
DMM: Distributed Matrix Mechanism for Differentially-Private Federated
Learning Based on Constant-Overhead Linear Secret Resharing

Alexander Bienstock 1 Ujjwal Kumar 2 Antigoni Polychroniadou 1

Abstract
Federated Learning (FL) solutions with central
Differential Privacy (DP) have seen large improve-
ments in their utility in recent years arising from
the matrix mechanism, while FL solutions with
distributed (more private) DP have lagged behind.
In this work, we introduce the distributed matrix
mechanism to achieve the best-of-both-worlds;
better privacy of distributed DP and better utility
from the matrix mechanism. We accomplish this
using a novel cryptographic protocol that securely
transfers sensitive values across client committees
of different training iterations with constant com-
munication overhead. This protocol accommo-
dates the dynamic participation of users required
by FL, including those that may drop out from
the computation. We provide experiments which
show that our mechanism indeed significantly im-
proves the utility of FL models compared to previ-
ous distributed DP mechanisms, with little added
overhead.

1. Introduction
In Federated Learning (FL), a machine learning model is
trained using data from several end-users/clients. Since
such data can often be sensitive, a key challenge in FL is
maintaining utility of the trained models, while preserving
privacy of the end-users. FL has experienced an explosion
of progress in recent years, both in industry and research.

In more detail, in each training iteration of FL, typically a
central server sends the current model parameters to a set
of clients, which we call a committee, who locally execute
a step of Stochastic Gradient Descent on their own data
to obtain gradients with respect to a loss function. These

1J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT
CoE, New York, New York, USA 2J.P. Morgan, Mum-
bai, India. Correspondence to: Alexander Bienstock
<alex.bienstock@jpmchase.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

gradients are then aggregated and sent to the central server
using different techniques to update the model parameters
for the next iteration (e.g., (McMahan et al., 2016; Fallah
et al., 2020; Sahu et al., 2018)).

The main privacy metric for FL is differential privacy
(DP) (Dwork et al., 2006). Roughly speaking, DP guar-
antees that with high probability, one cannot tell whether
a user participated in a given FL execution. There are two
different notions of DP that can be considered. In central
DP, there is a centralized server who receives the aggre-
gated gradients from the clients in each iteration (perhaps
using a Secure Aggregation protocol (Kairouz et al., 2021a;
Bonawitz et al., 2017; Liu et al., 2022; Karthikeyan & Poly-
chroniadou, 2024; Li et al., 2023)) and then updates the
model by adding its own DP noise to these aggregated gradi-
ents. See the left side of Figure 1 for a flowchart illustrating
the process. In this case, DP holds with respect to those to
whom the server sends the updated models (assuming that
the server did indeed add noise), but not the server itself.
In distributed DP, there may still be a centralized server,
however, the clients utilize a Secure Aggregation protocol
to release to the server only an aggregation of their gradients
with their own DP noise already added in. Thus, DP holds
with respect to the server as well; in particular, the clients do
not need to trust the server to add noise. Indeed, distributed
DP is important for particularly sensitive data that cannot
be known by anyone else and for which we cannot rely on a
central server to protect.

There has been tremendous progress recently in the area
of central DP for FL, e.g., (Choquette-Choo et al., 2023a;
Dvijotham et al., 2024; McMahan et al., 2024). These works
use a sophisticated set of techniques from the DP literature
called the matrix mechanism (Hubert Chan et al., 2010;
Dwork et al., 2010) to achieve excellent privacy-utility trade-
offs. Indeed, in this setting, since the central server receives
all of the gradients in the clear and samples all noise on
its own, it can correlate the noise across iterations in a
complex manner. Intuitively, this means that noise can be
re-used across iterations so that the cumulative noise across
all iterations is lower compared to sampling new, fresh noise
to hide the gradients in each iteration.

On the other hand, in the setting of distributed DP, the

1

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Figure 1. Left: FL in the central DP model. Users in iteration T update the model locally and these updates are aggregated to the server.
The server then adds noise itself before sending the updated model to committee T + 1. Right: FL based on DMM in the distributed DP
model. Users in iteration T receive noise and gradient shares from previous iterations. These parties combine the received shares with
shares of their new gradients and freshly sampled noise via a linear combination, f , and send these combined shares to the server who
uses them to reconstruct (only) the updated model. Afterward, the gradient and noise shares are reshared to the parties in committee
T + 1, ensuring continuity in DMM.

clients just add noise locally to their gradients (Kairouz et al.,
2021a; Agarwal et al., 2021; Chen et al., 2022). Since clients
change in each iteration, the noise cannot be correlated
across epochs via the matrix mechanism like in the central
DP setting, and so the privacy-utility trade-off of distributed
DP pales in comparison to that of central DP thus far.

Our Contributions. In this work, we propose a solution
to achieve the “best-of-both-worlds” of the central and dis-
tributed DP settings, called the Distributed Matrix Mecha-
nism (DMM). We achieve privacy against the central server,
i.e., distributed DP, while using correlated noise to get
privacy-utility trade-offs matching the central DP setting.1

1) DMM starts with linear secret sharing (Shamir, 1979), a
central technique in the cryptographic literature which has
also been used for FL, e.g., (Ma et al., 2023; Shao et al.,
2022; Marchand et al., 2022). Secret sharing allows for a
dealer party to distribute to n parties different shares of
some secret x, such that any tc (corrupted) parties cannot
learn anything about x from all of their shares, while any
tc + k parties, for some k > 0 can use their shares to
reconstruct x. These shares are also linear, meaning that if
the users have shares of x1 and x2, they can add their shares
together to obtain a sharing of x3 = x1 + x2.

Typically in FL, secret sharing is used by a single set of
parties to secret share (noisy) data to the other parties in the
set. In our setting, however, we additionally need the noise
and gradients from users in a given committee to somehow
be reshared to users in future committees. Thus, we develop
new techniques in this paper to build our constant-overhead

1We note that, just as in (Kairouz et al., 2021a) and all other
works using Secure Aggregation to obtain DP guarantees via ag-
gregated noise, we actually obtain computational DP (Mironov
et al., 2009).

linear secret resharing protocol, LRP. Indeed, our new
techniques are paramount, since the naive way to perform
such resharing costs n2 communication per secret, instead
of O(1) per secret, where n is the number of parties in each
committee. We can see from Table 1 that this results in
communication as low as 25.1 MB per client using our new
techniques, and infeasible communication as high as 2.13
TB per client using the naive resharing. See Section 3 for
details on the naive secret resharing protocol and our LRP
protocol with constant communication overhead.

2) Given LRP, we can instantiate the matrix mechanism in
a distributed fashion to obtain DMM: First, the parties take
linear combinations of the secret shared gradients and noise,
thus introducing noise correlations across epochs. Then,
the parties can reconstruct these aggregrated gradients with
(correlated) noise to the server. Finally, users (re)share the
gradients and noise using LRP. See the right side of Figure 1
for a flowchart illustrating our approach.

DMM is detailed in Section 4. Importantly, DMM maintains
DP even in the presence of corrupted parties who might ma-
nipulate their shares of the gradients and noise. Moreover,
DMM achieves dropout tolerance: In FL, the gradients from
end-users often come from mobile devices, and therefore it
may not be guaranteed that such users will stay online for
the whole training iteration, even if they are honest. Thus,
the protocol must not fail if some (honest) users drop out.

3) We implement the Distributed Matrix Mechanism us-
ing our resharing protocol and empirically test its efficacy
in training differentially private FL models. For example,
in Figure 2, we show that for Stack Overflow Next Word
Prediction (Authors, 2019), our approach improves upon
the privacy-utility tradeoff of the most accurate prior dis-
tributed DP approach, the Distributed Discrete Gaussian

2

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

LRP
Comp.

SecAgg
Comp.

LRP
Comm.

Naive SR
Comm.

SecAgg
Comm.

Opt. 7.69 s 61.3 ms 4.68 GB 2.13 TB 16.2 MB

Hon. 412 ms 61.3 ms 25.1 MB 11.4 GB 16.2 MB

Table 1. Client computation and communication of our LRP re-
sharing protocol, naive secret resharing, and SecAgg per training
iteration on Stack Overflow Next Word Prediction for committee
size n = 64. We give results for both the optimal (Choquette-Choo
et al., 2023a) and more efficient Honaker online (Kairouz et al.,
2021b; Honaker, 2015) matrix mechanisms. SecAgg is the bot-
tleneck of prior distributed DP approaches (Kairouz et al., 2021a)
and LRP (as opposed to naive secret resharing) is the bottleneck
of DMM. (ms := milliseconds; s := seconds).

(DDG) Mechanism (Kairouz et al., 2021a), and matches
that of the best central DP approach (Choquette-Choo et al.,
2023a). We show similar results in Figure 4 for Federated
EMNIST (Caldas et al., 2018). It can also be observed in Ta-
bles 1 and 2 that our solution is lightweight. Indeed, DMM
adds less than 10 seconds of computation and in some cases
less than 2 MB of communication per client compared to
the prior distributed DP approach of secure aggregation.

Related Work. In concurrent work, (Ball et al., 2024) take
another approach to our problem, without secret sharing.
They instead separately maintain aggregate noise and gradi-
ent encryptions across iterations using (linearly homomor-
phic) encryption. These encryptions are then added together
by the server and decrypted using clients’ noisy secret keys
(that do not reveal the actual secret keys) in a clever fasion to
reveal only the sums with correlated noise in each iteration.
They also sketch a solution with dropout resilience. Ball
et al. do not provide any code or straightforward method
for calculating communication costs; however, we expect
their communication complexity to be better than ours. Yet,
since they rely on computational assumptions for linearly
homomorphic encryption, whereas we just use information-
theoretic secret sharing techinques, we expect ours to be
faster. Moreover, Ball et al. do not have a maliciously secure
protocol.

A fruitful line of works has used correlated noise, and in
particular, the matrix mechanism to improve the privacy-
utility tradeoff and memory costs of (central) DP FL for
increasingly realistic multi-participation settings (Kairouz
et al., 2021b; Denisov et al., 2023; Choquette-Choo et al.,
2023b;a; Dvijotham et al., 2024; McMahan et al., 2024).
Privacy amplification techniques like shuffling (Erlingsson
et al., 2019; Feldman et al., 2022) or (Poisson) subsam-
pling (Abadi et al., 2016; Zhu & Wang, 2019; Wang et al.,
2019) are sometimes used to increase privacy-utility trade-
offs; however, these require strong assumptions on how data
is processed which are often not suitable for FL in practice
and thus should be avoided (Kairouz et al., 2021b).

Figure 2. Test accuracies on Stack Overflow Next Word Predic-
tion across different privacy levels ε for the distributed DP DDG
mechanism (Kairouz et al., 2021a), the central DP BandMF and
Honaker online mechanisms (Choquette-Choo et al., 2023a), and
our distributed DP DMM instantiated with the optimal (Choquette-
Choo et al., 2023a) and Honaker online (Honaker, 2015) matrix
factorizations. DMM performs 5-6 percentage points better than
the prior distributed DP approach and similar (sometimes better)
to the prior central DP approaches. We use δ = 1/N for (ε, δ)-DP,
where N is the total number of clients selected across training.

New distributed DP mechanisms for FL, the Skellam
Mechanism (Agarwal et al., 2021), and Distributed Mean
Estimation (DME), the Poisson Binomial Mechanism
(PBM) (Chen et al., 2022), have appeared in the literature re-
cently, mostly improving the efficiency of DDG. Indeed, in
these works, it is shown that roughly the same privacy-utility
tradeoff as DDG is acheived by the Skellam Mechanism,
while PBM is not compared empirically to DDG, nor are FL
experiments with PBM provided (though they state that their
asymptotic error for DME is the same as DDG). We there-
fore refer to (Kairouz et al., 2021a) as the state-of-the-art
for privacy-utility tradeoff. Furthermore, PBM specifically
does not seem suited to our techniques, since it departs from
the additive noise paradigm.

Several works have considered so-called proactive secret
sharing (Ostrovsky & Yung, 1991; Baron et al., 2014;
Maram et al., 2019). This setting is similar to ours in which
secrets are reshared, however, there the users stay the same
in each iteration; just the users that are corrupted changes in
each iteration. Papers that study a similar model to ours ex-
ist, but for more general computations than the special case
of aggregation and without a central server that minimizes
interaction between clients, and thus are inefficient (Gentry
et al., 2021; Bienstock et al., 2023; Choudhuri et al., 2021;
Rachuri & Scholl, 2022; Bienstock et al., 2025).

3

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

2. Preliminaries
2.1. Differentially Private Federated Learning

In this section, we define some notions important to DPFL.
Let T ∗ be the number of training iterations, n the number
of parties in each committee, and d model dimension.

Adjacency and Participation Schemas. DP requires a
notion of adjacent datasets. Two data streams X and X̃
are adjacent if the data associated with any single user is
altered, in every iteration in which the user participates.2

The pattern of when this user participates does not change
in these two adjacent streams. A participation schema Φ
contains all possible participation patterns ϕ ∈ Φ, with
each ϕ ⊆ [T ∗] indicating a set of iterations in which a
single user participates. Let Nbrs be the set of all pairs of
neighboring streams X and D = {X − X̃ : (X, X̃) ∈
Nbrs} represent the set of all possible differences between
neighboring X, X̃ . We say a D satisfies the participation
schema Φ if the indices of all nonzero rows in each RT∗×d

matrix U ∈ D are a subset of some ϕ ∈ Φ.

Centralized DP Matrix Mechanism. Let A ∈ RT∗×T∗
be

an appropriate linear query workload (e.g., prefix sums) that
is publicly known to all participants. Matrix mechanisms
in the central DP setting use a factorization A = BC to
privately estimate the quantity AX as ÂX = B(CX +
Z), where Z is sampled by the central server from some
noise distribution.

Each entry of the vector ÂX corresponds to a model itera-
tion that is released. The matrix A is lower-diagonal, which
means that the T -th entry of ÂX only depends on the first
T entries of X , for each dimension. Additionally, the T -th
entry of ÂX depends on the first T entries of Z, which
means that the noise used in each released model iteration
is correlated.

We now define the sensitivity of the central DP ma-
trix mechanism for a particular participation schema Φ
with set of neighboring streams Nbrs as sensΦ(C) =
sup(X,X̃)∈Nbrs ||CX −CX̃||F = supU∈D ||CU ||F .3 As
in previous works, it is useful to analyze sensΦ(C) when
all of the contributions from users are clipped to ℓ2 norm
at most c = 1, noting that the actual value of sensΦ(C)
scales with c in general. In our work, however, it is useful to
explicitly define the sensitivity for contributions of ℓ2 norm
c = 1 as sens1Φ(C). The expected total squared error on A
is typically given as L(B,C) = sensΦ(C)||B||2F and the
goal is to find a factorization that minimizes this loss.

2We study the more general user-level DP in this work, as
opposed to example-level DP.

3|| · ||F is the Frobenius norm.

2.2. Problem Statement and Security Model

For each iteration T ∈ [T ∗], we have a committee of (dif-
ferent) clients CT . The clients in this committee receive the
current model parameters θ from the server and some values
(secret shares) from the previous committee CT−1. Each
client PT,i uses θ and their private data to obtain gradients
gT,i and also samples noise zT,i from some distribution D.
These clients then interact with each other and the server
with the goal of revealing only ÂXT = A[T :,]X+B[T :,]Z
to the server, where each entry XT =

∑n
i=1 gT,i

and
ZT =

∑n
i=1 zT,i

for T ∈ [T ∗]. We allow tc clients per iter-
ation as well as the server to be corrupted by an adversary
A; i.e., A can use the values sent to the corrupted parties to
try to learn anything besides each ÂXT . In fact, we handle
malicious adversaries that can send arbitrary values to other
parties. We allow such adversaries to change each ÂXT

received by the server by some additive χT factors that are
independent of g

T,i
, z

T,i
for T ∈ [T ∗] of the other clients;

thus preserving DP. We also allow td honest clients per it-
eration to drop out; in this case the correct ÂXT should
still be received by the server (with added χT defined by
the adversary). We require td + tc < (1/2− µ)n, for con-
stant 0 < µ < 1/2, to guarantee security. In Section C,
we formalize this model using a standard simulation-style
definition (Goldreich, 2004) and show that such adversaries
cannot learn anything besides ÂX .

2.3. (Packed) Secret Sharing

Let F be a finite field. Recall tc is the number of maliciously
corrupted parties in each committee. A (tc + 1)-out-of-n
secret sharing scheme takes as input a secret z from F and
outputs n shares, one for each party, with the property that
it is possible to efficiently recover z from every subset of
tc + 1 shares, but every subset of at most tc shares reveals
nothing about the secret z.

A secret sharing scheme consists of two algorithms: the first,
Share, takes as input the secret z and the parameters n and
tc, and outputs n shares: (z1, . . . , zn) = Share(z, n, tc).
We denote the vector of shares as [z]tc = (z1, . . . , zn).
The second algorithm, Recons, takes as input a set of re-
constructing parties Γ ⊆ [n] and share zi and outputs a
reconstruction value Recons(Γ, zi). We will utilize secret
sharing schemes in which λi · zi = Recons(Γ, zi), for some
constant λi dependent on i and Γ. If |Γ| ≥ tc + 1, then
these reconstruction values can be simply summed to obtain
z =

∑
i λi ·zi. The secret sharing scheme we use is also lin-

ear, meaning that if the parties compute [z1]tc + [z2]tc , then
invoke Recons to get reconstruction values λi · (zi1+ zi2) for
a big enough set Γ of parties, summing these reconstruction
values will yield z1 + z2 =

∑
i λi(z

i
1 + zi2). One instantia-

tion of secret sharing uses a random degree tc polynomial
f(x), where the secret is stored at f(0) and the share of each

4

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Pi is f(i) (Shamir, 1979). Reconstruction uses polynomial
interpolation, where the λi are Lagrange coefficients.

Packed secret sharing is an extension of secret sharing,
where a secret vector z = (z1, . . . , zk) ∈ Fk is packed into
a single set of (individual) shares. We call k the packing pa-
rameter. We still have that every subset of at most tc shares
reveals nothing about z, but we need at least tc + k shares
to be able to recover z. There are also similar Share and
Recons algorithms, and we denote a sharing of some vector
z as [z]tc+k−1 = (z1, . . . ,zn). In addition, Recons takes
as input an index j ∈ [k] representing the index of the vector
to reconstruct. We utilize packed secret sharing schemes in
which λj

i · zi = Recons(Γ, zi, j), for some constant λj
i . If

|Γ| ≥ tc + k, then zj can be computed as zj =
∑

i λ
j
i · zi.

The packed secret sharing scheme we use is also linear with
respect to vector addition of the underlying secrets. One
instantiation of packed secret sharing extends the polyno-
mial idea from above—f(x) is now degree tc + k − 1 and
each secret zj is stored at f(−j); everything else stays the
same (Franklin & Yung, 1992).

In the following, tc and k will be fixed, so we will simply
refer to packed secret sharings as [z].

3. Linear Secret Resharing Protocol
In this section, we present our constant-overhead linear
secret resharing protocol, LRP.

Naive n2-Overhead Protocol. We start with the naive
n2-overhead protocol, which follows from classical crypto-
graphic literature (Ben-Or et al., 1988). Let it be the case
that a secret sharing [z] has been generated for parties in a
given committee. To reshare this value to the parties of the
next committee, each party Pi in this committee distributes
to them a sharing [zi] of their share. Since we know it is the
case that z =

∑
i λi · zi =

∑
i Recons(Γ, z

i) and the secret
sharing is linear, the parties in the next committee can sim-
ply compute their new sharing of z to be [z′] =

∑
i λi · [zi],

and it is clear that z′ = z (the parties of this second com-
mittee must also know Γ, the subset of clients who did not
drop out in the first committee). The problem with this
protocol is of course that it has n2 total communication
overhead—each of n parties has to distribute n shares to the
next committee.

Our Constant-Overhead Protocol. We can instead start
by using packed secret sharing. Our resharing protocol is
pictorially presented and summarized in Figure 3. It works
by cleverly batching across many packed sharings. Our
resharing protocol consists of four algorithms: it inherits
the first algorithm Share from an underlying linear packed
secret sharing scheme. Now, let it be the case that k packed
secret sharings [z1], . . . , [zk], for length-k secret vectors
z1, . . . ,zk ∈ Fk, are distributed to the n parties of itera-

tion T (so there are k2 total secrets). The next algorithm,
called the resharing algorithm, Reshare, takes as input the
k packed shares of party Pi of iteration T , which we de-
note as the vector zi

[1,k] = (zi
1, . . . ,z

i
k), and outputs n

fresh shares of this vector to the parties of iteration T + 1:
[zi

[1,k]] = ((zi
[1,k])

1, . . . , (zi
[1,k])

n) = Reshare(zi
[1,k]).

Next, the recovery algorithm, Recover, takes as input the
set of dropout parties DropT of iteration T and the re-
shared shares of non-dropout parties of iteration T sent
to party Pj of iteration T + 1, (zi1

[1,k])
j , . . . , (ziñ

[1,k])
j , for

i1, . . . , iñ ∈ [n]\DropT , and outputs new shares of the orig-
inal secret vectors z1, . . . ,zk for party Pj : (ẑj

1, . . . , ẑ
j
k) =

Recover(DropT , (z
i1
[1,k])

j , . . . , (ziñ
[1,k])

j).4 The last algo-
rithm Recons is also inherited from the underlying linear
packed secret sharing scheme.

We present protocol LRP below.

• Reshare(zi
[1,k]): Outputs [zi

[1,k]] = Share(zi
[1,k]).

• Recover(Drop, (zi1
[1,k])

j , . . . , (ziñ
[1,k])

j): Computes

ẑj
m =

∑
l Recons([n]\Drop, (z

il
[1,k])

j ,m), for

m ∈ [k]. Then outputs (ẑj
1, . . . ẑ

j
k)

Now we observe how Recover(·) outputs packed
shares of the original secrets. Recall that
Recons([n]\Drop, (zil

[1,k])
j ,m) = λm

il
· (zil

[1,k])
j , so

we can re-write ẑj
m =

∑
l λ

m
il
· (zil

[1,k])
j . Moreover, each

(zil
[1,k])

j is a share of vector zil
[1,k] = (zil

1 , . . . ,z
il
k) for a lin-

ear packed secret sharing scheme. Thus, we are computing
new packed shares of the vectors

∑
l λ

m
i · (z

il
1 , . . . ,z

il
k).

Each zil
ℓ was itself Pil’s share of vector zℓ. Thus the

packed shares we are computing indeed share the vectors:∑
l

λm
il
· (zil

1 , . . . ,z
il
k)

= (
∑
l

Recons([n]\Drop, zil
1 ,m), . . . ,∑

l

Recons([n]\Drop, zil
k ,m))

= (z1,m, . . . ,zk,m).

Security. It is clear that the output of Reshare() reveals
nothing to the tc corrupted parties, since it just uses Share()
of the underlying packed secret sharing scheme, that is
secure against tc corrupted parties. Since the number of
honest parties that do not dropout is at least n− td − tc >
(1/2 + µ)n, it is clear that this protocol is resilient to the
td (honest) dropout parties, if k ≤ 2µn. This is because
tc + k ≤ (1/2 + µ)n < n − td − tc, so the shares of the
parties that do not dropout can still be used to reconstruct

4Note: the output shares are for length-k secret vectors
(z1,m, . . . , zk,m) for each m ∈ [k], instead of (zℓ,1, . . . , zℓ,k),
for each ℓ ∈ [k].

5

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Figure 3. Constant-Overhead Linear Secret Resharing Protocol, LRP. At a high level, parties Pi in iteration T each receive packed secret
sharings [zi]. Then, the parties of iteration T reshare these packed shares by distributing packed sharings of these packed shares to the
parties of iteration T + 1, who finally recover packed shares of the original secret vectors z1, . . . , zn.

in the secret space during Recover. The fact that malicious
parties can only cause reconstructed values to be perturbed
by an independent value χ follows from standard facts about
secret sharing (Genkin et al., 2014). We formally prove the
security and dropout-resiliency of LRP in Section C.

Communication Complexity. Let k = 2µn. The commu-
nication cost of both Share and Recons is n field elements
for k secrets, which is 1/2µ per secret. The total commu-
nication complexity of Reshare is n2 field elements—each
party sends a share to every party in the next iteration. This
is for k2 = 4µ2n2 secrets, which is 1/4µ2 per secret. Thus,
the communication is at most 1/4µ2 per secret (µ < 1/2).

4. Distributed Matrix Mechanism
We now present our Distributed Matrix Mechanism. See
Protocol 1 for a detailed description of ΠDMM. We will as-
sume that each committee has the same number n of clients.
We write the protocol in terms of batches of gradients of size
k2, where k is the packing parameter; if the model dimen-
sion d > k2, then the parties repeat ΠDMM over batches.5

Each iteration of this protocol is completed in two commu-
nication rounds.6 In the T -th iteration, we will assume that
the n clients selected have received, for τ ∈ [T − 1], (i)
[Xil

τ,[1,k]], which are the (aggregated) gradient shares from
the first T −1 iterations, reshared by non-dropout party il in
the previous iteration; and (ii) [Zil

τ,[1,k]], which are the (ag-
gregated) noise shares sampled in the first T − 1 iterations,

5We also assume that communication between clients in ΠDMM

is done via authenticated and encrypted channels, routed through
the server and using a Public-Key Infrastructure (PKI), as in previ-
ous works, e.g., (Bonawitz et al., 2017), etc.

6Note that if there are no dropouts, each iteration can complete
in one communication round.

reshared by party il in the previous iteration. The clients
first recover shares of the same:

(Ẑj
τ,1, . . . ,Ẑ

j
τ,k) =

Recover(DropT−1, (Z
i1
τ,[1,k])

j , . . . , (Ziñ
τ,[1,k])

j)

(X̂j
τ,1, . . .X̂

j
τ,k) =

Recover(DropT−1, (X
i1
τ,[1,k])

j , . . . , (Xiñ
τ,[1,k])

j),

based on iteration T − 1 dropout clients DropT−1 received
from the server.

Next, as in the distributed setting, the clients will compute
their local gradients gT,i (clipped, scaled, flattened, and
rounded as in (Kairouz et al., 2021a)) and sample zT,i from
a noise distribution D. Then, each client will compute some
secret shares [zT,i], [gT,i] of their local gradients and noise
and distribute them to the other clients of this iteration. Once
receiving these shares, the parties (locally) aggregate them:
[ZT] = (

∑n
η=1[zT,η]) and [XT] = (

∑n
η=1[gT,η]).

The parties then take linear combinations, according to A
and B, of the packed shares of gradients and noise of all
previous iterations, including this one, to obtain shares of the
next output of the matrix mechanism, [ÂXT]. The parties
then reconstruct these noisy gradients to the server (which
are then unflattened and rescaled by the server (Kairouz
et al., 2021a)).

Finally, the clients will reshare their shares Ẑj
τ,[1,k] and

X̂j
τ,[1,k] of the aggregated noise and gradients from the first

T iterations. The clients reshare the shares according to
protocol LRP in Section 3.

An Optimization. Typically, the matrix A is just the prefix
sum matrix. In this case, the server anyway sees ÂXT −
ÂXT−1 = XT + (B[T :,] − B[T−1:,])Z, so we can just

6

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Protocol 1 Differentially-Private Federated Learning Protocol ΠDMM

Subprotocols: LRP = (Share,Reshare,Recons,Recover) is a secret resharing protocol (See Section 3).
Parameters: Packing parameter k ∈ N; number of iterations T ∗; finite field F of bit-width m; matrix A ∈ RT∗×T∗

and
B,C such that A = BC; noise distribution D.
Inputs: Current iteration T ; gradients gT,j,1, . . . , gT,j,k ∈ Fk ; list of dropped clients from iteration T − 1, DropT−1
(If |DropT−1| < tc + k, then abort); reshared gradients and noise received from CT−1 for the first T − 1 iterations
{[Xil

τ,[1,k]], [Z
il
τ,[1,k]]}τ∈[T−1],il∈[n]\DropT−1

.

Round 1:
Parties Pj:
• Sample noise vectors z

T,j,1
, . . . ,z

T,j,k
∈ Fk from D.

• For each ℓ ∈ [k], distribute packed secret sharings [z
T,j,ℓ

] = Share(z
T,j,ℓ

) and [g
T,j,ℓ

] = Share(g
T,j,ℓ

) to the set CT of
clients of this training iteration (via authenticated and encrypted channels through the server).

Server:
• Receive from each Party Pj in CT and register dropped clients in list DropT .
• Forward (encrypted) shares [z

T,j,ℓ
] and [g

T,j,ℓ
] to the other clients of CT , along with DropT .

Round 2:
Parties Pj:
• Receive from server the list of dropped clients from iteration T , DropT .
• For each ℓ ∈ [k], aggregate [Ẑ

T,ℓ
] = (

∑
η∈[n]\DropT

[z
T,η,ℓ

]) and [X̂T,ℓ] = (
∑

η∈[n]\DropT
[g

T,η,ℓ
]); then reshare

[Zj
T,[1,k]] = Reshare(Ẑj

T,[1,k]) and [Xj
T,[1,k]] = Reshare(X̂j

T,[1,k]) to the set of clients in CT+1 (via authenticated and
encrypted channels through the sever).

• If T = 1:
– For each ℓ ∈ [k], compute [Y1,ℓ] = A[1,1] · [X̂1,ℓ] +B[1,1] · [Ẑ1,ℓ], then send shares Y j

1,ℓ to the server.
• If T > 1:

– For τ ∈ [T − 1], recover (Ẑj
τ,1, . . . , Ẑ

j
τ,k) = Recover(DropT−1, (Z

i1
τ,[1,k])

j , . . . , (Ziñ
τ,[1,k])

j) and

(X̂j
τ,1, . . . X̂

j
τ,k) = Recover(DropT−1, (X

i1
τ,[1,k])

j , . . . , (Xiñ
τ,[1,k])

j) to obtain shares [Ẑτ,ℓ] and [X̂τ,ℓ] for ℓ ∈ [k].

– Then again reshare as [Zj
τ,[1,k]] = Reshare(Ẑj

τ,[1,k]) and [Xj
τ,[1,k]] = Reshare(X̂j

τ,[1,k]) to set CT+1 (via authen-
ticated and encrypted channels through the sever).

– For each ℓ ∈ [k], compute [YT,ℓ] =
∑T

τ=1 A[T,τ] · [X̂τ,ℓ] +B[T,τ] · [Ẑτ,ℓ], then send shares Y j
T,ℓ to the server.

Server:
• Receive from each Party Pj in CT and register dropped clients in list DropT .
• For each ℓ,m ∈ [k], compute and output YT,ℓ,m =

∑
j∈[n]\DropT

Recons([n]\Dropt,Y
j
T,ℓ,m).

• Forward (encrypted) reshares to the clients of CT+1 and send dropped clients list DropT to clients of CT+1

reconstruct this to it, and do not need to reshare the gradients
X across iterations, saving a factor of two. This is how we
compute the communication complexity of our protocol.

Matrix Factorizations and Communication Complexity.
We use two different matrix factorizations A = BC for our
experiments. The first is the optimal with respect to the loss
function L(B,C) = sensΦ(C)||B||2F for the b-min-sep-
participation schema Φ (Choquette-Choo et al., 2023a). In
this case, in iteration T , the total communication complexity
is (d · T)/(4µ2), using k = 2µn as above. The second
factorization is the Honaker Online mechanism (Kairouz

et al., 2021b; Honaker, 2015), where C is essentially the
binary tree matrix.7 This mechanism has the benefit that
it allows for implementations with only (d log T)/(4µ2)
total communication complexity; in the T -th iteration, the
released model can be computed by a sum of at most d ·
log(T) sharings.

Security. We formally prove the security of ΠDMM in Sec-
tion C based on the security of LRP, i.e., nothing but the
noisy gradients are revealed to an adversary corrupting at

7ΠDMM can easily use any factorization, including
BLTs (McMahan et al., 2024), which are not open sourced.

7

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

most tc parties in each iteration and the server. We also
prove dropout tolerance and distributed DP even in the pres-
ence of corrupted parties that perturb the noisy gradients
released to the server by independent values χ.

Privacy. We now state the privacy of our protocol when
the noise distribution D is the Discrete Gaussian distribu-
tion with mean 0 and variance σ2/γ2, NZ(0, σ

2/γ2).8 We
note that another option for noise is the Skellam Distribu-
tion (Agarwal et al., 2021) that yields roughly the same
privacy-utility tradeoff; thus we stick to the more standard
Discrete Gaussian. Moreover, our preliminary experiments
showed that the Skellam Distribution did not seem to per-
form even close to as well emprically as the Discrete Gaus-
sian. Another tempting choice to obtain DP is to use the
technique of the Poisson Binomial Mechanism (Chen et al.,
2022), however, that work departs from the additive noise
paradigm and thus does not seem applicable for us.

First we explain some parameters: c is the norm to which
gradients are clipped, γ > 0 is used to determine the gran-
ularity for the discretization of gradients, β determines the
bias of the randomized rounding for discretization, and σ
is the noise scale of the Discrete Gaussians. Details on
these steps (from (Kairouz et al., 2021a)) are provided in
Section A. The following theorem is proved in Section B.
Theorem 4.1. Consider a query matrix A ∈ RT∗×T∗

along
with a fixed factorization A = BC with ∆ = sens1Φ(C).

Let τ := 10 ·
∑n−1

k=1 e
−2π2 σ2

γ2 · k
k+1 and

ĉ2 := min

c2 +
γ2

4
d+

√
2 log(1/β) · γ · (c+ γ

2

√
d),

(c+ γ
√
d)2

 ,

Then ΠDMM satisfies 1
2ε

2-concentrated DP for

ε := min

{√
∆2ĉ2

nσ2 + 2τd, ∆ĉ√
nσ

+ τ
√
d

}
.

Accuracy. We now formally prove the accuracy of our
Distributed Matrix Mechanism (DMM). First, we explain
an additional parameter: m is the bit-width of the finite field
F used in ΠDMM. We prove the following in Section B.
Theorem 4.2. Let n,m, d, T ∗ ∈ N, and c, ε > 0 satisfy:

m ≥ Õ

(
max

T∈[T∗]
||A[T :,]||2

√
nT + max

T∈[T∗]
||B[T :,]||2

√
d∆

ε

)
.

Let ΠDMM be instantiated with parameters

γ = Õ

(
maxT∈[T∗] ||A[T :,]||2c

√
nT

m
√
d

+
maxT∈[T∗] ||B[T :,]||2c∆

εm

)
,

β ≤ Θ
(
1
n

)
, and σ = Θ̃

(
c∆
ε
√
n
+
√

d
n ·

γ∆
ε

)
.

8Note that, as with prior work in the distributed DP setting,
e.g., (Kairouz et al., 2021a), we must use discrete noise. This
is because cryptographic techniques work over finite, discrete
algebraic structures (like finite fields/rings/groups).

Then ΠDMM attains 1
2ε

2-concentrated DP and accuracy:

T∗∑
T=1

E

∣∣∣∣∣
∣∣∣∣∣ΠDMM(X)−A[T,:]

n∑
i=1

Xi

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ O

(
||B||2F

c2∆2d

ε2

)
.

5. Experiments
Here we empirically evaluate DMM for FL on the Stack
Overflow Next Word Prediction (SO-NWP) (Authors, 2019)
and FEMNIST (Caldas et al., 2018) public benchmarks.
We compare to the prior state-of-the art for privacy-utility
tradeoff with distributed DP, the Distributed Discrete Gaus-
sian Mechanism (DDG) (Kairouz et al., 2021a) which also
uses privacy amplification via sampling (DMM does not),
and central DP, BandMF (Choquette-Choo et al., 2023a).
Our full experimental setup is described in Section D, and
closely follows prior work, including model hyperparame-
ters (Kairouz et al., 2021a; Choquette-Choo et al., 2023a).
All experiments are run on a machine with an AMD EPYC
7R32 processor and an A10G GPU. See Section D for fur-
ther evaluation of our results.

Privacy Parameters and Selected Hyperparameters.
For both matrix factorizations, we measure sens1Φ(C)
with respect to the b-min-sep-participation schema us-
ing Choquette-Choo et al. (2023a, Theorems 2 and 3). For
SO-NWP, we use T ∗ = 2052 and b = 342 (as in (Choquette-
Choo et al., 2023a)) and we use T ∗ = 211 = 2048 and
b = 512 for the Honaker factorization, since T ∗ needs to be
a power of two. For FEMNIST, we use T ∗ = 1445 (similar
to (Kairouz et al., 2021a)) and b = 85 for the optimal factor-
ization and T ∗ = 210 = 1024 and b = 64 for the Honaker
factorization—the reason for smaller bands is that there is
less data in the FEMNIST dataset, which means clients have
to participate more often.

Results. For performance evaluation of DMM, we use
n = 40 clients per iteration. Figures 2 and 4 show that
across ε privacy levels, our DMM significantly outperforms
DDG in terms of classification accuracy. This is precisely be-
cause DMM uses correlated noise across iterations, whereas
DDG uses fresh noise in each iteration. Our DMM also
gets accuracy close to that of the state-of-the-art central
DP solutions for SO-NWP. This gap comes from the er-
ror introduced in discretizing values and modular clipping
that both arise from DMM representing numbers as finite
field elements, as well as some error arising from summing
Discrete Gaussians (see Section B). These errors are also
present in DDG (Kairouz et al., 2021a). We also see that
using the Honaker factorization only slightly degrades the
accuracy compared to the mechanism based on the optimal
b-min-sep-participation matrix factorization. Therefore, the

8

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Figure 4. Test accuracies on FEMNIST across different privacy
levels ε for the distributed DP DDG mechanism and our distributed
DP DMM instantiated with the optimal matrix factorization and
the Honaker online matrix factorization. DMM performs ≈ 4
percentage points better than the prior distributed DP approach.
We use δ = 1/N for (ε, δ)-DP, where N is the total number of
clients across training.

tree mechanism might be best in practice due to much better
efficiency, seen below.

Efficiency. Tables 1 and 2 show client computation and
communication costs of DMM for SO-NWP and FEMNIST,
respectively, using both the optimal matrix factorization
and the Honaker matrix factorization. We show the costs
of SecAgg (the bottleneck of DDG) using the Flamingo
construction (Ma et al., 2023) (recall: any SecAgg protocol
can be used; Flamingo is the state-of-the-art) and the costs
of the resharing protocol LRP in ΠDMM. We also give the
communication costs of the naive secret resharing protocol
of Section 3. For ΠDMM, we assume µ = 1/6; i.e., the num-
ber of corrupted and dropout parties per iteration satisfies
tc + td < n/3. We use 32 bits to represent field values. For
computational experiments, we use n = 64, as the Flamingo
code requires powers of two. For the optimal matrix fac-
torization results, we report the worst-case complexity per
iteration, which is the penultimate iteration, since clients
reshare the noise from all previous iterations.

We see that the naive n2 overhead secret resharing protocol
has infeasible communication of up to 2.13 TB per client,
which is substantially more than the communication of LRP,
with communication as low as 5.73 MB per client. We
also see that the optimal matrix factorization substantially
increases both the computation and communication com-
pared to Honaker online factorization. This suggests that
the small increase in accuracy from using the optimal matrix
factorization may not be worth it in terms of the added effi-
ciency costs. Compared to SecAgg used by DDG, we see
a modest increase in computation with the Honaker online
factorization from LRP in ΠDMM; less than 10 seconds (and
sometimes less than 100 ms) per iteration is very reasonable.

LRP
Comp.

SecAgg
Comp.

LRP
Comm.

Naive SR
Comm.

SecAgg
Comm.

Opt. 3.34 s 58.5 ms 828 MB 379 GB 4.07 MB

Hon. 94.2 ms 58.5 ms 5.73 MB 2.61 GB 4.07 MB

Table 2. Client computation and communication of our LRP re-
sharing protocol, naive secret resharing, and SecAgg per iteration
on Federated EMNIST for committee size n = 64. We give re-
sults for both the optimal and more efficient Honaker online matrix
mechanisms. (ms := milliseconds; s := seconds).

In terms of communication, we see an increase of < 10 MB
with the Honaker online factorization from LRP in ΠDMM

compared to that of SecAgg in DDG. We believe that this
added overhead is worth it given the increased accuracy.

6. Conclusion
We present in this paper the Distributed Matrix Mechanism
(DMM) for FL, which achieves both distributed DP and
privacy-utility trade-off of the matrix mechanism for central
DP in FL. Along the way, we introduce a constant-overhead
linear secret resharing protocol LRP. We validate experi-
mentally the utility and efficiency of DMM. Future work
includes designing better low-memory matrix factorizations
to get efficiency with better accuracy, as well as adding ma-
licious security to the encryption approach of (Ball et al.,
2024).

Acknowledgements
We thank Keith Rush for providing valuable assistance with
the code used to factorize matrices optimally.

Disclaimer
Disclaimer: This paper was prepared for informational pur-
poses by the Artificial Intelligence Research group of JP-
Morgan Chase & Co. and its affiliates (”JP Morgan”) and is
not a product of the Research Department of JP Morgan. JP
Morgan makes no representation and warranty whatsoever
and disclaims all liability, for the completeness, accuracy or
reliability of the information contained herein. This docu-
ment is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the
purchase or sale of any security, financial instrument, fi-
nancial product or service, or to be used in any way for
evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or
to any person, if such solicitation under such jurisdiction or
to such person would be unlawful.

© 2025 JPMorgan Chase & Co. All rights reserved.

9

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Impact Statement
Our work provides privacy for FL using formal (ε, δ)-DP
guarantees. One should ensure when using DP that the used
(ε, δ) privacy levels are adequate for protecting sensitive
data in their setting.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learn-
ing with differential privacy. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’16, pp. 308–318, New
York, NY, USA, 2016. Association for Computing
Machinery. ISBN 9781450341394. doi: 10.1145/
2976749.2978318. URL https://doi.org/10.
1145/2976749.2978318.

Agarwal, N., Kairouz, P., and Liu, Z. The skellam mech-
anism for differentially private federated learning. In
Proceedings of the 35th International Conference on
Neural Information Processing Systems, NIPS ’21, Red
Hook, NY, USA, 2021. Curran Associates Inc. ISBN
9781713845393.

Asoodeh, S., Liao, J., Calmon, F. P., Kosut, O., and
Sankar, L. A better bound gives a hundred rounds: En-
hanced privacy guarantees via f-divergences. In 2020
IEEE International Symposium on Information Theory
(ISIT), pp. 920–925. IEEE Press, 2020. doi: 10.1109/
ISIT44484.2020.9174015. URL https://doi.org/
10.1109/ISIT44484.2020.9174015.

Authors, T. Tensorflow federated stack overflow dataset,
2019.

Ball, M., Bell-Clark, J., Gascon, A., Kairouz, P., Oh, S., and
Xie, Z. Secure stateful aggregation: A practical protocol
with applications in differentially-private federated learn-
ing. Cryptology ePrint Archive, Paper 2024/1655, 2024.
URL https://eprint.iacr.org/2024/1655.

Balle, B., Barthe, G., Gaboardi, M., Hsu, J., and Sato, T. Hy-
pothesis testing interpretations and renyi differential pri-
vacy. In Chiappa, S. and Calandra, R. (eds.), Proceedings
of the Twenty Third International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceedings of
Machine Learning Research, pp. 2496–2506. PMLR, 26–
28 Aug 2020. URL https://proceedings.mlr.
press/v108/balle20a.html.

Baron, J., El Defrawy, K., Lampkins, J., and Ostro-
vsky, R. How to withstand mobile virus attacks, re-
visited. In Proceedings of the 2014 ACM Symposium
on Principles of Distributed Computing, PODC ’14,

pp. 293–302, New York, NY, USA, 2014. Associa-
tion for Computing Machinery. ISBN 9781450329446.
doi: 10.1145/2611462.2611474. URL https://doi.
org/10.1145/2611462.2611474.

Ben-Or, M., Goldwasser, S., and Wigderson, A. Com-
pleteness theorems for non-cryptographic fault-tolerant
distributed computation. In Proceedings of the Twenti-
eth Annual ACM Symposium on Theory of Computing,
STOC ’88, pp. 1–10, New York, NY, USA, 1988. Associ-
ation for Computing Machinery. ISBN 0897912640. doi:
10.1145/62212.62213. URL https://doi.org/10.
1145/62212.62213.

Bienstock, A., Escudero, D., and Polychroniadou, A. On
linear communication complexity for (maximally) fluid
mpc. In Advances in Cryptology – CRYPTO 2023: 43rd
Annual International Cryptology Conference, CRYPTO
2023, Santa Barbara, CA, USA, August 20–24, 2023,
Proceedings, Part I, pp. 263–294, Berlin, Heidelberg,
2023. Springer-Verlag. ISBN 978-3-031-38556-8. doi:
10.1007/978-3-031-38557-5 9. URL https://doi.
org/10.1007/978-3-031-38557-5_9.

Bienstock, A., Escudero, D., and Polychroniadou, A. Per-
fectly secure fluid MPC with abort and linear communi-
cation complexity. IACR Communications in Cryptology,
1(4), 2025. ISSN 3006-5496. doi: 10.62056/aesg89n4e.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, pp. 1175–1191, New
York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450349468. doi: 10.1145/
3133956.3133982. URL https://doi.org/10.
1145/3133956.3133982.

Bun, M. and Steinke, T. Concentrated differential pri-
vacy: Simplifications, extensions, and lower bounds.
In Proceedings, Part I, of the 14th International Con-
ference on Theory of Cryptography - Volume 9985,
pp. 635–658, Berlin, Heidelberg, 2016. Springer-
Verlag. ISBN 9783662536407. doi: 10.1007/
978-3-662-53641-4 24. URL https://doi.org/
10.1007/978-3-662-53641-4_24.

Caldas, S., Wu, P., Li, T., Konecný, J., McMahan,
H. B., Smith, V., and Talwalkar, A. Leaf: A bench-
mark for federated settings. ArXiv, abs/1812.01097,
2018. URL https://api.semanticscholar.
org/CorpusID:53701546.

Canonne, C. L., Kamath, G., and Steinke, T. The discrete
gaussian for differential privacy. In Proceedings of the

10

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1109/ISIT44484.2020.9174015
https://doi.org/10.1109/ISIT44484.2020.9174015
https://eprint.iacr.org/2024/1655
https://proceedings.mlr.press/v108/balle20a.html
https://proceedings.mlr.press/v108/balle20a.html
https://doi.org/10.1145/2611462.2611474
https://doi.org/10.1145/2611462.2611474
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-031-38557-5_9
https://doi.org/10.1007/978-3-031-38557-5_9
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1007/978-3-662-53641-4_24
https://doi.org/10.1007/978-3-662-53641-4_24
https://api.semanticscholar.org/CorpusID:53701546
https://api.semanticscholar.org/CorpusID:53701546

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

34th International Conference on Neural Information
Processing Systems, NIPS ’20, Red Hook, NY, USA,
2020. Curran Associates Inc. ISBN 9781713829546.

Chen, W.-N., Ozgur, A., and Kairouz, P. The poisson bi-
nomial mechanism for unbiased federated learning with
secure aggregation. In Chaudhuri, K., Jegelka, S., Song,
L., Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 3490–3506. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/chen22s.html.

Choquette-Choo, C. A., Ganesh, A., McKenna, R., McMa-
han, H. B., Rush, K., Thakurta, A., and Xu, Z. (amplified)
banded matrix factorization: A unified approach to pri-
vate training. In 37th Conference on Neural Information
Processing Systems (NeurIPs 2023), 2023a.

Choquette-Choo, C. A., McMahan, H. B., Rush, K., and
Thakurta, A. Multi-epoch matrix factorization mecha-
nisms for private machine leanring. In 40th International
Conference on Machine Learning, 2023b.

Choudhuri, A. R., Goel, A., Green, M., Jain, A., and
Kaptchuk, G. Fluid mpc: Secure multiparty computation
with dynamic participants. pp. 94–123, Berlin, Heidel-
berg, 2021. Springer-Verlag. ISBN 978-3-030-84244-4.
doi: 10.1007/978-3-030-84245-1 4. URL https://
doi.org/10.1007/978-3-030-84245-1_4.

Denisov, S., McMahan, B., Rush, K., Smith, A., and
Thakurta, A. G. Improved differential privacy for sgd
via optimal private linear operators on adaptive streams.
In 36th Conference on Neural Information Processing
Systems (NeurIPS 2022), 2023.

Dvijotham, K. D., McMahan, H. B., Pillutla, K., Steinke,
T., and Thakurta, A. Efficient and Near-Optimal Noise
Generation for Streaming Differential Privacy . In
2024 IEEE 65th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 2306–2317, Los
Alamitos, CA, USA, October 2024. IEEE Computer
Society. doi: 10.1109/FOCS61266.2024.00135. URL
https://doi.ieeecomputersociety.org/
10.1109/FOCS61266.2024.00135.

Dwork, C. and Rothblum, G. N. Concentrated differential
privacy. CoRR, abs/1603.01887, 2016. URL http:
//arxiv.org/abs/1603.01887.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cal-
ibrating noise to sensitivity in private data analysis. In
Halevi, S. and Rabin, T. (eds.), Theory of Cryptography,
pp. 265–284, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg. ISBN 978-3-540-32732-5.

Dwork, C., Naor, M., Pitassi, T., and Rothblum, G. N.
Differential privacy under continual observation. In
Proceedings of the Forty-Second ACM Symposium on
Theory of Computing, STOC ’10, pp. 715–724, New
York, NY, USA, 2010. Association for Computing
Machinery. ISBN 9781450300506. doi: 10.1145/
1806689.1806787. URL https://doi.org/10.
1145/1806689.1806787.

Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan,
A., Talwar, K., and Thakurta, A. Amplification by
shuffling: From local to central differential privacy via
anonymity. In Chan, T. M. (ed.), Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pp. 2468–2479. SIAM, 2019. doi:
10.1137/1.9781611975482.151. URL https://doi.
org/10.1137/1.9781611975482.151.

Fallah, A., Mokhtari, A., and Ozdaglar, A. E. Personalized
federated learning with theoretical guarantees: A
model-agnostic meta-learning approach. In Neural
Information Processing Systems, 2020. URL https:
//api.semanticscholar.org/CorpusID:
227276412.

Fang, M., Cao, X., Jia, J., and Gong, N. Z. Local model poi-
soning attacks to byzantine-robust federated learning. In
Proceedings of the 29th USENIX Conference on Security
Symposium, SEC’20, USA, 2020. USENIX Association.
ISBN 978-1-939133-17-5.

Feldman, V., McMillan, A., and Talwar, K. Hiding among
the clones: A simple and nearly optimal analysis of pri-
vacy amplification by shuffling. In 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science
(FOCS), pp. 954–964, 2022. doi: 10.1109/FOCS52979.
2021.00096.

Franklin, M. and Yung, M. Communication complexity of
secure computation (extended abstract). In Proceedings
of the Twenty-Fourth Annual ACM Symposium on The-
ory of Computing, STOC ’92, pp. 699–710, New York,
NY, USA, 1992. Association for Computing Machinery.
ISBN 0897915119. doi: 10.1145/129712.129780. URL
https://doi.org/10.1145/129712.129780.

Genkin, D., Ishai, Y., Prabhakaran, M. M., Sahai, A.,
and Tromer, E. Circuits resilient to additive attacks
with applications to secure computation. In Proceed-
ings of the Forty-Sixth Annual ACM Symposium on
Theory of Computing, STOC ’14, pp. 495–504, New
York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450327107. doi: 10.1145/
2591796.2591861. URL https://doi.org/10.
1145/2591796.2591861.

11

https://proceedings.mlr.press/v162/chen22s.html
https://proceedings.mlr.press/v162/chen22s.html
https://doi.org/10.1007/978-3-030-84245-1_4
https://doi.org/10.1007/978-3-030-84245-1_4
https://doi.ieeecomputersociety.org/10.1109/FOCS61266.2024.00135
https://doi.ieeecomputersociety.org/10.1109/FOCS61266.2024.00135
http://arxiv.org/abs/1603.01887
http://arxiv.org/abs/1603.01887
https://doi.org/10.1145/1806689.1806787
https://doi.org/10.1145/1806689.1806787
https://doi.org/10.1137/1.9781611975482.151
https://doi.org/10.1137/1.9781611975482.151
https://api.semanticscholar.org/CorpusID:227276412
https://api.semanticscholar.org/CorpusID:227276412
https://api.semanticscholar.org/CorpusID:227276412
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/2591796.2591861

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen,
J. B., Rabin, T., and Yakoubov, S. Yoso: You only
speak once. In Malkin, T. and Peikert, C. (eds.), Ad-
vances in Cryptology – CRYPTO 2021, pp. 64–93, Cham,
2021. Springer International Publishing. ISBN 978-3-
030-84245-1.

Goldreich, O. Foundations of Cryptography: Volume 2,
Basic Applications. Cambridge University Press, USA,
2004. ISBN 0521830842.

Honaker, J. Efficient use of differentially private binary
trees. Theory and Practice of Differential Privacy (TPDP
2015), London, UK, 2, 2015.

Hubert Chan, T.-H., Shi, E., and Song, D. Private and
continual release of statistics. In Abramsky, S., Gavoille,
C., Kirchner, C., Meyer auf der Heide, F., and Spirakis,
P. G. (eds.), Automata, Languages and Programming,
pp. 405–417, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. ISBN 978-3-642-14162-1.

Kairouz, P., Liu, Z., and Steinke, T. The distributed dis-
crete gaussian mechanism for federated learning with
secure aggregation. In 38th International Conference on
Machine Learning (ICML 2021), 2021a.

Kairouz, P., McMahan, B., Song, S., Thakkar, O., Thakurta,
A., and Xu, Z. Practical and private (deep) learning
without sampling or shuffling. In 38th International Con-
ference on Machine Learning (ICML 2021), 2021b. URL
https://arxiv.org/abs/2103.00039.

Karthikeyan, H. and Polychroniadou, A. OPA: One-
shot private aggregation with single client interaction
and its applications to federated learning. In Interna-
tional Workshop on Federated Foundation Models in
Conjunction with NeurIPS 2024, 2024. URL https:
//openreview.net/forum?id=qQdPSuW7qx.

Li, H., Lin, H., Polychroniadou, A., and Tessaro, S. Lerna:
Secure single-server aggregation via key-homomorphic
masking. In Advances in Cryptology – ASIACRYPT
2023: 29th International Conference on the Theory
and Application of Cryptology and Information Secu-
rity, Guangzhou, China, December 4–8, 2023, Proceed-
ings, Part I, pp. 302–334, Berlin, Heidelberg, 2023.
Springer-Verlag. ISBN 978-981-99-8720-7. doi: 10.
1007/978-981-99-8721-4 10. URL https://doi.
org/10.1007/978-981-99-8721-4_10.

Liu, Z., Chen, S., Ye, J., Fan, J., Li, H., and Li, X. SASH:
efficient secure aggregation based on SHPRG for fed-
erated learning. In Cussens, J. and Zhang, K. (eds.),
Uncertainty in Artificial Intelligence, Proceedings of
the Thirty-Eighth Conference on Uncertainty in Arti-
ficial Intelligence, UAI 2022, 1-5 August 2022, Eind-
hoven, The Netherlands, volume 180 of Proceedings

of Machine Learning Research, pp. 1243–1252. PMLR,
2022. URL https://proceedings.mlr.press/
v180/liu22c.html.

Ma, Y., Woods, J., Angel, S., Polychroniadou, A., and Rabin,
T. Flamingo: Multi-round single-server secure aggrega-
tion with applications to private federated learning. In
2023 IEEE Symposium on Security and Privacy (SP), pp.
477–496, Los Alamitos, CA, USA, may 2023. IEEE Com-
puter Society. doi: 10.1109/SP46215.2023.10179434.
URL https://doi.ieeecomputersociety.
org/10.1109/SP46215.2023.10179434.

Maram, S. K. D., Zhang, F., Wang, L., Low, A., Zhang,
Y., Juels, A., and Song, D. Churp: Dynamic-committee
proactive secret sharing. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’19, pp. 2369–2386, New
York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450367479. doi: 10.1145/
3319535.3363203. URL https://doi.org/10.
1145/3319535.3363203.

Marchand, T., Muzellec, B., Beguier, C., Terrail, J. O. d.,
and Andreux, M. Securefedyj: a safe feature gaussian-
ization protocol for federated learning. In Proceedings
of the 36th International Conference on Neural Informa-
tion Processing Systems, NIPS ’22, Red Hook, NY, USA,
2022. Curran Associates Inc. ISBN 9781713871088.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S.,
and y Arcas, B. A. Communication-efficient learning
of deep networks from decentralized data. In Interna-
tional Conference on Artificial Intelligence and Statistics,
2016. URL https://api.semanticscholar.
org/CorpusID:14955348.

McMahan, H. B., Xu, Z., and Zhang, Y. A hassle-free algo-
rithm for strong differential privacy in federated learning
systems. In Dernoncourt, F., Preoţiuc-Pietro, D., and
Shimorina, A. (eds.), Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing: Industry Track, pp. 842–865, Miami, Florida,
US, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.emnlp-industry.
64. URL https://aclanthology.org/2024.
emnlp-industry.64/.

Mironov, I. Rényi differential privacy. In 2017 IEEE 30th
Computer Security Foundations Symposium (CSF), pp.
263–275, 2017. doi: 10.1109/CSF.2017.11.

Mironov, I., Pandey, O., Reingold, O., and Vadhan, S. Com-
putational differential privacy. In Halevi, S. (ed.), Ad-
vances in Cryptology - CRYPTO 2009, pp. 126–142,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
ISBN 978-3-642-03356-8.

12

https://arxiv.org/abs/2103.00039
https://openreview.net/forum?id=qQdPSuW7qx
https://openreview.net/forum?id=qQdPSuW7qx
https://doi.org/10.1007/978-981-99-8721-4_10
https://doi.org/10.1007/978-981-99-8721-4_10
https://proceedings.mlr.press/v180/liu22c.html
https://proceedings.mlr.press/v180/liu22c.html
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179434
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179434
https://doi.org/10.1145/3319535.3363203
https://doi.org/10.1145/3319535.3363203
https://api.semanticscholar.org/CorpusID:14955348
https://api.semanticscholar.org/CorpusID:14955348
https://aclanthology.org/2024.emnlp-industry.64/
https://aclanthology.org/2024.emnlp-industry.64/

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Ostrovsky, R. and Yung, M. How to withstand mobile
virus attacks (extended abstract). In Proceedings of the
Tenth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC ’91, pp. 51–59, New York,
NY, USA, 1991. Association for Computing Machinery.
ISBN 0897914392. doi: 10.1145/112600.112605. URL
https://doi.org/10.1145/112600.112605.

Rachuri, R. and Scholl, P. Le mans: Dynamic and
fluid mpc for dishonest majority. In Advances in
Cryptology – CRYPTO 2022: 42nd Annual Interna-
tional Cryptology Conference, CRYPTO 2022, Santa
Barbara, CA, USA, August 15–18, 2022, Proceedings,
Part I, pp. 719–749, Berlin, Heidelberg, 2022. Springer-
Verlag. ISBN 978-3-031-15801-8. doi: 10.1007/
978-3-031-15802-5 25. URL https://doi.org/
10.1007/978-3-031-15802-5_25.

Reddi, S., Charles, Z. B., Zaheer, M., Garrett, Z., Rush,
K., Konečný, J., Kumar, S., and McMahan, B. (eds.).
Adaptive Federated Optimization, 2021. URL https:
//openreview.net/forum?id=LkFG3lB13U5.

Sahu, A. K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. arXiv: Learning, 2018. URL https://api.
semanticscholar.org/CorpusID:59316566.

Shamir, A. How to share a secret. Commun. ACM, 22
(11):612–613, November 1979. ISSN 0001-0782. doi:
10.1145/359168.359176. URL https://doi.org/
10.1145/359168.359176.

Shao, J., Sun, Y., Li, S., and Zhang, J. Dres-fl: dropout-
resilient secure federated learning for non-iid clients via
secret data sharing. In Proceedings of the 36th Inter-
national Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran
Associates Inc. ISBN 9781713871088.

Tolpegin, V., Truex, S., Gursoy, M. E., and Liu, L. Data
poisoning attacks against federated learning systems.
In Computer Security – ESORICS 2020: 25th Euro-
pean Symposium on Research in Computer Security, ES-
ORICS 2020, Guildford, UK, September 14–18, 2020,
Proceedings, Part I, pp. 480–501, Berlin, Heidelberg,
2020. Springer-Verlag. ISBN 978-3-030-58950-9. doi:
10.1007/978-3-030-58951-6 24. URL https://doi.
org/10.1007/978-3-030-58951-6_24.

Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P. Sub-
sampled renyi differential privacy and analytical mo-
ments accountant. In Chaudhuri, K. and Sugiyama,
M. (eds.), Proceedings of the Twenty-Second Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 89 of Proceedings of Machine Learning
Research, pp. 1226–1235. PMLR, 16–18 Apr 2019.

URL https://proceedings.mlr.press/v89/
wang19b.html.

Zhu, Y. and Wang, Y.-X. Poission subsampled rényi dif-
ferential privacy. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 7634–7642. PMLR, 09–
15 Jun 2019. URL https://proceedings.mlr.
press/v97/zhu19c.html.

13

https://doi.org/10.1145/112600.112605
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/978-3-031-15802-5_25
https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5
https://api.semanticscholar.org/CorpusID:59316566
https://api.semanticscholar.org/CorpusID:59316566
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/978-3-030-58951-6_24
https://doi.org/10.1007/978-3-030-58951-6_24
https://proceedings.mlr.press/v89/wang19b.html
https://proceedings.mlr.press/v89/wang19b.html
https://proceedings.mlr.press/v97/zhu19c.html
https://proceedings.mlr.press/v97/zhu19c.html

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Protocol 2 Client Gradient Processing

Input: Gradient gi ∈ Rd.

Parameters: model dimension d, clipping threshold c > 0, granularity γ, modulus m, noise scale σ > 0 and bias β ∈ [0, 1).

1. Clip and scale gradient: g′i =
1
γ min{1, c

||gi||2 } · gi ∈ Rd.

2. Flatten vector: g′′i = U · g′i ∈ Rd.

3. Repeat:

(a) Let g̃i ∈ Zd be a randomized rounding of g′′i . i.e., g̃i is a product distribution with E[g̃i] = g′′i and ||g̃i−g′′i ||∞ <
1.

until |||g̃||2 ≤ min{c/γ +
√
d,
√
c2/γ2 + 1

4d+
√
2 log(1/β) · (c/γ + 1

2

√
d)}.

4. Output: g̃i.

Protocol 3 Server Aggregate Noisy Release Value Processing

Input: Vector ÂXT .

Parameters: model dimension d, clipping threshold c > 0, granularity γ, modulus m, noise scale σ > 0 and bias β ∈ [0, 1).

1. Map Zm to {1−m/2, 2−m/2, . . . ,−1, 0, 1, . . . ,m/2−1,m/2} so that ÂXT is mapped to ÂX
′
T ∈ [−m/2,m/2]d∩

Zd (and we have ÂX
′
T mod m = ÂXT .

Output: γ · U⊺ÂX
′
T ∈ Rd.

Supplementary Material

A. Discretization Details of (Kairouz et al., 2021a)
We use the randomized rounding strategy from (Kairouz et al., 2021a) for discretization in ΠDMM. At a high-level, each
client first clips and scales their input gradient. Then, the clients flatten their gradient vectors using some unitary matrix U
(intuitively, this minimizes the risk of modulo overlap in vector elements that are particularly large). Finally, the clients use
a randomized process to round their gradient vectors in Rd to Zd. On the sever side, after receiving the aggregated, noise
outputs ÂXT in each round, the server unflattens the vector by applying UT and then descales. Protocols 2 and 3 give more
detai, but we refer the readers to (Kairouz et al., 2021a) for full details on possible flattening matrices U and the randomized
rounding procedure used.

To help with the analysis, (Kairouz et al., 2021a) uses the following definitions to represent the conditional randomized
rounding. We present them verabtim.

Definition A.1 (Randomized Rounding). Let γ > 0 and d ∈ N. Define Rγ : Rd → γZd (where γZd :=
{(γz1, γz2, . . . , γzd) : z1, . . . , zd ∈ Z} ⊆ Rd) as follows. For x ∈ [0, γ]d, Rγ(x) is a product distribution on {0, γ}d with
mean x; that is, independently for each i ∈ [d], we have Pr[Rγ(x)i = 0] = 1 − xiγ and Pr[Rγ(x)i = γ] = xi/γ. In
general, for x ∈ Rd, we have Rγ(x) = γ⌊x/γ⌋ + Rγ(x − γ⌊x/γ⌋); here γ⌊x/γ⌋ ∈ γZd is the point x rounded down
coordinate-wise to the grid.

Definition A.2 (Conditional Randomized Rounding). Let γ > 0 and d ∈ N and G ⊆ Rd. Define RG
γ : Rd → γZd ∩ G

to be Rγ conditioned on the hte output being in G. That is, Pr[RG
γ (x) = y] = Pr[Rγ(x) = y]/Pr[Rγ(x) ∈ G] for all

14

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

y ∈ γZd ∩G, where Rγ is as in Definition A.1.

B. Proofs for Section 4
B.1. Proof of Theorem 4.1

First we recall the notion of Rényi Divergences and Concentrated Differential Privacy (Bun & Steinke, 2016; Dwork &
Rothblum, 2016), as well as some other standard DP notions. We also define the Discrete Gaussian and provide its DP
guarantees. See (Kairouz et al., 2021a) for more details. Then we prove Thoerem 4.1

Definition B.1 (Rényi Divergences). Let P and Q be probability distributions on some common domain Ω. Assume that P
is absolutely continuous with respect to Q so that the Radon-Nikodym derivative P (x)/Q(x) is well-defined for x ∈ Ω.

For α ∈ (1,∞), we define the Rényi Divergence of order α of P with respect to Q as:

Dα(P ||Q) :=
1

α− 1
logEX←P

[(
P (X)

Q(x)

)α−1
]

We also define

D∗(P ||Q) := sup
α∈(1,∞)

1

α
Dα(P ||Q)

Definition B.2 (Concentrated Differential Privacy (Bun & Steinke, 2016; Dwork & Rothblum, 2016)). A randomized
algorithm M : X ∗ → Y satisfies 1

2ε-concentrated differential privacy iff, for all x, x′ ∈ X differing by the addition or
removal of a single user’s records, we have D∗(M(x)||M(x′)) ≤ 1

2ε
2.

Definition B.3 (Rényi Differential Privacy (Mironov, 2017)). A randomized algorithm M : X ∗ → Y satisfies (α, ε)-
Rényi differential privacy iff, for all x, x′ ∈ X differing by the addition or removal of a single user’s records, we have
Dα(M(x)||M(x′)) ≤ 1

2ε
2.

Definition B.4 (Differential Privacy (Dwork et al., 2006)). A randomized algorithm M : X ∗ → Y satisfies (ε, δ)-differential
privacy iff, for all x, x′ ∈ X differing by the addition or removal of a single user’s records, we have

Pr[M(x) ∈ E] ≤ eε Pr[M(x′) ∈ E] + δ,

for all events E ⊂ Y . We refer to (ε, 0)-DP as pure DP and (ε, δ)-DP for δ > 0 as approximate DP.

We remark that 1
2ε

2-concentrated DP is equivalent to satisfying (α, 1
2ε

2α)-Rényi DP simultaneously for all α ∈ (1,∞). We
also have the following conversion lemma from concentrated to approximate DP (Balle et al., 2020; Canonne et al., 2020;
Asoodeh et al., 2020).

Lemma B.5. If M satisfies (ε, 0)-DP, then it satisfies 1
2ε

2-concentrated DP. If M satisfies 1
2ε

2-DP then, for any δ > 0, M
satisfies (εaDP (δ), δ)-DP, where

εaDP (δ) = inf
α>1

1

2
ε2α+

log(1/αδ)

α− 1
+ log(1− 1/α) ≤ ε · (

√
2 log(1/δ) + ε/2).

Discrete Gaussian Here we define the Discrete Gaussiasn (Canonne et al., 2020) and give its DP guarantees.

Definition B.6 (Discrete Gaussian). The discrete Gaussian with scale parameter σ > 0 and location parameter µ ∈ Z is a
probability distribution supported on the integers Z denoted by NZ(µ, σ

2) and defined by

∀x ∈ Z Pr
X←NZ(µ,σ2)

(X = x) =
exp

(
−(x−µ)2

2σ2

)
∑

y∈Z exp
(
−(y−µ)2

2σ2

) .
Proposition B.7 ((Kairouz et al., 2021a), Proposition 14). Let σ ≥ 1

2 . Let XI,j ← NZ(0, σ
2) independently for each i and

15

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

j. Let Xi = (Xi,1, . . . , Xi,d) ∈ Zd. Let Zn =
∑n

i=1 Xi ∈ Zd. Then, for all ∆ ∈ Zd and all α ∈ (1,∞),

Dα(Zn||Zn +∆) ≤min{α||∆||
2
2

2nσ2
+ τd,

α

2
·
(
||∆||22
nσ2

+ 2
||∆||1√

nσ
· τ + τ2d

)
,

α

2
·
(
||∆||2√

nσ
+ τ
√
d

)2

}

where τ := 10·
∑n

k=1 e
−2π2σ2 k

k+1 . An algorithm M that adds Zn to a query with ℓp sensitivity ∆p satisfies 1
2ε

2-concentrated
DP for

ε =min{
√
||∆||22
nσ2

+ 2τd,√
∆2

2

nσ2
+ 2

∆1√
nσ
· τ + τ2d,

∆2√
nσ

+ τ
√
d}

Proof of Theorem 4.1

Proof. First, it is sufficient to show that the computation CG+Z satisfies 1
2ε

2-concentrated DP, due to the post processing
property of DP. Now consider two datasets G and H differing in one data record according to participation schema Φ.9 By
assumption in the theorem statement, we have

sens1Φ(C) = ∆, and thus sensΦ(C) = c′ ·∆,

where c′ is the bound on the ℓ2 norm of individual gradient vectors that are aggregated. Since we use the randomized
rounding techniques from Section A, gradients that are clipped to ℓ2 norm c can actually end up having ℓ2 norm c′ = ĉ after
rounding, where ĉ is as in the theorem statement. With the bound on the total sensitivity above, we know from Kairouz
et al. (2021a, Proposition 14) (reproduced above) that the computation is 1

2ε
2-concentrated DP, with the ε from the theorem

statement.

B.2. Proof of Theorem 4.2

We first prove the following exact result for the error:

Theorem B.8. Let β ∈ [0, 1), σ2 ≥ γ/2 > 0, and c > 0. Let n, d ∈ N and ρ ≥ 1. Let gT,i ∈ Rd with ||gT,i||2 ≤ c for
each T ∈ [T ∗], i ∈ [n]. Let U ∈ Rd×d be a random unitary matrix such that

∀x ∈ Rd ∀i ∈ [d] ∀t ∈ R E[exp(t(Ux)i)] ≤ exp(t2ρ||x||22/2d).

Let

∆ = sens1Φ(C)

τ = 10 ·
n−1∑
k=1

e
−2π2 σ2

γ2 · k
k+1

ĉ2 = min

{
c2 +

1

4
γ2d+

√
2 log(1/β) · γ · (c+ 1

2
γd), (c+ γ

√
d)2
}

ε = min

{√
∆2ĉ2

nσ2
+ 2τd,

∆ĉ√
nσ

+ τ
√
d

}
.

9G and H really consist of entries that are sums of records.

16

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Then ΠDMM satisfies 1
2ε

2-concentrated differential privacy.

Let

σ̂2(x) :=
ρ · ||A[T,:]||22

d

T∑
τ=1

n∑
i=1

||gτ,i||22 +
(
γ2 · ||A[T,:]||22

4
+ σ2 · ||B[T,:]||22

)
· n

≤
ρ||A[T,:]||22

d
c2nT +

(
γ2 · ||A[T,:]||22

4
+ ||B||22 · σ2

)
· n

If σ̂2(x) ≤ r2 then

E

∣∣∣∣∣
∣∣∣∣∣ΠDMM(x)−A[T,:]

(
n∑

i=1

xi

)∣∣∣∣∣
∣∣∣∣∣
2

2

 ≤ dn

1− β

(
2
√
2 · r · e−r2/4σ̂2(x)√
n(1− β)nT−1

+

(
||A[T,:]||22 ·

(
γ2

4
+

β2 · γ2n

1− β

)
+ ||B[T,:]||22 · σ2

)1/2
)2

.

We start with a modified version of Proposition 26 in (Kairouz et al., 2021a).

Proposition B.9. Let RG
γ be as in Definition A.2 and G = {y ∈ Rd : ||y||22 ≤ ∆2ĉ2}. Let ΠDMM

′(X) be ΠDMM up to
the point of modular clipping. Consider the parameters from Theorem B.8. Then ΠDMM

′(X) satisfies 1
2ε

2-concentrated
differential privacy. Also the following holds.

E

∣∣∣∣∣
∣∣∣∣∣ΠDMM

′(X)−A[T,:]

n∑
i=1

Xi

∣∣∣∣∣
∣∣∣∣∣
2

2

 ≤ ||A[T,:]||22 ·

(
γ2 · d · n
4(1− β)

+

(
β

1− β
γ
√
dn

)2
)

+ ||B[T,:]||22 · n · d · σ2.

∀t ∈ Rd E

[
exp

(〈
t,ΠDMM

′(X)−A[T,:]

n∑
i=1

Xi

〉)]
≤

exp((
γ2·||A[T,:]||22

8 +
σ2·||B[T,:]||22

2) · ||t||22 · n)
(1− β)nT

.

Proof. First, the differential privacy claim follows from Kairouz et al. (2021a, Proposition 14).

Now, for the utility analysis, we have

E

∥∥∥∥∥ΠDMM
′(X)−A[T,:]

n∑
i=1

Xi

∥∥∥∥∥
2

2

 = E

∥∥∥∥∥
T∑

τ=1

AT,τ ·

(
n∑

i=1

(RG
γ (gτ,i)− gτ,i)

)
+BT,τ ·

n∑
i=1

γ · zτ,i

∥∥∥∥∥
2

2

≤

T∑
τ=1

A2
T,τ · E

∥∥∥∥∥
n∑

i=1

RG
γ (gτ,i)− gτ,i

∥∥∥∥∥
2

2

+B2
T,τ · n · σ2

≤
∥∥A[T,:]

∥∥2
2
·

(
γ2 · d · n
4(1− β)

+

(
β

1− β
γ
√
dn

)2
)

+
∥∥B[T,:]

∥∥2
2
· n · σ2,

where the last inequality is due directly to Proposition 26 of (Kairouz et al., 2021a).

Now, for each i ∈ [n], τ ∈ [T], we have that Rγ(gτ,i) ∈ γ⌊gτ,i/γ⌋+ {0, γ}d and is a product distribution with mean gτ,i.
Thus, Rγ(gτ,i)− gτ,i ∈ {0, γ}d and is a product distribution with mean 0. Therefore, by Hoeffding’s lemma, we have:

∀t ∈ Rd E[exp(⟨t,
T∑

τ=1

AT,τ

n∑
i=1

Rγ(gτ,i)− gτ,i⟩)] ≤ exp(
γ2

8
· n · ||A[T,:]||22 · ||t||22).

17

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Thus,

∀t ∈ Rd E[exp(⟨t,
T∑

τ=1

AT,τ

n∑
i=1

RG
γ (gτ,i)− gτ,i⟩)] ≤

E[exp(⟨t,
∑T

τ=1 AT,τ

∑n
i=1 Rγ(gτ,i)− gτ,i⟩)]

Pr[Rγ(gτ,i) ∈ G ∀τ, i]

≤
exp(γ

2

8 · n · ||A[T,:]||22 · ||t||22)
(1− β)nT

.

Moreover, we have that (Canonne et al., 2020):

∀t ∈ Rd E[exp(⟨t,
T∑

τ=1

BT,τ

n∑
i=1

γ · zτ,i⟩)] ≤ exp(
σ2

2
· n · ||B[T :,]||22 · ||t||22).

Finally, we are able to prove a modified version of Theorem 36 from (Kairouz et al., 2021a).

Proof of Theorem B.8. First, the differential privacy follows from Proposition B.9 and the post-processing property of DP.

Now, for the utility, by assumption, we have that

∀x ∈ Rd ∀j ∈ [d] ∀t ∈ R E[exp(t(Ux)j)] ≤ exp(t2ρ||x||22/2d).

Therefore,

E[exp(t · (
T∑

τ=1

AT,τ · (U
n∑

i=1

gτ,i)j)] =

T∏
τ=1

·
n∏

i=1

E[exp(t ·AT,τ · (Ugτ,i)j)]

≤
T∏

τ=1

·
n∏

i=1

exp(t2 ·A2
T,τ · ρ · ||gτ,i||22/2d)

= exp(t2 · ||A[T,:]||22 · ρ ·
T∑

τ=1

n∑
i=1

||gτ,i||22/2d).

Combining with the result of Proposition B.9, we have

∀t ∈ R ∀j ∈ [d] E[exp(t · (A(Ux))j)] ≤ exp(
t2 · ||A[T,:]||22 · ρ

2d
·

T∑
τ=1

n∑
i=1

||gτ,i||22)

·
exp((

γ2·||A[T,:]||22
8 +

σ2·||B[T,:]||22
2) · t2 · n)

(1− β)nT

Recall σ̂2(x) =
ρ·||A[T,:]||22

d

∑T
τ=1

∑n
i=1 ||gτ,i||22 + (

γ2·||A[T,:]||22
4 + σ2 · ||B[T,:]||22) · n.

By Proposition 35 of (Kairouz et al., 2021a), for all j ∈ [d],

E[(M[a,b](ΠDMM
′(Ux))j −ΠDMM

′(Ux)j)
2] ≤ (b− a)2 · 1

(1− β)nT
· e−(b−a)

2/8σ̂2(x) · (e
a2−b2

4σ̂2 + e
b2−a2

4
ˆ
σ2),

where a = −r and b = r here. Summing over j ∈ [d] gives

E[||M[−r,r](ΠDMM
′(Ux))−ΠDMM

′(Ux)||22] ≤ 4r2 · d

(1− β)nT
· e−r

2/2σ̂2(x) · 2

18

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Continuing with the proof from (Kairouz et al., 2021a), we get:

E[||ΠDMM(x)−A[T,:]

∑
i=1

Xi||22]

≤

(
(8r2 · d

(1− β)nT
· e−r

2/2σ̂2(x))1/2 +

(
||A[T,:]||22 ·

(
γ2 · d · n
4(1− β)

+

(
β

1− β
γ
√
dn

)2)
+

||B[T,:]||22 · n · d · σ2

)1/2
)2

=
dn

1− β

(
2
√
2 · r · e−r2/4σ̂2(x)√
n(1− β)nT−1

+

(
||A[T,:]||22 ·

(
γ2

4
+

β2 · γ2n

1− β

)
+ ||B[T,:]||22 · σ2

)1/2
)2

.

With this error bound, assuming that β ≤ 1/
√
n and σ̂2(x) ≤ r2/4 log(r

√
n/γ2), we get

E[||Ã(x)−A[T,:]

∑
i=1

Xi||22] ≤ O(dn((||A[T,:]||22 · γ2 + ||B[T,:]||22 · σ2)).

Proof of Theorem 4.2. Note that r = 1
2γm. We verify that setting the parameters as specified yields 1

2ε
2-concentrated DP

and the desired accuracy. First, we have that

ε2 ≤ ∆2ĉ2

nσ2
+ 2τd ≤ ∆2(c+ γ

√
d)2

nσ2
+ 20nde−π

2(σ/γ)2 ≤ 2∆2c2

nσ2
+

2d∆2

n(σ/γ)2
+ 20nde−π

2(σ/γ)2 .

Thus the privacy requirement is satisfied as long as σ ≥ 2c∆/ε
√
n and (σ/γ)2 ≥ 8d∆2/ε2n, and 20nde−π

2(σ/γ)2 ≤ ε2/4.
So we can set

σ = max{ 2c∆
ε
√
n
,
γ∆
√
8d

ε
√
n

,
γ

π2
log(

80nd

ε2
)} = Θ̃(

c∆

ε
√
n
+

√
d

n
· γ∆

ε
+ γ log(

nd

ε2
).

We set β = min{1/n, 1/2} = Θ(1n).

Next,

σ̂2 ≤
ρ||A[T,:]||22

d
c2nT + (

γ2||A[T,:]||22
4

+ σ2||B[T,:]||22) · n

≤
ρ||A[T,:]||22

d
c2nT + γ2||A[T,:]||22n+ σ2||B[T,:]||22 · n

≤ O(
ρ||A[T,:]||22

d
c2nT + γ2||A[T,:]||22n+ ||B[T,:]||22(

c2∆2

ε2
+

γ2d∆

ε2
+ γ2n log2(

nd

ε2
))

≤ O(
ρ||A[T,:]||22

d
c2nT + ||B[T,:]||22

c2∆2

ε2
)) + γ2 ·O(||A[T,:]||22n+ ||B[T,:]||22(

d∆

ε2
+ n log2(

nd

ε2
)).

19

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Now we work out the asymptotics of the accuracy guarantee:

E[||ΠDMM(X)−A[T,:]

∑
i=1

Xi||22]

≤ dn

1− β

(
2
√
2 · r · e−r2/4σ̂2(x)√
n(1− β)nT−1

+

(
||A[T,:]||22 ·

(
γ2

4
+

β2 · γ2n

1− β

)
+ ||B[T,:]||22 · σ2

)1/2
)2

.

≤ O(nd(
re−r

2/4σ̂2

√
n

+
√
||A[T :,]||22γ2 + ||B[T :,]||22σ2))

≤ O(nd(
r2e−r

2/2σ̂2

n
+ ||A[T :,]||22γ2 + ||B[T :,]||22σ2))

≤ O(nd(
γ2m2

n
exp(

−γ2m2

8σ̂2
) + ||A[T :,]||22γ2 + ||B[T :,]||22(

c2∆2

ε2n
+

dγ2∆2

ε2n
+ γ2 log2(

nd

ε2
))))

≤ O(||B[T :,]||22
c2∆2d

ε2
+ γ2nd(

m2

n
exp(

−γ2m2

8σ̂2
) + ||A[T :,]||22 + ||B[T :,]||22(

d∆2

ε2n
+ log2(

nd

ε2
))))

Similarly to the analysis of Theorem 2 in (Kairouz et al., 2021a), if

m2 ≥ O((||A[T :,]||22n+ ||B[T :,]||22(
d∆

ε2
+ n log2(

nd

ε2
))) · log(1 +m2/n)

= Õ(||A[T :,]||22n+ ||B[T :,]||22(
d∆

ε2
+ n)),

then we can set

γ2 = O(
ρ||A[T :,]||22c2nT

d
+
||B[T :,]||22c2∆2

ε2
) · log(1 +m2/n)

m2

so that m2

n exp(−γ
2m2

8σ̂

2
) ≤ 1.

This gives us,

E[||Ã(x)−A[T,:]

∑
i=1

Xi||22]

≤ O(||B[T :,]||22
c2∆2d

ε2
+ γ2nd(1 + ||A[T :,]||22 + ||B[T :,]||22(

d∆2

ε2n
+ log2(

nd

ε2
))))

≤ O(||B[T :,]||22
c2∆2d

ε2
+ (

ρ||A[T :,]||22c2nT
d

+
||B[T :,]||22c2∆2

ε2
)

· log(1 +m2/n)

m2
nd(1 + ||A[T :,]||22 + ||B[T :,]||22(

d∆2

ε2n
+ log2(

nd

ε2
))))

≤ O(||B[T :,]||22
c2∆2d

ε2
+ ||B[T :,]||22

c2∆2d

ε2
(
log(1 +m2/n)

m2
n

· (ρ||A[T :,]||22T + 1 + ||A[T :,]||22 + ||B[T :,]||22(
d∆2

ε2n
+ log2(

nd

ε2
)))))

≤ O(||B[T :,]||22
c2∆2d

ε2
(1 +

log(1 +m2/n)

m2
n · (ρ||A[T :,]||22T + 1 + ||A[T :,]||22 + ||B[T :,]||22(

d∆2

ε2n
+ log2(

nd

ε2
))))).

So, if

m2 ≥ O(log(1 +m2/n)n · (ρ||A[T :,]||22T + 1 + ||A[T :,]||22 + ||B[T :,]||22(
d∆2

ε2n
+ log2(

nd

ε2
))))

= Õ(ρ||A[T :,]||22nT + ||B[T :,]||22
d∆2

ε2
),

then the mean squared error is O(||B[T :,]||22 c2∆2d
ε2), as required. The final bound is obtained by simply summing the above

over each round from T = 1 to T = T ∗.

20

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

C. DMM Security Model and Proof
C.1. Security proofs

We first provide an intuition on the current analysis for proving the security of cryptographic protocols. In the security
proof, we compare between an n-party function f(x1, . . . , xn) = (y1, . . . , yn) and a protocol P (x1, . . . , xn) that allegedly
privately computes the function f . Intuitively, a protocol P correctly and privately computes f if the following hold: (a)
Correctness: For every input x⃗ = (x1, . . . , xn), the output of the parties at the end of the protocol interaction P is the same
as f(x⃗); (b) Privacy: There exists a simulator S that receives the input and output of the corrupted parties, and can efficiently
generate the messages that the corrupted parties received during the protocol execution. The simulator does not know the
input/outputs of the honest parties. Intuitively, the fact that the messages sent by the honest parties can be generated from
the input/output of the corrupted parties implies that these messages do not contain any additional information about the
inputs of the honest parties besides what is revealed from the output of the computation.

C.2. Security Model

We now introduce the formal security model. We first note that we consider robustness checks on inputs out of the
scope of our security model; i.e., we do not cover poisoning attacks,which have been extensively studied in the literature,
e.g., (Tolpegin et al., 2020; Fang et al., 2020). Indeed, it is the case that malicious parties can input to the protocol whatever
they want as their gradients and noise g, z, which can lead to a meaningless model.

We follow the standard real/ideal world security paradigm of (Goldreich, 2004). Consider some multi-party protocol Π that
is executed by some parties P1, . . . , PN that are grouped into committees C1, . . . , CT∗ from iteration 1 to iteration T ∗ and a
server S. Note: the committees can be arbitrarily chosen, but our protocol only provides security if the assumption that
the number of parties A corrupts is at most tc holds; in other words, we abstract out the committee selection process.10

Each of these parties has inputs x1, . . . ,xN , and they want to evaluate some given functionality F . In our case, the
functionality FPPFL is resharing the inputs from all previous committees to the next committee, in each iteration, and then
outputting the ÂXT value to the sever in each iteration T , given some factorization A = BC. The security of protocol Π
is defined by comparing the real-world execution of the protocol with an ideal-world evaluation of F by a trusted party
(ideal functionality), who receives the inputs x1, . . . ,xN from the parties in the clear and simply sends the relevant parties
their outputs F(x1, . . . ,xN) periodically. There is an adversary A that chooses to corrupt at most tc of the n parties in each
iteration, along with the server. This adversary A sees all of the messages and inputs and outputs of the corrupted parties
and is allowed to act arbitrarily on their behalf. Informally, it is required that for every adversary that corrupts some parties
during the protocol execution, there is an adversary S, also referred to as the simulator, which can achieve the same effect
and learn the same information in the ideal-world. This simulator only sees what the corrupted parties send to the honest
parties and the outputs, not the inputs x of the honest parties. We now formally describe the security definition.

Real Execution. In the real execution, Π is executed in the presence of the adversary A. The view of a party P during
an execution of Π, denoted by ViewΠ

P consists of the messages P receives from the other parties during the execution and
P ’s input. The execution of Π in the presence of A on inputs (x1, . . . ,xN) denoted RealΠ,A(x1, . . . ,xN) is defined as
{ViewΠ

P }P∈C. The output of Π to the honest parties in the presence of A on inputs (x1, . . . ,xN) is noted as Output.

Ideal Execution. In the ideal execution, the parties and an ideal world adversary S interact with a trusted party (ideal
functionality). The ideal execution proceeds as follows: As a committee CT comes online, the parties PT,1, . . . , PT,n in that
committee send their inputs xT,1, . . . ,xT,n to the trusted party, who computes the output F(x1,1, . . . ,xT,n) to the server
for that iteration. S is also allowed to release a vector χ, which will be added to the output, to simulate additive attacks.

Definition C.1. Protocol Π securely computes F if for every adversary A there exists a simulator S such that

SD(({ViewΠ
P }P∈C,Output), (S({xT∗,j}T,j∈C(T),F(x1,1, . . . ,xT∗,n),F(x1,1, . . . ,xT∗,n) + χ)) ≤ negl(λ), 11

where SD is the statistical distance between the two distributions, C(T) is the set of corrupted parties in iteration T , and λ is
the security parameter.

10In practice, the committee selection is done by the server.
11negl(λ) is any function in λω(1)

21

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

C.3. Security Proof

We now give the formal security proof.

Theorem C.2 (Security). ΠDMM securely computes FPPFL for tc + td < (1/2− µ)n, 0 < µ < 1/2.

Proof. We first build the simulator S . The simulator runsA internally. We describe the simulator for the first iteration T = 1
and then inductively for the rest. Throughout, we will (inductively) show that the simulator knows all of the corrupted
parties’ shares. We start with the case of a corrupted server S.

Corrupted Server In iteration 1, S simulates the shares sent by honest parties of iteration 1 to corrupted parties of
iteration 1 and 2 by sampling random values from the field F. S receives on behalf of the honest parties in committee C1 the
shares sent by corrupted parties from the same committee. Note that the honest shares completely (and exactly) define these
sharings since the number of honest parties is exactly tc + k, and thus S can compute the corrupted parties’ shares and the
underlying secret yi. With the corrupted parties’ shares, along with the output for iteration T = 1 (which S receives since
the server is corrupted), S has tc + k points on the (tc + k − 1)-degree polynomial underlying each output [Y1,ℓ], and thus
can reconstruct the whole sharing. Based on this, the simulator can send the honest parties’ shares to the server.

In subsequent iterations T > 1, S first simulates the shares of honest parties’ new gradients and noise as above, along with
the reshares to the next committee. It also receives the corrupted parties’ input shares from iteration T , and can reconstruct
the whole sharing [yi], in the same way as above. S also receives on behalf of the honest parties in committee CT the
reshared shares sent by corrupted parties from iteration T − 1. Note that again the honest shares completely (and exactly)
define these sharings since the number of honest parties is exactly tc + k, and thus S can compute the corrupted parties’
shares as well as the actual underlying reshared shares Z̃i

1, . . . , Z̃
i
k of each corrupted party Pi in CT . Note that these might

be different from the actual underlying shares Ẑi
1, . . . , Ẑ

i
k of the corrupted parties which, S knows from above. Thus, S

can compute eim ← Ẑi
m − Z̃i

m for each m ∈ [k]. Since reconstruction used within Recover of LRP is just a constant λj
i

multiplied by a party’s share, the error introduced here is λj
i · eim for each i ∈ C(T). Thus S sets χT ←

∑
i∈C(1) λ

j
i · eim.

This error will be incorporated in honest parties’ shares of ÂX for all iterations including and after T . Indeed, in iteration
T , S uses the computed corrupted parties’ shares, along with the output for iteration T with the error χτ for all previous
iterations τ ≤ T added in, to obtain tc + k values with which it can reconstruct the whole sharing as above, and thus the
shares that honest parties send to the server.

Now we show that this is a good simulation. By the properties of Shamir Secret Sharing, we know that the at most tc shares
that the adversary receives in the real world for every sharing will be distributed randomly. Thus the shares that S sends are
distributed the same way. We also showed that the errors χT and the shares of the corrupted parties are computed exactly as
in the real world. Therefore S perfectly simulates the real world.12

Honest Server In the case of an honest server, we can use all of the same simulation above, except instead of simulating
the output shares to the server, we can use this same simulation to compute the error values χT added to the honest output.
We also need to show that, even in the presence of honest dropout parties, if the corrupted parties do not deviate from the
protocol description, then the correct values are output to the server. This is true since the number of honest parties that do
not dropout is at least n − td > (1/2 + µ)n and k ≤ 2µn. Indeed, tc + k ≤ (1/2 + µ)n < n − td, so the shares of the
parties that do not dropout can still be used to reconstruct the secrets, both during Recover of LRP and the actual output
reconstruction to the server in each iteration.

This completes the security proof.

D. Additional Experimental Results
FEMNIST details. Federated EMNIST is an image classification dataset containing 671,585 training handwritten digit/letter
images over 64 classes grouped into N = 3400 clients by their writer. We use the standard dataset split provided by
TensorFlow. As in (Kairouz et al., 2021a), we train a small convolutional net with two 3×3 conv layers with 32/64 channels
followed by two fully connected layers with 128/62 output units; a 2× 2 max pooling layer and two dropout layers with

12Note that both in the real and ideal world, if an honest party ever hears from less than tc + k parties from the previous iteration, they
will abort since then more parties have dropped out (or have been dropped by the server) than can be tolerated.

22

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Figure 5. Accuracies during training for SO-NWP across different ε for both the optimal factorization and Honaker Online facorization

drop rate 0.25/0.5 are added after the first 3 trainable layers, respectively. The total number of parameters is d = 1018174.
We use namely momentum 0.9, 1 client training epoch per iteration, client learning rate ηc = 0.02, server learning rate
ηs = 1, and client batch size to 16.

SO-NWP details. Stack Overflow is a large-scale text dataset based on the question answering site Stack Overflow. It
contains over 108 training sentences extracted from the site grouped by the N = 342477 users, and each sentence has
associated metadata such as tags. The task of SO-NWP involves predicting the next words given the preceding words in a
sentence We use the standard dataset split provided by TensorFlow. As in (Kairouz et al., 2021a; Choquette-Choo et al.,
2023b), we use the LSTM architecture defined in (Reddi et al., 2021) directly, which has a model size of d = 4050748
parameters (slightly under 222). We use namely momentum 0.9, 1 client training epoch per iteration, client learning rate
ηc = 0.02, server learning rate ηs = 1, and client batch size to 16.

Accuracy Across Training iterations. In Figures 5 and 6, we show how the accuracies of our different models vary across
training iterations. We show the results for the different matrix factorizations (Honaker Online and optimal) and different
privacy values ε.

Privacy Guarantees with Dropouts and Corrupted Parties. We note that, just as in (Kairouz et al., 2021a), our privacy
guarantees degrade with corrupt parties and honest dropouts—the amount of combined noise in each iteration is proportional
to (1 − µ′)n instead of n, where µ′ is the fraction of parties that are corrupted or dropped out (recall that we assume
µ′ < (1/2− µ), for 0 < µ < 1/2). Indeed, the actual obtained ε′ value for DP scales the originally derived ε value by a
≈ 1/(1− µ′) factor. See Kairouz et al. (2021a, Figure 9) for a graphical representation.

23

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning

Figure 6. Accuracies during training for FEMNIST across different ε for both the optimal factorization and Honaker Online facorization

24

