These methods are usually designed for regular time series settings,
where they view multivariate numerical values at the same timestamp as a unit and model temporal
interactions across different units. A recent work (Nie et al., 2022), on the other hand, segments each
univariate time series into a sequence of sub-series and models their interactions independently.

Time Series as Other Modalities. The recently emerging pre-trained transformer-based models,
initially proposed in Natural Language Processing (NLP) field, have since come to monopolize the
state-of-the-art performance across various downstream tasks in NLP and Computer Vision (CV)
fields. For example, the pre-trained language model BERT (Devlin et al., 2018) and GPTs (Radford
et al., 2018; 2019; Brown et al., 2020) can be adapted to various NLP tasks. Some non-language tasks
can also be solved by these pre-trained transformer-based language models by transforming them
into language sentence prompts (Dinh et al., 2022). A recent work (Xue & Salim) tried to represent
the time series in natural language and utilize pre-trained language models to forecast. However,
such a method has difficulties modeling long-range multivariate time series as it usually involves tens
of thousands of numerical values, which cannot be fitted into the language models (512/1024 max
tokens for most LMs). In addition, it is hard to express the informative irregularity of time series in
natural language sentences. By contrast, we transform numerical time series data into images and
utilize pre-trained transformer-based vision models to perform time series modeling, which doesn’t
the issues. Note that some prior studies tried to transform time series into Gramian fields (Wang &
Oates, 2015a), recurring plots (Hatami et al., 2018; Tripathy & Acharya, 2018), and Markov transition
fields (Wang & Oates, 2015b) images and utilize CNN to perform classifications. However, these
methods are not domain-agnostic and require domain knowledge in designing specialized imaging
methods. Another related work (Sood et al., 2021) employed convolutional autoencoders to complete
the image converted from time series for forecasting purposes. Nevertheless, this method is less
effective than numerical techniques and cannot handle irregularly sampled time series data. By
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contrast, our method transforms time series into line graph RGB images without assuming prior
knowledge and achieves better results than the highly specialized methods.

B EXPERIMENT DETAILS

Table 2: Statistics of the irregularly sampled time series datasets (Zhang et al., 2022a). “#Avg. obs.”
denotes the average number of observations for each sample. “Static info” indicates if the time series
sample is associated with static attributes (e.g., genders).

Datasets #Samples #Variables #Avg. obs. #Classes Static info Imbalanced Missing ratio

P19 38,803 34 401 2 True True 94.9%
P12 11,988 36 233 2 True True 88.4%
PAM 5,333 17 4,048 8 False False 60.0%

B.1 DATASETS

We conduct experiments using three popular datasets in healthcare and human activity, which are
processed by (Zhang et al., 2022a). The statistics is shown in Table 2.

P19: PhysioNet Sepsis Early Prediction Challenge 2019. 5 P19 dataset (Reyna et al., 2019)
contains the clinical data of 38,803 patients, and the goal is to predict the occurrence of sepsis within
the next 6 hours. Each patient is monitored by 34 irregularly sampled sensors with 8 vital signs and
26 laboratory values. 6 demographic information is also provided. This is a binary classification task,
and the dataset is highly imbalanced with around 4% positive samples. The missing ratio is 94.9%.

P12: PhysioNet Mortality Prediction Challenge 2012. 6 P12 dataset (Goldberger et al., 2000)
includes the clinical data of 11,988 ICU patients (12 inappropriate patient samples are removed).
36 irregularly sampled sensor observations and 6 static demographics features of each patient are
provided. The goal is to predict the mortality of patients (binary classification). This dataset is also
highly imbalanced with around 86% negative samples. The missing ratio is 88.4%.

PAM: PAMAP2 Physical Activity Monitoring. 7 The original PAM dataset contains data of 18
physical activities with 9 subjects wearing 3 inertial measurement units. To make it suitable for
irregular time series classification, (Zhang et al., 2022a) excluded the ninth subject due to its short
length of sensor readouts. The continuous signals are segmented with a time window size of 600 and
an overlapping rate of 50%. 10 out of the 18 activities in the original dataset are excluded as they
are associated with less than 500 samples, and 8 activities remain. Therefore, the task is an 8-way
classification. Finally, there are 5,333 samples, each with 600 continuous observations. To simulate
the irregular time series setting, 60% of the observations are randomly removed. No static features
are provided, and the 8 categories are approximately balanced. The missing ratio is 60.0%.

B.2 IMPLEMENTATION AND TRAINING

Image Creation. The time-series-to-image transformation can be implemented using the Matplotlib
package8 with the following few lines of code.

1 def TS2Image(t, v, D, colors, image_height, image_width, grid_height, grid_width):
2 import matplotlib.pyplot as plt
3 plt.figure(figsize=(image_height/100, image_width/100), dpi=100)
4 for d in range(D): # enumerate the multiple variables
5 plt.subplot(grid_height, grid_width, d+1) # position in the grid
6 # plot line graph of variable d
7 plt.plot(t[d], v[d], color=colors[d], linestyle="-", marker="*")

5https://physionet.org/content/challenge-2019/1.0.0/
6https://physionet.org/content/challenge-2012/1.0.0/
7https://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
8https://matplotlib.org/
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As mentioned in Section 2.1, the observations of each variable are plotted in a separate line graph. We
use straight lines “–” to connect consecutive points on the line graph. To distinguish the observed data
points from the line, we use markers “*”. To differentiate these line graphs, we use variable-specific
colors for each line graph.

Table 3: Templates for transforming static features to natural language sentences.

Dataset Static features Template Example

P19

Age, Gender, Unit1 (medical
ICU), Unit2 (surgery ICU),
HospAdmTime; ICULOS (ICU
length-of-stay)

A patient is {Age} years old, {Gender}, went to
{Unit1&Unit2} {HospAdmTime} hours after hospi-
tal admit, had stayed there for {ICULOS} hours.

A patient is 65 years old, female,
went to the medical ICU 10 hours
after hospital admit, had stayed there
for 20 hours.

P12

RecordID, Age, Gender, Height
(cm), ICUType, Weight (kg)

A patient is {Age} years old, {Gender}, {Height}
cm, {Weight} kg, stayed in {ICUType}.

A patient is 48 years old, male, 171
cm, 78 kg, stayed in surgical ICU.

Incorporating static features. The P12 and P19 datasets provide patients’ demographics, such
as weight, height, and ICU type. This static information will not change over time and can be
well described by the natural language. To incorporate them into our framework, we transform
them into natural language sentences via templates as shown in Table 3 and utilize the pre-trained
Roberta-base9 (Liu et al., 2019) to obtain textual features, which is concatenated with the visual
feature from vision transformer to perform classification. Note that the static feature is also applied
to all the baselines we compare.

Input Attention

P1
9

P1
2

PA
M

Figure 3: Illustration of the averaged attention map
of ViTST on three images from P19, P12, and PAM
datasets, respectively. Left: input images. Right:
attention maps.

Training. We apply the cutout (DeVries & Tay-
lor, 2017) augmentation method on the input
images from P12 and P19 datasets during train-
ing to avoid over-fitting caused by upsampling.
Specifically, 16 square regions with 16 × 16
size are randomly masked in each image. The
models are trained using A6000 GPUs with 48G
memory. As P12 and P19 datasets are highly
imbalanced, we upsample the minority class to
the same size as the majority class. We fine-tune
Swin Transformer 2 and 4 epochs on upsam-
pled P19 and P12 datasets and 20 epochs on the
PAM dataset. The batch sizes are 48 for P19
and P12, and 72 for PAM. The learning rate is
2e-5. As for the compared baselines, we fol-
low the implementations and hyperparameter
settings in Raindrop (Zhang et al., 2022a): The
batch size is 128, and all the compared mod-
els are trained for 20 epochs. As the P12 and
P19 datasets are highly imbalanced, we make
each batch balanced with half negative and half
positive samples.

C VISUALIZATION

To understand what patterns ViTST capture in
the time series line graph images, we presented
the averaged attention map of a ViTST-ViT in
Fig. 3. As can be seen, the model learns to at-
tend to the lines instead of the whitespace. In
addition, we observe that the model correctly fo-
cuses on observed data points (dots) and chang-
ing slopes on the lines, which indicates the ob-
servation and trend information. Some flat line
graphs which don’t reflect many dynamic pat-
terns receive less attention.

9https://huggingface.co/roberta-base
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D ADDITIONAL EXPERIMENTS
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(a) Leave-fixed-sensors-out
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(b) Leave-random-sensors-out

Figure 4: Performance in leave-fixed-sensors-out and leave-random-sensors-out settings on PAM
dataset. The x-axis is the “missing ratio” which denotes the ratio of masked variables. Detailed
numbers are provided in Table 12.

D.1 LEAVING-SENSORS-OUT SETTINGS.

We further evaluate models’ performance in more challenging leave-sensors-out settings, where the
observations of a subset of sensors (variables) are masked during testing. Following (Zhang et al.,
2022a), we experiment with two setups on PAM dataset: (1) leave-fixed-sensors-out, which drops
a fixed set of sensors across all the samples and compared methods; (2) leave-random-sensors-out
which drops the sensors randomly. Only the observations in the validation and test set are dropped.
The training set is kept unchanged. For a fair comparison, we dropped the same set of sensors in the
leave-fixed-sensors-out setting as in (Zhang et al., 2022a).

The results are presented in Fig. 4, from which we observe that our approach consistently achieves
the best performance and outperforms the compared baselines by a large margin. With the missing
ratio ranging from 10% to 50%, the performance improvement over the previous best model becomes
increasingly significant. When half of the variables are dropped, our approach can still achieve
acceptable performance, exceeding the best-performed baseline by up to 50.2% in Accuracy, 40.7%
in Precision, 59.6% in Recall, and 54.0% in the F1 score, which suggests the robustness of our
approach to missing observations in time series.

D.2 BACKBONE VISION MODELS

We tested the performance of different backbone vision models under our framework. In addition to
the transformer-based ViT and Swin Transformer, we tested a CNN-based model ResNet10. We also
report the performance of Swin Transformer trained from scratch and Raindrop for comparison. The
results are presented in Fig. 5. The pre-trained ViT performs similarly to Swin Transformer. They
both outperform the previous state-of-the-art method Raindrop, which suggests the effectiveness of
our proposed framework that utilizes vision transformers for time series modeling. However, the
CNN-based ResNet achieves much worse performance than the transformer-based models Swin
Transformer and ViT, showing that our framework’s superior performance derives not only from the
idea of casting time series classification to image classification but also the strong image recognition
ability of vision transformers. Swin Transformer trained from scratch underperforms its pre-trained
counterpart by a large margin, which shows that knowledge obtained from pre-training on natural
images could contribute to recognizing patterns in synthetic time series line graph images. It also

10https://huggingface.co/microsoft/resnet-50
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Figure 5: Performance of different backbone vision models and the state-of-the-art model Raindrop
on P19, P12, and PAM datasets. Detailed numbers are provided in Table 13 in Appendix D.6.

reveals the advantages of our proposed framework: pre-trained vision models can be easily leveraged
for time series modeling.

D.3 TIME SERIES LINE GRAPH IMAGE CREATION

Table 4: Ablation studies on different designs when drawing the time series line graphs.

P19 P12 PAM
Methods AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

ViTST 89.4 ± 1.9 52.8 ± 3.8 85.6 ± 1.1 49.8 ± 2.5 96.1 ± 0.7 96.8 ± 1.1 96.5 ± 0.7 96.6 ± 0.9

w/o interpolation 87.5 ± 1.5 51.2 ± 3.6 84.1 ± 1.4 48.3 ± 3.5 96.0 ± 1.1 96.8 ± 0.9 96.4 ± 0.9 96.6 ± 0.9
w/o markers 88.3 ± 1.6 51.0 ± 2.4 84.8 ± 1.3 48.7 ± 3.8 94.1 ± 0.9 95.1 ± 0.7 94.8 ± 1.1 94.9 ± 0.8
w/o colors 85.3 ± 0.8 48.5 ± 2.1 83.9 ± 1.1 46.5 ± 3.2 92.9 ± 1.9 94.9 ± 1.2 93.6 ± 1.5 94.1 ± 1.5

As mentioned in Section 2.1, there are several key designs in drawing the line graphs for irregularly
sampled multivariate time series and creating the images: (1) the linear interpolation, i.e., linking
the consecutive observed data points on the line graphs; (2) markers for observed data points to
distinguish them from the “interpolated” ones on the line graph; (3) variable-specific line colors
to distinguish different line graphs. We conducted ablation studies to test their effectiveness. The
results are presented in Table 4. We can see that the performance decreases without either of these
designs. However, the performance drop of removing interpolation and markers are not as significant
as removing variable-specific line colors, which is reasonable as it is most observable on the line
graph images and distinguishes different line graphs.

In addition to the above-mentioned designs, we have tried different strategies from the following
perspectives when creating the time series line graph images.

Table 5: Ablation study on different strategies to decide the line graph limit. The default strategy is
directly set the axis limit as the range of all observed values on the dataset. “IQR”, “SD”, and “MZS’
denote three strategies to remove extreme value, i.e., Interqurtile Range, Standard Deviation, and
Modified Z-score. The reported numbers are averaged on 5 data splits.

P19 P12 PAM
Strategies AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

Default 89.4 ± 1.9 52.8 ± 3.8 85.6 ± 1.1 49.8 ± 2.5 96.1 ± 0.7 96.8 ± 1.1 96.5 ± 0.7 96.6 ± 0.9

IQR 88.2 ± 0.8 49.6 ± 1.7 84.5 ± 1.1 48.9 ± 2.6 95.9 ± 0.7 96.8 ± 0.7 96.1 ± 0.7 96.4 ± 0.7
SD 87.4 ± 1.6 51.2 ± 3.6 84.6 ± 1.7 47.1 ± 2.9 96.6 ± 0.9 97.1 ± 0.8 97.0 ± 0.6 97.0 ± 0.7
MZS 87.3 ± 1.0 50.8 ± 3.7 84.3 ± 1.4 47.1 ± 2.1 96.0 ± 1.1 96.8 ± 0.9 96.4 ± 0.9 96.6 ± 0.9

Axis Limits of Line Graphs. The axis limits determine the plot area of the line graphs and the range
of displayed timestamps and values. The default strategy is to directly set the limits of x-axis and
y-axis as the ranges of all the observed timestamps and values across the dataset. However, we notice
that there exist some extreme observed values for some variables, making the the range of y-axis very
large. As a consequence, most plotted points of observations clusters in a small area and the drawn
line graphs are flat (see Fig. 6). Note that the widely used linear normalization and standardization
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methods will not make a difference on the created images, as the relative magnitudes keep unchanged.
We thus tried the following strategies to remove extreme values and narrow the range of y-axis:

• Interquartile Range (IQR): IQR is one of the most extensively used methods for outlier
detection and removal. The interquartile range is calculated based on the first and third
quartiles of all the observed values of each variable in the dataset and then used to calculate
the upper and lower limits.

• Standard Deviation (SD): The upper and lower boundaries are calculated by taking 3 standard
deviations from the mean of observed values for each variable across the dataset. This
method usually assumes the data is normally distributed.

• Modified Z-score (MZ): A z-score measures how many standard deviations away a value is
from the mean and is similar to the standard deviation method to detect outliers. However,
z-scores can be influenced by extreme values, which modified z-scores can better handle.
We set the upper and lower limits as the values whose modified z-scores are 3.5 and -3.5.

Using these methods to narrow the range of y-axis means some extreme values will be removed and
not displayed in the plotted line graph. The comparison of model performance trained on images
created with different strategies is shown in Table 5. We observe that these three methods that remove
extreme values hurt the performance, except SD on PAM dataset. Although they narrow the value
range and highlight the dynamic patterns of line graphs, they discard the extreme values which
might be informative themselves. This observation suggests that our approach might not need data
preprocessing on the time series, which further proves its advantage in simplicity.

Table 6: Ablation study on grid layouts and image
sizes on P19.

Grid Layout Image Size AUROC AUPRC

4× 9 256× 576 87.4 ± 1.9 48.1 ± 4.5
5× 7 320× 448 87.9 ± 1.9 49.6 ± 2.7
6× 6 384× 384 89.4 ± 1.9 52.8 ± 3.8

6× 6 224× 224 88.7 ± 1.4 52.3 ± 0.6

Table 7: Ablation study on grid layouts and image
sizes on P12.

Grid Layout Image Size AUROC AUPRC

4× 9 256× 576 84.0 ± 1.4 47.9 ± 2.6
5× 8 320× 512 84.1 ± 1.6 47.2 ± 2.3
6× 6 384× 384 85.6 ± 1.1 49.8 ± 2.5

6× 6 224× 224 85.2 ± 2.1 48.8 ± 3.7

Table 8: Ablation study on grid layouts and image sizes on PAM.

Grid Layout Image Size Accuracy Precision Recall F1 score

2× 9 128× 576 95.9 ± 1.4 96.5 ± 1.0 95.9 ± 1.2 96.0 ± 0.5
3× 6 192× 384 96.1 ± 0.8 96.7 ± 0.5 95.9 ± 0.9 96.2 ±0.7
4× 5 256× 320 96.1 ± 0.7 96.8 ± 1.1 96.5 ± 0.7 96.6 ± 0.9

4× 5 224× 224 95.9 ± 0.6 96.7 ± 0.8 95.9 ± 0.6 96.3 ± 0.7

Grid Layout and Image Size. We conducted experiments to investigate the influence of grid layouts
and image sizes on performance. Specifically, for a fair comparison of different grid layouts, we
fixed the size of each grid cell as 64 × 64 and alter the grid layouts. The results on P19, P12, and
PAM datasets are listed in Table 6, Table 7, and Table 8, respectively. As can be seen, the square grid
layouts achieve consistently good results on three datasets. We conjecture that this is because the
square layout ensures that the distance between any two line graphs is shortest. We also tried directly
setting the image size as standard 224× 224, and found the performance differences are marginal,
showing that our method is robust to various image sizes.

Order of Line Graphs. We place the line graphs of each variable in a pre-defined grid layout to form
the image. If the grid is not full, the empty cells at the end will be left blank. We empirically found
that ViTST-Swin will learn to pay less attention to this empty region. We thus sort variables according
to their missing ratios on the whole training set and keep the order fixed across different samples,
ensuring the sparse line graphs of variables with few observations are placed at the end, next to the
padded empty cells. We hypothesize such an order may facilitate the model to ignore the line graphs
with the least observations instead of the informative line graphs with more observations if there
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Figure 6: The images created with different strategies for three samples from P19, P12, and PAM
dataset, respectively (sample “p000019” for P19, “132548” for P12, and “0” for PAM).
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Table 9: Ablation studies on variables orders on P19 and P12 datasets.

P19 P12
Sorted AUROC AUPRC AUROC AUPRC

% 88.3 ± 1.5 51.3 ± 3.0 85.6 ± 1.1 49.8 ± 2.5
! 89.4 ± 1.9 52.8 ± 3.8 84.9 ± 1.8 49.8 ± 4.2

exists the ignorance bias caused by padded empty cells. To verify this, we trained a ViTST model on
P19 and P12 dataset with random and sorted variable orders. The missing ratios of variables in PAM
dataset are balanced, so we didn’t test it. As shown in Table 9, images from the P19 dataset have 2
empty cells at the end (6× 6 grid for 34 variables), and the sorted order produces better results than
random order. By contrast, the grid is full in images from the P12 dataset (6× 6 grid for 36 variables),
and there is no significant performance difference between these two orders, which confirms our
hypothesis.

D.4 REGULAR TIME SERIES CLASSIFICATION

Table 10: The statistics and hyperparameter settings of the evaluated regular multivariate time series
datasets from the UEA Time Series Classification Archive Bagnall et al. (2018).

Datasets Variables Classes Length Train size Grid layout Image size Learning rate Epochs

EC 3 4 1,751 261 2× 2 256× 256 1e-4 20
UW 3 8 315 120 2× 2 256× 256 1e-4 100
SCP1 6 2 896 268 2× 3 256× 384 1e-4 100
SCP2 7 2 1,152 200 3× 3 384× 384 5e-5 100
JV 12 9 29 270 4× 4 384× 384 1e-4 100
SAD 13 10 93 6599 4× 4 384× 384 1e-5 20
HB 61 2 405 204 4× 4 384× 384 1e-4 100
FD 144 2 62 5890 12× 12 384× 384 5e-4 100
PS 963 7 144 267 32× 32 384× 384 5e-4 100
EW 6 5 17984 128 2× 3 256× 384 2e-5 100

The advantage of our approach is that it can be used to model any shape of time series, whether
it is regular or not. We chose ten representative multivariate time series datasets from the UEA
Time Series Classification Archive Bagnall et al. (2018): EthanolConcentration (EC), Handwriting
(HW), UWaveGestureLibrary (UW), SelfRegulationSCP1 (SCP1), SelfRegulationSCP2 (SCP2),
JapaneseVowels (JV), SpokenArabicDigits (SAD), Heartbeat (HB), FaceDetection (FD), PEMS-SF
(PS), and EigenWorms (EW). As shown in Table 10, these ten datasets have diverse characteristics in
terms of numbers of classes, variables, and time series length. We also present the hyperparameter and
training details in the Table. It is worth mentioning that the PS dataset contains an exceptionally high
number of variables (963), while the EW dataset has extremely long time series (17984). We utilize
these two datasets to assess the effectiveness of our approach when dealing with large numbers of
variables and long time series. We follow (Zerveas et al., 2021) to use these baselines for comparison:
DTWD which stands for dimension-Dependent DTW combined with dilation-CNN (Franceschi et al.,
2019), LSTM (Graves, 2012), XGBoost (Chen & Guestrin, 2016), Rocket (Dempster et al., 2020),
and a transformer-based TST (Zerveas et al., 2021) which operates on fully observed numerical time
series data.

The performance comparisons are shown in Table 11. Our approach performs consistently well on
these datasets with different characteristics. Its average accuracy is second-best and close to the
best-performed baseline method TST. By contrast, on the irregularly sampled time series datasets,
ViTST outperforms Transformer (Trans-mean) as discussed in Sect 3.2. On the PS dataset, which
has massive variables, and the EW dataset, which has exceptionally long time series, our approach
still performs well with the same image resolution as in other datasets (384 × 384), indicating its
effectiveness and efficiency in dealing with such time series data. It should be noted that most of
the algorithms on regular and irregular time series are studied separately and could not handle the
other type of time series well. However, our approach achieves promising results on both regular and
irregular time series, showing its superiority in generality and effectiveness.
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Table 11: Performance comparison on regular time series datasets. The EW dataset is not included in
the Avg. score.

Datasets DTWD LSTM XGBoost Rocket TST ViTST

EC 0.323 0.323 0.437 0.452 0.326 0.456
UW 0.903 0.412 0.759 0.944 0.913 0.862
SCP1 0.775 0.689 0.846 0.908 0.922 0.898
SCP2 0.539 0.466 0.489 0.533 0.604 0.561
JV 0.949 0.797 0.865 0.962 0.997 0.946
SAD 0.963 0.319 0.696 0.712 0.998 0.985
HB 0.717 0.722 0.732 0.756 0.776 0.766
FD 0.529 0.577 0.633 0.647 0.689 0.632
PS 0.711 0.399 0.983 0.751 0.896 0.913
EW 0.618 - - - 0.748 0.878

Avg. 0.717 0.523 0.727 0.741 0.791 0.780

D.5 SELF-SUPERVISED LEARNING

Self-supervised learning has become a popular approach to learning representation from unlabelled
data, which can benefit various downstream tasks. Masked language modeling (MLM) (Devlin et al.,
2018) and masked image modeling (MIM) (Xie et al., 2022; He et al., 2022) have been dominant
self-supervised approaches in NLP and CV domains. We also perform a preliminary exploration on
the masked image modeling on time series line graph images: we mask a portion of patches in the
line graph images and train the model to recover them.

As shown in Fig. 7, we randomly mask columns of patches with a width of 32 on each line graph
within a grid cell. In this way, we can ensure that some regions containing line graphs are masked
instead of all the empty places. The masking ratio is set as 50%. Since the self-supervised pretraining
usually requires a large amount of unlabelled data, we experimented on the largest dataset P19, which
has 38803 samples. We trained the Swin Transformer model for 10 epochs with batch size 48. The
learning rate is 2e-5. A one-layer prediction head is applied on the vision transformer encoder to
reconstruct the pixels. Following (Xie et al., 2022), we employ an ℓ1 loss on the masked pixels:

L =
1

Ω(pM)
∥p̂M − pM∥1 , (1)

where pM and p̂M are the masked and reconstructed pixels, respectively; Ω(·) denotes the number of
elements.

Original Masked

Figure 7: Illustration of the masking area with a mask ratio
of 0.5 in our mask image modeling exploration on time series
line graph images. The model is trained to reconstruct the
masking areas.

After self-supervised pre-training, we
further fine-tuned the model on the
classification task with the same set-
ting as directly fine-tuning: 2 epochs
on the upsampled dataset with a learn-
ing rate of 2e-5. The performance im-
proved by 1.0 AUPRC points from
52.8 (± 3.8) to 53.8 (± 3.2). However,
AUROC points slightly dropped from
89.4 (± 1.9) to 88.9 (± 2.1), which
is within a standard deviation. Note
that we did not perform an extensive
hyperparameter search in the prelim-
inary explorations. We believe this is
worth further explorations, which we
leave for future work.

D.6 FULL EXPERIMENTAL RESULTS

We presented the full experimental results in the leave-sensors-out settings in Table 12, and the full
results of ablation studies on backbone vision models as illustrated in Fig. 5 are presented in Table 13.

17



Published as a conference paper at ICLR 2023

Table 12: Full results in the leave-sensors-out settings on PAM dataset. The “missing ratio” denotes
the ratio of masked variables.

Missing
ratio Methods PAM (Leave-fixed-sensors-out) PAM (Leave-random-sensors-out)

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

10%

Transformer 60.3 ± 2.4 57.8 ± 9.3 59.8 ± 5.4 57.2 ± 8.0 60.9 ± 12.8 58.4 ± 18.4 59.1 ± 16.2 56.9 ± 18.9
Trans-mean 60.4 ± 11.2 61.8 ± 14.9 60.2 ± 13.8 58.0 ± 15.2 62.4 ± 3.5 59.6 ± 7.2 63.7 ± 8.1 62.7 ± 6.4
GRU-D 65.4 ± 1.7 72.6 ± 2.6 64.3 ± 5.3 63.6 ± 0.4 68.4 ± 3.7 74.2 ± 3.0 70.8 ± 4.2 72.0 ± 3.7
SeFT 58.9 ± 2.3 62.5 ± 1.8 59.6 ± 2.6 59.6 ± 2.6 40.0 ± 1.9 40.8 ± 3.2 41.0 ± 0.7 39.9 ± 1.5
mTAND 58.8 ± 2.7 59.5 ± 5.3 64.4 ± 2.9 61.8 ± 4.1 53.4 ± 2.0 54.8 ± 2.7 57.0 ± 1.9 55.9 ± 2.2
Raindrop 77.2 ± 2.1 82.3 ± 1.1 78.4 ± 1.9 75.2 ± 3.1 76.7 ± 1.8 79.9 ± 1.7 77.9 ± 2.3 78.6 ± 1.8

ViTST 92.7 ± 0.9 94.2 ± 0.9 93.2 ± 0.4 93.6 ± 0.6 88.4 ± 1.4 92.3 ± 0.5 88.6 ± 1.9 89.8 ± 1.5

20%

Transformer 63.1 ± 7.6 71.1 ± 7.1 62.2 ± 8.2 63.2 ± 8.7 62.3 ± 11.5 65.9 ± 12.7 61.4 ± 13.9 61.8 ± 15.6
Trans-mean 61.2 ± 3.0 74.2 ± 1.8 63.5 ± 4.4 64.1 ± 4.1 56.8 ± 4.1 59.4 ± 3.4 53.2 ± 3.9 55.3 ± 3.5
GRU-D 64.6 ± 1.8 73.3 ± 3.6 63.5 ± 4.6 64.8 ± 3.6 64.8 ± 0.4 69.8 ± 0.8 65.8 ± 0.5 67.2 ± 0.0
SeFT 35.7 ± 0.5 42.1 ± 4.8 38.1 ± 1.3 35.0 ± 2.2 34.2 ± 2.8 34.9 ± 5.2 34.6 ± 2.1 33.3 ± 2.7
mTAND 33.2 ± 5.0 36.9 ± 3.7 37.7 ± 3.7 37.3 ± 3.4 45.6 ± 1.6 49.2 ± 2.1 49.0 ± 1.6 49.0 ± 1.0
Raindrop 66.5 ± 4.0 72.0 ± 3.9 67.9 ± 5.8 65.1 ± 7.0 71.3 ± 2.5 75.8 ± 2.2 72.5 ± 2.0 73.4 ± 2.1

ViTST 88.4 ± 1.0 90.4 ± 1.4 89.3 ± 0.8 89.7 ± 1.0 85.1 ± 1.2 91.1 ± 1.0 85.6 ± 1.0 87.0 ± 1.0

30%

Transformer 31.6 ± 10.0 26.4 ± 9.7 24.0 ± 10.0 19.0 ± 12.8 52.0 ± 11.9 55.2 ± 15.3 50.1 ± 13.3 48.4 ± 18.2
Trans-mean 42.5 ± 8.6 45.3 ± 9.6 37.0 ± 7.9 33.9 ± 8.2 65.1 ± 1.9 63.8 ± 1.2 67.9 ± 1.8 64.9 ± 1.7
GRU-D 45.1 ± 2.9 51.7 ± 6.2 42.1 ± 6.6 47.2 ± 3.9 58.0 ± 2.0 63.2 ± 1.7 58.2 ± 3.1 59.3 ± 3.5
SeFT 32.7 ± 2.3 27.9 ± 2.4 34.5 ± 3.0 28.0 ± 1.4 31.7 ± 1.5 31.0 ± 2.7 32.0 ± 1.2 28.0 ± 1.6
mTAND 27.5 ± 4.5 31.2 ± 7.3 30.6 ± 4.0 30.8 ± 5.6 34.7 ± 5.5 43.4 ± 4.0 36.3 ± 4.7 39.5 ± 4.4
Raindrop 52.4 ± 2.8 60.9 ± 3.8 51.3 ± 7.1 48.4 ± 1.8 60.3 ± 3.5 68.1 ± 3.1 60.3 ± 3.6 61.9 ± 3.9

ViTST 84.1 ± 1.3 86.5 ± 0.4 83.1 ± 0.8 84.9 ± 1.0 80.6 ± 1.2 89.5 ± 1.3 80.9 ± 1.1 82.6 ± 1.1

40%

Transformer 23.0 ± 3.5 7.4 ± 6.0 14.5 ± 2.6 6.9 ± 2.6 43.8 ± 14.0 44.6 ± 23.0 40.5 ± 15.9 40.2 ± 20.1
Trans-mean 25.7 ± 2.5 9.1 ± 2.3 18.5 ± 1.4 9.9 ± 1.1 48.7 ± 2.7 55.8 ± 2.6 54.2 ± 3.0 55.1 ± 2.9
GRU-D 46.4 ± 2.5 64.5 ± 6.8 42.6 ± 7.4 44.3 ± 7.9 47.7 ± 1.4 63.4 ± 1.6 44.5 ± 0.5 47.5 ± 0.0
SeFT 26.3 ± 0.9 29.9 ± 4.5 27.3 ± 1.6 22.3 ± 1.9 26.8 ± 2.6 24.1 ± 3.4 28.0 ± 1.2 23.3 ± 3.0
mTAND 19.4 ± 4.5 15.1 ± 4.4 20.2 ± 3.8 17.0 ± 3.4 23.7 ± 1.0 33.9 ± 6.5 26.4 ± 1.6 29.3 ± 1.9
Raindrop 52.5 ± 3.7 53.4 ± 5.6 48.6 ± 1.9 44.7 ± 3.4 57.0 ± 3.1 65.4 ± 2.7 56.7 ± 3.1 58.9 ± 2.5

ViTST 76.5 ± 1.9 83.5 ± 0.9 76.7 ± 2.4 78.3 ± 2.1 73.7 ± 2.2 86.4 ± 1.1 74.0 ± 2.2 75.8 ± 1.8

50%

Transformer 21.4 ± 1.8 2.7 ± 0.2 12.5 ± 0.4 4.4 ± 0.3 43.2 ± 2.5 52.0 ± 2.5 36.9 ± 3.1 41.9 ± 3.2
Trans-mean 21.3 ± 1.6 2.8 ± 0.4 12.5 ± 0.7 4.6 ± 0.2 46.4 ± 1.4 59.1 ± 3.2 43.1 ± 2.2 46.5 ± 3.1
GRU-D 37.3 ± 2.7 29.6 ± 5.9 32.8 ± 4.6 26.6 ± 5.9 49.7 ± 1.2 52.4 ± 0.3 42.5 ± 1.7 47.5 ± 1.2
SeFT 24.7 ± 1.7 15.9 ± 2.7 25.3 ± 2.6 18.2 ± 2.4 26.4 ± 1.4 23.0 ± 2.9 27.5 ± 0.4 23.5 ± 1.8
mTAND 16.9 ± 3.1 12.6 ± 5.5 17.0 ± 1.6 13.9 ± 4.0 20.9 ± 3.1 35.1 ± 6.1 23.0 ± 3.2 27.7 ± 3.9
Raindrop 46.6 ± 2.6 44.5 ± 2.6 42.4 ± 3.9 38.0 ± 4.0 47.2 ± 4.4 59.4 ± 3.9 44.8 ± 5.3 47.6 ± 5.2

ViTST 70.0 ± 2.7 79.9 ± 2.2 70.5 ± 3.1 72.2 ± 3.0 70.9 ± 1.2 83.6 ± 2.4 71.5 ± 1.4 73.3 ± 2.1

Table 13: Full results of our approach with different backbone vision models and the compared
baselines. Bold indicates the best performer, while underline represents the second best.

P19 P12 PAM
Methods AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

Transformer 80.7 ± 3.8 42.7 ± 7.7 83.3 ± 0.7 47.9 ± 3.6 83.5 ± 1.5 84.8 ± 1.5 86.0 ± 1.2 85.0 ± 1.3
Trans-mean 83.7 ± 1.8 45.8 ± 3.2 82.6 ± 2.0 46.3 ± 4.0 83.7 ± 2.3 84.9 ± 2.6 86.4 ± 2.1 85.1 ± 2.4
GRU-D 83.9 ±1.7 46.9 ± 2.1 81.9 ± 2.1 46.1 ± 4.7 83.3 ± 1.6 84.6 ± 1.2 85.2 ± 1.6 84.8 ± 1.2
SeFT 81.2 ± 2.3 41.9 ± 3.1 73.9 ± 2.5 31.1 ± 4.1 67.1 ± 2.2 70.0 ± 2.4 68.2 ± 1.5 68.5 ± 1.8
mTAND 84.4 ± 1.3 50.6 ± 2.0 84.2 ± 0.8 48.2 ± 3.4 74.6 ± 4.3 74.3 ± 4.0 79.5 ± 2.8 76.8 ± 3.4
IP-Net 84.6 ± 1.3 38.1 ± 3.7 82.6 ± 1.4 47.6 ± 3.1 74.3 ± 3.8 75.6 ± 2.1 77.9 ± 2.2 76.6 ± 2.8
DGM2-O 86.7 ± 3.4 44.7 ± 11.7 84.4 ± 1.6 47.3 ± 3.6 82.4 ± 2.3 85.2 ± 1.2 83.9 ± 2.3 84.3 ± 1.8
MTGNN 81.9 ± 6.2 39.9 ± 8.9 74.4 ± 6.7 35.5 ± 6.0 83.4 ± 1.9 85.2 ± 1.7 86.1 ± 1.9 85.9 ± 2.4
Raindrop 87.0 ± 2.3 51.8 ± 5.5 82.8 ± 1.7 44.0 ± 3.0 88.5 ± 1.5 89.9 ± 1.5 89.9 ± 1.5 89.8 ± 1.0

ResNet 76.3 ± 3.3 34.7 ± 4.1 71.9 ± 1.0 28.8 ± 2.4 73.1 ± 0.9 82.4 ± 5.6 69.7 ± 0.9 71.4 ± 1.8
ViT 87.9 ± 2.5 51.6 ± 3.7 84.8 ± 1.3 48.1 ± 3.8 93.4 ± 0.7 94.7 ± 0.9 94.1 ± 0.7 94.3 ± 0.7
Swin 89.4 ± 1.9 52.8 ± 3.8 85.6 ± 1.1 49.8 ± 2.5 96.1 ± 0.7 96.8 ± 1.1 96.5 ± 0.7 96.6 ± 0.9

Swin-scratch 74.6 ± 2.5 29.9 ± 4.6 66.9 ± 1.6 26.5 ± 2.6 84.5 ± 0.5 86.6 ± 0.6 87.1 ± 1.2 86.6 ± 0.6
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