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ABSTRACT

Recently, spatiotemporal graph convolutional networks have attained significant
success in spatiotemporal prediction tasks. However, they encounter out-of-
distribution (OOD) challenges due to the sensitivity of node-to-node messaging
mechanism to spatiotemporal shifts, leading to suboptimal generalization in un-
known environments. To tackle these issues, we introduce the Spatio-Temporal
OOD Processor (STOP), which leverages spatiotemporal MLP channel mixing as
its backbone, separately incorporating temporal and spatial elements for predic-
tion. To bolster resilience against spatiotemporal shifts, STOP integrates robust
interaction including a Client-to-Server (C2S) messaging and graph perturbation
mechanisms. Specifically, C2S messaging mechanism configures Context Percep-
tion Units (CPUs) to capture generalizable context features, constraining nodes to
interact solely with CPUs for spatiotemporal feature interaction. The graph pertur-
bation mechanism uses Generalized Perturbation Units (GPUs) to disrupt this in-
teraction process, generating diverse training environments that compel the model
to extract invariant context features from these settings. Finally, we customized a
spatiotemporal distributionally robust optimization (DRO) to enhance generaliza-
tion by exposing the model to challenging environments. Through evaluations on
six datasets, STOP showcases competitive generalization and inductive learning.
The code is available at https://anonymous.4open.science/r/ICLR2025-STOP.

1 INTRODUCTION

Spatiotemporal prediction, as a critical task in urban computing, has become a prominent research
area, providing valuable insights into future road conditions and enhancing transportation manage-
ment systems (Xia et al., 2024; Liang et al., 2023; Miao et al., 2024; Zhang et al., 2023). Within
the array of models, spatiotemporal graph convolutional networks (STGNNs) have distinguished
themselves as a top choice due to their power representation capabilities for graph data.

However, the success of STGNNs hinges on the assumption of independent and identically dis-
tributed (IID) training and testing environments. The environment typically comprises two crucial
components: spatiotemporal data and the graph structure. This assumption is naturally vulnerable
as data temporal distributions and graph structures naturally evolves, such as the introduction of new
entities (e.g., sensors or air quality monitoring stations). The temporal shift and structural shift pose
the spatiotemporal out-of-distribution (ST-OOD) problem.

We conduct a performance comparison of several advanced STGNNs in both IID and OOD scenarios
using LargeST-SD (Liu et al., 2023b) dataset as an example, as shown in Figure 1 (a). The results
show that the performance of STGNNs can degrade rapidly when faced with ST-OOD challenges,
especially in the case of structural shifts (S-OOD). One potential reason could be their reliance on
global node-to-node messaging for spatiotemporal interaction, such as using GCN or Transformer as
spatial learners. This implies that the node representations generated depend on message paths (i.e.,
graph structure) and features of neighboring nodes. As depicted in Figure 1 (b), when these elements
change in the testing environment, GCNs trained on a specific distribution may encounter challenges
in accurately capturing the updated node representations. This can lead to errors that propagate
across the entire graph, ultimately diminishing the accuracy of the overall graph representation.
Furthermore, STGNNs commonly employ a stacked architecture with multiple modules to handle
the diverse dimensions of input data, ultimately producing a unique label representation. Each
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（a） Performance of STGNNs against OOD. （b） Node-to-node fragility for spatiotemporal shift.

Figure 1: STGNNs in OOD scenarios.

module depends on the precise output of the previous module, and the final prediction is decoded
from this unique label representation. This setup not only leads to error accumulation but also shifts
in any dimensions could lead to suboptimal predictions. Lastly, the representation capabilities of
STGNNs for unseen nodes, i.e., inductive learning, have also been a concern (Zheng et al., 2024).

Several spatiotemporal OOD studies (Xia et al., 2024; Wang et al., 2024a; Ji et al., 2023) have uti-
lized different methods to learn causal knowledge that remains robust in unknown environments. In
this paper, we further undertake two efforts: First, we introduce a more robust messaging mechanism
for spatiotemporal feature interactions, which can replace the node-to-node messaging. Secondly,
we simplify the model structure, and the final prediction is jointly determined by both the temporal
and spatial components, no longer relying on a single representation, to reduce error accumulation.

In this paper, we propose a Spatio-Temporal OOD Processor (STOP), which utilizes a lightweight
MLP as its backbone. Specifically, we incorporate a spatiotemporal channel mixing module with
prompt embedding and temporal decomposition techniques to enhance the temporal prediction com-
ponents. For spatial learning, we introduce a robust Client-Server (C2S) messaging mechanism that
configures Context Perception Units (CPUs) to learn invariant contextual features. The C2S mech-
anism facilitates interaction between CPUs and nodes, replacing node-to-node messaging. Further-
more, we design Generalized Perturbation Units (GPUs) to perturb this interaction process, simulat-
ing spatiotemporal shifts and creating variable training environments. Additionally, we customize
a spatiotemporal distributionally robust optimization (DRO) for GPUs to assist models in learning
robust causal knowledge from challenging environments. We synthesize the prediction components
across temporal and spatial dimensions to generate the final prediction. Our model is evaluated on
six datasets, demonstrating robust generalization and inductive learning across various OOD scenar-
ios. Notably, its efficiency is also impressive.

Our contributions can be four-folds: (1) We introduce a Spatio-Temporal OOD Processor (STOP),
incorporating a resilient Client-server messaging mechanism and a graph perturbation mechanism.
(2) The client-server mechanism constrains nodes to interact exclusively with Context Perception
Units (CPUs) for feature interaction, thereby enhancing the model’s resilience to spatiotempo-
ral shifts. (3) The graph perturbation mechanism, equipped with Generalized Perturbation Units
(GPUs), disrupts node interactions with CPUs and includes a specialized spatiotemporal distribu-
tionally robust optimization (DRO) for GPUs, facilitating the model’s acquisition of causal knowl-
edge across diverse environments. (4) STOP demonstrates competitive performance on six datasets.

2 RELATED WORK

Spatiotemporal prediction. As a crucial task in intelligent transportation systems (Li et al., 2024;
Jin et al., 2022a;b), current popular spatiotemporal prediction models are predominantly based
on spatiotemporal graph neural networks (STGNNs) (Zhang et al., 2016; Wang et al., 2024b;c).
These models focus on developing advanced variants to accurately characterize spatiotemporal
data, typically combining GCNs with sequential models to learn complex dynamics. For instance,
D2STGNN (Shao et al., 2022b) and DCRNN integrate diffusion graph convolutional networks with
RNN to effectively capture temporal patterns. Meanwhile, STAEformer (Liu et al., 2023a) and
STNN (Yang et al., 2021) utilize Transformer to model long-term temporal dependencies. Some
continual learning approaches (Chen et al., 2021) sequentially fine-tune models using data subsets
with new distributions to adapt to spatiotemporal changes, which are introduced in Appendix A.
Unfortunately, the effectiveness of these models can only be demonstrated in environments similar
to the training set, leading to challenges when encountering OOD scenarios.
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Spatiotemporal OOD learning. Inspired by advances in time series shift learning (Liu et al., 2022)
discussed in Appendix A, researchers have specifically designed spatiotemporal OOD learning mod-
els. For example, CauSTG (Zhou et al., 2023) introduces a causal framework that transfers global
invariant spatiotemporal relationships to OOD scenarios. CaST (Xia et al., 2023) employs a struc-
tural causal model to elucidate the data generation process of spatiotemporal graphs. STONE (Wang
et al., 2024a) proposes a causal graph structure to learn robust spatiotemporal semantic relationship.
STEVE (Hu et al., 2023) encodes traffic data into two disentangled representations and utilizes spa-
tiotemporal environments as self-supervised signals. In this paper, we reformulate their message-
passing mechanism, addressing the OOD challenge from a novel perspective.

3 PRELIMINARIES

We use a graph G = (V,A) to represent spatiotemporal data, where V means the node set with N
nodes and A ∈ RN×N is the weighted adjacency matrix of the graph G. We use Xt ∈ RN×c to
represent the observed graph signal at time step t, where c indicates the number of feature channels.

Training environment e∗ is a tuple containing a training graph G∗ = (V∗,A∗) and training data
(X ∗,Y∗). With this training environment, spatiotemporal OOD learning aims to learn a robust
function f , which can accurately predict values after TP time steps given observed data of past T
time steps X = [X1, X2, . . . , XT ] ∈ RT×N×c and the graph sampled from any environment e ∼ E ,
where e may have different spatiotemporal distributions with training environment e∗,

argmin
f

sup
e∈E

E(X,Y)∼p(X ,Y|e) [L (f (X) ,Y)] , (1)

where Y =
[
XT+1, XT+2, . . . , XT+Tp

]
∈ RTp×N×c means the ground-truth value.

4 METHDOLOGY

STOP solely employs MLP to model temporal and spatial dynamics, with the final prediction jointly
determined by temporal and spatial components. It also incorporates a C2S messaging for feature in-
teraction and a graph perturbation mechanism to enhance generalization to unknown environments.
The details of STOP are shown in Figure 2 and Algorithm 1.

4.1 TEMPORAL MODELING AND PREDITION

Temporal decomposition. In time series analysis, researchers (Cleveland et al., 1990; Wu et al.,
2021; Zeng et al., 2023) often decompose time series data into components at various time scales.
Some long-term patterns, such as seasonal or periodic trends, are relatively stable, while short-term
patterns, like hourly traffic fluctuations, are unstable (Wang et al., 2024b). Intuitively, when the
traffic distribution on nodes changes over time, long-term patterns may remain robust. Hence, we
employ temporal decomposition techniques to learning causal knowledge in the temporal dimension.
Specifically, we use the padding moving average kernel AvgPool (·; ξ) with kernel size ξ to decouple
the input X ∈ RT×N×c into long-term patterns Xl and short-term patterns Xs:

Xl = AvgPool (X; ξ) ∈ RT×N×c, (2)

Xs = X−Xl ∈ RT×N×c. (3)

where we employ padding operation AvgPool in (·; ξ) along temporal dimension, ensuring a consist
time length. Subsequently, two distinct MLP(·) : RT×N×c → RT×N×d are leveraged to model the
temporal interdependencies within these kinds of patterns. Finally, the outputs are mixed to yield
the data representiation,

H0 = MLP1 (Xl) +MLP2 (Xs) ∈ RT×N×d0 . (4)

Temporal prompt. To boost the spatiotemporal learning capabilities, we also integrate the prompt
learning method, which is a prevalent strategy in the domains of computer vision (Jia et al., 2022)
and natural language processing (Vaswani et al., 2017). In this paper, we use a learnable prompt
pool E ∈ R(Nt∗Nd)×dp to encode temporal prior information, which can extract the spatiotemporal
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Figure 2: Details of the proposed model. Overall architecture in the left figure. Robust spatiotem-
poral interaction mechanism in the right figure.

invariant patterns recurring on a weekly basis (Yuan et al., 2024). Nd = 7 is the number of days
in one week. Nt indicates the number of sampling points in a day. For example, for some PeMS
datasets, the data sampling frequency of traffic flow is five minutes, so Nt is set to 60×24/5 = 288.
dp is the dimension of each embedding in the prompt pool.

For the input data X ∈ RT×N×c, we use T̃ ∈ RT×N×1 to denote its temporal prior information,
where T̃ (i) ∈ {1, 2, ..., Nt ∗Nd}N represents the i-th row of T̃, indicating the relative position of
this i-th time step of X in the total time steps of a week. Then we extract the appropriate embeddings
in the prompt pool E based on this location and generate temporal prior embedding ET:

ET =
[
E
(
T̃ (1)

)
,E

(
T̃ (2)

)
, . . . ,E

(
T̃ (T )

)]
∈ RT×N×dp . (5)

In addition, we also use the positional embedding P followed by Transformer (Vaswani et al., 2017)
to encode the position of each data point in X. Finally, we integrate temporal prior embedding and
data positional embedding to generate the output ZI denoted as the input representation:

ZI = Concat (H0 +P,E) ∈ RT×N×(d0+dp). (6)

Spatiotemporal channel mixing. To capture temporal dynamics, we first mix-up the channel and
temporal dimensions of the output ZI into shape N×dt, where dt = T ∗(d0 + dp). Subsequently, we
use L MLP layers for hybrid modeling. Given the input of l-th MLP layer with residual connection
technology Z

(l)
T , where Z

(0)
T = ZI, the forward process of l-th MLP layer is as follows:

Z
(l+1)
T = GELU

(
Z

(l)
T W

(l)
1 + b

(l)
1

)
W

(l)
2 + b

(l)
2 + Z

(l)
T ∈ RN×dt , (7)

where l ∈ {0, 1, ..., L − 1} and GELU (·) (Hendrycks & Gimpel, 2016) is activation function.
W

(l)
1 ∈ Rdt×4dt , W(l)

2 ∈ R4dt×dt , b(l)
1 ∈ R4dt , and b

(l+1)
2 ∈ Rdt are learnable parameters. After

L MLP layers, we get the temporal representation denoted as ZT = Z
(L)
T ∈ RN×dt . Finally, we use

a linear transformation as decoder to generate a temporal prediction component Yt as follows,

Yt = ZTWt + bt ∈ RN×(TP ∗c) (8)

where Wt ∈ Rdt×(TP ∗c) and bt ∈ RTP ∗c are learnable parameters.

4.2 SPATIAL MODELING AND PREDICTION

4.2.1 CLIENT-SERVER (C2S) MESSAGING MECHANISM

STGNN conventionally leverages a global node-to-node messaging mechanism for spatiotemporal
feature interactions, which, unfortunately, is vulnerable to structural variations (Finkelshtein et al.,
2023; Han et al., 2024b), hindering its generalization capability to unknown graph structures.

To address these limitations, we propose the adoption of a resilient Client-to-Server (C2S) messag-
ing approach that diverges from the traditional node-to-node communication paradigm. Our novel
method incorporates context perception units, enabling each graph node to interact solely with these
units to gather contextual features, mimicking a client-server interaction protocol.
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Context Perception Units. We first set K context perception units (CPUs), where K is a hyper-
parameter and K ≪ N . Then we adopt a learnable feature vector c ∈ Rdt for each CPU, where
dt indicates the number of feature channels. Thus, we can get a series of context feature vectors
C = [c1, c2, . . . , cK ] ∈ RK×dt . Next, we propose a multi-head low-rank attention method to
achieve the interaction between nodes and CPUs.

Multi-head Low-rank Attention. This mechanism consists of two processes: aggregating node
features to update context features and diffusing context features to generate node representations.
It takes ZT ∈ RN×dt and C as input. Inspired by the multi-head mechanism (Vaswani et al.,
2017), we utilize distinct linear layers to project Query, Key, and Value separately into dh = dt/h
dimensions with h heads. Specifically, for the i-th head where i = {1, 2, . . . , h}, the calculation of
low-rank attention is as follows:

Z(i)
c =A (Q,K,V) = softmax

(
αQK⊤)︸ ︷︷ ︸

Diffusion

× softmax
(
αKQ⊤)︸ ︷︷ ︸

Aggregation

V, (9)

where Q =ZTW
(i)
q ∈ RN×dh , K = CJ

(i)
dt
∈ RK×dh , V = ZTJ

(i)
dt
∈ RN×dh . (10)

here α is a scaling factor and equals to 1/
√
dh. W

(i)
q ∈ Rdt×dh is a learnable parameter matrix,

and J
(i)
dt
∈ [0, 1]

dt×dh is a column submatrix of dt-order identity matrix Idt
∈ [0, 1]

dt×dt , which

contains all rows and the columns (dh ∗ (i− 1) + 1) to (dh ∗ i) of Idt . J
(i)
dt

is used to project the
feature subspace corresponding to the i-th head. The computed attention matrix is low-rank with
high efficiency, which is explained in Appendix E. Finally, we splice outputs of multiple heads to
generate representation for nodes: Zc = Concat

(
Z

(1)
c ,Z

(2)
c , . . . ,Z

(h)
c

)
∈ RN×dt .

This attention comprises both aggregation and diffusion processes, as shown in the right half of
Figure 2. The aggregation process, denoted by KQ⊤ ∈ RK×N , extracts node features for updating
context features. Conversely, the diffusion process, denoted by QK⊤ ∈ RN×K , disperses the con-
text features to individual nodes to facilitate feature interaction and node representation generation.

Robustness Analysis. The proposed C2S messaging mechanism is constrained to operate between
nodes and CPUs, effectively avoiding the complexity associated with direct node-to-node interac-
tions. CPUs in this mechanism assimilates contextual features, which is used to generate output
representations for individual nodes. These features are coarse-grained and high-level, which ex-
hibits resilience to temporal variations for individual nodes. Furthermore, structural changes (such
as adding or removing nodes) do not significantly disrupt the message-passing pathways between
nodes and CPUs. New nodes can also leverage these contextual features to develop information-
rich representations, thereby enhancing inductive learning capabilities. In summary, our approach
demonstrates remarkable resilience to spatiotemporal variations and strong in OOD environments.

4.2.2 SPATIOTEMPORAL CHANNEL MIXING

Following the acquisition of context features for each node, we proceed to refine personalized fea-
tures for individual nodes to enhance the overall node representation. This refinement involves
subtracting the context features from the temporal representations to isolate the personalized feature
representation of each node, denoted as Zp, as depicted below:

Zp = ZT − Zc ∈ RN×dt . (11)
Subsequently, we concatenate the decoupled context features Zc and personalized features Zp, and
then linearly map them back to the initial representation.

Z′
t =GELU (Concat (Zp,Zc)W1 + b1)W2 + b2 ∈ RN×dt , (12)

Z̃t =LayerNorm (Z′
t + ZT) ∈ RN×dt , (13)

where W1 ∈ Rdt×4dt , W2 ∈ R4dt×dt , b1 ∈ R4dt, and b2 ∈ Rdt are learnable parameters. We
then decouple spatial components by calculating the difference between the input representation ZI

and the temporal representation Z̃t, denoted as Z(0)
s = ZI − Z̃t. Next, we utilize L MLP layers to

capture spatial high-dimensional features, with the final output denoted as the spatial representation
ZS = Z

(L)
s . The forward process of the l-th MLP layer is as follows:

Z(l+1)
s = GELU

(
Z(l)

s W
(l)
3 + b

(l)
3

)
W

(l)
4 + b

(l)
4 + Z(l)

s ∈ RN×dt , (14)
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where W
(l)
3 ∈ Rdt×4dt ,W

(l)
4 ∈ R4dt×dt , b(l)

3 ∈ R4dt , and b
(l)
4 ∈ Rdt are learnable parameters.

Finally, same as the temporal part, we also use a linear layer to decode the spatial representation Zs

to produce a prediction from the spatial component:

Ys = ZSWs + bs ∈ RN×(TP ∗c), (15)

where Ws ∈ Rdt×(TP ∗c) and bs ∈ RTP ∗c are learnable parameters.

4.3 FINAL PREDICTION

We sum the predictions from the spatial and temporal dimensions to get finial prediction Ŷ as follow,

Ŷ =Yt +Ys ∈ RN×(TP ∗c). (16)

Finally, we reshape the predictions Ŷ into TP ×N × c to align the dimensions.

4.4 GRAPH PERTURBATION MECHANISM

In this section, we introduce the Generalized Perturbation Units (GPUs) to perturb the interac-
tion process of C2S messaging to improving generalization of the model to unknown environ-
ments. Additionally, we specifically design a Distributionally Robust Optimization (DRO) (Duchi
& Namkoong, 2019) objective to optimize models and GPUs.

Generalized Perturbation Units (GPUs). To acquire robust contextual features, our strategy in-
volves disrupting the aggregation process of the C2S messaging mechanism, which is responsible
for updating context features. This approach enables us to circumvent the significant computa-
tional overhead associated with directly perturbing the data. Specifically, we create M learnable
perturbation vector in the training process, denoted G = {g1, g2, . . . , gM}, where gi ∈ RN with
i ∈ {1, 2, · · · ,M} means i-th GPU. Then, we use softmax operation to normalize gi ∈ RN to
get the corresponding masking probability vector g′

i = softmax (gi) ∈ (0, 1)
N . Subsequently, we

create a multinomial distributionM (g′
i; s). Based on this distribution, we sample a masking indices

g̃i ∼ M (g′
i; s) ∈ {0, 1}

N , where s ∈ (0, N) indicates the number of sample hits (i.e. the number
of values equal to 1 in g̃i). Finally, we create K replicas of g̃i corresponding to K CPUs. As a
result, we can obtain a mask matrix with log operation as follows:

Gi = log ([g̃i, g̃i, · · · , g̃i]) ∈ {−∞, 0}K×N
. (17)

If Gi[m,n] = −∞, the aggregation interaction between m-th node and n-th CPU is masked. Then
we integrate Gi into low-rank attention mechanism to control the aggregation process:

Ãi (Q,K,V;Gi) = softmax
(
αQK⊤)× softmax

(
αKQ⊤ +Gi

)︸ ︷︷ ︸
Perturbation operation

V. (18)

From the CPU’s perspective during the aggregation process of perturbing contextual features, they
perceive varying environment to learn context features, thereby compelling the model to acquire
generalizable knowledge. In the training phase, we leverage M GPUs in parallel to conduct the
perturbation operation. Accordingly, according to Equation 16, the model will individually generate
predictions for these M environments, represented as {Ŷ1, Ŷ2, . . . , ŶM}.
Spatiotemporal Distributionally Robust Optimization. To promote effective learning from the
diverse variable environments created, we introduce a spatiotemporal out-of-distribution (OOD)
optimization objective that adheres to the principles of distributionally robust optimization (DRO)
(Duchi & Namkoong, 2019), as explained in Appendix F. With M predictions generated from dif-
ferent environments, our spatiotemporal DRO does not require optimizing all M branches sequen-
tially; instead, it selects the branch with the highest loss for gradient descent, as shown in the right
half of Figure 2. This approach indicates that the model performs worst in that particular environ-
ment, thereby enhancing training efficiency and encouraging the model to learn purely invariant
knowledge. We designate the GPU responsible for generating this environment as g. The specific
optimization objective is defined as follows:

min
f

sup
g∈RN

E(X,Y)∼(X ,Y|e∗) [L (f (X) ,Y; g)] , s.t. ||g̃||0 = s ∈ (0, N) . (19)

6
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where “sup” means the supremum, and || · ||0 stands for zero norm. GPUs participate in the learn-
ing process by influencing the sampling distribution of the mask matrix, which is essentially non-
differentiable, rather than participating in the backpropagation process as part of the parameters.
Thus, we optimize the model parameters and GPUs alternately, as shown in Algorithm 2.

Robustness Analysis. The GPU introduces random perturbations in the spatial interaction pro-
cess, effectively generating diversified training environments. This strategy prevents the model from
becoming overly reliant on a single training environment, thereby promoting the learning of more
generalizable features. Spatiotemporal DRO compels the model to engage with the most challenging
instances within the generated environments, which can further enhance the model’s robustness.

5 EXPERIMENTS

In this section, we conduct a comprehensive evaluation of the proposed model. We will answer
the following potential questions. Q.1. What is the generalization performance of STOP in spatio-
temporal OOD scenarios? Q.2.What is the inductive learning ability of STOP for new nodes? Q.3.
How do model hyperparameters affect model performance? Q.4. Is each component of the model
valid for OOD capabilities? Q.5. Is STOP effective in both T-OOD and S-OOD separate scenarios?
Q.6. What are the insights of model efficiency and embedding?

5.1 EXPERIMENT SETTING

Setting. We set both the input and prediction windows to 12 in traffic prediction and 24 in atmo-
spheric prediction. Temporal decomposition kernel Size ξ is equal to 3 in traffic datasets and 8 in
KnowAir. The number of CPUs K is set to {8, 24, 32, 64, 8, 4} and the number of GPUs M is
equal to {3, 3, 3, 3, 2, 4} in six datasets in Table 1. The channels of embeddings are set to 64. We
use 8 heads in multi-head low-rank attention. We implement all models using PyTorch framework
of Python 3.8.3 and leveraging the Nvidia A100-PCIE-40GB as support. We adopt Adam optimizer
with a learning rate 0.002. MAE, RMSE, and MAPE are used as metrics for comparison.

Table 1: Spatiotemporal datasets.

Dataset Nodes Edges Year

LargeST-SD 716 17,319 2017-2021
LargeST-GBA 2,352 61,246 2017-2021
LargeST-GLA 3,834 201,363 2017-2021
LargeST-CA 8,600 525,888 2017-2021

PEMS3-Stream 655 1,577 2011-2017
KnowAir 184 3,796 2015-2018

Datasets & baselines. We conduct a comprehensive
evaluation of our model on six spatiotemporal datasets
spanning multiple years across two domains. These
datasets include LargeST (Liu et al., 2024) and PEMS3-
Stream (Chen et al., 2021) in the traffic domain, and
KnowAir (Wang et al., 2020) in the atmospheric domain.
The dataset summary is presented in Table 1. Our compar-
ison involves advanced spatiotemporal models and spa-
tiotemporal OOD learning methods. The spatiotempo-
ral models include STGCN (Yu et al., 2017), GWNet (Wu et al., 2019), STNorm (Deng et al.,
2021), STID (Shao et al., 2022a), STAEformer (Liu et al., 2023a), STNN (Yang et al., 2021),
D2STGNN (Shao et al., 2022b), BigST (Han et al., 2024a), and RPMixer (Yeh et al., 2024). The
spatiotemporal OOD models include CaST (Xia et al., 2024) and STONE (Wang et al., 2024a).
Some models require the removal of non-essential components (such as node embedding in STID or
adaptive graph learning method in GWNet) to adapt them to the ST-OOD setting, as the parameters
of them are intertwined with the scale of the graph structure, as elaborated in Appendix C.1.

ST-OOD Datasets. For the evaluation of temporal shift, we train the models using data from the
first year and test them on each subsequent year. The training set comprises the first 60% of data
from the initial year dataset, while the following 20% of data is used as the validation set. In each
subsequent year, the last 20% of data is designated as the test set. This setup aims to accentuate
the temporal distribution difference between the test and training sets, while maintaining a ratio of
approximately 6:2:2 for the training, validation, and test sets. Regarding structural shift evaluation,
we select a subset of nodes for training and validation. In the test set, we decrease the number of
nodes by 10% and introduce 30% new nodes to simulate shifts in the graph structure and scale.
More detailed settings can be found in Appendix C.2.
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Table 2: OOD performance comparisons on four datasets. The unit of MAPE is percent (%). We
bold the best-performing model results in red and underline the sub-optimal model results in blue.

Method Imp. Ours STONE CaST RPMixer BigST D2STGNN STNN STAEformer STID STNorm GWNet STGCN
SD

3
MAE +3.96% 17.71 18.44 21.35 24.92 18.56 18.70 36.46 18.70 19.68 18.82 20.15 18.68

RMSE +1.79% 28.45 29.55 33.28 39.88 29.93 29.31 56.84 28.97 29.56 30.06 31.34 29.61
MAPE +3.69% 11.73 12.32 16.04 15.63 12.18 13.04 26.91 12.62 13.18 12.82 14.44 12.92

6
MAE +5.90% 23.62 25.10 29.28 42.37 25.66 25.13 36.91 25.80 25.87 26.00 28.07 25.25

RMSE +2.73% 37.71 39.66 45.24 66.45 40.61 38.77 57.59 40.73 40.86 41.20 43.00 39.48
MAPE +8.94% 15.99 17.56 21.49 26.15 18.03 17.46 27.15 17.59 18.03 18.03 21.17 17.34

12
MAE +9.85% 32.59 37.12 42.40 77.31 37.89 36.35 41.69 37.17 38.30 38.08 39.75 36.15

RMSE +3.32% 51.82 54.60 64.05 115.62 58.74 53.60 64.99 57.81 59.40 59.24 61.08 55.74
MAPE +11.62% 22.89 25.90 31.73 49.48 27.12 25.98 31.32 27.07 26.90 27.89 31.46 26.41

G
B

A

3
MAE +3.98% 18.33 20.19 21.85 24.79 19.92 19.10 40.61 20.91 19.09 20.86 20.65 21.49

RMSE +5.41% 29.70 33.65 34.32 39.59 32.33 32.64 60.07 33.59 31.40 32.92 32.21 33.57
MAPE +5.01% 13.64 15.10 18.61 17.06 14.75 14.29 33.77 14.93 14.36 16.00 15.70 14.79

6
MAE +4.22% 24.75 25.84 29.70 40.77 28.64 26.10 40.50 28.61 26.90 31.24 28.39 30.05

RMSE +7.77% 38.48 41.96 45.16 62.24 43.93 41.72 59.96 44.03 42.15 46.69 42.60 44.97
MAPE +3.44% 20.48 21.24 25.77 29.48 22.25 21.26 33.68 22.41 21.79 25.57 22.74 22.84

12
MAE +3.60% 34.93 39.56 42.60 72.51 42.87 36.26 44.62 41.68 39.36 45.73 39.61 43.29

RMSE +5.48% 53.10 56.18 63.33 104.93 63.06 56.23 65.61 62.28 59.60 65.62 58.33 62.34
MAPE +3.39% 31.09 32.18 36.88 56.28 34.52 32.23 38.28 34.99 33.43 41.02 33.67 35.23

PE
M

S3
-S

tr
ea

m

3
MAE +11.09% 11.39 13.27 15.43 14.68 12.79 12.89 17.04 12.81 12.96 13.03 12.97 13.39

RMSE +7.02% 19.48 21.48 24.53 23.73 20.79 21.14 28.47 21.02 20.95 21.07 21.11 21.60
MAPE +6.25% 15.45 17.06 32.15 18.02 17.30 16.58 23.63 16.48 16.66 20.44 16.41 16.71

6
MAE +11.81% 12.47 14.30 17.13 17.41 14.05 14.08 17.26 14.14 14.18 14.51 14.14 14.63

RMSE +6.77% 21.62 23.68 27.63 28.61 23.07 23.26 29.27 23.38 23.19 23.67 23.31 23.82
MAPE +9.08% 16.02 18.23 33.77 20.90 19.54 17.62 25.63 19.71 18.52 22.43 17.91 18.33

12
MAE +11.79% 14.36 16.28 20.96 24.00 16.65 16.55 18.19 16.71 16.56 17.04 16.37 17.25

RMSE +8.64% 24.95 28.41 33.82 39.64 27.46 27.44 30.14 27.92 27.31 27.94 27.10 28.20
MAPE +10.89% 18.66 20.94 39.07 27.84 23.59 20.12 30.81 20.95 21.25 25.30 20.29 21.30

K
no

w
A

ir

6
MAE +5.10% 24.37 25.68 26.20 30.56 26.89 26.43 27.85 26.19 26.49 28.46 27.84 27.92

RMSE +2.74% 36.56 37.59 38.42 45.34 39.16 37.91 39.07 37.82 38.90 41.47 40.25 39.47
MAPE +0.90% 51.94 52.41 59.53 69.06 57.45 58.39 65.74 52.90 57.84 65.26 52.42 58.32

12
MAE +6.66% 27.03 28.96 29.49 38.45 29.77 30.06 30.48 29.45 30.85 30.86 31.11 31.63

RMSE +3.40% 40.29 42.64 41.98 55.26 41.75 42.52 42.67 41.71 44.59 43.87 43.65 43.71
MAPE +11.48% 54.45 71.99 70.15 87.60 68.39 67.10 71.05 61.64 68.44 71.83 61.51 69.83

24
MAE +6.09% 28.70 30.56 31.63 42.67 31.57 30.94 31.48 30.96 32.78 32.52 32.99 34.68

RMSE +6.78% 42.39 45.48 45.21 61.30 44.52 46.21 44.72 43.48 46.67 44.80 44.14 47.19
MAPE +17.01% 57.96 75.11 75.36 94.76 76.76 69.84 74.14 65.31 74.02 81.32 70.84 80.49

5.2 OOD PERFORMANCE COMPARISON(Q.1)

As shown in Table 2, we report the average values across all years of test sets on four datasets.
Experiments on large datasets can be found in Appendix C.3, and detailed year-specific reports can
be found in Appendix C.8.

GCN-based models like STGCN and GWNet underperform in OOD settings due to their reliance
on the global messaging mechanism of GCN, rendering them highly sensitive to spatiotemporal
shifts. Transformer-based models such as STAEformer and D2STGNN exhibit improved predictive
accuracy by leveraging self-attention mechanisms to aggregate global node features, effectively ad-
dressing spatiotemporal shift errors. Conversely, MLP-based models like STID and BigST, which
treat nodes as independent channels, suffer from reduced performance due to the lack of spatial in-
teraction information. Despite these advancements, STGNNs still face challenges in generalizing
weights for unseen graph structures. On the other hand, spatiotemporal OOD baselines like STONE
introduce diverse training environments utilizing perturbation-generated semantic relations to learn
invariant causal knowledge, resulting in enhanced performance.

STOP demonstrates significant improvements across various metrics, with a maximum enhancement
of 17.01%. This improvement can be attributed to its robust C2S messaging mechanism, which
facilitates effective spatial feature interaction.

5.3 INDUCTIVE LEARNING PERFORMANCE OF STOP (Q.2)

To compare the inductive learning performance of models, we report the their performance on new
nodes in Table 3. Specifically, Transformer-based models, such as D2STGNN, demonstrates strong
generalization capabilities because the self-attention mechanism generates accurate representations
for new nodes to some extent. GCN-based models exhibit the weakest generalization capabilities
because the trained model parameters are coupled with the original graph structure, and new nodes
cannot generate accurate representations by aggregating neighboring nodes. The performance of
Transformer-based models is poor because the attention mechanism cannot generate robust ag-
gregate weights for new nodes. On the other hand, the spatiotemporal OOD learning framework

8
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Table 3: OOD inductive learning performance comparisons on SD and GBA datasets of new nodes.

Method Imp. Ours STONE CaST RPMixer BigST D2STGNN STNN STAEformer STID STNorm GWNet STGCN
SD

3
MAE +2.68% 17.02 17.56 20.51 23.67 17.75 18.74 40.27 17.94 17.73 18.12 20.33 18.01

RMSE +2.26% 26.85 27.59 31.42 36.94 27.82 28.92 62.87 28.06 27.63 28.31 31.18 27.88
MAPE +4.51% 11.64 14.65 16.55 15.35 12.19 14.50 29.10 12.63 13.38 12.89 15.00 13.12

6
MAE +6.84% 22.73 25.60 28.22 40.08 24.62 25.51 40.65 24.85 24.82 25.13 28.82 24.40

RMSE +4.61% 35.99 38.16 43.50 62.09 38.42 39.06 63.50 38.85 38.80 39.45 43.85 37.73
MAPE +8.98% 15.91 18.02 22.09 25.32 17.48 19.08 29.23 17.59 18.04 18.06 22.32 17.64

12
MAE +9.94% 31.53 35.01 41.16 73.30 36.52 36.20 45.14 35.96 36.83 37.06 41.48 35.03

RMSE +7.20% 50.13 54.02 62.63 109.29 56.60 54.61 70.34 56.06 57.24 57.95 63.34 54.11
MAPE +15.07% 22.88 26.94 32.58 47.83 27.10 28.95 33.47 27.15 26.98 27.98 33.92 26.97

G
B

A

3
MAE +3.21% 18.08 18.68 21.43 24.40 19.59 19.12 40.58 20.57 18.76 20.55 20.86 24.87

RMSE +4.75% 29.26 30.72 33.69 38.84 31.76 32.55 60.04 33.02 30.86 32.40 32.38 38.36
MAPE +0.74% 13.35 15.67 18.11 16.79 14.41 14.20 33.23 14.61 13.45 15.38 15.92 18.58

6
MAE +6.48% 24.41 27.30 29.06 40.09 28.09 26.10 40.46 28.09 26.38 30.74 29.03 29.72

RMSE +7.81% 37.91 41.12 44.24 61.01 43.05 41.86 59.92 43.19 41.33 45.89 43.32 44.44
MAPE +4.24% 20.10 20.99 25.02 28.93 21.68 20.35 33.16 21.82 21.04 24.53 23.60 22.39

12
MAE +6.51% 34.48 39.61 41.59 71.38 41.96 36.88 44.28 40.80 38.49 44.95 41.05 42.82

RMSE +4.65% 52.48 55.04 62.03 103.18 61.76 56.67 65.15 61.01 58.44 64.49 60.19 61.66
MAPE +8.52% 30.70 33.78 35.80 55.35 33.56 32.72 37.46 34.00 39.75 39.72 35.65 34.51

STONE uses a novel embedding method that computes the distances between nodes and anchor
points to generate initial embeddings for new nodes, resulting in good performance. However, our
model excels in extending performance to new nodes by leveraging the C2S message mechanism to
access contextual features and enhance representations.

5.4 HYPERPARAMETER SENSITIVITY ANALYSIS (Q.3)

In this section, we analyze the sensitivity of the numer of CPUs and GPUs on the SD and KnowAir
datasets. The performance is presented in Figure 3. When the number of CPUs K is set to 8 in SD
dataset and 4 in KnowAir dataset. When K exceeds this value, the model creates too many CPUs,
making it unable to focus on extracting invariant contextual features, thus introducing noise. When
K is less than this value, too few perception units fail to learn sufficient invariant knowledge, leading
to a decrease in the model’s generalization performance. The number of GPUs M is set to 3 in SD
dataset and 4 in KnowAir dataset. A smaller M may not provide sufficient training environment
diversity, resulting in performance degradation. On the other hand, an excessive number of GPUs
does not necessarily improve performance. Too large M means that the generated environment is
too complex, which increases the learning difficulty of the model to extract causal knowledge.
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Figure 3: Sensitivity experiments of STOP.
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Figure 4: Ablation experiments on two datasets.

5.5 ABLATION STUDY (Q.4)

We conduct an ablation study to examine the effectiveness of each component on SD and KnowAir
datasets. ”w/o decom” removes the time decomposition module, ”w/o prompt” eliminates the spa-
tiotemporal prompting method, ”w/o Ys” uses only spatial prediction as the final prediction. ”w/o
LA” means we use vanilla self-attention mechanism to replace the low-rank attention module.

As illustrated in Figure 4, the results show that each component of the model helps to improve the
model’s OOD capabilities. ”w/o Ys” achieves poor prediction performance, which proves that the
proposed parallel component is effective for OOD. ”w/o CPU” removes CPU and achieves high
errors, demonstrating that spatial features is crucial to improving the generalization ability of the
model. ”w/o GPU” has higher prediction errors because GPU can help the model extract causal
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Table 4: Performance comparison in T-OOD and S-OOD scenarios.

Method Ours STONE D2STGNN STNN STGCN GWNet

S-OOD
MAE 23.21 25.00 26.56 35.06 29.74 26.79

RMSE 36.95 39.12 42.77 55.12 44.45 41.47
MAPE 14.45 16.72 19.80 23.42 21.79 18.16

T-OOD
MAE 22.91 25.41 24.23 36.14 25.73 23.38

RMSE 37.17 37.56 39.04 56.26 40.07 37.63
MAPE 15.35 16.38 17.37 26.46 17.68 16.58

knowledge and enhance model robustness. We performed comprehensive ablation experiments in-
cluding double ablation in Appendix C.9.

5.6 PERFORMANCE IN S-OOD AND T-OOD SCENARIOS (Q.5)

With LargeST-SD dataset, we investigate the performance of models in T-OOD and S-OOD sce-
narios. Used two datasets are simplified versions of ST-OOD. For S-OOD, we use the last 20%
of the 2017 data as the test set with the graph structure unchanged. For T-OOD, we maintain the
graph structure consistent between the training and testing environments, aligning the data selection
with ST-OOD. The experimental results are shown in Table 4, and we can observe that STGNNs
exhibit poor performance in the S-OOD scenario, mainly due to the sensitivity of the node-to-node
interaction method to structural shifts. The poor performance of STNN can be attributed to its use
of Transformer, which lacks robustness against noise introduced by temporal and spatial shifts. Our
model has achieved competitive performance in both T-OOD and S-OOD scenarios.

5.7 CASE STUDY (Q.6)

Embedding visualization. Using LargeST-SD dataset as example, we visualize the temporal
prompt embedding E in Figure 5 (a), Personalized features Zp, and contextual features Zc in Fig-
ure 5 (b). We can see that temporal embeddings unveil essential periodic patterns for OOD scenarios.
Both node personalized and context features exhibit strong discriminative capabilities. Context fea-
tures capture shared node patterns, ensuring resilience to individual node variations. Meanwhile,
personalized features enhance the model’s ability to tailor predictions for each node effectively. Ef-
ficiency study. The training time of peer epoch is illustrated in Figure 5 (c), we can see that STOP
demonstrates remarkable effectiveness and efficiency on the SD dataset. This is becauase our model
primarily uses lightweight MLP layers to model temporal and spatial dynamics. Compared to the
SOTA model D2STGNN, our model have improved the efficiency by about 20 times.

15 10 5 0 5 10 15
(a) Temporal prompt pool

10

5

0

5

10
Mon
Tue
Wed
Thu

Fri
Sat
Sun

20 10 0 10 20
(b) Personal feature and context feature

4

2

0

2

4

6

Personalized feature
Contextual feature
Boundary

0 200 400 600 800 1000 1200
(c) Efficiency comparison 

23

24

25

26

27

28

29

30

Av
er

ag
e 

M
A

E

3,000 MB

15,000 MB

45,000 MB

80,000 MB

Memory-Usage

STOP (ours)

STONE

CaST

BigST

D2STGNN

STAEformer
STIDSTNorm

GWNet

STGCN

Training speed (s/epoch)

Figure 5: Visual case and efficiency study of STOP on LargeST-SD dataset.

6 CONCLUSION

In this paper, we present a Spatio-Temporal Out-of-Distribution Processor, namely STOP, which
incorporates a spatial interaction mechanism and a graph perturbation mechanism to enhance re-
silience against spatio-temporal shifts. The spatial interaction mechanism employs a Client-to-
Server messaging pattern for nodes to engage with CPUs, facilitating spatial feature interactions.
Through the graph perturbation mechanism, random disruptions are introduced to diversify training
environments, bolstering the model’s robustness. Assessment across numerous datasets in various
OOD scenarios showcases the model’s robust generalization, inductive learning, and efficiency.
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A RELATED WORK

A.1 CONTINUAL LEARNING WITH SPATIOTEMPORAL SHIFTS

Several studies (Chen et al., 2021; Wang et al., 2023a; Lee & Park, 2024) have proposed contin-
ual learning strategies to tackle spatio-temporal graph prediction in scenarios with spatio-temporal
shifts. When the spatio-temporal data distribution undergoes changes, these models engage in fine-
tuning using a subset of new data to adjust to the updated data distribution. For instance, Traf-
ficStream (Chen et al., 2021) recommends utilizing subsets of newly added nodes and significant
temporal pattern data changes for fine-tuning the model. PECPM (Wang et al., 2023b) identifies
conflicting nodes to enhance the fine-tuning process, focusing on nodes that have experienced sub-
stantial changes. DLF (Wang et al., 2024b) introduces a streaming training strategy to continuously
fine-tune the model to adapt to the dynamic nature of spatio-temporal data. TFMoE (Lee & Park,
2024) partitions traffic flow into multiple homogeneous groups and assigns an expert model respon-
sible for each group, enabling each expert model to specialize in learning and adapting to specific
patterns. However, these models often compromise performance to enhance learning efficiency,
resulting in lower performance compared to traditional spatio-temporal models. Primarily, these
models train and fine-tune on a sufficient amount of new distribution data (approximately 21 days
in one month) and test on the new data distribution, thereby adhering to the IID assumption and
encountering difficulties in OOD learning.

A.2 TEMPORAL SHIFT IN TIME SERIES

Various models have been developed in the time series domain to address temporal shifts in time
series data, particularly focusing on OOD learning challenges. For instance, RevIN (Kim et al.,
2021) employs a symmetric structure to eliminate and reconstruct distribution information based
on the input window’s statistics. AdaRNN (Du et al., 2021) categorizes historical time sequences
into different classes and dynamically matches input data to these classes for contextual information
identification. Additionally, a reversible instance normalization technique, proposed by (Kim et al.,
2021), aims to mitigate temporal distribution shift issues. Non-stationary Transformers (Liu et al.,
2022) introduce a normalization-denormalization technique to stabilize time series data, mainly for
transformer-based models. SAF (Arik et al., 2022) suggests test-time adaptation through a self-
supervised objective to enhance adaptation against distribution shifts. DIVERSIFY (Lu et al., 2024)
aims to leverage subdomains within a dataset to mitigate challenges arising from non-stationary
generalized representation learning. However, these models often overlook the modeling of spatial
dependencies. Spatial modeling is crucial in the field of spatiotemporal prediction, as it can examine
the states of neighboring nodes to enhance prediction performance, given the strong correlations that
often exist among neighboring nodes (Jin et al., 2023; Shao et al., 2023).

B ALGORITHM & OPTIMISATION

We have provided the pseudocode of the algorithm in Algorithm 1, where we can observe that STOP
makes final predictions based on the temporal component and spatial component. This includes
a perturbation process to extract robust knowledge. This perturbation process only occurs in the
training phase and we no longer use it in the test phase. We also provide the optimization flow of
GPU and model parameters in Algorithm 2. As shown, we interleaved the optimization of GPU and
model parameters.

C EXPERIMENTS

C.1 BASELINE DETAIL

In experiments, we compare a lot of spatiotemporal prediction models with spatiotemporal OOD
models. However, the original versions of many of these models are not compatible with the OOD
setting. Consequently, we had to remove certain non-essential code related to graph structures,
particularly node embedding techniques and adaptive graph structure learning techniques.
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Algorithm 1: STOP for spatiotemporal prediction

Input: Historical data X ∈ RT×N×c.
Output: Future prediction Ŷ ∈ RTP×N×c.

1 # Data encode;
2 H0 in Eq. 2 ∼ 4; // Temporal decomposition

3 ZI ← H0, T̃,E in Eq. 5 ∼ 6; // Input representation
4 # Temporal modeling and prediction;
5 ZT ← ZI in Eq. 7; // Temporal representation learning
6 Yt ← ZT in Eq. 8; // Temporal prediction component
7 # Spatial modeling and prediction;
8 if test phase then // Client-Server message mechanism
9 Zc ← ZT,C in Eq. 9 ∼ 10; // CPUs

10 if training phase then
11 Zc ← ZT,C, g in Eq. 9 ∼ 10, 17 ∼ 18; // CPUs & GPUs
12 Zs ← Zc,ZT in Eq. 11 ∼ 14; // Spatial representation learning
13 Ys ← Zs in Eq. 15; // Spatial prediction component
14 # Final prediction;
15 Ŷ ← Yt +Ys in Eq. 16; // Final prediction

Algorithm 2: Optimization process of STOP

Input: Historical data X ∈ RT×N×c, GPUs G = {g1, g2, . . . , gM} ⊆ RN , sample hits
s ∈ (0, N), future label Y ∈ RTP×N×c, loss function L, initialized parameters Θ of
STOP function f , patience P , learning rates α and β.

Output: Well-trained parameters Θ∗ of STOP.
1 while maximum epochs nor reached or not converged do
2 for patience = 1, 2, . . . , P do
3 for j = 1, 2, . . . ,M do
4 g′

j ← softmax (gj);
5 g̃j ← sampling from multinomial distributionM

(
g′
j ; s

)
;

6 Gj ← g̃j in Eq. 17; // Generalizable Perturbation Unit
7 Lj ← L (f (X) ,Y;Gj);
8 end
9 L∗ ← max {L1,L2, . . . ,LM};

10 Θ← Θ− α∇ΘL∗; // Update the parametners of STOP
11 end
12 i← argmax {L1,L2, . . . ,LM};
13 gi ← gi + β

(
(1− g̃i) g

⊤
i − log || exp gi||1

)
L∗; // Update GPUs

14 end
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Node embedding technology. The researchers set a node embedding vector E ∈ R×ds to capture
node patterns adaptively, which are coupled with the size N of the graph structure. Therefore,
when the model is trained, it cannot be run directly into the test environment with ST-OOD. STID,
STAEformer, and BigST use this technology.

Adaptive graph learning. This method generally use two noode embedding vectors E1 ∈ RN×ds

and E2 ∈ RN×ds , and they multiply these two node embedding matrices, As = E1E
⊤
2 ∈ RN×N ,

to generate an adaptive adjacency matrix As for learning the adjacency matrix, which is then used
for GCN. GWNet, D2STGNN, and CaST adopt this method.

C.2 EXPERIMENTAL DATASET DETAILS

In this paper, we utilized six datasets to evaluate the effectiveness of the models in OOD scenarios,
primarily from the domains of transportation and atmosphere. These datasets often span multiple
years. Among them, LargeST (Liu et al., 2024) collected five years of data from 8600 records,
sampled at a frequency of five minutes. PEMS3-Stream (Chen et al., 2021) is a naturally streaming
traffic dataset, recording data from July each year from 2011 to 2017, where the traffic structure
expands year by year, naturally representing spatiotemporal shifts. Knowair (Wang et al., 2020)
collected 18 atmospheric features sampled at an hourly frequency. We followed the following rules
to create spatiotemporal OOD datasets.

Temporal shift: We used the first 60% of data from the first year as the training set, followed by 20%
of data for the validation set. We used the last 20% of data from subsequent years for the test set.
This longer time interval ensures changes in temporal distribution characteristics.

Structural shift: Apart from the PeMS3-Stream dataset, we selected a subset of nodes for training
and validation, approximately 75% of the total number, in the test set, we randomly masked 10% of
nodes to simulate node disappearance and added 30% of nodes as new nodes. This is because for
spatiotemporal systems, cities or detection systems generally tend to expand. Since PeMS3-Stream
is a natural streaming data set, we use it directly.

Table 5: The details of used datasets.

Dataset

Training set Test set

Time range
Graph

Temporal shift
Structural shift

Nodes New nodes Removed Nodes

LargeST-SD First 60% data in 2017 550 Last 20% data in 2018-2021 165 55
LargeST-GBA First 60% data in 2017 1809 Last 20% data in 2018-2021 542 180
LargeST-GLA First 60% data in 2017 2949 Last 20% data in 2018-2021 884 294
LargeST-CA First 60% data in 2017 6615 Last 20% data in 2018-2021 1984 661

KnowAir First 60% data in 2011 141 Last 20% data in 2012-2017 42 14
PEMS3-Stream First 60% data in 2015 655 Last 20% data in 2016-2021 (60, 131, 167, 179, 195, 216) 0

C.3 OOD PERFORMANCE COMPARISON ON LARGE DATASETS

As the largest collection of spatiotemporal data available in open source today, CA represents an
invaluable test case for the OOD capability of the model. The performance of STOP and the base-
line is evaluated on large-scale and large-scale spatiotemporal datasets, respectively, under identical
conditions.

Based on the same partitioning strategy as described in Section 5.1, we divide the LargeST dataset
into the two largest subdatasets, GLA and CA. Due to the parameter complexity of Transformer-
based baselines such as STAEformer, STNN, D2STGNN, and STONE, which scales at least quadrat-
ically with the number of nodes, deploying these models on GLA and CA datasets is not feasible.

As shown in Table 6, STOP consistently outperforms the baselines on both the large-scale spatiotem-
poral OOD dataset in terms of overall performance and performance on newly added nodes, with
improvements of up to 14.01%. On large-scale spatiotemporal datasets, the performance of base-
lines based on global message passing mechanisms declines significantly due to the introduction of
more new nodes. STID, which does not involve node interactions, achieves the second-best per-
formance among the baselines. In contrast, STOP benefits from CPUs by decomposing large-scale
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spatiotemporal scenes into stable spatiotemporal subenvironments, leading to the best performance
while ensuring node interactions. This highlights STOP’s remarkable OOD capabilities even in
large-scale scenarios.

Table 6: OOD performance comparisons on GLA and CA datasets. The absence of baselines indi-
cates that the models incur out-of-memory issues.

Method Imp. Ours CaST RPMixer BigST STID STNorm GWNet STGCN
G

L
A

3
MAE +3.72% 19.13 23.36 25.89 20.32 19.87 21.05 21.17 20.51

RMSE +4.56% 30.33 35.53 41.10 32.56 31.78 33.03 32.96 32.24
MAPE +0.83% 11.93 21.44 14.90 12.93 12.03 13.34 13.87 12.81

6
MAE +7.10% 26.29 31.43 43.33 28.83 28.30 30.70 29.91 29.13

RMSE +7.42% 40.66 47.49 66.65 44.69 43.92 46.35 45.47 44.50
MAPE +0.68% 17.60 27.75 26.18 18.49 17.72 20.57 19.90 19.36

12
MAE +10.90% 36.87 43.48 77.32 42.12 41.38 46.13 41.81 43.92

RMSE +9.86% 55.96 65.08 114.02 62.99 62.69 66.98 62.08 64.34
MAPE +2.97% 27.07 36.46 53.23 30.33 27.90 34.63 28.21 31.14

C
A

3
MAE +4.80% 17.47 21.87 23.72 18.77 18.35 19.10 19.01 19.23

RMSE +5.90% 28.24 34.44 38.43 30.77 30.01 30.86 30.30 30.89
MAPE +1.78% 12.69 17.79 16.02 13.60 12.92 15.38 13.62 13.68

6
MAE +9.06% 23.70 29.13 39.52 26.80 26.06 27.63 26.64 27.30

RMSE +10.04% 37.17 45.30 61.88 42.34 41.33 43.10 41.32 42.51
MAPE +4.86% 18.39 23.63 27.42 19.98 19.33 23.24 19.56 20.23

12
MAE +12.68% 32.86 41.26 70.64 39.59 38.23 40.77 37.63 40.64

RMSE +11.90% 50.28 62.85 105.36 60.24 59.16 61.20 57.07 61.01
MAPE +7.12% 27.65 34.71 53.26 32.00 29.77 35.50 30.31 31.93

Table 7: Inductive learning preformance on GLA and CA datasets of new nodes. The absence of
baselines indicates that the models incur out-of-memory issues.

Method Imp. Ours CaST RPMixer BigST STID STNorm GWNet STGCN

G
L

A

3
MAE +3.65% 18.99 23.09 25.65 20.17 19.71 20.92 21.35 20.36

RMSE +4.50% 30.13 35.16 40.89 32.36 31.55 32.84 33.30 32.05
MAPE +0.75% 11.94 21.32 14.86 12.91 12.03 13.26 14.01 12.81

6
MAE +7.00% 26.17 31.15 42.95 28.66 28.14 30.56 30.46 29.00

RMSE +7.29% 40.57 47.16 66.35 44.51 43.76 46.24 46.51 44.39
MAPE +0.51% 17.64 27.62 26.09 18.47 17.73 20.47 20.25 19.38

12
MAE +10.58% 36.78 43.12 76.60 41.84 41.13 45.87 42.97 43.70

RMSE +10.38% 55.89 64.65 113.41 62.56 62.36 66.70 63.92 64.04
MAPE +2.51% 27.17 36.35 53.12 30.24 27.87 34.35 28.98 31.14

C
A

3
MAE +4.74% 17.48 21.86 23.73 18.76 18.35 19.10 19.38 19.23

RMSE +5.81% 28.39 34.50 38.59 30.86 30.14 30.98 30.87 30.96
MAPE +1.91% 12.87 18.46 16.15 13.85 13.12 16.06 15.62 13.97

6
MAE +8.98% 23.71 29.11 39.50 26.79 26.05 27.65 27.47 27.30

RMSE +9.93% 37.29 45.31 62.03 42.38 41.40 43.20 42.50 42.53
MAPE +4.92% 18.73 24.37 27.65 20.34 19.70 24.45 22.76 20.62

12
MAE +14.01% 32.83 41.22 70.53 39.53 38.18 40.75 39.27 40.61

RMSE +14.93% 50.30 62.78 105.38 60.14 59.13 61.20 59.43 60.94
MAPE +7.23% 28.24 35.75 53.61 32.69 30.44 37.24 35.64 32.53

C.4 INDUCTIVE LEARNING COMPARISON ON LARGE DATASETS

To evaluate the inductive learning capabilities of each model, we further report the performance of
added nodes in Table 7. We can see that GCN-based models have overall poor inductive capabilities.
While they can rely on message passing mechanisms to generalize learned information to unseen
nodes, the spatially confused interactions cannot guarantee accurate descriptions of added nodes,
leading to subpar performance. In this regard, STID achieves better predictive results because it as-
sumes nodes are independent, allowing the model to learn time-related knowledge that is unrelated
to nodes, which can generalize to added nodes and avoid error accumulation. Our model demon-
strates strong inductive learning capabilities on large-scale graphs, as added nodes can access shared
context features to obtain good representations.

C.5 PERFORMANCE ON RAPID EVOLUTING SPATIOTEMPORAL DYNAMICAL SYSTEM

In the main experiment, the proportion of added nodes is relatively small (only 30%), which may
not cover rapidly developing urban scenarios. We further create a challenging scenario where we
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train on 30% of nodes from the year 2017 and test on the remaining 70% of nodes from subsequent
years. Details of the experimental dataset are provided in Table 8.

Table 8: Rapidly growth OOD setting on SD dataset.

Training set Test set
Time range Graph (Nodes) Temporal shift Strucal shift

Firtst 60% data in 2017 214 Last 20% data in 2018-2021 500 new nodes & 0 removed nodes

Table 9: OOD performance with rapidly growth on SD dataset.

Method Imp. Ours STONE CaST RPMixer BigST D2STGNN STNN STAEformer STID STNorm GWNet STGCN

A
ll

no
de

s

3
MAE +3.06% 18.04 18.61 21.47 25.20 18.85 20.98 42.24 18.99 18.78 19.14 22.62 20.61

RMSE +2.18% 29.17 29.82 33.75 40.13 30.36 33.46 65.12 30.29 30.17 30.84 34.70 32.56
MAPE +2.14% 12.32 13.74 15.92 15.64 12.59 14.50 33.68 14.87 12.91 15.79 17.83 15.15

6
MAE +5.55% 23.64 25.03 28.80 42.69 26.32 30.83 42.67 26.68 26.52 26.60 32.67 28.28

RMSE +4.56% 38.10 39.92 44.71 66.85 41.79 47.76 65.66 41.82 41.93 42.20 49.31 44.40
MAPE +7.31% 16.49 18.89 20.73 26.13 17.79 21.61 34.18 22.79 18.89 22.20 25.61 20.54

12
MAE +16.35% 32.29 38.97 41.95 77.90 38.60 45.12 46.48 38.76 39.44 38.59 48.05 40.62

RMSE +6.27% 51.74 55.20 63.40 116.56 60.11 68.19 71.04 59.68 60.79 60.35 71.78 63.28
MAPE +14.11% 22.95 26.80 31.80 49.35 26.72 31.83 36.88 33.16 30.24 35.07 40.56 29.35

N
ew

no
de

s

3
MAE +2.97% 18.28 18.84 21.53 25.24 18.97 21.26 44.82 19.16 18.92 19.37 22.97 20.86

RMSE +2.13% 29.47 30.11 33.67 39.93 30.34 33.81 68.42 30.43 30.22 31.06 35.27 32.98
MAPE +1.73% 12.50 14.07 16.20 15.66 12.72 14.98 35.29 15.21 13.08 16.38 18.45 15.54

6
MAE +5.40% 24.02 25.39 28.94 42.76 26.55 31.34 45.26 27.00 26.79 27.02 33.27 28.71

RMSE +4.51% 38.57 40.39 44.74 66.81 41.94 48.51 68.97 42.19 42.17 42.74 50.15 45.06
MAPE +6.94% 16.77 19.40 21.04 26.13 18.02 22.34 35.86 23.34 19.22 23.22 26.58 21.08

12
MAE +15.57% 32.81 39.40 42.19 77.95 38.86 45.73 48.99 39.22 39.78 39.24 48.98 41.26

RMSE +6.05% 52.31 55.68 63.55 116.44 60.25 68.94 74.23 60.24 61.08 61.32 72.91 63.97
MAPE +14.82% 23.33 27.39 32.22 49.28 26.88 32.76 38.59 33.87 30.86 37.24 41.97 30.12

We observe that for baseline models based on Transformer and GCN, such as D2STGNN and
GWNet, the rapid and large influx of new nodes significantly disrupts the model’s learning of
message passing mechanisms, leading to a decrease in performance for models relying on such
global message passing mechanisms. Models like BigST based on linear attention mechanisms
and STONE based on relaxed mapping perform better than the former in out-of-distribution (OOD)
scenarios with rapid growth. On the other hand, STID, based on node independence, shows limi-
tations in generalizing features to new nodes when faced with a large number of additional nodes.
In contrast, STOP benefits from its innovative CPU and GPU-oriented low-order attention mecha-
nism, capturing flexible adaptations to changes in the overall spatio-temporal environment through
sub-environments, showing the highest relative improvement rate at 16.35% and demonstrating ro-
bustness in scenarios with rapid node growth.

C.6 COMPARE CONTINUOUS LEARNING METHOD

We compared STOP with several continual learning methods on out-of-distribution (OOD) tasks.
Taking the PEMS03-Stream dataset as an illustration, when encountering spatiotemporal shifts,
these models require fine-tuning using 21-day data from the new distribution. To ensure a fair
comparison, we aligned the OOD task settings by conducting tests directly in the subsequent years
following the initial year of training. This training methodology is denoted as ’static-STModel’ in
TrafficStream (Chen et al., 2021), ’SurSTG-Static’ in PEMCP (Wang et al., 2023b), and ’Static-
TFMoE’ in TFMoE (Lee & Park, 2024). We directly extracted their experimental results from the
PEMS03-Stream dataset. For an intuitive comparison, we have added the predicted performance of
STGCN.

As depicted in Table 10, the performance of continual learning strategies is notably inferior to tra-
ditional prediction models because they trade performance for accelerated training processes. And
our model significantly surpasses existing continual learning models in OOD tasks.

It is noteworthy that in this experiment, the performance indicated by STOP is slightly superior to
that in the primary experiment because the results amalgamate the performance of testing data in
the first year, which was omitted in the primary experiment to emphasize the disparities in data
distribution between the test and training sets as much as possible.
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Table 10: Compared with spatio-temporal continuous learning methods on PEMS3-Stream dataset.

Model
15min 30min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PECMP 13.37 21.10 28.35 14.78 23.54 30.88 16.32 27.20 34.28
TrafficStream 13.98 21.88 29.36 15.12 23.98 31.67 17.46 28.01 36.44

TFMoE 12.95 21.18 18.97 14.51 23.90 19.62 18.07 29.87 24.92

STGCN 13.27 21.03 16.64 14.47 23.64 18.03 17.05 27.95 21.04
Ours 11.37 19.16 15.38 12.41 21.18 15.92 14.24 24.39 18.51

C.7 EFFICIENCY STUDY

The training time per epoch is depicted in Figure 6, showcasing the remarkable effectiveness and
efficiency of STOP on the KnowAir dataset. Transformer-based models like STNN, STARformer,
and D2STGNN exhibit substantial computational time and high memory usage due to their utiliza-
tion of self-attention mechanisms to calculate dependencies between node pairs, resulting in a time
and space complexity that scales quadratically with the number of nodes. Similarly, GCN-based
models rely on GCN mechanisms for spatial feature interactions, leading to a time complexity that
is also quadratic with the number of nodes. In contrast, our model, with a complexity linear with the
number of nodes, significantly reduces the computational complexity.
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Figure 6: Visual case and efficiency study of STOP on KnowAir dataset.

C.8 DETAILED PERFORMANCE ANALYSIS OF OOD IN EACH YEAR

In the main experiment, we reported the average OOD performance over multiple years. To provide a
more detailed comparison, we present the performance changes of each model in the spatio-temporal
OOD dataset for each year. As shown in Table 11 to 15, the results demonstrate that in fine-grained
performance analysis, our model remains highly effective.
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Table 11: OOD performance on LargeST-2018 dataset

Method Ours CaST RPMixer BigST STID STNorm GWNet STGCN STONE D2STGNN STNN STAEformer
SD

3
MAE 17.80 22.07 26.22 19.13 18.65 19.48 19.84 18.68 18.83 18.38 35.32 19.01

RMSE 28.23 34.38 41.83 30.76 29.87 30.75 30.62 29.29 29.97 28.51 55.12 30.25
MAPE 10.76 14.68 15.28 11.47 12.25 11.96 12.50 11.56 11.24 11.47 23.38 11.58

6
MAE 23.40 30.03 44.55 26.41 26.01 26.76 26.97 24.53 26.38 23.98 35.77 26.21

RMSE 37.13 46.41 69.75 41.64 40.92 41.64 41.36 38.01 38.53 37.72 55.73 41.04
MAPE 14.52 19.82 25.81 16.28 16.57 16.71 17.98 15.22 15.02 15.03 23.72 16.22

12
MAE 32.06 43.42 80.17 38.86 38.31 38.93 37.66 34.78 38.77 32.97 41.51 38.25

RMSE 51.45 66.43 120.41 60.05 59.78 60.02 58.90 53.80 51.94 51.27 64.44 59.22
MAPE 20.59 29.10 48.67 24.68 24.39 25.31 26.42 22.96 22.15 21.70 28.11 24.79

G
B

A

3
MAE 19.87 24.51 28.16 22.44 21.70 22.33 21.96 22.61 20.58 20.48 41.67 23.27

RMSE 32.71 38.63 45.26 36.86 35.55 36.07 34.62 36.12 36.49 35.06 62.49 37.74
MAPE 15.74 23.37 21.21 18.03 17.34 18.08 18.71 17.26 16.65 16.67 39.87 18.17

6
MAE 25.44 32.60 45.23 30.73 29.52 30.96 28.76 30.21 26.15 26.05 41.57 31.18

RMSE 40.59 49.60 69.42 47.93 46.23 47.50 43.56 46.13 42.86 42.49 62.41 48.28
MAPE 23.19 32.35 37.04 27.13 27.55 27.63 26.81 26.59 24.30 24.63 39.73 27.59

12
MAE 33.94 45.49 77.43 43.71 41.78 43.38 38.42 41.67 36.96 34.94 46.13 44.53

RMSE 53.45 67.92 113.45 65.75 63.68 64.22 57.12 61.36 56.02 54.96 68.65 66.98
MAPE 33.85 45.54 69.67 41.11 42.03 43.41 38.80 40.22 37.77 37.31 46.05 43.32

G
L

A

3
MAE 19.70 24.78 28.12 21.81 21.03 22.27 21.52 21.73

Out of Memory

RMSE 31.31 37.70 44.37 34.75 33.54 34.76 33.47 33.99
MAPE 11.25 19.65 14.84 12.42 11.58 12.62 12.69 11.91

6
MAE 26.38 33.17 47.11 30.71 29.39 31.64 29.57 30.22

RMSE 41.01 50.28 72.19 47.55 45.86 47.81 45.05 46.24
MAPE 16.20 25.56 26.16 17.46 16.73 18.70 17.76 17.50

12
MAE 36.15 45.37 83.11 44.34 42.28 45.84 40.51 44.17

RMSE 55.61 68.36 121.95 66.37 64.77 67.03 60.64 65.32
MAPE 24.33 33.70 53.19 27.87 25.94 29.77 24.75 26.93

C
A

6
MAE 18.66 23.86 26.15 20.59 20.07 20.41 19.96 20.84

RMSE 30.26 37.58 42.44 33.80 32.72 33.06 31.84 33.53
MAPE 13.24 18.53 17.31 14.28 13.71 14.50 14.02 14.24

12
MAE 24.67 31.61 43.27 28.95 28.08 28.61 27.00 29.04

RMSE 39.12 49.24 67.85 45.85 44.60 45.05 41.99 45.49
MAPE 18.98 24.83 29.84 20.89 20.56 21.59 19.74 20.89

24
MAE 33.54 44.03 75.81 41.51 40.52 40.85 37.02 42.04

RMSE 52.42 67.48 113.33 63.71 63.08 62.43 56.46 63.80
MAPE 27.78 36.25 57.70 32.88 31.63 32.32 30.10 32.09

Table 12: OOD performance on LargeST-2019 dataset

Method Ours CaST RPMixer BigST STID STNorm GWNet STGCN STONE D2STGNN STNN STAEformer

SD

3
MAE 18.42 22.51 26.61 19.71 19.51 19.56 21.12 19.63 19.42 19.54 37.94 19.52

RMSE 29.68 35.36 42.80 32.18 31.39 31.25 33.00 31.15 30.88 30.68 59.76 31.62
MAPE 11.73 16.02 16.03 12.27 13.18 12.65 14.57 12.99 12.76 12.91 28.17 12.58

6
MAE 24.16 30.58 44.89 26.85 26.88 26.32 28.93 26.05 25.86 25.76 38.28 26.58

RMSE 38.73 47.64 70.91 43.07 42.76 41.85 44.61 40.84 40.54 39.74 60.37 42.38
MAPE 15.81 21.39 26.91 17.42 17.95 17.44 20.96 17.25 17.80 17.12 28.40 17.50

12
MAE 32.78 43.96 80.12 39.17 39.31 38.24 40.49 37.07 36.89 35.59 43.02 38.22

RMSE 52.84 67.24 120.77 61.26 61.64 60.13 62.82 57.94 54.16 54.24 67.88 60.11
MAPE 22.22 31.30 50.17 26.46 26.42 26.47 30.52 26.08 26.00 25.06 32.33 26.42

G
B

A

3
MAE 19.95 23.90 27.07 21.52 21.01 21.98 21.95 22.43 22.26 21.46 41.80 22.59

RMSE 32.18 37.26 42.81 34.69 34.16 34.68 33.94 35.05 34.94 35.45 62.20 35.99
MAPE 15.45 21.66 19.51 16.54 15.95 17.48 17.87 16.16 16.04 16.84 38.21 16.74

6
MAE 26.30 31.96 43.87 29.93 29.05 31.42 29.34 30.51 28.25 27.84 41.72 30.51

RMSE 40.91 48.34 66.45 45.96 45.13 46.99 43.72 45.62 42.30 43.83 62.10 46.78
MAPE 23.51 30.05 34.24 24.85 25.50 27.53 25.63 25.25 25.05 24.59 38.23 25.25

12
MAE 36.07 44.88 76.42 43.52 41.75 44.80 39.71 43.12 36.93 37.50 45.94 43.56

RMSE 54.99 67.05 110.42 65.05 63.30 64.97 58.44 62.39 56.18 57.40 67.93 65.74
MAPE 34.75 42.42 65.49 37.91 38.94 43.22 37.05 38.59 35.69 36.41 43.50 38.83

G
L

A

3
MAE 19.69 24.47 27.31 21.23 20.76 21.51 21.69 21.10

Out of Memory

RMSE 30.93 37.04 43.19 33.92 32.95 33.70 33.58 33.12
MAPE 11.74 21.06 15.06 12.69 12.01 12.88 13.66 12.35

6
MAE 26.68 32.83 45.88 29.83 29.44 30.68 30.29 29.50

RMSE 41.06 49.58 70.56 46.45 45.54 46.59 45.96 45.29
MAPE 17.13 27.37 26.73 17.97 17.68 19.31 19.35 18.42

12
MAE 36.79 45.09 81.30 42.90 42.73 44.89 41.81 43.33

RMSE 56.03 67.71 119.66 64.97 64.92 66.28 62.28 64.54
MAPE 25.92 36.07 55.21 28.69 27.67 31.03 27.11 28.64

C
A

6
MAE 18.50 23.33 25.21 19.90 19.51 19.91 19.81 20.19

RMSE 29.65 36.55 40.72 32.59 31.74 32.19 31.40 32.40
MAPE 13.34 18.47 16.80 14.01 13.44 15.19 14.04 13.94

12
MAE 24.94 30.93 41.86 28.08 27.58 28.22 27.27 28.23

RMSE 38.97 48.06 65.53 44.55 43.67 44.30 42.14 44.22
MAPE 19.55 24.73 29.04 20.55 20.30 22.95 20.04 20.56

24
MAE 34.31 43.25 73.86 40.68 40.08 40.80 37.76 41.13

RMSE 52.57 66.25 110.23 62.63 62.31 62.15 57.27 62.72
MAPE 29.07 36.29 56.63 32.69 31.37 34.17 30.78 31.72
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Table 13: OOD performance on LargeST-2021 dataset

Method Ours CaST RPMixer BigST STID STNorm GWNet STGCN STONE D2STGNN STNN STAEformer

SD

3
MAE 18.24 21.42 25.11 19.24 18.92 19.29 20.97 19.33 18.61 19.54 38.32 19.69

RMSE 29.23 33.16 39.71 30.70 30.10 30.74 32.61 30.60 30.01 30.73 58.72 27.31
MAPE 12.02 15.99 15.64 12.27 13.33 12.80 15.29 13.21 12.95 13.81 27.23 12.91

6
MAE 24.22 29.31 42.46 26.47 26.50 26.78 29.11 26.33 26.09 26.55 38.64 27.21

RMSE 38.64 44.84 65.77 41.67 41.67 42.10 44.43 41.13 40.94 41.07 59.25 42.59
MAPE 16.31 21.48 26.12 18.57 18.41 17.96 21.94 17.82 17.58 18.35 27.34 18.10

12
MAE 33.06 42.01 77.24 38.48 38.91 38.60 40.88 37.16 37.77 37.26 42.59 38.66

RMSE 52.31 62.75 114.49 59.15 60.06 59.64 62.34 57.35 56.07 56.52 65.51 59.78
MAPE 22.98 31.50 49.02 26.74 27.21 27.48 31.56 26.67 26.02 26.77 31.06 27.48

G
B

A

3
MAE 17.44 20.37 23.25 18.68 17.64 20.12 19.76 21.12 18.23 18.32 39.34 19.63

RMSE 28.33 32.32 37.24 30.49 29.58 31.67 30.91 32.83 29.56 31.67 57.83 31.84
MAPE 11.46 13.84 13.74 11.88 10.73 13.67 12.54 12.59 10.72 12.06 26.84 12.03

6
MAE 24.12 27.81 38.87 27.59 25.21 31.23 27.70 30.22 25.87 25.42 39.18 26.96

RMSE 37.13 42.60 59.14 42.14 39.93 46.19 41.54 44.89 39.06 41.14 57.64 41.73
MAPE 17.16 19.18 23.40 17.63 16.38 22.01 18.15 18.99 17.21 17.75 26.75 17.39

12
MAE 35.00 39.89 70.24 41.91 37.03 45.97 39.12 43.87 36.03 36.09 42.72 39.04

RMSE 52.48 59.20 100.88 60.59 56.12 64.95 57.59 62.31 58.97 55.86 62.52 58.17
MAPE 26.56 27.65 44.32 27.42 26.84 34.75 26.88 29.04 26.67 26.96 29.43 26.71

G
L

A

3
MAE 18.86 22.84 24.75 19.69 20.31 20.59 20.98 19.98

Out of Memory

RMSE 30.05 34.85 39.70 31.81 32.13 32.59 32.77 31.76
MAPE 11.99 21.13 14.56 12.68 12.89 13.15 13.95 12.59

6
MAE 26.22 30.69 41.37 27.88 28.59 30.16 29.73 28.42

RMSE 40.56 46.41 63.92 43.35 43.85 45.63 45.22 43.60
MAPE 18.04 27.41 25.56 18.23 18.60 20.36 20.05 19.14

12
MAE 37.19 42.11 74.06 40.33 41.17 45.21 41.30 43.05

RMSE 56.17 62.84 110.23 60.29 61.56 65.44 61.33 62.86
MAPE 28.09 35.91 51.89 29.45 28.61 34.08 27.84 30.83

C
A

6
MAE 16.89 21.15 22.68 17.93 17.58 18.46 18.47 18.46

RMSE 27.45 33.42 36.75 29.54 28.99 30.00 29.52 29.84
MAPE 11.87 16.48 14.87 12.56 12.02 15.25 12.76 12.60

12
MAE 23.08 28.08 37.95 25.66 25.06 26.82 26.22 26.20

RMSE 36.07 43.74 59.24 40.57 39.82 41.83 40.67 40.85
MAPE 17.21 21.83 25.41 18.40 17.88 23.02 18.39 18.58

24
MAE 32.27 39.63 68.35 37.99 36.71 39.46 37.29 39.01

RMSE 49.11 60.16 101.84 57.47 56.62 58.96 56.56 58.40
MAPE 26.04 31.94 49.28 29.39 27.37 34.64 28.40 29.37
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Table 14: OOD performance of each year in PEMS3-Stream dataset.

Method Ours STONE CaST RPMixer BigST D2STGNN STNN STAEformer STID STNorm GWNet STGCN

20
12

3
MAE 10.65 12.50 14.61 14.03 12.08 12.13 15.12 12.13 12.30 12.21 12.21 12.67

RMSE 16.92 18.96 22.30 21.71 18.59 18.67 23.67 18.71 18.78 18.67 18.72 19.33
MAPE 14.48 16.88 29.76 17.43 16.37 15.93 19.86 15.94 16.04 18.14 15.81 16.15

6
MAE 11.49 13.33 16.14 16.50 13.14 13.12 15.03 13.27 13.31 13.24 13.14 13.69

RMSE 18.37 21.21 25.02 25.96 20.44 20.31 23.54 20.59 20.50 20.45 20.30 21.10
MAPE 15.74 17.58 31.36 20.21 18.27 16.95 19.70 18.91 17.82 19.43 17.18 17.66

12
MAE 13.04 15.88 19.66 22.66 15.44 15.18 15.68 15.43 15.32 15.31 14.94 16.00

RMSE 21.02 23.86 30.80 36.24 24.17 23.63 24.52 24.32 23.89 23.88 23.25 24.89
MAPE 17.71 19.55 36.40 26.84 21.63 19.20 21.77 20.13 20.24 21.71 19.29 20.49

20
13

3
MAE 10.90 12.74 15.23 14.35 12.35 12.42 16.17 12.40 12.53 12.50 12.51 12.99

RMSE 17.82 19.66 23.65 22.80 19.55 19.59 26.08 19.64 19.68 19.61 19.69 20.37
MAPE 14.57 16.41 31.18 17.55 16.60 15.95 20.75 16.02 16.09 19.44 15.91 16.23

6
MAE 11.92 13.76 17.03 17.17 13.63 13.61 16.09 13.76 13.74 13.80 13.66 14.23

RMSE 19.62 21.46 26.87 27.85 21.76 21.64 25.93 21.99 21.75 21.89 21.72 22.52
MAPE 15.85 17.69 32.89 20.54 18.66 17.01 20.56 19.17 17.93 21.31 17.42 17.88

12
MAE 13.71 15.55 21.07 23.95 16.22 16.05 16.81 16.31 16.11 16.21 15.88 16.83

RMSE 22.64 24.48 33.26 39.09 25.93 25.46 26.96 26.32 25.62 25.75 25.24 26.69
MAPE 18.00 19.84 38.16 27.53 22.37 19.45 22.66 20.41 20.64 23.90 19.81 20.83

20
14

3
MAE 11.60 13.44 15.86 15.14 13.02 13.07 17.31 13.07 13.18 13.27 13.15 13.64

RMSE 19.31 21.15 24.81 23.94 20.52 20.85 28.39 20.73 20.61 20.94 20.90 21.43
MAPE 16.07 17.91 35.03 19.18 18.85 17.55 26.73 17.49 17.73 22.35 17.42 17.75

6
MAE 12.58 14.42 17.62 17.87 14.28 14.16 17.84 14.35 14.33 14.70 14.20 14.82

RMSE 21.16 23.00 27.97 28.75 22.65 22.72 30.30 22.90 22.57 23.33 22.81 23.44
MAPE 17.24 18.08 36.71 22.10 21.53 18.55 31.25 20.92 19.67 24.90 18.91 19.45

12
MAE 14.35 16.19 21.65 24.82 16.89 16.57 19.01 16.91 16.69 17.14 16.39 17.51

RMSE 24.39 26.23 34.58 40.36 27.00 26.75 30.76 27.42 26.54 27.49 26.47 27.95
MAPE 19.45 21.29 42.31 29.40 26.32 20.98 40.87 22.02 22.50 28.18 21.31 22.52

20
15

3
MAE 11.55 13.39 15.53 14.85 12.92 12.99 17.40 12.92 13.09 13.21 13.10 13.50

RMSE 19.67 21.51 24.44 23.65 20.79 20.94 29.50 20.86 20.96 21.13 21.01 21.46
MAPE 15.67 17.51 33.81 18.68 18.07 17.13 25.68 16.95 17.21 21.55 16.87 17.22

6
MAE 12.62 14.46 17.21 17.60 14.20 14.16 17.92 14.29 14.35 14.82 14.27 14.77

RMSE 21.98 23.82 27.71 28.92 23.29 23.20 31.31 23.51 23.54 24.10 23.43 23.93
MAPE 16.89 18.73 35.36 21.57 20.59 18.09 28.98 20.39 19.05 24.11 18.32 18.81

12
MAE 14.29 16.13 20.85 23.99 16.66 16.49 18.80 16.77 16.59 17.20 16.39 17.23

RMSE 25.16 30.70 33.78 39.91 27.73 27.46 31.64 28.21 27.74 28.36 27.28 28.32
MAPE 19.01 20.85 40.51 28.42 25.01 20.45 35.42 21.32 21.67 27.24 20.59 21.67

20
16

3
MAE 11.25 13.19 15.09 14.23 12.47 12.73 17.67 12.51 12.64 12.86 12.77 13.14

RMSE 22.46 24.30 26.12 25.12 22.56 23.77 32.55 23.54 22.80 23.12 23.29 23.69
MAPE 14.26 16.10 31.35 17.12 16.54 16.11 26.31 15.66 15.74 19.93 15.59 16.02

6
MAE 12.37 14.21 16.74 16.95 13.75 13.94 18.15 13.85 13.90 14.53 14.00 14.41

RMSE 25.09 26.93 29.14 30.11 25.06 26.04 34.04 26.11 25.38 26.10 25.83 25.94
MAPE 15.52 17.36 32.92 20.01 18.93 17.14 30.98 18.79 17.57 22.21 17.07 17.52

12
MAE 14.21 16.05 20.50 23.42 16.40 16.51 19.32 16.50 16.33 17.13 16.33 17.03

RMSE 28.89 35.73 35.16 41.23 29.87 30.78 35.16 31.11 30.02 30.83 30.13 30.43
MAPE 17.81 22.65 38.28 27.08 23.27 19.72 39.49 20.05 20.32 25.37 19.52 20.46

20
17

3
MAE 12.54 14.38 16.26 15.49 13.88 14.01 18.61 13.84 14.02 14.13 14.06 14.37

RMSE 21.47 23.31 25.88 25.15 22.73 23.02 30.63 22.64 22.89 22.98 23.06 23.35
MAPE 15.72 17.56 31.78 18.18 17.35 16.78 22.47 16.82 17.14 21.20 16.85 16.90

6
MAE 13.79 15.63 18.04 18.38 15.31 15.47 18.54 15.34 15.46 15.99 15.56 15.87

RMSE 23.81 25.65 29.05 30.08 25.23 25.63 30.53 25.20 25.43 26.12 25.77 25.99
MAPE 17.12 19.96 33.40 20.98 19.23 18.00 22.31 20.06 19.07 22.64 18.53 18.63

12
MAE 16.01 17.85 22.04 25.15 18.27 18.48 19.50 18.34 18.31 19.23 18.28 18.88

RMSE 27.65 29.47 35.33 41.03 30.06 30.58 31.79 30.14 30.08 31.35 30.24 30.94
MAPE 19.59 21.43 38.75 27.76 22.93 20.89 24.62 21.74 22.08 25.40 21.22 21.84
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Table 15: OOD performance of each year in KnowAir dataset from 2016 to 2018

Method Ours STONE CaST RPMixer BigST D2STGNN STNN STAEformer STID STNorm GWNet STGCN

20
16

3
MAE 29.98 32.49 31.46 37.20 31.53 31.58 32.85 31.49 32.12 34.84 33.79 33.40

RMSE 47.95 49.23 49.01 55.72 48.21 48.05 49.42 48.28 50.06 54.14 51.66 50.09
MAPE 48.93 51.15 53.22 69.42 54.59 53.61 58.98 49.51 53.55 60.90 49.75 54.55

6
MAE 32.92 35.47 34.03 46.82 34.96 35.14 36.11 34.49 36.62 37.02 36.32 36.64

RMSE 52.67 54.13 51.59 68.51 53.87 52.80 53.47 52.01 56.59 57.21 54.27 54.52
MAPE 50.10 62.40 60.37 90.19 62.45 60.73 65.56 55.48 61.12 65.40 55.88 62.49

12
MAE 34.34 36.70 36.72 51.98 36.96 36.31 37.37 35.51 37.78 37.12 36.83 39.03

RMSE 54.14 56.03 56.21 77.45 56.03 53.54 57.76 53.69 57.42 54.81 53.97 57.19
MAPE 52.25 70.09 64.81 101.17 68.75 63.99 65.97 57.10 64.08 71.09 61.89 71.04

20
17

3
MAE 20.98 23.87 23.57 28.21 22.25 23.52 24.42 23.14 23.30 25.54 24.81 25.56

RMSE 29.94 32.70 32.84 41.33 31.57 32.02 32.56 31.77 32.34 35.30 33.89 34.97
MAPE 51.29 53.57 63.10 75.25 58.00 60.40 66.94 54.19 60.12 70.36 55.37 60.32

6
MAE 22.97 25.88 26.92 34.99 24.77 26.19 26.64 26.12 27.11 27.01 28.15 29.99

RMSE 32.35 34.79 36.65 49.30 34.54 35.53 35.78 35.29 36.87 36.09 37.24 39.70
MAPE 53.15 66.05 73.63 93.48 66.65 64.60 71.04 62.89 70.15 73.78 64.47 75.48

12
MAE 24.89 26.79 28.55 37.48 27.14 26.88 26.95 27.15 29.25 28.88 29.99 33.17

RMSE 35.15 37.15 38.79 51.86 37.20 36.38 36.37 36.38 39.38 38.14 38.95 43.26
MAPE 58.07 70.38 80.71 93.46 75.56 68.35 74.25 66.59 77.75 85.63 73.96 84.94

20
18

3
MAE 22.15 24.31 23.58 26.28 23.25 24.21 26.29 23.94 24.04 25.00 24.91 25.56

RMSE 31.79 35.55 33.41 38.96 33.00 33.65 35.22 33.41 34.32 34.99 35.20 34.97
MAPE 55.59 52.51 62.27 62.51 59.76 61.15 71.29 55.00 59.84 64.53 52.15 60.32

6
MAE 25.18 27.96 27.53 33.54 27.16 28.86 28.68 27.75 28.84 28.54 28.84 29.99

RMSE 35.85 39.00 37.69 47.96 36.83 39.22 38.75 37.85 40.32 38.30 39.45 39.70
MAPE 60.09 72.52 76.44 79.13 76.08 75.96 76.56 66.55 74.04 76.32 64.18 75.48

12
MAE 26.88 28.19 29.64 38.53 30.60 29.63 30.13 30.22 31.30 31.57 32.15 33.17

RMSE 37.88 43.26 40.62 54.58 40.32 39.71 40.03 40.38 43.21 41.44 42.48 43.26
MAPE 63.56 84.86 80.56 89.64 85.98 77.17 82.21 72.25 80.22 87.24 76.68 84.94
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C.9 ABLATION EXPERIMENT

We conduct thorough ablation experiments to evaluate the effectiveness of each component. The
variants we created are shown in Table 16 and the experiments are shown in Table 16.

For the time module, we found that time decomposition and prompting provided the model with
better capabilities to capture the temporal patterns from the sequence perspective, while the intro-
duction of Yt to make predictions from multiple components enhanced the model’s robustness.

Regarding the C&S messaging mechanism, the ”w/o CPU” variant, which removes the spatial in-
teraction module, resulted in a significant increase in error, indicating that the spatial interaction
is still necessary in OOD scenarios. The ”w/o LA” variant, which removes the low-rank attention
mechanism in the C&S spatial interaction module, performed poorly in prediction, as the traditional
node-to-node messaging mechanism is less robust to spatio-temporal shifts. The ”w/o LA+DRO”
variant performed better than the ”w/o LA+RandomDrop” variant, demonstrating that the proposed
graph perturbation mechanism is more effective than directly perturbing the dataset to generate di-
verse training environments in helping the model extract robust representations.

The ”w/o DRO” variant exhibited a larger prediction error, suggesting that the inability to effectively
optimize the deployed GPU mask matrix increased the complexity of the model’s learning process.
The ”w/o (GPU&DRO)” variant also showed a considerable increase in error, further highlighting
the crucial importance of the proposed graph perturbation mechanism in enhancing the model’s
robustness, as it allows the model to learn resilient representations from the perturbed environments.

These ablation studies can demonstrate the positive impact of each designed component on enhanc-
ing the overall performance of the model in out-of-distribution scenarios.

Table 16: Variants and their definitions in ablation experiment.

Variant Definition

w/o decom Remove the decoupling mechanism
w/o prompt Remove the temporal prompt learning

w/o (decom & prompt) Remove the decoupling mechanism and temporal prompt learning
w/o Yt Remove the temporal prediction component
w/o Ys Remove the spatiotemporal prediction component

w/o CPU Completely remove the spatial interaction mechanism
w/o LA Use naive self-attention mechanism to replace Low-rank attention

w/o LA + GPU Add GPU term with the variant w/o LA
w/o LA + GPU +DRO Add GPUs and spatiotemporal DRO with the variant w/o LA
w/o LA+RandomDrop Randomly mask 20% training nodes and then train variant w/o LA

w/o DRO Remove spatiotemporal DRO
w/o (GPU&DRO) Remove spatiotemporal DRO and GPU

w/o (GPU&DRO)+RandomDrop Remove spatiotemporal DRO and GPU and randomly mask 20% training nodes to simulate temporal and spatial shifts

Table 17: Ablation experiments on SD and KnowAir datasets.

Variant
SD KnowAir

MAE RMSE MAPE MAE RMSE MAPE

Ours 23.79 37.94 16.24 24.78 36.77 51.02
w/o decom 24.09 38.49 17.53 25.10 37.10 54.16
w/o prompt 24.67 39.83 18.20 25.27 36.78 51.42

w/o decom & prompt 25.23 40.46 19.01 25.83 37.25 54.33
w/o Yt 23.87 38.02 16.86 25.70 36.99 53.10
w/o Ys 26.25 41.25 18.76 27.04 39.21 63.68

w/o CPU 26.06 41.47 17.56 26.88 38.22 58.23
w/o LA 26.14 41.86 18.26 25.62 37.10 53.12

w/o LA + GPU 26.29 42.15 18.71 25.61 36.86 55.81
w/o LA + GPU + DRO 26.11 41.73 17.58 25.10 36.91 54.73
w/o LA + RandomDrop 27.41 43.11 18.32 25.77 37.16 59.09

w/o DRO 24.08 38.17 17.06 24.93 37.24 54.86
w/o (GPU&DRO) 24.52 38.65 18.13 25.26 36.98 55.12

w/o (GPU&DRO)+RandomDrop 24.77 38.90 18.48 25.45 36.87 55.90
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C.10 ADDITIONAL SENSITIVITY EXPERIMENTS

In addition to the hyperparameter experiment in Section5.4 of the main body, we additionally de-
ployed conduct experiments on four datasets—SD, GBA, GLA, and CA—to analyze the sensitivity
of two hyperparameters, the number of CPUs K and the number of GPUs M . The numebr of nodes
for training in these six datasets range from 141 to 6615 nodes. The results on six datasets are shown
in Figure 8.

The number of CPUs K. CPU is the coarsening unit set up to interact with the node. Thus, the
number of CPUs K is closely related to the spatial scale. Based on our observations, we find that
setting K to approximately 1% of the spatial scale is a good choice. A larger number of CPUs can
hinder the model’s ability to focus on capturing generalizable contextual features.

The number of GPUs M . The hyperparameter M represents the number of GPU, which are used
to modulate the interaction process between nodes and CPUs. Each GPU corresponds to a differ-
ent training environment. We have observed that the number of GPUs M is universally effective
when set to between 2 and 4. When M is set to a smaller value, an overly complex training envi-
ronment can disrupt learning stability. Conversely, if there are too few GPUs, the limited training
environments may not provide sufficient diversity for the model to extract invariant knowledge. In-
terestingly, this hyperparameter is insensitive to spatial scale.

We further analyze the sensitivity of this hyperparameter to the temporal span of the dataset. Long-
range SD, GBA, GLA, and CA datasets contain a full year of training data, and TrafficStream is a
short-range dataset containing one month data for training. And we can see that M is not highly
correlated with the time span of the data.

Summary. Based on the above analysis, we recommend setting the initial values K to 1% of the
number of training nodes and the initial values of M between 2 and 4 for hyperparameter tuning in
out-of-distribution (OOD) scenarios.
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Figure 7: Sensitivity experiments of CPUs.

D DISCUSSION

The effectiveness of traditional spatiotemporal prediction models is typically demonstrated only in
testing environments that closely resemble the training environment. While some studies on spa-
tiotemporal OOD challenges have recognized the issues stemming from distribution shifts due to
spatiotemporal variations and have proposed various strategies, however, both traditional models
and OOD learning model reliance on node-to-node global interaction mechanisms constrains their
generalization performance in the face of such shifts. To address this inherent limitation, we intro-
duce an innovative spatiotemporal interaction mechanism that replaces the traditional node-to-node
approach. This new mechanism incorporates CPU units that can perceive contextual features from
nodes, which helps maintain high generalization in unknown environments. Additionally, we de-
sign graph perturbation mechanism to further enhance robustness. Our method have been validated
across eight OOD datasets, demonstrating performance improvements of up to +17.01%. More im-
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Figure 8: Sensitivity experiments of GPUs.

portantly, our findings provide valuable insights for future OOD researchers: (1) The core message-
passing mechanisms in GCNs and Transformers are limited in OOD scenarios, indicating a need to
explore alternatives beyond traditional GCN/Transformer with sequential model architectures; (2)
A lightweight yet powerful architecture, such as Multi-Layer Perceptrons (MLPs), may be more
suitable for OOD learning, as complex GCN or Transformer architectures can overfit to the train-
ing environment and compromise their generalization capabilities. However, there are still some
limitations for future research:

Exploring a Wider Range of OOD Scenarios. Current OOD problems are typically defined within
the confines of single-modal data and single tasks. However, spatiotemporal data exhibits diverse
modalities and varied tasks. We believe that an improved spatiotemporal OOD handler should be
capable of addressing challenges such as cross-task and cross-modal processing, areas that have not
been thoroughly explored in the spatiotemporal domain.

Integrating Large Language Models for zero-shot learning. In OOD scenarios, accurately pre-
dicting new nodes poses a significant challenge, as these nodes have not been encountered by the
model during training—commonly referred to as the zero-shot challenge. Large language models
excel in this context, as their representational capabilities, developed from extensive training on
massive datasets, can enhance a model’s zero-shot learning ability. While this has been successfully
demonstrated in the time series community, it remains relatively unexplored within the spatiotem-
poral domain. In future work, we plan to integrate large language models into the STOP framework
to further enhance its scalability for predicting new nodes.

Validating the Broad Impact of STOP. The spatial interaction module integrated within the STOP
framework is inherently generic, suggesting its potential for broader applicability. In upcoming re-
search, we will propose replacing the graph convolutional networks utilized by other spatiotemporal
backbones with the spatial interaction module to validate its effectiveness across various contexts.
This initiative will help us better understand the potential value and applicability of the STOP mod-
ule in a wide range of application domains.

E EXPLANATION OF CLIENT-TO-SERVER MESSAGING MECHANISM

In this section, we analyze the Client-to-Server message passing mechanism. First, we demonstrate
that the attention it uses satisfies the low-rank property, then explain its potential advantage: low
computational complexity. Finally, we conduct qualitative analysis to illustrate how the Client-to-
Server message mechanism exhibits enhanced resilience compared to global node-to-node message
passing mechanisms (such as GCN or self-attention).
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E.1 LOW-RANK ATTENTION

In the client-to-server message mechanism, We first define low-rank attention as follows:

Z(i)
c =A (Q,K,V) = softmax

(
αQK⊤)︸ ︷︷ ︸

Diffusion

× softmax
(
αKQ⊤)︸ ︷︷ ︸

Aggregation

V, (20)

where Q =ZTW
(i)
q ∈ RN×dh , K = CJ

(i)
dt
∈ RN×dh , V = ZTJ

(i)
dt
∈ RN×dh . (21)

Let Sa = softmax
(
αKQ⊤) ∈ RK×N be the aggregation component of the attention score, and

Sd = softmax
(
αQK⊤) ∈ RN×K be the diffusion component of the attention score, hence the

attention score matrix S ∈ RN×N can be expressed as

S = Sd × Sa ∈ RN×N . (22)

And the rank of S is satisfied,

rank (S) = rank (Sd × Sa) ≤ min (rank (Sd) , rank (Sa)) ≤ K ≪ N, (23)

The final inequality is a consequence of the fact that the maximum rank of a matrix is no more
than the minimum of the ranks of its rows and columns (Greub, 2012). The rank of S, K, is much
lower than its size N , i.e., the number of rows and columns, hence the attention score matrix of our
attention mechanism is a low-rank matrix. This constitutes the basis for the low ranking observed in
our low-rank attention mechanism.

The low-rank characteristic in the Client-to-Server message mechanism offers two key advantages.
Firstly, it exhibits linear complexity compared to the self-attention mechanism, allowing for a larger
spatiotemporal efficiency. Secondly, it provides a lower error bound for the global node-to-node
message passing mechanism, enhancing its resilience to errors.

E.2 EFFICIENCY ANALYSIS

The low-rank attention function in Equation 20 can be rewritten as follows,

A (Q,K,V) = SV = (SdSa)×V = Sd × (SaV) , (24)

Consequently, in contrast to the unlike vanilla self-attention mechanism (Vaswani et al., 2017),
which necessitates the pre-computation of the attention score matrix with complexity O

(
N2dh

)
,

we have the option of computing SaV ∈ RK×dh initially with complexity O (KNdh) and sub-
sequently determining Sd × (SaV) ∈ RN×dh with same complexity O (KNdh), resulting in the
efficient computation of low-rank attention with linear time complexity O (N) by K ≪ N . As
shown, we reduce the computational complexity from quadratic to nearly linear. This enables our
method to effectively process graph data with a large number of nodes without requiring excessive
GPU memory resources. See Figure 5 and Figure 6 for experimental analysis.

F ANALYSIS ON DISTRIBUTIONALLY ROBUST OPTIMIZATION

In this section, we analyze the robustness of the proposed spatiotemporal DRO optimization strategy,
which is a type of Distributionally Robust Optimization (DRO) (Duchi & Namkoong, 2019). First,
we will introduce what DRO is, its advantageous properties, and the advantages of the proposed
spatiotemporal DRO in handling OOD scenarios.

F.1 WHAT IS DRO?

Distributionally Robust Optimization (DRO) (Duchi & Namkoong, 2019) refers to a class of loss
functions that aim to optimize by considering the worst-case scenario within a certain range of all
possible distributions of the data. In practical terms, an optimization object that takes the follow-
ing form with respect to the training data distribution e∗ can be categorized under DRO (Duchi &
Namkoong, 2019; Staib & Jegelka, 2019; Levy et al., 2020),

argmin
f

sup
e∈E

{
E(X,Y)∼p(X ,Y|e) [L (f (X) ,Y)] : D (e, e∗) ≤ ρ

}
, (25)
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where f is the function we optimized, usually a deep neural network with learnable parameters.
D (·, ·) is the distribution distance metric (Namkoong & Duchi, 2016; Shafieezadeh Abadeh et al.,
2018), which is used to calculate the distance between distributions. ρ is a hyperparamer to limit the
extent to which the distribution is explored.

Mark. If an optimization satisfies: (1) modeling of different environments, (2) applying constraints,
and (3) emphasizing the most challenging environments, then this optimization belongs to DRO and
possesses the following beneficial properties.

F.2 ADVANTAGES OF DRO

Recall that in the preliminary, the task of spatiotemporal OOD learning aims to learn a robust func-
tion f , which can accurately predict values after TP time steps given observed data of past T time
steps X and the graph sampled from any environment e ∼ E , where e may have different spatiotem-
poral distributions with training environment e∗,

argmin
f

sup
e∈E

E(X,Y)∼p(X ,Y|e) [L (f (X) ,Y)] , (26)

In a more intuitive sense, Equation. 1 is designed to find a function that reduces the loss associated
with the most challenging scenario across all possible distributions e ∼ E . This task is particularly
challenging because we lack access to data from any unfamiliar distributions outside of the training
set (Qiao & Peng, 2023). Although traditional Empirical Risk Minimisation (Vapnik, 1998),

argmin
f

E(X,Y)∼p(X ,Y|e∗) [L (f (X) ,Y)] , (27)

which optimises solely based on the raw training environment e∗, performs well under the IID as-
sumption, it is not possible to guarantee its performance in the presence of distributional drifts (Ar-
jovsky et al., 2019). Whereas DRO explores a certain range of training data distributions and tries
to optimise on data distributions that may match the distribution of the test set, providing ideas for
solving the OOD problem.

Mathematically, Optimised for DRO in Equation 25 is equivalent to adding variance regularization
to the standard Empirical Risk Minimisation (Duchi & Namkoong, 2019),

sup
e∈E

{
E(X,Y)∼p(X ,Y|e) [L (f (X) ,Y)] : D (e, e∗) ≤ ρ

}
≥ E(X,Y)∼p(X ,Y|e∗) [L (f (X) ,Y)] +

√
2ρVar(X,Y)∼p(X ,Y|e∗) [L (f (X) ,Y)],

(28)

Compared to standard empirical loss functions, variance regularization has stricter bounds. There-
fore, DRO mathematically provides more rigorous constraints than using empirical loss functions
alone in OOD environments, preventing the model from over-relying on training data. This enables
the model to flexibly adapt to different environments, improving its generalization performance in
unknown environments.

F.3 DOES STOP HAVE PROPERTIES OF DRO?

We will demonstrate that our optimization objective of STOP belongs to DRO, inheriting its good
properties. Our optimization objective is as follows:

min
f

sup
g∈RN

E(X,Y)∼(X ,Y|e∗) [L (f (X) ,Y; g)] , s.t. ||g̃||0 = s ∈ (0, N) . (29)

Next, we demonstrate according to Mark 1 that our proposed optimization strategy satisfies the
necessary conditions for DRO, thus inheriting its beneficial properties.

Diverse environments. STOP creates a diverse training environment by adding a perturbation pro-
cess through a graph perturbation mechanism.

Applying constraints. Our perturbation process follows polynomial distribution sampling, and we
strictly control the perturbation ratio, which imposes constraints on the generated environments.

Exploring challenging environments: We emphasize selecting environments with the largest gra-
dients during training for optimization, encouraging the model to be exposed to challenging envi-
ronments.
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In summary, our optimization strategy belongs to DRO and thus inherits its good generalization
property.

G NODE-TO-NODE MESSAGING LIMITATIONS

As explained in the introduction of the paper, node-to-node messaging mechanisms have the follow-
ing limitations when dealing with spatiotemporal shifts: Limition.1. Coupled with the aggregation
paths used during training (i.e., graph topology), structural shifts lead to inaccurate aggregation.
Limition.2. Node representation errors flood throughout the entire graph, making it sensitive to tem-
poral shifts of nodes. Limition.3. Inefficient induction ability for newly added nodes. Next, we
explain three limitions and the limited role of node-to-node mechanisms in OOD scenarios.

G.1 LIMITION.1

Using the SD dataset as an example, we first select the test data of 550 nodes and then input this
data into the backbones, then we extract their output representations from their first layer that uses
the node-to-node mechanism, denoted as α.

Second, we remove 55 (10%) nodes of thse 550 nodes and add 55 new nodes, and take the new data
into models again. Finally, we extract the output representations from the same layer, denoted as β.

After aligning the common nodes (495 nodes) between α and β, we calculate the representation
error percentage using the following formula:

||a− β||
||a||

× 100 (30)

where || · || represents the Euclidean distance. The representation errors and final predicted perfor-
mance gap are shown in the following table:

Table 18: Presentation errors due to spatial shifts.

Model GWNet STGCN STAEFormer D2STGNN

Error 8.71% 6.64% 12.96% 11.81%
Performance gap -25.47% -14.71% -20.42% -32.63%

The error percentage results demonstrate that structural shifts in the graph indeed affect GCN’s ac-
curate representation of the entire graph - even for STAEformer, the representation error percentage
reaches 12.96% - thereby impacting their prediction performance.

G.2 LIMITION.2

Using SD dataset as example again, we randomly select 30% of nodes from 550 nodes and added
random noise to their data to simulate temporal shift of nodes. The errors are shown in the following
table:

Table 19: Presentation errors due to temporal shifts.

Model GWNet STGCN STAEFormer D2STGNN

Error 2.35% 7.29% 6.13% 9.17%
Performance gap -25.47% -19.87% -4.34% -15.05%

When temporal distribution of nodes change, these models cannot accurately represent these nodes,
and the errors also flood to the entire graph through the message passing mechanism, thereby de-
grading the performance of the entire graph.
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G.3 LIMITION.3

The existing node-to-node message passing mechanism’s weak inductive learning capability limits
models’ ability to generalize learned knowledge to untrained nodes Hamilton et al. (2017); Wang
et al. (2023b). Yet new nodes frequently appear in the evoluting spatiotemporal graph. In Table 3
of the paper, we compare STOP with other models, clearly showing that our model achieves better
inductive capability, with improvements of up to 15.07%. The potential reason is that the context-
aware units established in our proposed interaction mechanism capture generalizable contextual
features, which are common features shared across nodes. New nodes can access these features to
obtain good representations.

G.4 NODE-TO-NODE INTERACTION VS. OURS

We used two backbones: STGCN and STAEformer. The first one utilizes graph convolution as node-
to-node interaction, while the latter use the self-attention mechanism for node-to-node interaction.
We removed their node-to-node interaction layer and named these variants as ’-graph’. Addition-
ally, we replaced their node-to-node interaction with our spatial interaction mechanism, denoting
these variants as ’+ Ours’. We use SD and KnowAir datasets with OOD settings in our paper, and
the performance results are shown in the following table: We can observe that after removing the

Table 20: Comparative experiment of the proposed spatial interaction vs. node-to-node interaction.

SD
Average

MAE RMSE MAPE

STGCN
- 25.72 40.03 18.21

STGCN-graph 25.45 39.62 17.98
STGCN+Ours 24.87 38.98 17.65

STAEformer
- 26.20 41.18 18.39

STAEformer-graph 25.80 40.84 17.45
STAEformer+Ours 24.65 38.46 17.30

KnowAir
Average

MAE RMSE MAPE

STGCN
- 29.49 40.93 63.85

STGCN-graph 26.18 38.03 55.75
STGCN+Ours 25.44 37.42 52.80

STAEformer
- 27.25 38.93 56.48

STAEformer-graph 25.82 37.28 55.65
STAEformer+Ours 25.46 37.25 55.04

node-to-node interaction mechanism, these variants surprisingly show better generalization perfor-
mance. This demonstrates the limited (or even counterproductive) effect of node-to-node mech-
anisms. Meanwhile, our proposed spatial interaction module brings performance improvements,
demonstrating that our proposed module is more effective than the node-to-node interaction.
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