

000 001 002 003 004 005 DURMI: DURATION LOSS AS A MEMBERSHIP SIGNAL 006 IN TTS MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015

016 ABSTRACT 017 018

019 Text-to-speech (TTS) models such as FastSpeech2, Grad-TTS, and VITS2 achieve
020 state-of-the-art quality but risk memorizing and leaking sensitive training data.
021 Existing membership inference attacks (MIAs) for diffusion-based TTS systems
022 typically rely on denoising errors, which are costly to compute and often weak at
023 capturing sample-specific memorization.
024

025 We introduce DurMI, the first membership inference attack that exploits duration
026 loss—a core alignment signal in modern TTS pipelines—as a highly discriminative
027 indicator of membership. Duration loss reflects the model’s tendency to overfit
028 alignment targets, whether obtained from deterministic aligners (e.g., MAS,
029 MFA) or stochastic predictors (e.g., VITS2), enabling accurate inference with a
030 single forward pass. Beyond this family of systems, we further show that DurMI
031 can be extended to alignment-free and zero-shot TTS models via proxy indicators
032 derived from length discrepancies, broadening the attack surface to emerging
033 architectures.
034

035 Experiments on TTS systems, such as Grad-TTS, WaveGrad2, VoiceFlow, Fast-
036 Speech2, and VITS2, demonstrate that DurMI consistently performs better than
037 earlier MIAs, especially on waveform-level synthesis where current attacks are
038 inadequate. We further assess DP-SGD as a defense and discover that DurMI endures
039 even in the presence of substantial noise, underscoring the need for stronger,
040 TTS-specific privacy safeguards. These findings show DurMI’s efficacy, effi-
041 ciency, and wide range of applications.
042

043 1 INTRODUCTION 044

045 Research in text-to-speech (TTS) has moved quickly, and recent systems can produce speech that is
046 often difficult to distinguish from real recordings. Grad-TTS (Popov et al., 2021), WaveGrad2 (Chen
047 et al., 2021), VoiceFlow (Guo et al., 2024), FastSpeech2 (Ren et al., 2020), and VITS2 (Kong et al.,
048 2023b) are known techniques that contribute to this progress. These models are trained on large-
049 scale datasets that often contain sensitive or proprietary content, raising critical concerns about pri-
050 vacy leakage. In applications like voice assistants or medical TTS, where the training data may
051 reveal personal identification, health-related information, or even geographical cues (Chen et al.,
052 2023), these concerns become very severe.
053

054 MIAs have been extensively studied in computer vision (Chen et al., 2020; Carlini et al., 2022; Li
055 et al., 2024b) and natural language processing (Shi et al., 2023; Mattern et al., 2023; Fu et al., 2024).
056 They have also been adapted to generative models, such as GANs and VAEs (Hayes et al., 2017;
057 Hilprecht et al., 2019; Sui et al., 2023), as well as more recent diffusion-based models (Matsumoto
058 et al., 2023; Duan et al., 2023; Hu & Pang, 2023).
059

060 To improve efficiency, Proximal Initialization Attack (PIA) (Kong et al., 2023a) reduces the number
061 of denoising steps and extends MIA to mel-spectrogram and waveform-level TTS models. However,
062 these approaches treat TTS largely as a generic generative model, overlooking architectural features
063 that are central to speech synthesis. In particular, *alignment mechanisms and duration supervision*
064 are unique to TTS pipelines and directly influence how models memorize training utterances, yet
065 remain unexploited by prior MIAs.
066

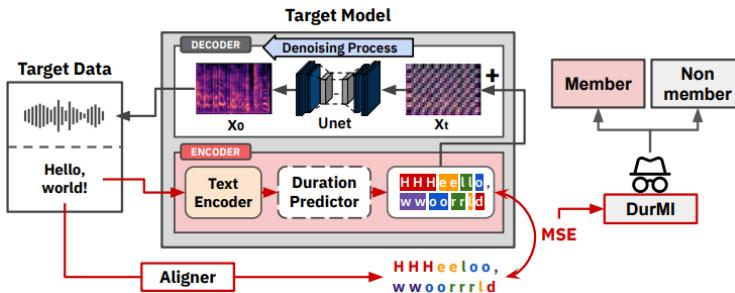


Figure 1: Overview of DurMI: illustrated here on a diffusion-based TTS model, where the difference between predicted and ground-truth durations from the aligner is used as a membership signal. DurMI, however, applies broadly across transformer-, flow-matching-, and stochastic-alignment models as well. It requires only a single forward pass up to the decoder stage (red arrow).

In this work, we propose *DurMI* (Duration Loss-Based Membership Inference), the first attack to exploit *duration loss* as a discriminative signal for membership inference. Our key insight is that duration predictors are trained to match sample-specific alignment targets, whether deterministic (e.g., MAS (Kim et al., 2020), MFA (McAuliffe et al., 2017)) or stochastic as in VITS2 (Kong et al., 2023b), which encourages overfitting to utterance-level timing patterns. This makes duration loss a highly effective signal for membership inference. As shown in Figure 1, DurMI requires only a single forward pass (over 100 \times faster than SecMI), bypassing diffusion entirely and yielding **50–100 \times speedups** over prior diffusion-based MIAs.

Our study operates in a grey-box setting, in that we access internal signals (e.g., duration loss) but not model weights or architectural details, following the standard evaluation protocol in MIA (Duan et al., 2023; Kong et al., 2023a). This assumption reveals worst-case vulnerabilities critical for privacy auditing and defense design, and reflects realistic contexts such as internal audits, regulatory compliance, or fine-tuning on user data.

We evaluate DurMI on Grad-TTS, WaveGrad2, VoiceFlow, FastSpeech2, and VITS2 across three benchmark datasets (LJSpeech (Ito & Johnson, 2017), VCTK (Yamagishi et al., 2019), and LibriTTS (Zen et al., 2019)). Through these experiments, we establish DurMI’s key contributions: (i) it consistently outperforms prior MIAs in terms of detection accuracy, (ii) it generalizes across diverse architectures, including VITS2 with stochastic alignment, (iii) it achieves high efficiency, requiring only a single forward pass (over 100 \times faster than SecMI), and (iv) it is modality-agnostic, applying equally well to spectrogram- and waveform-based synthesis.

Finally, while zero-shot and alignment-free TTS has emerged, recent studies show these models often degrade on complex text and reintroduce auxiliary alignment for intelligibility (Jiang et al., 2025; Neekhara et al., 2024), and we provide a detailed discussion in Appendix A.14. Together with the continued deployment of duration-supervised systems in industry, this indicates that alignment remains central to current and near-future TTS. Although DurMI cannot be directly applied to alignment-free architectures, our experiments with proxy indicators show that they remain moderately effective, demonstrating a feasible path for extending membership inference beyond explicitly aligned systems.

Furthermore, our DP-SGD defense studies demonstrate that DurMI performance endures even in the face of significant noise, underscoring the necessity for more sophisticated and alignment-agnostic protection strategies.

2 RELATED WORK

Membership Inference Attacks. Membership inference attacks (MIAs) aim to determine whether a data sample was part of a model’s training set. First studied in discriminative models via output confidence scores (Shokri et al., 2017), they have since been extended to generative settings. LOGAN (Hayes et al., 2017) showed leakage in GANs, and recent work in LLMs uses

108
109

Table 1: Comparison of existing membership inference attacks targeting diffusion models.

110
111
112
113
114
115
116
117
118

Method	Key Idea	Sampling	Computational Cost
Naive Attack	Computes MSE between predicted and ground-truth noise	Stochastic (DDPM)	Moderate (1 query)
SecMI	Collects timestep-wise noise prediction errors for classification	Deterministic (DDIM)	High (full trajectory)
PIA	Reconstructs sample via DDIM, re-diffuses once to measure error	Deterministic (DDIM)	Moderate (1–2 queries)
PIAN	Normalized variant of PIA using L_1 norm	Deterministic (DDIM)	Moderate (1–2 queries)

119
120
121

log-likelihoods of rare tokens as membership signals (Shi et al., 2023; Zeng et al., 2023; Carlini et al., 2021).

122
123
124
125
126
127

For diffusion models, MIAs exploit reconstruction errors during denoising. The Naive Attack (Matsumoto et al., 2023) measures mean squared error between predicted and ground-truth noise. SecMI (Duan et al., 2023) aggregates per-timestep errors, improving accuracy under deterministic DDIM sampling but at high cost. PIA and PIAN (Kong et al., 2023a) reduce overhead by reconstructing samples with few steps, though with weaker robustness. Table 1 summarizes these methods.

128
129
130
131

These techniques are largely tailored to images and overlook signals unique to TTS. Grey-box analysis, although not always feasible in deployment, remains standard in MIA (Duan et al., 2023; Kong et al., 2023a) and is critical for revealing worst-case vulnerabilities that guide auditing and defenses.

132
133
134
135
136
137

Text-to-Speech Models. Early autoregressive models such as WaveNet (van den Oord et al., 2016) and Tacotron (Wang et al., 2017) achieved high fidelity but suffered from slow inference. Non-autoregressive (NAR) models like FastSpeech2 (Ren et al., 2020) introduced explicit duration predictors for parallel and controllable synthesis, and duration-based supervision is now standard across many NAR systems. Our work is the first to show that this alignment loss itself leaks membership information.

138
139
140
141
142
143

Grad-TTS (Popov et al., 2021) extended TTS with diffusion-based mel-spectrogram generation, while WaveGrad2 (Chen et al., 2021) synthesized raw audio directly. Building on diffusion, flow-matching approaches (Mehta et al., 2024; Chen et al., 2024) improve stability and sampling efficiency; for example, VoiceFlow (Guo et al., 2024) enables faster and more robust synthesis. VITS2 (Kong et al., 2023b) further enhances VITS (Kim et al., 2021) through stochastic duration modeling, supporting more diverse prosody and improved naturalness.

144
145
146
147
148
149
150
151
152

Alignment-free and zero-shot systems such as E2-TTS (Eskimez et al., 2024) and F5-TTS (Chen et al., 2024) have recently emerged, though their robustness remains debated. MegaTTS 3 (Jiang et al., 2025) and NVIDIA’s T5-TTS (Neekhara et al., 2024) both report quality gains by reintroducing explicit or monotonic alignment, suggesting that alignment will remain important. Although DurMI cannot be directly applied to zero-shot models, these systems still exhibit implicit alignment cues—such as discrepancies between target and generated utterance length—which we highlight as potential *proxy indicators* for extending MIA to alignment-free TTS (see Section 6 and Appendix A.7); moreover, our experiments using these proxies confirm that they provide moderate but meaningful membership inference performance.

153
154

3 PRELIMINARIES

155
156
157

This section reviews the role of duration loss and alignment strategies in representative TTS architectures: Grad-TTS, WaveGrad2, VITS2, VoiceFlow, and FastSpeech2.

158
159
160

3.1 DURATION LOSS

161

A large class of modern TTS models generally consist of three modules: a text encoder, a duration predictor, and a decoder. While auxiliary objectives such as pitch or energy vary across systems,

duration loss is universally present. It supervises phoneme-to-frame alignment, enforcing sample-specific timing patterns. DurMI builds directly on this shared mechanism: by comparing predicted and ground-truth durations, it extracts membership signals that generalize across diverse architectures.

Grad-TTS. Durations $d \in \mathbb{R}^L$ are obtained via MAS, which computes sample-specific phoneme-to-frame mappings. The model minimizes

$$\mathcal{L}_{\text{dur}}^{\text{GT}} = \|f_{\text{dur}}(\text{sg}[f_{\text{enc}}(c)]) - d\|_2, \quad (1)$$

where $\text{sg}[\cdot]$ blocks gradients to the encoder. Because MAS adapts dynamically during training, it introduces variability across utterances, slightly weakening membership leakage but improving synthesis quality.

WaveGrad2. Here, durations d are precomputed using MFA, a fixed alignment tool. The predictor minimizes

$$\mathcal{L}_{\text{dur}}^{\text{WG}} = \|\log \hat{d} - \log d\|_2. \quad (2)$$

Unlike MAS, MFA provides static, non-adaptive alignments, which tend to overfit to training utterances. This makes duration loss in WaveGrad2 a stronger membership signal.

VITS2. VITS2 combines MAS-based targets with adversarial learning. Predicted durations \hat{d} are optimized as

$$\mathcal{L}_{\text{dur}}^{\text{V2}} = \text{MSE}(\hat{d}, d) + \lambda L_{\text{adv}}(G), \quad (3)$$

where L_{adv} encourages natural duration distributions. This stochastic training setup reduces determinism but still preserves sample-specific information, showing that DurMI generalizes beyond purely deterministic predictors.

VoiceFlow and FastSpeech2. Both rely on forced alignments (e.g., MFA) to generate ground-truth durations and minimize a mean squared error:

$$\mathcal{L}_{\text{dur}}^{\text{VF,FS2}} = \frac{1}{N} \sum_{i=1}^N \|\hat{d}_i - d_i\|^2. \quad (4)$$

These models provide stable and explicit supervision, making duration loss a reliable membership signal.

3.2 ALIGNMENT MECHANISMS FOR DURATION PREDICTION

Montreal Forced Aligner (MFA). MFA is an offline, non-differentiable aligner based on Gaussian Mixture Model–Hidden Markov Model (GMM-HMM) acoustic models and MFCC features, implemented in Kaldi. It produces fixed phoneme-to-frame alignments independent of model parameters and is widely used in TTS pipelines. These static alignments often amplify memorization signals.

Monotonic Alignment Search (MAS). MAS is a differentiable dynamic programming algorithm that finds monotonic text–audio alignments by maximizing cumulative likelihood:

$$Q_{i,j} = \max(Q_{i-1,j-1}, Q_{i,j-1}) + \log \mathcal{N}(z_j; \mu_i, \sigma_i),$$

where z_j is an acoustic frame and (μ_i, σ_i) are phoneme-level Gaussian parameters. Backtracking recovers the alignment path A^* , and durations are computed as

$$d_i = \log \left(\sum_{j=1}^F \mathbb{I}\{A^*(j) = i\} \right).$$

Unlike MFA, MAS integrates alignment into training, yielding more adaptive but less deterministic targets, which weakens overfitting signals.

216 **Stochastic Duration Modeling.** VITS2 introduces stochastic duration prediction to capture natural
 217 variability in rhythm and prosody. Durations are generated as
 218

$$219 \hat{d} = G(z_d, h_{\text{text}}), \quad z_d \sim \mathcal{N}(0, I),$$

220 where G is trained with a combination of mean squared error and adversarial loss:
 221

$$222 \mathcal{L}_{\text{dur}}^{\text{V2}} = \text{MSE}(\hat{d}, d) + \lambda L_{\text{adv}}(G).$$

224 This formulation reduces determinism but still preserves sample-specific timing, showing that alignment
 225 supervision remains embedded even in stochastic predictors.
 226

228 4 DURATION LOSS-BASED MEMBERSHIP INFERENCE

230 We introduce DurMI, a grey-box membership inference attack that leverages *duration loss* as a
 231 discriminative signal in TTS models. Our key insight is that duration predictors are trained to mini-
 232 mize sample-specific alignment errors – leading to potential overfitting – which can be exploited for
 233 identifying training membership.
 234

235 4.1 THREAT MODEL AND ASSUMPTIONS

237 We assume a grey-box threat model in which the adversary has full access to a trained TTS model,
 238 including the encoder f_{enc} , duration predictor $f_{\text{dur}}(\cdot; \theta)$, and the loss function \mathcal{L}_{dur} . Given a target
 239 sample $x = (c, a)$ and its alignment target d (obtained from MAS or MFA), the goal is to determine
 240 whether x belongs to the training set $\mathcal{D}_{\text{train}}$.
 241

242 4.2 FORMULATION OF DURMI

244 Let $f_{\text{enc}}(c)$ denote the phoneme-level representation of the input text sequence c , and let $f_{\text{dur}}(\cdot; \theta)$
 245 be the duration predictor parameterized by θ . The duration loss for input x is computed as:
 246

$$247 \mathcal{L}_{\text{dur}}(x; \theta) = \|f_{\text{dur}}(\text{sg}[f_{\text{enc}}(c)]; \theta) - d\|_p, \quad (5)$$

250 where d is the ground-truth log-duration vector and $\text{sg}[\cdot]$ is the stop-gradient operator that blocks
 251 gradients during optimization. The norm $\|\cdot\|_p$ is selected by the attacker (typically $p = 2$).
 252

253 The adversary then defines a binary membership function \mathcal{M} based on thresholding the loss:
 254

$$255 \mathcal{M}(x) = \begin{cases} 1 & \text{if } \mathcal{L}_{\text{dur}}(x; \theta) < T \\ 0 & \text{otherwise} \end{cases} \quad (6)$$

258 where T is a decision threshold estimated via a calibration set or a shadow model. In practice,
 259 the attacker computes the empirical loss distributions for member and non-member samples and
 260 selects (T) to maximize separation (e.g., maximizing TPR@1%FPR or selecting the ROC-operating
 261 point that optimizes attack utility). Since duration predictors often overfit to deterministic alignment
 262 targets, training samples tend to exhibit lower loss values, making threshold-based membership
 263 prediction effective.
 264

265 4.3 COMPARISON WITH DIFFUSION-BASED MIAS

267 Table 2 compares DurMI against existing MIA techniques that rely on diffusion loss or timestep-
 268 wise noise prediction errors. While these prior approaches are applicable to generic diffusion
 269 models, they often suffer from high computational cost and require fine-grained calibration. In contrast,
 DurMI offers a TTS-specific yet efficient and highly discriminative alternative.
 270

270 Table 2: Comparison of duration loss (DurMI) and diffusion-based membership signals.
271

272 Aspect	273 DurMI	274 Diffusion-based MIAs
275 Target signal	276 Duration loss	Noise prediction error
277 Sample specificity	278 High	Low to moderate
279 Loss variance	280 Low	High
281 Computational cost	282 Low (single forward pass)	283 High (multi-step rollouts)

284 Table 3: Comparison of intra-class variance, inter-class variance, and LDA scores for duration loss
285 (DurMI) and diffusion loss (Naive Attack, PIA) used as membership signals.
286

287 Method	288 Intra-class variance	289 Inter-class variance	290 LDA
291 DurMI	0.002	0.012	6.0
292 Naive Attack	6.658	0.031	0.004
293 PIA	27.549	0.203	0.007

294

4.4 ADVANTAGES OF DURATION LOSS FOR MEMBERSHIP INFERENCE

295 Duration loss offers some important distinctions from previous MIAs on diffusion models (Matsumoto et al., 2023; Duan et al., 2023; Kong et al., 2023a), which solely concentrate on reconstruction loss or noise prediction errors as membership signals.

296 First, duration loss is sample-specific, whether derived from deterministic aligners (e.g., MAS, 297 MFA) or stochastic predictors (e.g., VITS2). Deterministic alignments encourage exact overfitting 298 to utterance-level timing, while stochastic predictors still rely on training-conditioned distributions 299 that retain sample-level bias. In both cases, the duration loss tightly encodes alignment signals tied 300 to individual training examples, unlike diffusion loss, which is distributional and exhibits higher 301 intra-class variance.

302 Second, duration loss exhibits stronger separability. As shown in Table 3, duration loss has significantly 303 lower intra-class variance and higher inter-class separability, as measured by Fisher’s Linear 304 Discriminant Analysis (LDA) score, a metric that captures how well two classes (member vs. non- 305 member) are separated based on the ratio of between-class to within-class variance. This improved 306 separation effectively supports simple and effective threshold-based inference.

307 Figure 2 further presents the distributional gap between member and non-member samples across 308 various MIA techniques. DurMI exhibits sharper decision margins for LJSpeech and LibriTTS, 309 while diffusion-based losses exhibit substantial overlap, particularly for LJSpeech. DurMI shows 310 greater overlap on the VCTK dataset, which is discussed in more detail in Appendix A.6.

311 Finally, DurMI is computationally efficient. Unlike prior attacks that require full diffusion rollouts 312 or multiple inference passes (e.g., SecMI, PIA), DurMI computes a single forward pass prior to 313 the decoder, independent of decoder-level sampling. This makes DurMI particularly practical for 314 large-scale TTS systems.

315

5 EXPERIMENTS

316 We evaluate DurMI on five representative TTS architectures: Grad-TTS, WaveGrad2, Fast- 317 Speech2, VoiceFlow, and VITS2. Experiments are conducted on three widely used benchmarks: 318 LJSpeech (Ito & Johnson, 2017), VCTK (Yamagishi et al., 2019), and LibriTTS (Zen et al., 2019). 319 Each experiment is repeated three times, and averages are reported, as standard deviations are 320 consistently below 0.1%. Baselines include Naive Attack, SecMI, PIA, and PIAN and full implementation 321 details and preprocessing procedures provided in Appendix A.1.

322 To ensure fair evaluation, we split each dataset evenly into member samples (50%, used for training) 323 and non-member samples (50%, held out). From both pools, 20% are further used as a calibration 324 set and 80% as an evaluation set. The calibration set assumes that the adversary has access to a small 325 subset of both member and non-member data, as is standard in MIA research, and is used solely to

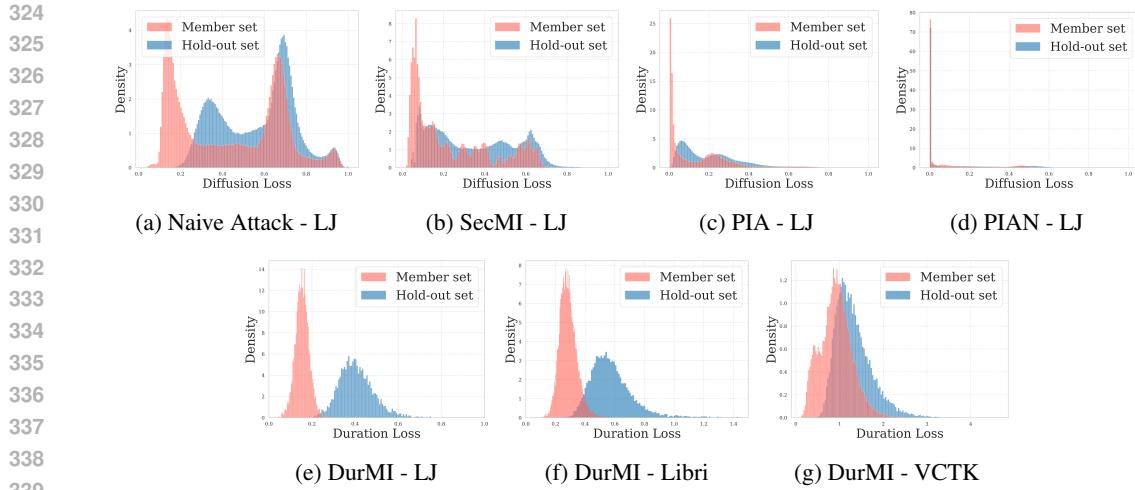


Figure 2: Member vs. Non-member distribution separability using diffusion loss (Naive, SecMI, PIA, PIAN) vs. duration loss (DurMI) across datasets: LJSpeech (LJ), LibriTTS (Libri), and VCTK.

Table 4: Performance of MIA methods on GradTTS across various datasets.

	LJSpeech		LibriTTS		VCTK	
	AUC	TPR@1% FPR	AUC	TPR@1% FPR	AUC	TPR@1% FPR
Naive Attack	86.7	55.0	94.5	58.1	73.2	29.5
SecMI	94.4	70.3	90.2	55.2	72.8	8.1
PIA	89.0	55.0	89.3	47.0	64.4	9.7
PIAN	69.0	37.4	81.8	37.4	66.6	6.1
DurMI	99.7	99.1	98.9	82.8	86.7	18.2

set decision thresholds. Evaluation samples are never used for calibration, ensuring that AUROC and TPR@1% FPR reflect unbiased attack performance.

We report two standard metrics used in membership inference literature (Carlini et al., 2022; 2023; Li et al., 2024a). The first is AUC which measures the overall ability of the attack to distinguish members from non-members. The second metric is the series of TPRs at 1, 0.1, and 0.01% FPRs, which quantifies true positive rates under severe false-positive limitations and demonstrates precision in privacy-sensitive circumstances. Appendix A.10 contains the results for TPRs at 0.1 and 0.01% FPRs.

Compared to Baselines. DurMI consistently outperforms baseline MIA methods across models and datasets, achieving the highest AUC and TPR@1%FPR as shown in Tables 4 and 6 with the exception of Grad-TTS on VCTK set, which we analyze in detail later. ROC curves in Figure 4 confirm this trend, with DurMI maintaining superior detection rates across a wide range of false positive rates. Importantly, DurMI is the only method that achieves strong performance on Wave-Grad2, while existing methods perform near random guessing as shown in Table 5. This highlights the advantage of operating on alignment signals upstream of the decoder, rather than relying on modality-sensitive denoising losses. As shown in Table 6, DurMI achieves high AUC on VITS2, but its TPR@1% FPR is comparatively lower. This can be attributed to VITS2’s stochastic duration modeling, which weakens attack precision. The effect is further amplified on multi-speaker datasets like LibriTTS and VCTK, where greater variability in speech patterns reduces detection accuracy at low FPRs.

Efficiency Comparison. DurMI is significantly faster than all baseline methods. As shown in Table 7, it requires only a single forward pass through the duration predictor, bypassing the diffusion

378 Table 5: Performance of MIA methods on WaveGrad2 across various datasets.
379

	LJSpeech			LibriTTS			VCTK		
	AUC	TPR@1% FPR		AUC	TPR@1% FPR		AUC	TPR@1% FPR	
Naive Attack	50.1	1.0		54.3	0.6		59.9	1.5	
SecMI	49.4	1.0		47.6	0.3		55.4	1.0	
PIA	50.8	0.4		51.7	0.1		52.1	0.8	
PIAN	50.3	0.1		50.2	0.1		44.7	0.1	
DurMI	99.9	100.0		100.0	100.0		97.4	47.0	

388 Table 6: Performance of DurMI on different TTS models across various datasets.
389

Model	LJSpeech			LibriTTS			VCTK		
	AUC	TPR@1% FPR		AUC	TPR@1% FPR		AUC	TPR@1% FPR	
VoiceFlow	99.2	93.9		98.0	56.5		98.9	90.6	
FastSpeech2	100.0	100.0		99.2	90.5		99.5	93.7	
VITS2	97.5	80.1		85.5	22.4		87.1	12.2	

398 decoding process entirely. This makes DurMI approximately 100 \times faster than SecMI and 50 \times faster
399 than PIA for per-sample inference.
400

401 **Alignment Mechanisms.** DurMI achieves better performance on WaveGrad2 than on Grad-TTS,
402 which we attribute to differences in alignment. WaveGrad2 relies on MFA, a fixed aligner prone
403 to overfitting, thereby amplifying membership signals. In contrast, Grad-TTS employs MAS, a
404 differentiable and adaptive aligner that reduces sample-specific memorization and weakens attack
405 effectiveness. Notably, DurMI also performs strongly on VITS2, which adopts stochastic duration
406 modeling rather than deterministic alignment, indicating that DurMI generalizes to probabilistic
407 alignment strategies as well.
408

409 **Dataset.** On VCTK, DurMI attains high AUC but relatively lower TPR@1%FPR compared to
410 other datasets. We attribute this to dataset-specific characteristics, including shorter utterances and
411 lower text overlap between training and test sets. Full analysis of speaker composition, utterance
412 length, and vocabulary overlap is provided in Appendix A.6. Even when text overlap is intentionally
413 minimized, the practical implications remain significant (see Appendix A.6.3).
414

415 5.1 ABLATION STUDY

416 We conduct ablation studies on Grad-TTS using the VCTK dataset to examine the impact of various
417 factors.
418

420 **Training Epochs.** As shown in Figure 3, increasing the number of training epochs leads to overfit-
421 ting and better MIA performance. The performance plateaus after 1,000 epochs, suggesting 1,000–
422 2,000 epochs as a practical range.
423

424 **Distance Metric for Duration Loss.** Figure 3 shows that L_2 -norm (MSE) provides the best
425 results. It aligns more closely with MAS-derived targets, strengthening memorization and
426 member/non-member separation.
427

428 **Sensitivity to Utterance Length.** Based on the top and bottom 10% of utterance lengths, we di-
429 vided the data into two clusters and assessed each of the four possible combinations of member
430 and non-member clusters. Across various configurations, DurMI continuously showed distinct sep-
431 arability, suggesting robustness to input length. Appendix A.5 contains detailed visualizations of
separability across different utterance durations.
432

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 7: Running time (in milliseconds) for performing MIA on a single sample.

	Inference Time (ms)				
	Naive	SecMI	PIA	PIAN	DurMI
GradTTS	1.54	3.04	1.53	1.53	0.03
WaveGrad2	1.83	3.84	1.94	1.79	0.04

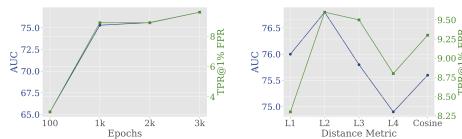
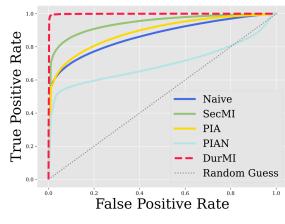
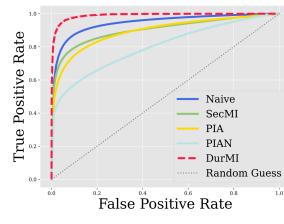


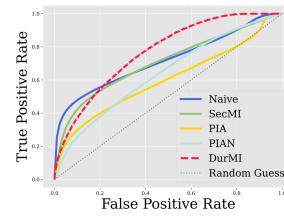
Figure 3: Ablation study of DurMI.



(a) LJSpeech



(b) LibriTTS



(c) VCTK

Figure 4: ROC curves comparing MIA methods on the Grad-TTS model across various datasets.

Dataset Volume/Sampling Rate. We examine how DurMI performance is affected by changes in the number of training and evaluation samples. Table 22 summarizes the effects of reducing the size of training and evaluation data. Our results show that DurMI is stable and robust even against limited sample provision. These show that the observed tendencies persist despite decreased data availability. Table 21 also shows that DurMI consistently maintains optimal performance at the default 22 kHz sampling rate. Detailed analysis is provided in Appendix A.13 and A.12.

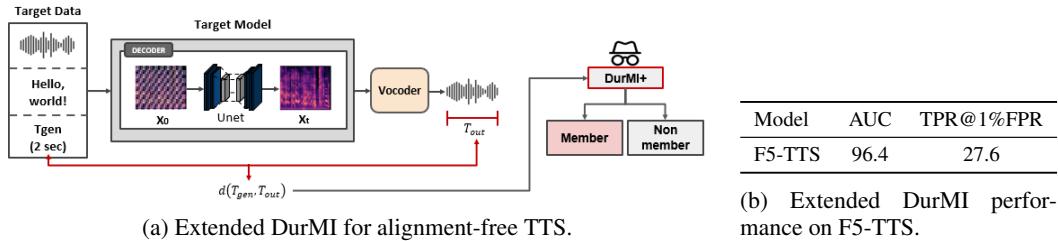


Figure 5: Extended DurMI overview and performance on F5-TTS.

6 EXTENDING DURMI TO ALIGNMENT-FREE AND ZERO-SHOT TTS

To account for recent trends in alignment-free TTS, we evaluate an extended version of DurMI on F5-TTS using a large-scale pretrained checkpoint under mismatched training and testing distributions (Emilia as the member dataset and LJSpeech as the non-member dataset) with prompt-based generation. Unlike prior work that relies on splitting a single dataset into member and non-member partitions, thereby preserving the same underlying distribution, our setting evaluates completely distinct datasets, providing a more realistic approximation of real-world deployment conditions.

The extended DurMI presents a clear separation between member and non-member distributions, indicating its applicability to alignment-free and zero-shot TTS systems. Empirically, member utterances consistently exhibit larger length deviations, that is, $d(T_{\text{gen}}, T_{\text{out}})$ is higher for training samples. This reversed trend arises from the characteristics of infilling-based TTS models. During inference, the model receives the original audio length T_{gen} as a control signal and produces an output with duration T_{out} . Because infilling architectures learn alignment implicitly (e.g., via reconstruction of masked regions rather than explicit duration supervision), the model becomes tightly entangled with the fine-grained prosodic and timing patterns of its training recordings. As a result, it tends to overfit

486 to idiosyncratic duration irregularities present in the training utterances. When reconstructing these
 487 samples, the unstable implicit alignment mechanism induces greater variability in duration prediction.
 488 In contrast, unseen non-member utterances rely more on the model’s global duration prior,
 489 yielding more stable and conservative predictions. Consequently, duration discrepancy emerges as
 490 a valid membership signal not because training examples match the target more accurately, but be-
 491 cause they trigger stronger overfitting-dependent variability in duration reconstruction.

492 Given this tendency, the following duration discrepancy, denoted using N_g (N_{gen}) and N_o (N_{out}),
 493 can be computed using a variety of distance functions:
 494

$$495 \quad d(N_g, N_o) \in \{ |N_g - N_o|, (N_g - N_o)^2, \frac{|N_g - N_o|}{N_g}, \text{Huber}_\delta(N_g - N_o), \text{KL}(P_{N_g} || P_{N_o}) \} \quad (7)$$

496 each capturing a distinct element of mismatch: distributional divergence, resilience via Huber loss,
 497 raw deviation, large-error sensitivity, and normalization across different utterance durations. Be-
 498 cause of its flexibility, this indicator leads to a broad range of adaptation across different evaluation
 499 needs and dataset features.
 500

501 The extended DurMI achieves a high AUC with a TPR of 28%, as demonstrated in Table 5b. Al-
 502 though its TPR is lower than that of explicit alignment-based models, it still demonstrates a mean-
 503 ingful level of membership signal detection. The extended DurMI design is visualized in Figure 5a.

504 These observations collectively underscore that alignment signals—whether explicit or im-
 505 plicit—play a central role in privacy leakage for modern TTS models. While DurMI cannot be
 506 directly applied to fully zero-shot models, proxy indicators such as $d(T_{gen}, T_{out})$ offer a principled
 507 path to extend our methodology in alignment-free settings. Importantly, this proxy requires only
 508 black-box access, making it feasible for real-world deployments. Additional candidate indicators
 509 for alignment-free TTS are provided in Appendix A.7.
 510

511 7 DISCUSSION

512 **Defenses.** We apply DP-SGD to the duration predictor in Grad-TTS, controlling privacy via noise
 513 multipliers (σ) that determine the budget (ε) (details in Appendix A.8). As shown in Table 14,
 514 DP-SGD increases early training loss and reduces overfitting, yet DurMI retains strong attack per-
 515 formance across (ε, σ) settings; even at $\varepsilon \approx 1.6$, AUROC remains 98.7% and TPR@1%FPR stays at
 516 83.3%. Because the duration module continues to leak membership information even with $\varepsilon \leq 10$,
 517 DP-SGD alone is insufficient, motivating the need for more robust and TTS-specific defense mech-
 518 anisms.
 519

520 **MIA Classifiers.** Attack performance degrades on stochastic-duration architectures because prob-
 521 abilistic duration sampling introduces high variance in output lengths, weakening the consistency of
 522 duration-loss signals and reducing member–non-member separability. Motivated by this limitation,
 523 we further evaluated a deep learning–based MIA classifier on GradTTS, which outperformed simple
 524 threshold-based attacks with higher TPRs across datasets (Table 15). A detailed description of these
 525 classifiers and the corresponding empirical analysis is provided in Appendix A.9.
 526

527 **Train-attack Aligner Mismatch.** We evaluate DurMI under realistic conditions where the at-
 528 tacker’s aligner differs from the aligner used during training, considering all MAS–MFA combina-
 529 tions. As shown in Table 20 of Appendix A.11, mismatched aligners significantly reduce member-
 530 ship inference success, highlighting the sensitivity of DurMI to alignment consistency. Nevertheless,
 531 matched-aligner settings remain practical in real-world scenarios because TTS pipelines often reveal
 532 or allow inference of the aligner used during training.
 533

534 8 CONCLUSION

535 We propose DurMI, a grey-box membership inference attack that leverages duration loss to achieve
 536 higher accuracy and lower computational cost than prior approaches. Experiments across five TTS
 537 architectures show that duration supervision carries strong sample-specific signals, exposing a criti-
 538 cal vulnerability in modern TTS pipelines.
 539

540

9 ETHICS STATEMENT

541
 542 This work adheres to the ICLR Code of Ethics. No studies involving human subjects or sensitive
 543 data were conducted beyond standard publicly available datasets. Potential ethical considerations,
 544 including fairness, privacy, and research integrity, have been carefully evaluated, and no conflicts of
 545 interest or harmful outcomes are expected.

546
 547

10 REPRODUCIBILITY STATEMENT

548
 549 The complete codebase for our experiments is organized into three primary components: (1)
 550 attack/, containing model-specific MIA implementations; (2) train/, which includes training
 551 scripts for all TTS models; and (3) README files, offering step-by-step instructions for data
 552 preprocessing, model training, and evaluation.

553
 554 We release all pretrained model checkpoints and the corresponding preprocessed datasets at
 555 <https://zenodo.org/records/15474571>. The release includes all model-dataset com-
 556 binations (Grad-TTS, WaveGrad2, and VoiceFlow across LJSpeech, LibriTTS, and VCTK), totaling
 557 nine checkpoints. All MIA methods can be directly evaluated using the provided resources.

558
 559

REFERENCES

560 Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong,
 561 Lelai Deng, Chuang Ding, Lu Gao, et al. Seed-tts: A family of high-quality versatile speech
 562 generation models. *arXiv preprint arXiv:2406.02430*, 2024.

563 Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
 564 Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
 565 from large language models. In *30th USENIX security symposium (USENIX Security 21)*, pp.
 566 2633–2650, 2021.

567 Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
 568 bership inference attacks from first principles. In *2022 IEEE symposium on security and privacy
 569 (SP)*, pp. 1897–1914. IEEE, 2022.

570 Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja
 571 Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In *32nd
 572 USENIX Security Symposium (USENIX Security 23)*, pp. 5253–5270, 2023.

573 Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz. Gan-leaks: A taxonomy of membership
 574 inference attacks against generative models. In *Proceedings of the 2020 ACM SIGSAC conference
 575 on computer and communications security*, pp. 343–362, 2020.

576 Guangke Chen, Yedi Zhang, and Fu Song. Slmia-sr: Speaker-level membership inference attacks
 577 against speaker recognition systems. *arXiv preprint arXiv:2309.07983*, 2023.

578 Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, Najim Dehak, and
 579 William Chan. Wavegrad 2: Iterative refinement for text-to-speech synthesis. *arXiv preprint
 580 arXiv:2106.09660*, 2021.

581 Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, Jian Zhao, Kai Yu, and Xie
 582 Chen. F5-tts: A fairytaler that fakes fluent and faithful speech with flow matching. *arXiv preprint
 583 arXiv:2410.06885*, 2024.

584 Jinhao Duan, Fei Kong, Shiqi Wang, Xiaoshuang Shi, and Kaidi Xu. Are diffusion models vuln-
 585 erable to membership inference attacks? In *International Conference on Machine Learning*, pp.
 586 8717–8730. PMLR, 2023.

587 Sefik Emre Eskimez, Xiaofei Wang, Manthan Thakker, Canrun Li, Chung-Hsien Tsai, Zhen Xiao,
 588 Hemin Yang, Zirun Zhu, Min Tang, Xu Tan, et al. E2 tts: Embarrassingly easy fully non-
 589 autoregressive zero-shot tts. In *2024 IEEE Spoken Language Technology Workshop (SLT)*, pp.
 590 682–689. IEEE, 2024.

594 Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, and Tao Jiang. Membership
 595 inference attacks against fine-tuned large language models via self-prompt calibration. In *The*
 596 *Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

597

598 Yiwei Guo, Chenpeng Du, Ziyang Ma, Xie Chen, and Kai Yu. Voiceflow: Efficient text-to-speech
 599 with rectified flow matching. In *ICASSP 2024-2024 IEEE International Conference on Acoustics,*
 600 *Speech and Signal Processing (ICASSP)*, pp. 11121–11125. IEEE, 2024.

601 Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. Logan: Membership infer-
 602 ence attacks against generative models. *arXiv preprint arXiv:1705.07663*, 2017.

603

604 Benjamin Hilprecht, Martin Härterich, and Daniel Bernau. Monte carlo and reconstruction member-
 605 ship inference attacks against generative models. *Proceedings on Privacy Enhancing Technologies*, 2019.

606

607 Hailong Hu and Jun Pang. Loss and likelihood based membership inference of diffusion models. In
 608 *International Conference on Information Security*, pp. 121–141. Springer, 2023.

609

610 Keith Ito and Linda Johnson. The lj speech dataset. [https://keithito.com/](https://keithito.com/LJ-Speech-Dataset/)
 611 LJ-Speech-Dataset/, 2017.

612

613 Ziyue Jiang, Yi Ren, Ruiqi Li, Shengpeng Ji, Boyang Zhang, Zhenhui Ye, Chen Zhang, Bai Jiong-
 614 hao, Xiaoda Yang, Jialong Zuo, et al. Megatts 3: Sparse alignment enhanced latent diffusion
 615 transformer for zero-shot speech synthesis. *arXiv preprint arXiv:2502.18924*, 2025.

616

617 Jaehyeon Kim, Sungwon Kim, Jungil Kong, and Sungroh Yoon. Glow-tts: A generative flow for
 618 text-to-speech via monotonic alignment search. *Advances in Neural Information Processing Sys-
 tems*, 33:8067–8077, 2020.

619

620 Jaehyeon Kim, Jungil Kong, and Juhee Son. Conditional variational autoencoder with adversarial
 621 learning for end-to-end text-to-speech. In *International Conference on Machine Learning*, pp.
 622 5530–5540. PMLR, 2021.

623

624 Fei Kong, Jinhao Duan, RuiPeng Ma, Hengtao Shen, Xiaofeng Zhu, Xiaoshuang Shi, and Kaidi Xu.
 625 An efficient membership inference attack for the diffusion model by proximal initialization. *arXiv*
 626 *preprint arXiv:2305.18355*, 2023a.

627

628 Jungil Kong, Jihoon Park, Beomjeong Kim, Jeongmin Kim, Dohee Kong, and Sangjin Kim. Vits2:
 629 Improving quality and efficiency of single-stage text-to-speech with adversarial learning and ar-
 630 chitecture design. *arXiv preprint arXiv:2307.16430*, 2023b.

631

632 Jingwei Li, Jing Dong, Tianxing He, and Jingzhao Zhang. Towards black-box membership inference
 633 attack for diffusion models. *arXiv preprint arXiv:2405.20771*, 2024a.

634

635 Qiao Li, Xiaomeng Fu, Xi Wang, Jin Liu, Xingyu Gao, Jiao Dai, and Jizhong Han. Unveiling struc-
 636 tural memorization: Structural membership inference attack for text-to-image diffusion models.
 637 In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 10554–10562,
 638 2024b.

639

640 Tomoya Matsumoto, Takayuki Miura, and Naoto Yanai. Membership inference attacks against
 641 diffusion models. In *2023 IEEE Security and Privacy Workshops (SPW)*, pp. 77–83. IEEE, 2023.

642

643 Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schölkopf, Mrinmaya Sachan,
 644 and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neigh-
 645 bourhood comparison. *arXiv preprint arXiv:2305.18462*, 2023.

646

647 Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Morgan Sonderegger.
 648 Montreal forced aligner: Trainable text-speech alignment using kaldi. In *Interspeech*, volume
 649 2017, pp. 498–502, 2017.

650

651 Shivam Mehta, Ruibo Tu, Jonas Beskow, Éva Székely, and Gustav Eje Henter. Matcha-tts: A fast
 652 tts architecture with conditional flow matching. In *ICASSP 2024-2024 IEEE International Con-
 653 ference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 11341–11345. IEEE, 2024.

648 Paarth Neekhara, Shehzeen Hussain, Subhankar Ghosh, Jason Li, Rafael Valle, Rohan Badlani,
 649 and Boris Ginsburg. Improving robustness of lilm-based speech synthesis by learning monotonic
 650 alignment. *arXiv preprint arXiv:2406.17957*, 2024.

651 Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-
 652 tts: A diffusion probabilistic model for text-to-speech. In *International conference on machine*
 653 *learning*, pp. 8599–8608. PMLR, 2021.

654 Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech 2:
 655 Fast and high-quality end-to-end text to speech. *arXiv preprint arXiv:2006.04558*, 2020.

656 Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
 657 Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. *arXiv*
 658 *preprint arXiv:2310.16789*, 2023.

659 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
 660 tacks against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*,
 661 pp. 3–18. IEEE, 2017.

662 Hao Sui, Xiaobing Sun, Jiale Zhang, Bing Chen, and Wenjuan Li. Multi-level membership inference
 663 attacks in federated learning based on active gan. *Neural Computing and Applications*, 35(23):
 664 17013–17027, 2023.

665 Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
 666 Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
 667 raw audio, 2016. URL <https://arxiv.org/abs/1609.03499>.

668 Yuancheng Wang, Haoyue Zhan, Liwei Liu, Ruihong Zeng, Haotian Guo, Jiachen Zheng, Qiang
 669 Zhang, Xueyao Zhang, Shunsi Zhang, and Zhizheng Wu. Maskgct: Zero-shot text-to-speech with
 670 masked generative codec transformer. *arXiv preprint arXiv:2409.00750*, 2024.

671 Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J. Weiss, Navdeep Jaitly,
 672 Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc Le, Yannis Agiomyrgiannakis,
 673 Rob Clark, and Rif A. Saurous. Tacotron: Towards end-to-end speech synthesis, 2017. URL
 674 <https://arxiv.org/abs/1703.10135>.

675 Junichi Yamagishi, Christophe Veaux, Kirsten MacDonald, et al. Cstr vctk corpus: English multi-
 676 speaker corpus for cstr voice cloning toolkit (version 0.92). *University of Edinburgh. The Centre*
 677 *for Speech Technology Research (CSTR)*, pp. 271–350, 2019.

678 Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu.
 679 Libritts: A corpus derived from librispeech for text-to-speech. *arXiv preprint arXiv:1904.02882*,
 680 2019.

681 Shenglai Zeng, Yixin Li, Jie Ren, Yiding Liu, Han Xu, Pengfei He, Yue Xing, Shuaiqiang Wang,
 682 Jiliang Tang, and Dawei Yin. Exploring memorization in fine-tuned language models. *arXiv*
 683 *preprint arXiv:2310.06714*, 2023.

684

685

686

687

688

689

690 **A APPENDIX**

691

692 **A.1 EXPERIMENTAL SETUP**

693

694 We trained two diffusion-based TTS models (Grad-TTS and WaveGrad2), one transformer-based
 695 model (FastSpeech2), one flow-matching-based model (VoiceFlow), and a stochastic duration model
 696 (VITS2) on three benchmark datasets: LJSpeech Ito & Johnson (2017), LibriTTS Zen et al. (2019),
 697 and VCTK Yamagishi et al. (2019). LJSpeech is a single-speaker dataset containing approximately
 698 13,000 short utterances. In contrast, VCTK consists of recordings from 110 English speakers total-
 699 ing around 43,000 samples, while a 20,000-sample subset of LibriTTS – a large-scale multi-speaker
 700 corpus – was used in our experiments.

701 Each dataset was split into two disjoint subsets: one for training (member set) and the other for
 702 evaluation (non-member set). All models were trained using a batch size of 16, a learning rate of

1 · e^{-4} , and diffusion time steps – 50 for Grad-TTS and 1000 for WaveGrad2. All experiments were conducted on a single NVIDIA RTX A6000 GPU (48 GB VRAM), using the original model hyperparameters described below.

Grad-TTS. Grad-TTS was trained using a 22.05 kHz sampling rate and 80-dimensional mel-spectrograms, with an Fast Fourier Transform (FFT) size of 1024 and a hop length of 256. The encoder architecture comprises six convolutional layers (kernel size of 3, 192 channels), followed by two-headed multi-head attention and a dropout rate of 0.1.

WaveGrad2. WaveGrad2 was trained using a 22.05 kHz sampling rate and a hop length of 300. Its encoder consists of three convolutional layers with a kernel size of 5, 512 channels, and a dropout rate of 0.5.

VoiceFlow. VoiceFlow was trained on the same paired text-audio datasets as Grad-TTS and WaveGrad2, using a 16 kHz sampling rate and 80-dimensional mel-spectrograms. The model was trained for 3,000 epochs with a batch size of 10 and a learning rate of $5 \cdot 10^{-5}$. Its encoder consists of six layers, each with 192 channels, a kernel size of 3, a dropout rate of 0.1, and two-headed multi-head attention. The filter channel size was set to 768, and the hop length to 200.

FastSpeech2. FastSpeech2 adopts a transformer-based architecture with four encoder layers and six decoder layers, each with a hidden size of 256 and two attention heads. The feed-forward network employs a filter size of 1024 with convolutional kernels of size [9, 1], while both encoder and decoder apply a dropout rate of 0.2. Variance predictors for pitch and energy use a filter size of 256, kernel size of 3, and a dropout rate of 0.5, with linear quantization into 256 bins.

VITS2. VITS2 was trained with a sampling rate of 22.05 kHz, using 80-dimensional mel-spectrograms (FFT size 2048, hop length 256, window length 1024). The model integrates variational inference with stochastic duration modeling, employing a transformer-based text encoder with six layers, two attention heads, and hidden dimensionality of 192. The decoder incorporates eight normalizing flows and a HiFi-GAN-style generator with multi-scale residual blocks (kernel sizes 3, 7, 11). Notably, unlike deterministic duration models, VITS2 uses stochastic duration prediction, enabling more diverse prosody modeling.

A.2 BASELINE MIA CONFIGURATIONS

Grad-TTS and VoiceFlow are continuous-time diffusion models, where the diffusion timestep t is sampled from the interval [0, 1]. For all attack methods – Naive Attack, SecMI, and PIA – we fix the number of diffusion timesteps to 100. Following their original implementations, both the Naive Attack and SecMI compute sample-wise reconstruction errors using the ℓ_2 norm between the predicted and ground-truth noise at each timestep. In contrast, PIA adopts the ℓ_4 norm to place greater emphasis on large errors, thereby increasing sensitivity to outliers in the denoising process.

In contrast, WaveGrad2 is a discrete-time diffusion model. According to the original codebase, the Naive Attack is performed with 100 discrete timesteps. For SecMI and PIA, the diffusion process is run with 1,000 timesteps, from which 100 are uniformly sampled at intervals of 10 to reduce computational overhead. The same norm configurations are applied: ℓ_2 for Naive and SecMI, and ℓ_4 for PIA.

A.3 TEXT AND AUDIO DATA PREPROCESSING AND ALIGNMENTS

The preprocessing stage in TTS models involves processing both the encoder inputs (text) and decoder inputs (audio), as well as computing phoneme-to-audio alignments through an aligner to estimate target durations. Below, we describe the preprocessing and alignment procedures adopted for Grad-TTS, WaveGrad2, and VoiceFlow.

Grad-TTS does not require explicit text normalization, and the audio can be used at its native sampling rate without resampling: 22,050 Hz for LJSpeech, 16,000 Hz for LibriTTS, and 48,000 Hz for VCTK. For alignment, Grad-TTS employs MAS to estimate target durations, implemented through the `monotonic_align` module compiled with Cython.

756
757
758
759 Table 8: Performance of DurMI across datasets and models.
760
761
762
763
764
765
766
767
768

Model	Dataset	AUC	TPR@1% FPR
GradTTS	LJSpeech	99.8 \pm 0.0	98.83 \pm 0.06
	LibriTTS	98.9 \pm 0.0	83.5 \pm 0.0
	VCTK	76.8 \pm 0.0	9.6 \pm 0.0
WaveGrad2	LJSpeech	99.9 \pm 0.0	100.0 \pm 0.0
	LibriTTS	100.0 \pm 0.0	100.0 \pm 0.0
	VCTK	97.4 \pm 0.0	50.97 \pm 0.06

769 WaveGrad2 Text inputs are normalized by lowercasing and removing punctuation. All audio wave-
770 forms are resampled to a consistent sampling rate of 22,050 Hz. Phoneme-to-audio alignments
771 are generated using the MFA, which outputs alignment data in the TextGrid format. A TextGrid
772 file includes tiered time-aligned annotations (e.g., phoneme and word levels), specifying the start
773 and end time of each phoneme within the audio. These alignments are used to extract precise
774 phoneme durations for training. Pre-generated TextGrid files for all datasets are provided and
775 can be accessed at the following link: <https://drive.google.com/drive/folders/10eUTzOU06gTRMiQPoyw-Yctflms3ZLTJ?usp=sharing>.

776
777 **VoiceFlow** To train the VoiceFlow model, the dataset must be organized in the Kaldi-style format.
778 Accordingly, the preprocessing pipeline consists of two main stages: (1) metadata generation and
779 (2) audio feature extraction. The following manifest files are created to structure and describe the
780 dataset:

- 781 • `wav.scp`: It maps each utterance ID (typically the filename) to its corresponding audio
782 file path.
- 783 • `utts.list`: It lists all utterance IDs extracted from `wav.scp`.
- 784 • `utt2spk`: It associates each utterance ID with a speaker ID. For single-speaker datasets
785 like LJSpeech, the same speaker ID is used for all utterances.
- 786 • `text`: It contains pairs of utterance IDs and their corresponding transcript texts.
- 787 • `phn_duration`: It provides phoneme-level alignments, specifying the start time and du-
788 ration of each phoneme within an utterance. These are extracted from TextGrid files gen-
789 erated by the MFA.
- 790

791 After metadata creation, mel-spectrogram features are extracted from the audio data using Voice-
792 Flow’s feature extractor. The features are stored in the following Kaldi-compatible formats:
793

- 794 • `feats.ark`: A binary file containing the actual mel-spectrogram feature matrices.
- 795 • `feats.scp`: A text file mapping each utterance ID to the corresponding entry in the
796 `.ark` file.
- 797

798 VoiceFlow supports phoneme alignment using either MAS or MFA. During training, it
799 uses phoneme durations generated by MAS, rather than the precomputed durations from
800 `phn_duration`. Finally, the phoneme-level transcripts are aligned to phone IDs listed in
801 `phones.txt`, which are used as input to the model.

802 A.4 STATISTICAL SIGNIFICANCE ANALYSIS

803 To ensure the reliability and robustness of our findings, we conducted each DurMI experiment three
804 times across both Grad-TTS and WaveGrad2 models, using all three datasets: LJSpeech, LibriTTS,
805 and VCTK. The aggregated results, including mean values and standard deviations, are presented in
806 Table 8. All iterations produced consistent outcomes, with negligible standard deviations (less than
807 0.1%).

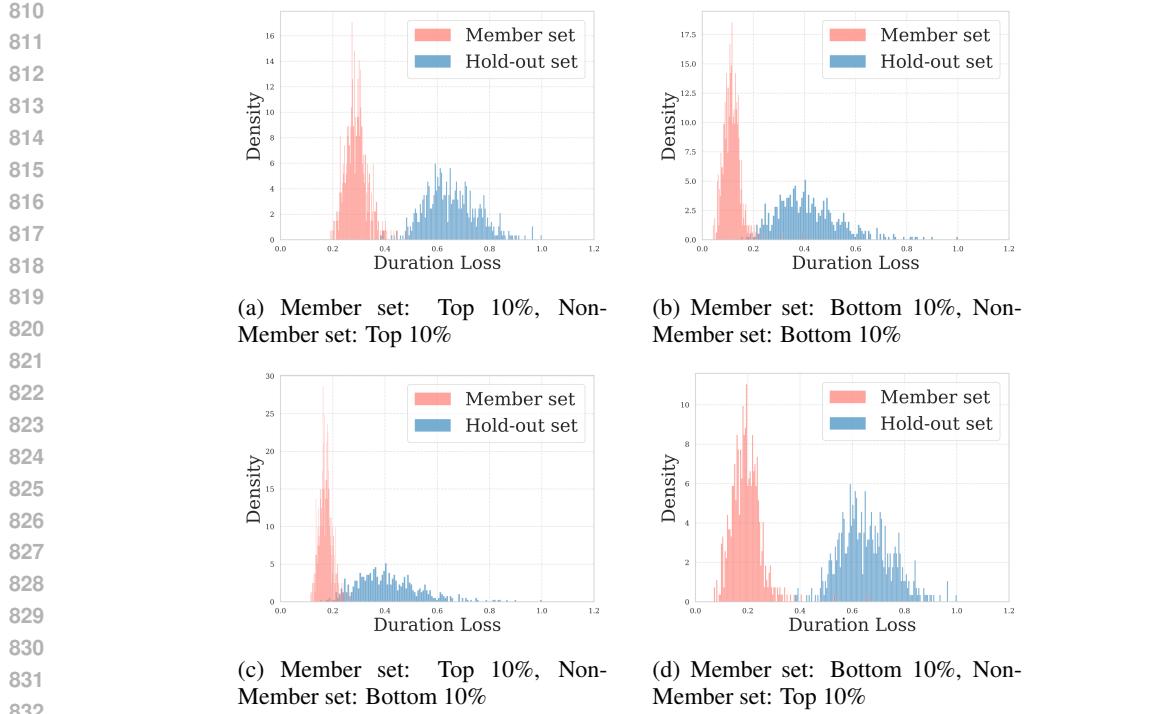


Figure 6: Performance comparison of DurMI across different utterance length clusters.

A.5 ABLATION STUDY: IMPACT OF UTTERANCE LENGTH

TTS models typically incorporate a phoneme-level duration predictor, trained to minimize the discrepancy between predicted and actual phoneme durations. Longer utterances, which contain more phonemes, are prone to cumulative prediction errors. In addition, variations in pronunciation and prosody increase the modeling complexity for longer utterances. If such utterances are underrepresented in the training data, the model’s generalization ability to these cases may be further limited.

Based on these considerations, we hypothesize that utterance length could influence the success rate of membership inference attacks (MIA). To investigate this, we conducted an ablation analysis using the Grad-TTS model and the LJSpeech dataset. We divided the dataset into clusters based on utterance length, selecting the top and bottom 10% of utterances. We then evaluated MIA performance across the following four cluster combinations:

1. Both member and non-member samples belong to the top 10% of utterance lengths (Cluster 1).
2. Both member and non-member samples belong to the bottom 10% (Cluster 2).
3. Member samples are from the top 10%, and non-member samples from the bottom 10% (Cluster 3).
4. Member samples are from the bottom 10%, and non-member samples from the top 10% (Cluster 4).

Figure 6 shows the distribution of duration loss across the four clusters. In all cases, member and non-member samples remain clearly separable.

Table 9 reports the AUC and TPR@1%FPR for each cluster. Although Cluster 3 shows a modest decrease (approximately 5 percentage points) in TPR@1%FPR, the overall impact of utterance length on DurMI performance is minimal.

In summary, the experimental results (Figure 6 and Table 9) indicate that utterance length does not significantly influence the effectiveness of MIA. Despite the reliance on duration information, the

864 Table 9: Membership inference performance across different utterance length conditions. Each
 865 subset contains approximately 600 samples.
 866
 867

Condition	AUC	TPR @1% FPR
Full dataset	99.8	98.9
Cluster 1	99.9	98.9
Cluster 2	99.8	98.9
Cluster 3	99.4	94.9
Cluster 4	99.8	100.0

875 Table 10: GradTTS-VCTK AUROC and FPR@1%TPR under different overlap conditions.
 876

	Speaker Overlap Present	Speaker Overlap Absent
Text Overlap Present	96.8 / 9.6	82.25 / 10.47
Text Overlap Absent	85.90 / 22.04	85.91 / 22.27

882 variation in utterance length yields only marginal changes in duration loss, suggesting limited impact
 883 on attack success.
 884

885 A.6 DATASET ANALYSIS AND OVERLAP EFFECTS

887 To contextualize the results reported in Tables 4 and 6, we provide additional analysis of dataset-
 888 specific factors, focusing on speaker/text overlap and corpus statistics. This supplementary analysis
 889 clarifies why certain datasets, particularly VCTK, exhibit relatively lower TPR@1%FPR despite
 890 maintaining high AUROC.
 891

892 A.6.1 GRADTTS ON VCTK UNDER OVERLAP CONDITIONS

893 Table 10 reports GradTTS performance on VCTK when speaker and text overlaps are selectively
 894 allowed or removed.
 895

896 The results show three key trends: (1) performance is strongest when both text and speaker overlap,
 897 (2) removing both types of overlap produces the lowest TPR, and (3) absence of text overlap de-
 898 grades detection more severely than absence of speaker overlap. This indicates that text overlap is a
 899 decisive factor for generalization and detection accuracy.
 900

901 A.6.2 DATASET COMPOSITION

902 We also examine dataset-level statistics. Table 11 reports speaker splits, Table 12 shows average
 903 utterance length, and Table 13 summarizes vocabulary overlap.
 904

- 905 • **Speakers:** VCTK includes 50 speakers with limited overlap, while LibriTTS has 185
 906 speakers and LJSpeech only one.
- 907 • **Utterance length:** VCTK utterances average 3.2s, much shorter than LJSpeech (6.6s) or
 908 LibriTTS (12.7s), reducing temporal context.
- 909 • **Word overlap:** VCTK shows fewer shared words (4,694) compared to LJSpeech (8,631)
 910 and LibriTTS (12,633), limiting textual redundancy.

912 A.6.3 TEXT OVERLAP AND REAL-WORLD IMPLICATIONS

914 For GradTTS–VCTK, AUROC remains above 85 even when all text overlap is removed, and
 915 TPR@1% FPR can even increase in these settings. This indicates that the attack signal does not
 916 primarily arise from repeated text prompts, but instead from other forms of overfitting, such as:
 917

- 918 • speaker-specific acoustic and prosodic patterns,

918 Table 11: Speaker composition across datasets.
919

920 Dataset	921 Total Speakers	922 Member	923 Non-member	924 Overlap
LJSpeech	1	1	1	1
VCTK	50	25	26	1
LibriTTS	185	89	87	1

925 Table 12: Average utterance length (sec).
926

927 Dataset	928 Member	929 Non-member
LJSpeech	6.56	6.59
VCTK	3.24	3.30
LibriTTS	12.67	12.67

933

- 934 • utterance-length regularities, and
- 935 • pronunciation and articulation characteristics

936

937 Therefore, minimizing text overlap alone could not be an effective defense strategy. In practice,
938 membership leakage can still occur whenever the training data includes the same speakers or similar
939 recording conditions, even if the textual content is entirely disjoint.

940 More robust mitigation strategies should focus on:

941

- 942 • increasing speaker diversity,
- 943 • limiting per-speaker data, and
- 944 • applying normalization or noise-based augmentation.

945

946 These observations suggest that real-world deployments remain vulnerable even under intentionally
947 minimized text overlap, unless broader data- and model-level defenses are employed.

949 A.6.4 REMARKS

951 These analyses explain why VCTK yields lower TPR@1%FPR despite high AUROC. Short utter-
952 ances and reduced word overlap limit both temporal and lexical cues, making membership detec-
953 tion harder. By contrast, datasets with greater redundancy (LJSpeech, LibriTTS) provide stronger
954 signals. Overall, dataset composition—particularly text overlap—plays a central role in shaping
955 membership inference performance.

956 A.7 PROXY INDICATORS FOR IMPLICIT DURATION MODELS

959 Recent alignment-free or zero-shot text-to-speech (TTS) models, including E2-TTS, F5-TTS, Seed-
960 TTS (Anastassiou et al., 2024), and MaskGCT (Wang et al., 2024), do not rely on explicit duration
961 modules. Instead, they are trained using infilling objectives, where random audio segments are
962 masked and reconstructed given the remaining context and full text. This procedure enables zero-
963 shot synthesis across unseen text-speaker pairs, while implicitly learning alignment between text and
964 audio sequences. Architecturally, models such as E2-TTS employ only a mel-spectrogram generator
965 and a vocoder, without phoneme-level duration supervision.

966 Although DurMI cannot be directly applied to these systems, implicit alignment cues remain ex-
967 ploitable for membership inference. We introduce two proxy indicators and one is discussed in
968 Section 6 and the other is detailed in this section.

969 Infilling-based TTS training requires reconstructing masked frames. For training data, reconstruc-
970 tion tends to be more accurate, preserving pronunciation, timing, and speaker traits. Non-member
971 samples often exhibit lower fidelity. Thus, similarity between original and reconstructed segments
provides another membership signal.

972 Table 13: Word overlap between member and non-member subsets.
973

974 Dataset	975 Member-only	976 Non-member-only	977 Shared
978 LJSpeech	979 7,123	980 7,189	981 8,631
982 VCTK	983 1,624	984 1,410	985 4,694
986 LibriTTS	987 8,221	988 7,789	989 12,633

990 A.8 DEFENSES
991

992 We apply DP-SGD, one of widely used MIA defenses, to the duration predictor in Grad-TTS as
993 our defense mechanism. DP-SGD reduces the influence of individual training samples by clipping
994 gradients and injecting Gaussian noise. The strength of differential privacy is controlled by the
995 privacy budget ϵ , which corresponds to different Gaussian noise multipliers σ . This defense has
996 been shown to preserve practical TTS model quality while mitigating the exposure of duration-loss
997 signals.

998 We vary the noise multiplier σ under a fixed $\delta = 10^{-5}$ to obtain different privacy budgets ϵ , and
999 evaluate both the convergence behavior of the duration loss and the resulting membership inference
1000 attack (MIA) performance.

1001 Table 14 reports the duration loss of Grad-TTS and the corresponding attack performance (AU-
1002 ROC, TPR@1%FPR) across different $\epsilon-\sigma$ configurations. The ϵ values shown in the first row are
1003 computed with $\delta = 10^{-5}$, and all duration loss values are measured at Epoch 1000.

1004 Applying DP-SGD to the duration predictor increases early training loss and suppresses overfitting,
1005 which could in principle hinder membership inference. However, DurMI remains highly effective
1006 throughout training. Even under our strongest tested DP setting ($\epsilon \approx 1.6$), the AUROC stays at
1007 98.7% (only 0.9% lower than non-private), and TPR@1%FPR remains high at 83.3%.

1008 Importantly, **our DP experiments show that ϵ values up to $\epsilon \approx 10$ yield only minimal degradation**
1009 in both model utility and attack performance. These observations indicate that although
1010 DP-SGD stabilizes training and reduces early memorization, the duration module in Grad-TTS in-
1011 trinsically leaks membership information, and the attack remains strong even under substantial DP
1012 noise.

1004 Metric	1005 Non-private	1006 $\epsilon = 10.961$ $\sigma = 1.0$	1007 $\epsilon = 5.187$ $\sigma = 1.5759$	1008 $\epsilon = 1.624$ $\sigma = 4.0234$	1009 $\epsilon = 9.996$ $\sigma = 1.0492$	1010 $\epsilon = 0.993$ $\sigma = 6.25$	1011 $\epsilon = 0.093$ $\sigma = 60.0$
1006 Duration loss	1007 0.27	1008 0.338	1009 0.338	1010 0.345	1011 0.337	1012 0.357	1013 0.615
1006 AUROC	1007 99.6	1008 98.7	1009 98.6	1010 98.7	1011 98.7	1012 98.6	1013 93.4
1006 TPR@1%FPR	1007 95.2	1008 83.6	1009 83.0	1010 83.3	1011 84.2	1012 80.8	1013 36.0

1008 Table 14: Effect of DP-SGD noise levels on Duration Loss and Membership Inference Attack Per-
1009 formance in Grad-TTS
10101012 A.9 LIMITATIONS OF DURATION-BASED MIAS AND DEEP LEARNING-BASED MIA.
1013

1014 Attack performance decreases on stochastic-duration models (e.g., VITS2 on VCTK). This is not
1015 simply due to weaker duration-loss signals but rather to increased stochasticity in duration predic-
1016 tions, which makes the loss values dynamic and inconsistent across samples. As output length is
1017 probabilistically determined, duration loss varies even for identical text, weakening the membership
1018 signal.

1019 This implies the following:

- 1021 1. A duration-loss-based MIA becomes most reliable on deterministic-duration models.
- 1022 2. It may become less effective for stochastic or non-deterministic architectures.

1024 Our results show that duration-loss-based membership inference attacks have a significant drawback
1025 when used with stochastic-duration TTS designs. Stochastic methods, like VITS2, produce output
1026 lengths through stochastic sampling, in contrast to deterministic methods, where duration alignment

1026 is constant and loss signals are steady. Because of this architecture, the observed duration loss is
 1027 highly noisy and duration projections are inherently more variable. As a result, even when the same
 1028 text is synthesized numerous times, the loss values fluctuate, lowering consistency and diminishing
 1029 the separability between members and non-members. This explains the observed degradation in
 1030 attack performance and suggests that stochasticity functions as a natural regularizer against duration-
 1031 based MIAs.

1032 These results indicate that the effectiveness of duration-loss-based attacks is highly dependent on
 1033 architectural design. While deterministic systems appear vulnerable due to stable and predictable
 1034 alignment behavior, stochastic-duration architectures obscure membership signals through random-
 1035 ness, making traditional threshold-based attacks insufficient. This highlights a broader implication:
 1036 architectural decisions intended for perceptual quality or modeling flexibility may unintentionally
 1037 contribute to privacy resilience.

1038 Motivated by this limitation, we explored deep learning-based MIA classifiers on GradTTS. We
 1039 use a Recursive Neural Network (RNN) and a Multilayer Perceptron (MLP) to classify the duration
 1040 loss of member set and hold-out set. The RNN Classifier’s architecture is composed of one layer of
 1041 GRU, one fully connected layer, and a sigmoid layer. The GRU layer has 128 hidden dimension.
 1042 The MLP Classifier consists of three hidden-ReLU layers and a final layer with sigmoid activation.
 1043 This model outperformed our previous MIA methodology, which relied on simple threshold-based
 1044 classification, showing higher TPRs across multiple datasets. The results are presented in Table 15.

1045 In terms of TPRs, the RNN classifier performs comparably or somewhat better than thresholding on
 1046 LJSpeech and LibriTTS. When applying the RNN classifier rather than thresholding on VCTK, the
 1047 AUROC marginally drops, but the TPR increases, suggesting more reliable detection of membership
 1048 signals across different thresholds. In general, membership inference across datasets becomes more
 1049 reliable when applying an deep-learning-based attack model such as RNN, as opposed to straight-
 1050 forward thresholding.

Dataset	Thresholding (prior)	RNN Classifier (new)
LJSpeech	99.7 / 99.1	99.1 / 98.8
LibriTTS	98.9 / 82.8	99.3 / 88.2
VCTK	86.7 / 18.2	73.8 / 26.7

1056 Table 15: Comparison of MIA performance using thresholding vs. RNN-based classifier across
 1057 different datasets.

1058 A.10 ADDITIONAL TPR RESULTS AT LOWER FPRs

1059 We explored lower FPRs and computed the corresponding TPRs. Table 16 reports the results for
 1060 DurMI, while Table 17, Table 18, and Table 19 present the results for our baseline models under the
 1061 same settings.

1062 A.11 TRAIN-ATTACK ALIGNER MISMATCH

1063 To evaluate the robustness of DurMI under realistic attack conditions, we analyze performance when
 1064 the aligner used in the attack phase differs from the aligner used during model training. Specifically,
 1065 we consider combinations of MAS and MFA aligners for both training and attack pipelines, reflect-
 1066 ing a case where the attacker does not know the exact training configuration.

1067 These results in Table 20 demonstrate that mismatched aligners substantially reduce membership
 1068 inference success. However, note that matched-aligner settings can be practical in real-world sce-
 1069 narios because TTS pipelines typically disclose aligner choices (e.g., MFA, MAS, or proprietary
 1070 tools), or they can be inferred from training scripts or released checkpoints.

1071 A.12 ABLATION STUDY: SAMPLING RATE

1072 We conduct an additional sampling-rate ablation on GradTTS trained with VCTK to evaluate the
 1073 sensitivity of DurMI to the sampling resolution of generated speech. As summarized in Table 21,
 1074 membership inference performance peaks at **22 kHz**, which matches the model’s default generation

Table 16: DurMI: TPR at different FPR thresholds

Model	Dataset	TPR@1%FPR	TPR@0.1%FPR	TPR@0.01%FPR
GradTTS	LJSpeech	99.1	36.9	7.1
	LibriTTS	82.8	50.4	0.2
	VCTK 10k	18.2	4.7	2.5
WaveGrad2	LJSpeech	100.0	100.0	99.9
	LibriTTS	100.0	100.0	100.0
	VCTK	47.0	7.9	0.5
FastSpeech2	LJSpeech	100.0	100.0	100.0
	LibriTTS	90.5	47.5	17.2
	VCTK	93.7	73.6	48.7
VoiceFlow	LJSpeech	93.9	63.9	50.7
	LibriTTS	56.5	18.6	2.1
	VCTK	90.6	73.5	47.1
VITS2	LJSpeech	80.1	42.7	20.7
	LibriTTS	22.4	5.4	5.4
	VCTK	12.2	0.1	0.1

Table 17: Naive Attack: TPR at different FPR thresholds

Model	Dataset	TPR@1%FPR	TPR@0.1%FPR	TPR@0.01%FPR
GradTTS	LJSpeech	55.0	19.7	3.6
	LibriTTS	58.1	33.7	12.8
	VCTK	29.5	5.7	3.9
WaveGrad2	LJSpeech	1.0	0.1	0.03
	LibriTTS	0.6	0.7	0.1
	VCTK	1.5	0.1	0.0

Table 18: SecMI: TPR at different FPR thresholds

Model	Dataset	TPR@1%FPR	TPR@0.1%FPR	TPR@0.01%FPR
GradTTS	LJSpeech	70.3	25.7	2.9
	LibriTTS	55.2	38.8	8.8
	VCTK	8.1	0.8	0.2
WaveGrad2	LJSpeech	1.0	0.1	0.02
	LibriTTS	0.3	0.1	0.02
	VCTK	1.0	0.5	0.1

Table 19: PIA: TPR at different FPR thresholds

Model	Dataset	TPR@1%FPR	TPR@0.1%FPR	TPR@0.01%FPR
GradTTS	LJSpeech	55.0	20.5	1.8
	LibriTTS	47.0	23.9	2.7
	VCTK	9.7	1.2	0.2
WaveGrad2	LJSpeech	0.4	0.1	0.06
	LibriTTS	0.1	0.06	0.04
	VCTK	0.8	0.7	0.3

1134 Table 20: DurMI performance under training–attack aligner mismatch (VoiceFlow)
1135

1136 Training → Attack	1137 AUROC	1138 TPR@1%FPR
MAS → MAS (matched)	99.2	93.9
MAS → MFA (mismatched)	91.7	0.8
MFA → MFA (matched)	93.8	47.8
MFA → MAS (mismatched)	44.1	0.9

1142 setting. Both excessively low and excessively high sampling rates degrade attack performance, indicating that the default 22 kHz configuration preserves the signal-level characteristics most relevant to DurMI.

1143 Table 21: Ablation Study: Impact of Sampling-rate on GradTTS (VCTK)

1144 Sampling Rate (Hz)	1145 AUROC	1146 TPR@1%FPR
100	38.9	0.2
1,000	39.3	0.2
10,000	48.5	0.3
22,050	76.8	9.6
30,000	75.0	4.7
40,000	62.4	1.0
220,500	40.7	3.0

1158 **A.13 ABLATION STUDY: IMPACT OF DATASET VOLUME**

1159 We investigate the sensitivity of DurMI performance to variation in both training and evaluation
1160 sample counts. Table 22 summarizes the effect of reducing available data. Our results show that
1161 DurMI remains **stable and robust** even under substantial sample reductions.

1162 Table 22: Effect of sample-size reduction on DurMI performance

1163 Model / Dataset	1164 Original Setting	1165 Reduced Samples	1166 AUC Change	1167 TPR@1%FPR Change
GradTTS – LJSpeech (Eval size: 10,000 → 1,000)	99.7 / 99.1	99.6 / 95.2	-0.1	-3.9
GradTTS – VCTK (Train size: full → 7,000)	86.7 / 18.2	85.9 / 22.2	-0.8	+4.0

1168 These results indicate that the observed trends are maintained despite reduced data availability, sup-
1169 porting the robustness and reproducibility of our findings.

1170 **A.14 IMPORTANCE OF ALIGNMENT IN CONTEMPORARY TTS MODELS**

1171 Recent developments in text-to-speech (TTS) systems indicate that incorporating text–speech align-
1172 ment information continues to play a critical role in generating accurate and stable speech, regard-
1173 less of model architecture. Although Seed-TTS (Anastassiou et al., 2024) adopts an autoregressive
1174 framework and claims an alignment-free generation strategy, its design still relies on predicting the
1175 duration of the target utterance and leveraging this prediction to locally optimize alignment during
1176 generation. This suggests that implicit alignment mechanisms substantially contribute to reliable
1177 speech synthesis.

1178 Similarly, MegaTTS-3 (Jiang et al., 2025) demonstrates that introducing sparse alignment super-
1179 vision leads to significant improvements in robustness and intelligibility, particularly for long or
1180 syntactically complex sentences. In contrast, systems that omit explicit alignment often exhibit in-
1181 creased word skipping, incorrect timing, or unstable prosody when handling challenging input text.

1182 Related observations are also reported in recent T5-TTS (Chen et al., 2024), where insufficient
1183 alignment often results in hallucinated phrases, repetitions, and semantic corruption. The application
1184 of monotonic alignment constraints has been shown to markedly reduce character-level error rates,
1185 indicating that alignment is essential not only for acoustic quality but also for semantic fidelity.

1188 Taken together, these findings collectively suggest that despite the recent shift toward autoregres-
1189 sive, diffusion-based, or codec-LLM architectures, alignment—whether explicit, sparse, or implic-
1190 itly encoded—remains a crucial component for high-quality and robust TTS, and it is unlikely to be
1191 eliminated from future system designs.
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241