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ABSTRACT

Spatiotemporal dynamics pervade the natural sciences, from the morphogen dynamics
underlying patterning in animal pigmentation to the protein waves controlling cell division.
A central challenge lies in understanding how controllable parameters induce qualitative
changes in system behavior called bifurcations. This endeavor is particularly difficult in
realistic settings where governing partial differential equations (PDEs) are unknown and
data is limited and noisy. To address this challenge, we propose TRENDy (Temporal
Regression of Effective Nonlinear Dynamics), an equation-free approach to learning low-
dimensional, predictive models of spatiotemporal dynamics. TRENDy first maps input data
to a low-dimensional space of effective dynamics through a cascade of multiscale filtering
operations. Our key insight is the recognition that these effective dynamics can be fit by
a neural ordinary differential equation (NODE) having the same parameter space as the
input PDE. The preceding filtering operations strongly regularize the phase space of the
NODE, making TRENDy significantly more robust to noise compared to existing methods.
We train TRENDy to predict the effective dynamics of synthetic and real data representing
dynamics from across the physical and life sciences. We then demonstrate how we can
automatically locate both Turing and Hopf bifurcations in unseen regions of parameter
space. We finally apply our method to the analysis of spatial patterning of the ocellated
lizard through development. We found that TRENDy’s predicted effective state not only
accurately predicts spatial changes over time but also identifies distinct pattern features
unique to different anatomical regions, such as the tail, neck, and body–an insight that
highlights the potential influence of surface geometry on reaction-diffusion mechanisms
and their role in driving spatially varying pattern dynamics.

1 INTRODUCTION

Nonlinear partial differential equations (PDEs) govern fundamental processes in nature, from the protein
waves underlying bacterial cell division (Meinhardt & de Boer, 2001) to the morphogen dynamics giving
rise to spatial patterns in animal skin (Kondo et al., 2009). Often, the important aspects of these equations
lie not in the fine-grained detail of their solutions but rather in their low-dimensional, qualitative behavior,
sometimes referred to as their effective dynamics (Wilson, 1965; Kupiainen, 2015; Vlachas et al., 2022); Will
the cell divide or not? Will the animal have stripes or spots? And, crucially, how do these effective dynamics
change or “bifurcate” as a function of PDE parameters? Understanding the relationship between effective
dynamics and system parameters is a major scientific challenge, and analytical approaches can struggle in the
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presence of strong nonlinearities (Guckenheimer & Holmes, 1983) and scale dependencies (Binney et al.,
1992) commonly found in real systems.
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Φ

Figure 1: TRENDy. (Left) Observed dynamics are solutions to PDEs, ut = N [u(x, y); θ], with parameters
θ and states u(x, y) taking values on a square domain Ω ⊂ R2. Spatial features are measured at each
t using recursive, multiscale filtering via scattering, Φ (see Secs. 3, A.1.3), and stacked into a single
representation, (S0(t) : S1(t) : S2(t), . . .), where superscripts represent the order of recursion. Φ thus
maps u to reduced-order trajectories which can be further reduced by ranking and subsampling (red). This
“effective” representation is controlled by unknown temporal dynamics, ȧ. (Middle) Those unknown dynamics
are modeled as a neural network, gπ, having learnable weights, π, and which depend on the known, true
parameters, θ. (Right) Simulated trajectories from the estimated effective dynamics, ã(t), are initialized on
the true a(0) (using the initial scattering coefficients Si(0)) and regressed against true effective trajectories,
a(t), with a pointwise loss, L.

Recently, data-driven approaches have emerged as a promising supplement to analytical methods in the study
of PDEs (Rudy et al., 2017), and substantial progress has been made in the fine-grained solution of both
forward and inverse PDE problems from data (Yang et al., 2021; Li et al., 2021). However, comparatively little
attention has been given to learning effective PDE dynamics and less still to the parametric case. For example,
applied Koopman analysis seeks to explain nonlinear dynamics in terms of the behavior of a few coherent
spatiotemporal modes, but it does so at the cost of increasing, rather than decreasing, the dimensionality of
the state space (Folkestad et al., 2020). Neural operator methods have been previously applied to parametric
models (Yang et al., 2021), but focused on fine-grained reconstruction, rather than effective modeling. Work
by Vlachas et. al. (Vlachas et al., 2022), for their part, modeled effective dynamics of PDEs with multiscale
features and recurrent neural networks but the learned effective dynamics had no relation to system parameters.
Lacking a tool to extract the effective dynamics from PDEs in a parametrically interpretable way, the ability
to identify and control nonlinear systems is fundamentally limited.

A model of effective dynamics should ideally obey a few desiderata. First, following the standard accuracy-
complexity trade-off, the model should be able to represent the dynamics of the underlying PDE in a compact
manner; namely, the phase space of the effective system should be not only finite- but comparatively low-
dimensional, while preserving sufficient information about the observed dynamics. Second, a model of
effective dynamics should be predictive; it should be able to generalize its knowledge of these low-dimensional
dynamics to novel parameter and state settings not observed directly from data. Such a capability is desirable
for realistic experimental settings where direct observations of the spatiotemporal dynamics are limited and
assessing the system’s dynamics over the complete configuration space is infeasible. Finally, the phase space
of the effective model should be interpretable; the relatively few effective phase variables should represent
meaningful spatiotemporal variables whose evolution is predicted by the effective model.

In this spirit, we propose TRENDy (Temporal Regression of Effective Nonlinear Dynamics, Fig. 1), a
data-driven approach to modeling effective dynamics in parameterized PDEs. TRENDy works by mapping
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the infinite-dimensional state of the observed PDE to low-dimensional space via recursive, multiscale
measurements. These low-dimensional measurements are then fit with a neural ODE sharing a parameter
space with the observed data. Importantly, TRENDy’s latent, effective dynamics allow for direct interpretable
predictions about spatiotemporal dynamics, circumventing additional generative components, such as a
(learned) encoder or a decoder. We demonstrate this capability on data sets taken from several synthetic and
real test cases.

Our principal contributions are

• A formal presentation of TRENDy, in particular its use of the scattering transform (Mallat, 2012) for
extracting multiscale measurements.

• Experiments indicating TRENDy can predict qualitative, topological changes in the fitted system’s
behavior, i.e., bifurcations. We demonstrate this for two models of spatiotemporal dynamics, the Gray
Scott model and Brusselator, benchmarking performance in several noise and feature conditions.

• Demonstrations that TRENDy can predict and explain the emergence of complex spatial patterns
like those hypothesized to appear through morphogenesis in biological tissue.

• An analysis of spatiotemporal data taken from high-resolution videos of the development of the
ocellated lizard. These results indicate a link between body geometry and pattern growth and
showcase TRENDy’s relevance to real, noisy data in an important biological test case 1.

2 RELATED WORK

Learning parameterized dynamics From a data scientific perspective, parameterized models are especially
useful as they provide a natural means of generalization to new regions of phase space. Classical methods
like Galerkin projection (Holmes et al., 2012) or finite difference schemes (Strikwerda, 2004) have been used
to derive reduced-order models or solve for system behavior, although these assume prior knowledge of the
governing equations, which is often not available. More recently, data-driven methods like SINDyCP (Sparse
Identification of Nonlinear Dynamical Systems with Control and Parameters (Nicolaou et al., 2023)) have
gained prominence. SINDyCP extends the otherwise non-parametric SINDy (Brunton et al., 2016) framework
by learning control parameters which can be used to steer the system towards target functions. Deep learning
approaches include (Tenachi et al., 2023) who showed how deep reinforcement learning could be used to
build parametric models of astrophysical phenomena in an unsupervised manner. None of these methods,
however, sought to learn effective or reduced-order models, which limits their applicability to settings with
strong noise or partial data.

Effective modeling of PDEs The study of effective dynamics seeks reduced descriptions of complex
systems that retain essential features. Classical approaches from physics like coarse-graining (Ehrenfest,
1907) and Wilsonian renormalization methods (Wilson, 1965) have long been used in statistical mechanics to
model large systems by averaging out microscopic fluctuations. Early data-driven approaches like the equation-
free framework (EFF) (Kevrekidis & Samaey, 2009), the heterogeneous multiscale method (HMM) (Weinan &
Engquist, 2003) and the Flow Averaging Integrators (FLAVORS) (Tao et al., 2010) approximate the interaction
between observed and effective spatial scales with projective integration. Building on this approach (Vlachas
et al., 2022) learned latent variable models that capture key dynamical behaviors, enabling efficient long-
term predictions in high-dimensional systems like those resulting in turbulence. Contemporary data-driven
approaches to learning effective dynamics, howFever, do not learn parametric models, which limits their
applicability to the detection of bifurcations, or qualitative (sometimes catastrophic) changes in system’s
behavior, our main interest.

1The TRENDy codebase is available at https://github.com/nitzanlab/trendy.
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3 METHODS

Our goal is to learn predictive models of data generated by spatially extended, autonomous PDEs of the form

ut = N [u(x, y); θ] (1)

where N is a nonlinear operator, θ ∈ Θ ⊆ Rk is a vector of parameters, and u(x, y) takes values on the
square domain Ω ∈ R2 with periodic boundaries (Fig. 1, left). We assume that Eq. 1 undergoes a bifurcation
(see Sec. A.1.1) at θ = θ∗, whereby an equilibrium point changes stability and the qualitative, long-term
behavior of the system changes. We further assume that we only have access to a finite data set of solutions
D = {u(x, y, t; θ)} indexed by different parameters, θ and initial conditions, u(·, ·, 0). We seek to build a
low-dimensional model of this system which can predict behavior as a function of θ for θ such that u ̸∈ D
(for more details, see Sec. A.1.2).

We observe that, for any Frechét differentiable operator Φ : U → Rn, the image a(t) = Φ[u](t) ∈ A is a
classically differentiable function of t. Hence, ȧ exists2 and a(t) is the solution to

ȧ = g(a; θ), (2)

an ordinary differential equation sharing the same parameter space as Eq. 1 (Fig. 1, right). We refer to Eq. 2
as the effective dynamics and A as the effective phase space. The true effective dynamics of Eq. 2 is the
reduced-order model we would like to learn but which we only know as an image of our data set D.

We approximate the effective dynamics with a neural ordinary differential equation (NODE) (Chen et al.,
2018),

˙̃a = g̃π(ã, t; θ) (3)
defined on the effective phase space and having learnable weights π (Fig. 1, small rounded rectangle). The
NODE is instantiated as a multi-layer perceptron whose weights and biases comprise π. The dependence of
the dynamics on a and θ is effected by augmenting the input to the NODE to be the vector [a : θ], where :
denotes concatenation. In all experiments, the NODE is a multilayer perceptron with four layers, with 64
hidden units in each layer, and with zero-rectification nonlinearities. It is always initialized on the true a(0).

Each training iteration proceeds first by computing effective initial conditions a0 = Φ[u0] sampled from the
data set,D. Then, Eq. 3 is solved with those initial conditions and their associated parameters, θ. The resulting
solutions, ã, and their derivatives ˙̃a(t), are compared to their ground truth counterparts, a(t) = Φ[u](t), by
integrating across time:

L(a, ã) =
1

T − τ

∫ T

τ

∥a(t)− ã(t)∥2 + β∥ȧ(t)− ˙̃a(t)∥2 dt. (4)

Here, τ is a burn-in period and β is a regularizer on the derivative term. This loss is minimized across D to
approximate the argmin weights π. The approximate effective dynamics, g̃π , are then evaluated on θ outside
of D, particularly θ for which a bifurcation is expected.

The choice of Φ is an important consideration in the TRENDy construction. In order to keep TRENDy both
expressive and interpretable, we set Φ to be the scattering transform (Mallat, 2012).The scattering transform
is a cascade of multiscale band-pass filters with interleaved nonlinearities and averaging. It is provably stable
to smooth deformations of the input signal and tends to capture most of the signal energy in its low-order
coefficients. Scattering coefficients are computed by iteratively band-pass filtering, taking a modulus, and
averaging. For a family of band-pass filters ψλi with hyperparameters, λ ∈ Λ together with a low-pass filter,
ϕ, examples of zeroth-order, first- and second- coefficients are computed as

S0 = u ⋆ ϕ, S1 = (|u ⋆ ψλi | ⋆ ϕ)λi∈Λ , S2 =
(
||u ⋆ ψλi

| ⋆ ψλj
| ⋆ ϕ

)
λi,λj∈Λ2 . (5)

2We use dot notation for ODEs and subscript notation for PDEs.
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Figure 2: Bifurcation prediction in the GS model with TRENDy. (Left): the bifurcation landscape. The GS
model transitions to patterning near the orange curve in F − k space. Under the curve, the system is spatially
homogeneous (u ≈ 1, yellow inset). Near the curve, it produces a wide variety of patterns (stripe inset). After
the curve, the system is homogeneous again (u ≈ 0, teal inset). Training data was taken from a thin region
of width .01 and centered on F = .054. A rectangle of height .01 was held out as test data centered on the
bifurcation value of k∗ = .062. (Right): Detection performance. Numerical continuation was performed on
TRENDy trained on five different measurements plus SINDyCP (SG = spatial gradient, Td = TRENDy with
d coefficients, FV=Fourier vector, SCP=SINDyCP; details in main text). Estimated k∗ values (y axis) are
plotted for each of the three noise conditions (Clean as circles, Boundaries as squares and Patches as triangles)
for all models. TRENDy with 10 scattering coefficients had the best performance and noise degradation. See
main text for details.

We use Morlet wavelets as band-pass filters and a Gaussian for lowpass. Hyperparameters λi comprise
Morlet orientations and scales, and except where otherwise noted we use ℓ = 8 orientations and j = 6 scales.
Recursive filtering means that higher-order coefficients are more numerous. Coefficients across orders are
stacked into a long vector (Fig. 1, blue, yellow, green). Since many higher-order coefficients tend to be near
zero, we take the top d most actived coefficients across time as our representation of input signal (Fig. 1, red
bar). The scattering transform is lossy by design but can nevertheless be used for reconstruction given enough
coefficients, circumventing the need for a direct decoder when d is large (see Figs. A.5 A.6).

4 RESULTS

Gray Scott The Gray Scott model (GS) is a simple PDE giving rise to rather complex spatial patterning
dynamics (Pearson, 1993). Reaction-diffusion systems, like those of Gray Scott, were investigated in early
work by Alan Turing (Turing, 1990) as potential mechanisms for morphogenesis in biological systems,
and they remain the subjects of intense theoretical study today (McGough & Riley, 2004; Wang et al.,
2016). Nevertheless, it remains challenging to detect reaction-diffusion dynamics in real-world systems, as
measurement noise and the preponderance of nuisance variables work to obscure the patterning mechanism.

In that spirit, we sought to showcase TRENDy’s ability to predict the emergence of spatial patterns in the
Gray Scott model in strong noise conditions. The Gray Scott model describes the evolution of two chemical
species via the coupled PDEs:

ut = Du∇2u− uv2 + F (1− u)

vt = Dv∇2v + uv2 + (F + k)v (6)
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which depend on parameters F, k > 0 collectively denoted as θ ∈ Θ. This system has a spatially homogeneous
fixed point at u = 1, v = 0 which loses its stability via a pitchfork bifurcation at k∗ =

√
F/4−F , producing

two new fixed points which are spatially heterogeneous (Fig. 2, left panel, middle inset). Such a bifurcation
resulting in patterning is called a Turing bifurcation.

Our goal was to learn a reduced-order model of these dynamics that accurately predicted this Tur-
ing bifurcation. We were particularly interested in the robustness of this prediction in three noise
conditions: “boundaries”, whereby a randomly rotated polygonal boundary having between 4 and 6
sides was used to mask all but the interior of the spatial domain; “patches”, whereby between 3 and
6 square patches zeroed out random locations in the dynamics; and “clean”, representing the noise-
less data (examples in Fig. A.4). Gray Scott parameters (1000 train, 250 test) were drawn from
a narrow strip in F -k space comprising the rectangle [0.045, 0.055] × [0, .075] ⊂ Θ (Fig. 2, left,
shaded regions). Test data was drawn from a small region of length .01 around the bifurcation.

Figure 3: Predicting effective patterning dynamics. (Left): true patterning land-
scape. Samples were generated from the test region shown in Fig. 2 and classified
with 4-way k-means using all scattering coefficients (8 orientations, 6 scales, up
to order 2). K-means classes (example in insets) were (1) dense spots, (2) homo-
geneity, (3) sparse spots, and (4) stripes. (Right): A 4-way support vector machine
was trained on the predicted state of TRENDy using five types of measurements
(see main text). A theoretical maximum F1 score was computed by classifying all
features used to generate the original labels (dashed line). F1 scores on test data in
each condition are plotted.

TRENDy was fit to the
top 2, 5 or 10 scatter-
ing coefficients on aver-
age across the data set
(conditions T2, T5, T10).
We also compared our
results to other features,
namely, “spatial gradi-
ent” (SG): the spatial
average of (∇u,∇v);
“Fourier vector” (FV):
the Fourier power in 10
wave numbers spaced
from the maximum value
and the Nyquist limit;
and “SINDyCP” (SCP):
the aforementioned para-
metric sparse regression
method used for fitting
parametric PDEs. The
bifurcation for all meth-
ods was detected using
numerical continuation
(further training details
in Sec. A.1.5).

After training, we found that TRENDy performed better than competing benchmarks (est. k∗ = .0624) and
degraded gracefully in noisy training conditions (Fig. 2, right). Performance was naturally strongest on the
noiseless condition and was comparatively weaker in the boundaries and especially the patches condition.
SINDyCP also performed well (est. k∗ = .0651) in the noiseless condition but degraded sharply with noise.
TRENDy performance improved with more coefficients.

In order to demonstrate the interpretability of our approach, we performed a subsequent pattern classification
experiment. Understanding the types of patterns that emerge with different parameters is an important area
of study in biophysics, systems biology and applied PDEs (Ermentrout, 1991). To that end, we generated a
more focused data set within the testing regime of the former experiment and sought to decode pattern classes
from the effective dynamics learned by TRENDy in this patterning zone. Ground truth pattern labels were
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generated by performing 4-way k-means clustering on the full scattering spectrum of each image (which we
confirmed was sufficient to reconstruct pattern quality; see Figs. A.5, A.6). Pattern classes in F -k space are
shown in Fig. 3.

TRENDy was trained in the same measurement settings (SG, T2, T5, T10 and FV)3 and its effective steady
state was used to decode the true label using a 4-way support vector machine. We found that TRENDy’s T10
configuration achieved the highest F1 score on test data. Notably, SG suffices to detect spatial heterogeneity
in general (Fig. 2, right, “SG”), but fares poorly on distinguishing different patterning regimes. This confirms
that TRENDy’s effective coefficients can actually be used to categorically decode back to the observable state
space. What’s more, we confirmed that scattering coefficients can be directly interpreted to explain spectral
distinctions between spots and stripes patterns (see Fig. A.7).

The Brusselator The Gray Scott results were encouraging, but TRENDy was only trained and evaluated in
a narrow strip in parameter space. It also sought to model equilibrium dynamics, leaving open the question
whether or not our framework need be dynamical at all. To resolve those issues, we used TRENDy to learn an
entire bifurcation manifold for the Brusselator model, which exhibits a transition to nonstationary dynamics.
The Brusselator is a reaction-diffusion equation used to model chemical oscillations like those observed in
the Belousov-Zhabotinsky reaction (Prigogine & Lefever, 1968). Its dynamics are given by the evolution of
the concentration of two chemical species:

ut = Du∇2u+A+ u2v −B(1 + u)

vt = Dv∇2v − u2v +Bu (7)

System behavior is governed by parameters (A,B) = θ ∈ Θ. The Brusselator has a stable equilibrium at
θ = (A,B/A) as long as B < 1 +A2, after which a Hopf bifurcation occurs, destabilizing the equilibrium
and birthing oscillations. We denote the manifold of Hopf bifurcations by γ = {(A,B) ∈ Θ : B = 1+A2}.
Under periodic boundary conditions, the oscillations in the Brusselator begin as plane waves which can grow
into traveling waves which interfere in complex ways.

We sought to test how well TRENDy could learn this basic bifurcation behavior from data, especially
under strong noise conditions. To that end, we generated sample solutions to the Brusselator with both the
aforementioned noise conditions and a new condition with a holdout factor, ϵ: we designed the training
set to only have solutions whose parameters θ = (A,B) satisfied dγ(θ) ≡ minθ∗∈γ ∥θ − θ∗∥22 > ϵ for
ϵ = 0.15, 0.5, 1.0. The test set always had dγ(θ) < ϵ = 0.15. We used only the zeroth order coefficients, S1

and S2, which simply measure the average concentration of the species u and v throughout the spatial domain.
Since oscillations begin as spatially homogeneous plane waves, we reasoned that a global average would be a
sufficient detector. We left coefficients in a linear scale as there was no need to co-register coefficients across
several scattering orders. Full training details are in Sec. A.1.5.

We found that TRENDy achieved low forecasting error on test data in the noiseless, low hold-out (ϵ = 0.15)
condition which gradually degraded as the noise and hold-out conditions intensified (Table A.2). An example
of the trained model exhibiting a Hopf bifurcation is depicted in Fig. 4. Just as in the Gray Scott case,
performance was worst in the patches condition and was intermediately worse in the boundaries condition.

Favorable results in solution forecasting do not necessarily imply that our framework accurately predicts
the underlying bifurcation structure of the Brusselator. For example, small oscillations around the true
steady state would result in a relatively low regression error without accurately matching the intended
equilibrium behavior. To investigate this deeper question, we used numerical continuation to locate the
estimated bifurcation manifold, γ̃, learned by TRENDy in each condition. To that end, for each condition, we
ran 100 numerical continuation experiments corresponding to evenly spaced A ∈ [1.5, 3.5]. All points, θ, (if
any) determined to mark a Hopf bifurcation as A was varied were collected and a quadratic fit was applied to

3SINDyCP does not have a latent state, so it does not lend itself naturally to this classification problem.
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Figure 4: TRENDy learns reduced-order models of the Brusselator. (Top row) TRENDy was trained on zeroth-order
scattering coefficients, (S1 in solid green, S2 in solid orange) measured from the evolving Brusselator model (Eq. 7).
The trained model (here depicted with hold-out parameter ϵ = .15 and without noise) closely predicted the true effective
dynamics across the bifurcation boundary (depicted: A = 1.5, B = 1.5, 3.0, 4.0). (Bottom row). For each A between 1.5
and 3.5 in 100 steps, numerical continuation was performed on the trained TRENDy model. Whenever a Hopf bifurcation
was detected at B, that point (A,B) was tabulated and plotted. Then, a quadratic polynomial was fit to all points within
one holdout (ϵ) and noise condition. The true Hopf manifold is in orange at B = 1+A2. Approximation of the manifold
is qualitatively correct across conditions, but worsens in the boundaries and patches conditions.

estimate γ̃. Note that, since the minimum ϵ used for holdout was 0.15, TRENDy never observed an actual
bifurcation during training.

Mirroring the forecasting results, TRENDy located the true bifurcation manifold most accurately in low-noise,
low-holdout conditions and this capability slowly degraded in the more challenging conditions (Fig. 4). The
lower panels of Fig. 4 show, for each ϵ, the estimated bifurcation curves γ̃ along with the parameters to
which they were fit. In the no noise condition, despite some spurious detections, TRENDy provides a good fit
to the true manifold. The fit weakens in the noise conditions which also tend to exacerbate the effect of ϵ.
The estimated manifold is almost always concave up and is always monotonically increasing, matching the
qualitative behavior of the true manifold.

Spatial patterning in the ocellated lizard As a final proof of concept of our method, we trained TRENDy
to predict the spatial patterning dynamics of the ocellated lizard (T. lepidus). This species of lizard has
distinctive skin patterns made from a mosaic of black and green scales (Fig, 5A, upper inset taken from
Fofonjka & Milinkovitch (2021)). The dynamics of these patterns through development has been the subject
of numerous computational and biological studies (Milinkovitch et al., 2023). Importantly, recently work by
Fofonjka & Milinkovitch (2021); Manukyan et al. (2017) used a combination of computational modeling
and real data collection using optical high-resolution episcopic microscopy, to build extremely detailed
reaction-diffusion models of scale patterning through development. The authors argue that growth and other

8



Published as a conference paper at ICLR 2025

Cranio-caudial

M
ed
io
-la
te
ra
l

Figure 5: TRENDy learns scale dynamics of the ocellated lizard. (Left, top inset). A cropped version of the
adult ocellated lizard’s torso in medio-lateral, cranio-caudal coordinates. Four regions are highlighted in
colors corresponding to their quadrant label in this coordinate system. (Left, lower). Dynamics of one patch
of scales taken from the origin from juvenile to adult state. Features represented spatially averaged scattering
coefficients. Solid lines are the true dynamics and dashed are TRENDy estimates. The insets depict the patch
at t = 0, 125, 250. (Right, top inset). An SVM was trained on the final, 10-d state of TRENDy with labels
given by the patch’s quadrant. This inset depicts prediction on the test data, where TRENDy achieved 95%
accuracy. (Right, lower). Together with the classifier results, the moderate clustering of TRENDy states in
PCA space indicates a relation between scale dynamics and anatomical coordinates.

mechanical processes influence patterning, much like how work by Murray (1981) explained why stripe
emergence in animal fur occurs preferentially in tubular structures like limbs and tails.

In that spirit, we used TRENDy to learn a reduced-order model of the evolution of skin patches of a single
ocellated lizard through development from its juvenile to adult stages, and then investigate the trained model
for a relation between pattern dynamics and body coordinates.

We first analyzed data generated by Fofonjka & Milinkovitch (2021); Manukyan et al. (2017), and acquired
a dataset of patch evolutions by randomly sampling locations in a high-resolution video of the developing
ocellated lizard. We fit TRENDy to d = 10 scattering coefficients and used patch coordinates (upper left
corner) as parameters, θ, of the NODE. More details are found in Sec. A.1.5.

As before, the trained model closely tracked the true coefficients (Fig. 5A, dashed vs solid lines, respectively).
In order to observe how TRENDy encoded the underlying animal geometry, we then labeled each sub-video
by the quadrant from which it was sampled: in image coordinates, north-west, north-east, south-east or
south-west. We then investigated whether quadrant labels could be decoded from the final states, ã(T ), of the
estimated dynamics. If this were to be the case, it would demonstrate that TRENDy had learned a relationship
between scale dynamics and the underlying animal geometry. To that end, we did an 80-20 split of the a(T )
into training and testing sets and fit an SVM to the training samples.

We found that this SVM had high testing performance (accuracy .95, weighted F1: .95), indicating that
TRENDy had learned to differentiate scale dynamics based on patch location and geometry. This is especially
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clear if we color patch coordinates according to their labels (Fig. 5B, upper inset) and observe how the colors
closely respect quadrant boundaries. PCA on the final states, ã(T ), also reveals significant clustering by
quadrant label (Fig. 5B, lower panel, colors corresponding to quadrant labels in panel A). These results
demonstrate that, not only can TRENDy fit dynamical data, but it can also highlight the potential influence
of surface geometry on reaction-diffusion mechanisms and their role in driving spatially varying pattern
dynamics. We note that scale dynamics have also been modeled with tools from statistical mechanics (Zakany
et al., 2022) and we include an application of TRENDy to this setting in Sec. A.1.5, Ising Model.

5 DISCUSSION

TRENDy, our approach to learning predictive models of spatially extended PDEs, synthesizes techniques from
reduced-order modeling ((Vlachas et al., 2022)) with methods from parameterized modeling fitting (Nicolaou
et al., 2023). We have demonstrated this approach in benchmarked experiments on both synthetic and real
data, and have used it to predict bifurcations and visualize the relation between dynamics and geometry in
spatial patterning. Among its advantages, TRENDy’s use of hardwired scattering features makes it robust to
noise and avoids feature learning through self-supervision, which can be costly. Importantly, we have also
shown how existing methods for fine-grained spatial prediction are not necessarily performant on bifurcation
and classification problems, especially in the presence of noise.

We envision several areas for improvement upon the current framework’s limitations. Notably, though we have
demonstrated that scattering coefficients provide an expressive, interpretable and efficient form of effective
measurements, they are by no means the only possible choice. Future work could investigate learning these
measurements, possibly with the inclusion of an explicit decoder and reconstruction loss. Here, challenges will
be twofold: first, the reconstruction of observable dynamics is underdetermined since TRENDy’s compression
is lossy, though one could regularize decoding with symbolic regression as in Nicolaou et al. (2023); second,
learned features may be less interpretable than scattering coefficients. Furthermore, while the current iteration
of TRENDy performs well on real data obeying equilibrium dynamics, its application to real oscillatory
data is limited. Indeed, high-frequency, noisy data can simply lead to repeated, conflicting learning signals
about the equation of motion at a particular state (Oh et al., 2024). Additionally, subsequent studies could
investigate frameworks which explicitly account for noise, for example (Frishman & Ronceray, 2020).

While our investigation of spatial patterning in the ocellated lizard is largely a proof of concept, one of
our principal interests is the application to real data representing bifurcations in realistic noise settings and
sample sizes. For example, various studies in synthetic biology have produced high-resolution videos of
spatial dynamics of the Min protein system (Glock et al., 2019; Rajasekaran et al., 2024), an important
regulatory mechanism for cell division and morphogenesis. Investigating how this and related systems
undergo qualitative changes in behavior is a necessary step for understanding fundamental processes in
biology, and will require similar data-driven frameworks for robustly modeling the relation between system
parameters and function which we have begun to study here.
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A APPENDIX

A.1.1 PDES, TOPOLOGICAL CONJUGACY AND BIFURCATIONS

We will focus on PDEs of the form

ut = D∆u+ fη(u) = Nθ[u], (A.1)

for f a smooth (polynomial) operator on states, u(r, t), taking values on a square domain D ∈ R2 with
periodic boundaries. The subscript θ denotes a set of parameters (D, η) ∈ Θ ⊆ Rk. Assume that the solution
to Eq. A.1 with initial condition u0 = u(0) admits a solution u in the Sobolev space H2(D) for each t.

We are interested in the long-term behavior of solutions, u, to Eq. A.1. Let ϕ(t, u0) be the flow associated to
the system, which maps an initial condition u0 to its state at time t. Then, the ω-limit set of u0 is given by

ω(u0) =
{
u ∈ H2(D) | ∃ {tn} → ∞ such that ϕ(tn, u0) → u

}
. (A.2)

In other words, ω(u0) is the set of all states visited by the system starting at u0 after an infinite amount of
time. The set of all ω-limit sets of Eq. 1 for a given parameter θ is denoted Ωθ. It may comprise fixed points,
limit cycles, strange attractors or yet more esoteric structures invariant under ϕ. It is precisely the nature of
Ωθ as a function of θ which we wish to understand and predict from data.

In many cases, changing θ will have no effect on Ωθ. For example, consider two partial differential equations

ut = Nθ1 [u] (A.3)
ut = Nθ2 [u],

representing two different parameter settings, θ1 and θ2. The PDEs ut = Nθ1 [u] and ut = Nθ2 [u] are said to
be topologically conjugate if there exists a homeomorphism h : H2 → H2 such that the following diagram
commutes for all u and t:

h ◦ ϕθ1(t, u) = ϕθ2(t, h(u)),

where ϕθ1(t, u) and ϕθ2(t, u) are the flows for their respective PDEs. In this case, we write ϕθ1 ∼ ϕθ2 . If two
systems are topologically conjugate, then their orbits (as functions of t) can be mapped homeomorphically to
one another so that their dynamics are topologically identical. Importantly, it can be shown that, if ϕθ1 ∼ ϕθ2 ,
then Ωθ1 = Ωθ2 .

However, if there exists a θ∗ such that, for all ϵ > 0 there exists θ such that ∥θ − θ∗∥2 < ϵ and Ωθ ̸= Ωθ∗ ,
then we say that the system exhibits a bifurcation at θ∗. Informally, the parameter θ∗ is a transition point
between two qualitatively different (topologically non-conjugate) behavioral regimes of the system. These
transitions may represent the emergence of periodic behavior, spatial patterning or other dynamical regimes.
Predicting the location of these bifurcations from data is a focus of this paper.

A.1.2 REDUCED-ORDER MODELING AND EFFECTIVE DYNAMICS

Reduced order modeling (ROM) aims to reduce the complexity of high-dimensional systems while preserving
their effective dynamics. Analytical approaches, such as the method of weighted residuals and Galerkin
projection, approximate the solution space by projecting the governing equations onto a lower-dimensional
subspace defined by a set of basis functions (Holmes et al., 2012). Data-driven approaches, including
proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD), leverage observed
data to construct reduced models that capture the dominant features of the system (Brunton et al., 2020).
These methods are increasingly integrated with machine learning techniques to enhance model accuracy and
generalization (Hesthaven & Ubbiali, 2018) (Vlachas et al., 2022).
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A B C

Figure A.1: Spatial structures in PDEs. All panels represent solutions to the Gray Scott reaction-diffusion
model. (A) A traveling wave of period equal to about 1/6 of the width of the spatial domain D. Fourier
coefficients are a good detector for the Hopf bifurcation leading to these spatial structures. (B) However, if
we want to localize a Turing bifurcation in terms of both its critical parameter, θ∗ and the location of its new
equilibrium, we must be able to resolve spatial structures with features more sophisticated than Fourier modes.
For example, stripes like those depicted here can be aliased in Fourier space with spots or other visually
different structures. (C) Fourier features also struggle to model localized structures like pulses and solitons
which occur in systems with strong nonlinearities and coupling across spatial scales. Figures publically
available at Munafo.

Our goal in this paper is to investigate which reduced order models lead generally to good predictive models of
bifurcation structure in PDEs. We will conceive of such models as operators (or measurements), Φ, mapping
from the observable state space of the original dynamics to a finite- and indeed low-dimensional space of
features. That is, we wish to know, given an arbitrary PDE which bifurcates at θ∗, which operators on PDE
data lead reliably to an effective model which also bifurcates at θ∗? This bifurcation is the “effect” we want
the model to capture.

A few examples are instructive. For instance, imagine that ut = N [u; θ] undergoes a Hopf bifurcation at θ∗
whereby an initially stable spatially uniform fixed point, u0(r) ≡ c, loses stability preceding the emergence
of uniform (plane) waves. The trivial averaging operator

Φ[u](t) =
1

|D|

∫
D

u(r, t) dr (A.4)

gives a one-dimensional, spatially global signal a(t) = Φ[u](t) which is differentiable in t since Φ is
differentiable in the sense of Fréchet. Hence, a is the solution to the ODE

at = g(a; θ) (A.5)

for some g giving the law of motion of the spatial average as a function of θ. Clearly, Eq. A.5 has a fixed
point at a0 = Φ[u0] and undergoes a Hopf bifurcation at the same θ∗ as the underlying PDE. Note that g very
rarely has a closed form, but, if we had a good model of g, we could reliably predict the onset of plane waves.

Now, imagine instead that the bifurcation at θ∗ leads to the onset of traveling waves with equilibrium position
c and having characteristic spatial wave number k (see Fig. A.1 A). As the wave is centered symmetrically
about c, we have Φ[u] ≡ c both before and after the Hopf bifurcation; i.e., a simple average does not detect
the relevant spatial structure associated to the bifurcation. In this case, a more appropriate measurement
would be power associated to a given spatial frequency, k =

√
k2x + k2y . For instance, if

û(kx, ky, t) = F(u)(kx, ky, t) (A.6)
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and we define the spectral density at (kx, ky) via

P (kx, ky, t) = |û(kx, ky, t)|2, (A.7)

then

Φk[u](t) =

∫ 2π

0

P (k cosψ, k sinψ, t)k dψ (A.8)

is a reasonable detector for periodic spatial structures off frequency k. Indeed it is precisely these Fourier
coefficients which have been used historically to solve systems like Eq. 1, so we should expect at =

dΦk[u]
dt =

g(a, θ) to be a good model of the effective dynamics. Even if we don’t know the true k, using a composite
measurement involving a few different Fourier modes would help detect the relevant wave scale while
remaining relatively low-dimensional.

Yet, being a spatially global signal, spectral density cannot reliably detect changes in local structure, as
illustrated by the emergence of pulses, solitons or other non-periodic structures in bifurcating systems with
strong nonlinearities or coupling across spatial scales [cite] (Fig. A.1C). From a pure signal processing
perspective, we observe, for example, that the cosine grating

I1(x, y) = cos(kxx+ kyy) (A.9)

and the windowed grating

I2(x, y) = A exp

(
−x

2 + y2

2σ2

)
I1(x, y) (A.10)

have the same spectral density at k =
√
k2x + k2y when A =

√
2

πσ2 . Hence, any bifurcation heralded by the
emergence of this sort of local structure is liable to be missed by a (global) signal like spectral density.

Evidently, we need to rely on a measurement operator which captures information across multiple spatial
scales, preferably in an interpretable manner, so that particular spatial structures can be identified as being
associated with a bifurcation. One such measurement, investigated in subsequent experiments, is described
next.

A.1.3 THE SCATTERING TRANSFORM

The scattering transform of Mallat and colleagues is a mathematical framework designed to extract stable and
informative features from signals or images while preserving critical structures, such as texture and edges,
that are typically lost under traditional signal processing methods like the Fourier or wavelet transforms. The
scattering transform extends the concept of wavelet transform by incorporating nonlinear operations, enabling
it to capture higher-order interactions within a signal.

Formally, the scattering transform is defined as a cascade of wavelet transforms followed by a modulus
nonlinearity and an averaging operation. Given a two-dimensional input signal u(x, y), a set of wavelet
filters {ψλ}λ∈Λ is applied, where Λ denotes the set of scales and orientations of the wavelets. The wavelet
transform of u is then given by the convolution,

[u ⋆ ψλ](x, y) =

∫
R2

u(v, w)ψλ(x− v, y − w) dvdw. (A.11)

The modulus operator | · | is applied to the transformed signal to introduce nonlinearity, which is crucial for
capturing higher-order features:
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U (1)(λ) = |u ⋆ ψλ|.

This operation is iterated to produce higher-order coefficients:

U (m)(λ1, . . . , λm) =
∣∣∣U (m−1)(t, λ1, . . . , λm−1) ⋆ ψλm

∣∣∣ .
The final scattering coefficients are obtained by applying a low-pass filter, typically an averaging operation, to
each U (m), yielding the scattering transform:

S(m)u = U (m) ⋆ ϕ

where ϕ is a low-pass filter that ensures the invariance of the scattering coefficients to translations of the input
signal.

The scattering transform can be discretely implemented as a convolutional network where each layer performs
a wavelet transform followed by a modulus operation and subsampling. Given a discretely sampled signal
u[x, y], the wavelet filters ψλ are applied, with λ indexing both orientation, θ, and scale, j < J . For the case
of a Gabor filter, this could be

ψj,θ[x, y] =
1√
2j

exp (i(x cos θ + y sin θ)) exp

(
−x

2 + y2

2 · 2j

)
. (A.12)

In the discrete implementation, after applying the modulus operator | · |, the result is subsampled by a factor
2j , where j ≤ J . This process captures multi-scale, multi-orientation features of the signal, constructing
higher-order coefficients through iterative application. The final scattering coefficients are obtained by
applying a low-pass filter, typically a convolution with a scaling function ensuring translation invariance.

A.1.4 NUMERICAL CONTINUATION

Numerical continuation methods aim to trace the set of solutions x(µ) of a parameterized system of ordinary
differential equations (ODEs):

dx

dt
= f(x, µ), x ∈ Rn, µ ∈ R,

as the parameter µ varies. The goal is to compute the evolution of solutions x(µ) and detect bifurcations (see
Sec. A.1.1). A solution x0 at a parameter value µ0 satisfies the steady-state condition

f(x0, µ0) = 0.

To compute the continuation of this solution as µ changes, one solves the augmented system:

F (x, µ) = f(x, µ) = 0.

Starting from a known solution (x0, µ0), numerical continuation extends the solution curve by incrementally
varying µ. A typical method for this is the predictor-corrector approach. In the predictor step, a linear
approximation to the solution branch is made by using the tangent direction, which can be computed by
differentiating F (x, µ) = 0 with respect to µ. In the corrector step, Newton’s method (or another iterative
solver) is used to refine the approximation so that f(x, µ) = 0 holds exactly.

A bifurcation occurs when the qualitative structure of the solution set changes. This can often be detected
by examining the Jacobian matrix Dxf(x, µ). At a bifurcation point, an eigenvalue of Dxf(x, µ) crosses

17



Published as a conference paper at ICLR 2025

the imaginary axis, indicating a change in stability or the emergence of new solution branches. Numerical
continuation algorithms can detect such points by tracking the eigenvalues of the Jacobian as µ is varied.

When a bifurcation condition, such as the zero crossing of an eigenvalue, occurs within an interval of
parameter values, a bisection algorithm can be used to refine the location of the bifurcation point. The
bisection method works by iteratively halving the interval and evaluating the bifurcation condition at the
midpoint, continuing this process until the bifurcation point is found to within a specified tolerance.

A.1.5 EXPERIMENTAL DETAILS

Simulated reaction-diffusion data was created by solving a forward Euler scheme on a square domain of side
length 64 and spatial discretization dx = 1.0. Ising data was solved on the same domain but with a Glauber
dynamics Glauber (1963). All scattering coefficients were computed with L = 8 orientations and J = 6
scales; i.e. up to the maximum scale of 26 = 64.

Scattering coefficients were averaged across the data set and time and subsequently ranked to produce the top
d for use in fitting. For benchmarking, we chose d = 2, 5, 10. We also compared these representations to

• Spatial gradient (SG): For a solution with channels u, v, this is given by(
1

|Ω|

∫
∇u(x, y) dx dy, 1

|Ω|

∫
∇v(x, y) dx dy

)
, (A.13)

where |Ω| is the area of the square domain. This is meant to detect spatial homogeneity in a very
general sense.

• Fourier vector (FV): this is a vector of 10 wavenumbers. To compute the power spectrum at 10 evenly
spaced wavenumbers between the Nyquist limit and the maximum spatial scale in a two-dimensional
square domain, excluding the DC component, we define kNyquist =

N
2 for N = 64, the number of

grid points in one dimension of the square domain, and kmin = 1
dx×64 = 1

64 . Then, ten evenly

spaced wavenumbers are kn = kmin + n ·∆k, n = 1, 2, . . . , 10, where ∆k =
kNyquist−kmin

9 . Each
dimension of the FV representation is given by power at the wavenumber, kn:

P (kn) =
1

2πkn

∮
Cn

|F (kx, ky)|2 ds, (A.14)

where Cn is the circle given by
√
k2x + k2y = kn and F (kx, ky) is the discrete Fourier transform of

the two-dimensional field. To exclude the DC component, the term corresponding to kx = ky = 0 is
explicitly omitted. We then converted P (kn) to log base 10.

• SINDyCP (SCP): SINDyCP (Nicolaou et al., 2023) is a sparse regression method for fitting differen-
tial equations to data. We used it in its “weak” formulation, whereby equations are fit to patches of
data integrated against test functions. We used 500 subdomain patches and a sequentially-thresholded
least squares (STLSQ) optimizer with threshold 1× 10−2.

In all cases, TRENDy used a four-layer MLP with rectified nonlinearities for its NODE module. This NODE
was run with dt = .01 for total duration of T = 1.0. Note that since the number of time steps in TRENDy’s
solution and the true solution were not always the same, we co-registered the corresponding time series and
omitted intervening time steps during loss computation. For the Brusselator experiment, we set the derivative
regularizer to be β = 10−4 and it was 0 otherwise. We used an Adam optimizer (Kingma & Ba, 2014) with
learning rate 10−4.

All numerical continuation experiments were performed using pseudo-arclength continuation with a Newton-
Raphson correction having threshold 1× 10−5. In parallel, a bisection algorithm with 15 steps was used to
detect bifurcations using an eigenvalue threshold of 1.0.
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No Noise Boundaries Patches

TRENDy Train 4.23× 10−1 7.61× 10−1 9.44× 10−1

TRENDy Test 4.64× 10−1 7.59× 10−1 1.01× 100

Table A.1: Mean square error between true and predicted reduced-order dynamics in the reduced domain
(TRENDy).

Holdout
(ϵ)

Noise
No noise Boundaries Patches

ϵ = .015 4.34× 10−4 7.94× 10−4 1.05× 10−3

ϵ = 0.5 8.91× 10−4 1.11× 10−3 7.85× 10−3

ϵ = 1.0 1.01× 10−3 4.25× 10−3 1.05× 10−2

Table A.2: TRENDy’s Forecasting error across noise and holdout (ϵ) conditions.

Gray Scott. Data were generated with parameters F, k drawn uniformly on [.045, .055]× [0.0, .075]. For
F = .05, the true bifurcation occurs at k∗ = .062. We generated 1000 training samples with |k − k∗| > .01
and 250 testing samples with |k−k∗| < .01.. Samples were generated by initializing (u, v) uniformly at (1, 0)
plus pointwise gaussian noise of mean 0 and standard deviation .01. The initial condition was thresholded at
0. Solutions were produced from a forward Euler scheme with dt = 1, dx = 1.5 and which was solved for
T = 4500 steps. The size of the spatial domain was 64× 64.

For the bifurcation experiment, TRENDy was fit over 2000 epochs, each of which took approximately 31.48
seconds. We used a burn-in period of 10 time steps. RMSE results are in Table. A.1

For the classification experiment, we generated 5000 samples from within the testing regime and then
performed a new 80/20 train/test split with class balancing. Ground truth labels were created by 4-way
k-means clustering on the full scattering spectrum. We confirmed these were visually sensible groupings
and that they matched standard analyses of the Gray Scott model (Munafo). TRENDy was then fit over
5000 epochs to each feature type (SG, T2-10, FV). SINDyCP learns an explicit equation for the PDE in
the observable space, and, as we wished to evaluate reduced feature representations of the data, it was not
appropriate as a benchmark. TRENDy’s predicted steady state for each feature condition was used as a
representation of the data to be then classified by a support vector machine (SVM). We used sklearn’s model
out-of-the-box with no modifications.

Brusselator We used 2000 training and 500 testing samples in the parameter regions described in the
main text and controlled by the holdout factor, ϵ. Solutions were produced with dt = .01 and were run until
T = 20. RMSE on testing data for different holdout and noise values are found in Table A.2.

Lizard patterning Data was acquired by randomly sampling 100 locations in the high-resolution, 300-
frame video of the developing lizard. We took the d = 10 most activate coefficients for training. Dynamics
were fit in log scale in order to account for natural scale differences between zeroth, first and second-order
coefficients.

Classification was performed on an 80/20 split of TRENDy’s final state using an out-of-the-box sklearn SVM
which had an L2 regularizer of C = 1.0.
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The Ising model. The Ising model is a simple, standard model of magnetism from statistical physics
(Shekaari & Jafari, 2021). It has been applied widely in the physical and life sciences, notably in recent work
on spatial patterning in living matter (Zakany et al., 2022). Unlike other systems investigated in the current
study, the Ising model is stochastic and discrete-time. Nevertheless, TRENDy can still be used to fit the
effective behavior of this model, which we demonstrate here.

A typical setting for the two-dimensional Ising model consists of a large grid of spins S = si
n
i=1 where each

si can assume a state in {−1, 1}. The energy associated to this configuration is

E(S) = J
∑
⟨i,j⟩

sisj , (A.15)

where J is a scalar and the sum is taken over nearest neighbors. The probability of finding the system in a
given configuration is

P (S) ∝ e
−E(S)

kBT , (A.16)
where kB is Boltzmann’s constant, T is a temperature scalar, and the constant of proportionality is given by
the so-called partition function.

Figure A.2: Example fit of Ising scales. Solid lines depict the evolution of six scattering scales. TRENDy fit
in dashed lines with corresponding colors. Time arbitrarily scaled to 10 total units. The temperature for this
sample was T = 6.46.

There exists a critical temperature, Tcrit at which the system tends in the long term towards a magnetized
state in which spins align on average. Above this temperature, magnetization is zero and correlations between
spins decay exponentially as a function of their distance in the grid. However, as one approaches the critical
temperature, these correlations tend to increase, resulting in the formation of so-called magnetic domains, i.e.
regions of aligned spins. We should expect these domains to grow larger in scale the closer one gets to the
critical temperature.

We sought to examine if TRENDy could learn the relation between temperature and predict domain size. We
generated 1000 simulations of a 64× 64 Ising model which was simulated for 100 timesteps using MCMC.
Temperatures were chosen uniformly randomly on [4.5, 7.5], a range above the critical temperature. We
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Figure A.3: Scale versus temperature. The average scale present after the evolution of the system was
measured across a range of temperatures. Mean values in ten bins from 4.5 to 7.5 were measured directly
from scattering scales of the Ising model and are plotted in red with standard deviation in the shaded region.
The TRENDy estimate is in blue. Upper insets show samples Ising configurations at three temperature values
from left to right: 4.5, 6.0 and 7.5.

expect domain size to grow near the left end of this interval. As we expect domain size to be reflected in
first order spatial statistics, we restricted the scattering measurements to first order coefficients. Further, as
there is complete rotational symmetry in the Ising model, we further averaged over all orientations. That is,
TRENDy’s effective state was given by

aj(t) =
1

L

L∑
ℓ=1

|u(·, t) ⋆ ψℓ,j | ⋆ ϕ (A.17)

for L = 8 orientations and j = 1, . . . , 6 scales, since 26 = 64 was the size of the grid. Each of the 1000 Ising
samples was thus converted into a 100 time-step, 6 dimensional time series representing the evolution of these
scales. These time series were quite noisy, so we smoothed them with a moving average having window size
10.

TRENDy was fit to 800 of these samples with temperatures drawn uniformly from the aforementioned range
(e.g. Fig. A.2). On the test data, we measured the average scale of TRENDy’s prediction at the end of its
evolution at time T . This average scale was given by 1

c

∑
j jaj(T ) for c =

∑
j aj(T ). As expected, we

find an inverse relation between temperature and average scale (Fig. A.3, red), indicating the formation of
magnetic domains nearer the critical temperature. This trend is fit closely by TRENDy (blue). Notably, we
see variance in average scale also increase at lower temperatures. This is to be expected since, near the critical
temperature, correlation length diverges and no single scale dominates.
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(a) Clean (b) Boundaries (c) Patches

Figure A.4: Gray Scott samples with noise.

Figure A.5: Example reconstruction: spots. Reconstruction made from minimizing ∥S(u) − S(uest)∥2
where uest was initialized as white noise. Reconstruction was based on all scattering coefficients: L = 8
orientations and j = 6 scales up to order 2. We tried fitting these coefficients directly with TRENDy, but
bifurcation prediction was substantially worse as a result. Only the T2, T5, T10 cases were both predictive of
bifurcations and patterning class.

A.1.6 COMPUTE DETAILS

TRENDy was trained with an Adam optimizer (Kingma & Ba, 2014) and with the Kymatio implementation of
scattering (Andreux et al., 2020). Synthetic PDE data and the TRENDy NODE solutions were both acquired
by forward Euler schemes (details for each system appear in the main text). TRENDy was trained in PyTorch
(Paszke et al., 2019) and numerical continuation was run on BifurcationKit (Veltz, 2020) in Julia (Bezanson
et al., 2017).

A.2 SUPPLEMENTARY FIGURES
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Figure A.6: Example reconstruction: stripes. Reconstruction made from minimizing ∥S(u) − S(uest)∥2
where uest was initialized as white noise. Reconstruction made from minimizing ∥S(u)− S(uest)∥ where
uest was initialized as white noise.

23



Published as a conference paper at ICLR 2025

Figure A.7: Scale comparison between two Gray Scott samples. (Top Row): Spots, and stripes images shaped
64× 64, sampled from class 1 and 4 respectively (see main text). Scattering transform was performed with
L = 8 orientations and J = 6 scales. Rightmost panel: average activity in each of the six scales in first order
coefficients, where the average is taken across orientations. Both patterns have the same dominant spatial
frequency (which is controlled by the diffusion constants, identical for these systems), but the dispersion of
frequencies is different: spots have more power in higher scales; stripes, more power in lower. (Bottom row):
Second order scattering coefficients, again averaged over orientation. Arrays show activations in coefficients
generated by filtering first at scale j1 and then at scale j2. First two panels correspond to the patterns above
(spots/stripes). Rightmost panel is a difference between these activations, which indicates that the j1 = 2,
j2 = 5, is a distinguishing feature. This makes sense since the spots spectrum is overall flatter (so that small
scales and large scales have similar activations).
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