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ABSTRACT

Equivariant graph neural networks force fields (EGRAFFs) have shown great promise in
modelling complex interactions in atomic systems by exploiting the graphs’ inherent sym-
metries. Recent works have led to a surge in the development of novel architectures that
incorporate equivariance-based inductive biases alongside architectural innovations like
graph transformers and message passing to model atomic interactions. However, thorough
evaluations of these deploying EGRAFFs for the downstream task of real-world atomistic
simulations, is lacking. To this end, here we perform a systematic benchmarking of 6
EGRAFF algorithms (NEQUIP, ALLEGRO, BOTNET, MACE, EQUIFORMER, TORCH-
MDNET), with the aim of understanding their capabilities and limitations for realistic
atomistic simulations. In addition to our thorough evaluation and analysis on eight existing
datasets based on the benchmarking literature, we release two new benchmark datasets,
propose four new metrics, and three challenging tasks. The new datasets and tasks eval-
uate the performance of EGRAFF to out-of-distribution data, in terms of different crystal
structures, temperatures, and new molecules. Interestingly, evaluation of the EGRAFF
models based on dynamic simulations reveals that having a lower error on energy or
force does not guarantee stable or reliable simulation or faithful replication of the atomic
structures. Moreover, we find that no model clearly outperforms other models on all
datasets and tasks. Importantly, we show that the performance of all the models on out-of-
distribution datasets is unreliable, pointing to the need for the development of a foundation
model for force fields that can be used in real-world simulations. In summary, this work
establishes a rigorous framework for evaluating machine learning force fields in the
context of atomic simulations and points to open research challenges within this domain.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as powerful tools for learning representations of graph-
structured data, enabling breakthroughs in various domains such as social networks, mechanics, drug dis-
covery, and natural language processing (Perozzi et al., 2014; Wu et al., 2020; Zhang & Chen, 2018; Stokes
et al., 2020; Zhou et al., 2020; Miret et al., 2023; Lee et al., 2023). In the field of atomistic simulations, GNN
force fields have shown significant promise in capturing complex interatomic interactions and accurately
predicting the potential energy surfaces of atomic systems (Park et al., 2021; Sanchez-Gonzalez et al., 2020;
Schütt et al., 2021; Qiao et al., 2021). These force fields can, in turn, be used to study the dynamics of
atomic systems—that is, how the atomic systems evolve with respect to time—enabling several downstream
applications such as drug discovery, protein folding, stable structures of materials, and battery materials with
targeted diffusion properties.

Recent work has shown that GNN force fields can be further enhanced and made data-efficient by enforc-
ing additional inductive biases, in terms of equivariance, leveraging the underlying symmetry of the atomic
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structures. This family of GNNs, hereafter referred to as equivariant graph neural network force fields
(EGRAFFs), have demonstrated their capability to model symmetries inherent in atomic systems, resulting
in superior performance in comparison to other machine-learned force fields. This is achieved by explic-
itly accounting for symmetry operations, such as rotations and translations, and ensuring that the learned
representations in EGRAFFs are consistent under these transformations.

Traditionally, EGRAFFs are trained on the forces and energies based on first principle simulations data,
such as density functional theory. Recently work has shown that low training or test error does not guaran-
tee the performance of the EGRAFFs for the downstream task involving atomistic or molecular dynamics
(MD) simulations (Fu et al., 2023). Specifically, EGRAFFs can suffer from several major issues such as
(i) unstable trajectory (the simulation suddenly explodes/becomes unstable due to high local forces), (ii)
poor structure (the structure of the atomic system including the coordination, bond angles, bond lengths
is not captured properly), (iii) poor generalization to out-of-distribution datasets including simulations at
different temperatures or pressures of the same system, simulations of different structures having the same
chemical composition—for example, crystalline (ordered) and glassy (disordered) states of the same sys-
tem, or simulations of different compositions having the same chemical components—for example, Li4P2S6

and Li7P3S11. Note that these are realistic tasks for which a force field that is well-trained on one system
can generalize to other similar systems. As such, an extensive evaluation and comparison of EGRAFFs is
needed, which requires standardized datasets, well-defined metrics, and comprehensive benchmarking, that
capture the diversity and complexity of atomic systems.

An initial effort to capture the performance of machine-learned force fields was carried out (Fu et al., 2023).
In this work, the authors focused on existing datasets and some metrics, such as radial distribution functions
and diffusion constants of atomic systems. However, the work did not cover the wide range of EGRAFFs that
has been newly proposed, many of which have shown superior performance on common tasks. Moreover,
the metrics in Fu et al. (2023) were limited to stability, mean absolute error of forces radial distribution
function, and diffusivity. While useful, these metrics either do not capture the variations during the dynamic
simulation (e.g., how the force or energy error evolves during simulation) or require long simulations (such
as diffusion constants, which requires many steps to reach the diffusive regime). Further, the work does not
propose any novel tasks that can serve as a benchmark for the community developing new force fields.

With the increasing interest in EGRAFFs for atomic simulations, we aim to address the gap in benchmarking
by performing a rigorous evaluation of the quality of simulations obtained using modern EGRAFF force
fields. To this extent, we evaluate 6 EGRAFFs on 10 datasets, including two new challenging datasets that
we contribute, and propose new metrics based on real-world simulations. By employing a diverse set of
atomic systems and benchmarking metrics, we aim to objectively and rigorously assess the capabilities and
limitations of EGRAFFs. The main contributions of this research paper are as follows:

• EGRAFFs: We present a benchmarking package to evaluate 6 EGRAFFs for atomistic simulations. As
a byproduct of this benchmarking study, we release a well-curated codebase of the prominent Equivariant
GNNforce fields in the literature enabling easier and streamlined access to relevant modeling pipelines
https://anonymous.4open.science/status/MDBENCHGNN-BF68.

• Challenging benchmark datasets: We present 10 datasets, including two new datasets, namely GeTe
and LiPS20. The datasets cover a wide range of atomic systems, from small molecules to bulk systems.
The datasets capture several scenarios, such as compounds with the same elements but different chemical
compositions, the same composition with different crystal structures, and the same structure at different
temperatures. This includes complex scenarios such as melting trajectories of crystals.

• Challenging downstream tasks: We propose several challenging downstream tasks that evaluate the
ability of EGRAFFs to model the out-of-distribution datasets described earlier.

• Improved metrics: We propose additional metrics that evaluate the quality of the atomistic simulations
regarding the structure and dynamics with respect to the ground truth.
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2 PRELIMINARIES

Every material consists of atoms that interact with each other based on the different types of bondings (e.g.,
covalent and ionic). These bonds are approximated by force fields that model the atomic interactions. Here,
we briefly describe atomistic simulations and the equivariant GNNs used for modeling these systems.

2.1 ATOMISTIC SIMULATION

Consider a set of N atoms represented by a point cloud corresponding to their position vectors
(r1, r2, . . . , rN ) and their types ωi. Specifically, the potential energy of a system can be written as the sum-
mation of one-body U(ri), two-body U(ri, rj), three-body U(ri, rj , rk), up to N -body interaction terms as

U =

N∑
i=1

U(ri) +

N∑
i,j=1;
i ̸=j

U(ri, rj) +

N∑
i,j,k=1;
i ̸=j ̸=k

U(ri, rj , rk) + · · · (1)

Since the exact computation of this potential energy is challenging, they are approximated using empirical
force fields that learn the effective potential energy surface as a function of two-, three-, or four-body inter-
actions. In atomistic simulations, these force fields are used to obtain the system’s energy. The forces on
each particle are then obtained as Fi = −∂U/∂ri. The acceleration of each atom is obtained from these
forces as Fi/mi where mi is the mass of each atom. Accordingly, the updated position is computed by
numerically integrating the equations of motion using a symplectic integrator. These steps are repeated to
study the dynamics of atomic systems.

2.2 EQUIVARIANT GNN FORCE FIELDS (EGRAFF)

Figure 1: Equivariant
transformation G on a
molecule under rotation R.

GNNs are widely used to model the force field due to the topological similarity
with atomic systems. Specifically, nodes are considered atoms, the edges rep-
resent interactions/bonds, and the energy or force is predicted as the output at
the node or edge levels. Equivariant GNNs employ a message passing scheme
that is equivariant to rotations, that is, G(Rx) = RG(x), where R is a rotation
and G is an equivariant transformation (see Fig.1). This enables a rich repre-
sentation of atomic environments equivariant to rotation. Notably, while the
energy of an atomic system is invariant to rotation (that is, a molecule before
and after rotation would have the same energy), the force is equivariant to ro-
tation (that is, the forces experienced by the molecules due to the interactions
also get rotated when the molecule is rotated).

3 MODELS STUDIED

All EGRAFFs employed in this work rely on equivariance in the graph structure. All models use a one-hot
encoding of the atomic numbers Zi as the node input and the position vector ri as a node or edge input.
Equivariance in these models is ensured by the use of spherical harmonics along with radial basis functions.
The convolution or message-passing implementation differs from model to model. Further hyperparameters
details for all models are tabulated in App. A.10
NEQUIP (Batzner et al., 2022), based on the tensor field networks, employs a series of self-interaction,
convolution, and concatenation with the neighboring atoms. The convolution filter Sl

m(r⃗ij) = R(|r⃗ij |) ×
Y l
m(r⃗ij/|r⃗ij |) represented as a product of radial basis function R and spherical harmonics Y l

m ensures
equivariance. This was the first EGRAFF proposed for atomistic simulations based on spherical harmonics.
ALLEGRO Musaelian et al. (2022) merges the precision of recent equivariant GNNs with stringent locality,
without message passing. Its inherent local characteristic enhances its scalability for potentially more
extensive systems. In contrast to other models, ALLEGRO predicts the energy as a function of the final
edge embedding rather than the node embeddings. All the pairwise energies are summed to obtain the totatl
energy of the system. ALLEGRO features remarkable adaptability to data outside the training distribution,
consistently surpassing other force fields in this aspect, especially those employing body-ordered strategies.
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Figure 2: Visualisation of datasets. (a) GeTe4, (b) LiPS20, (c) 3BPA, (d) Acetylacetone, (e) MD17.

BOTNET Batatia et al. (2022a) is a refined body-ordered adaptation of NEQUIP. While maintaining the
two-body interactions of NequIP in each layer, it increments the body order by one with every iteration of
message passing. Unlike NEQUIP, BOTNET uses non-linearities in the update step.
MACE Batatia et al. (2022b) offers efficient equivariant messages with high body order computation.
Due to the augmented body order of the messages, merely two message-passing iterations suffice to attain
notable accuracy. This contrasts with the usual five or six iterations observed in other GNNs, rendering
MACE both scalable and amenable to parallelization.
TORCHMDNET Thölke & Fabritiis (2022) introduces a transformer-based GNN architecture, utilizing a
modified multi-head attention mechanism. This modification expands the traditional dot-product attention
to integrate edge data, which can enhance the learning of interatomic interactions.
EQUIFORMER (Liao & Smidt, 2023) is a transformer-based GNN architecture, introducing a new attention
mechanism named ‘equivariant graph attention’.This mechanism equips conventional attention used in the
transformers with equivariance.
PaiNN (Schütt et al., 2021) is a polarizable atom interaction neural network consisting of equivariant
message passing architecture that takes into account the varying polarizability of atoms in different
chemical environments, allowing for a more realistic representation of molecular behavior.
DimeNeT++ (Gasteiger et al., 2020) is a directional message passing neural network where each rotationally
equivariant message is associated with a direction in coordinate space.

4 BENCHMARKING EVALUATION

In this section, we benchmark the above-mentioned architectures and distill the insights generated.
The evaluation environment is detailed in App. A.8. The codebase and datasets are made available at
https://anonymous.4open.science/status/MDBENCHGNN-BF68.

4.1 DATASETS

Since the present work focuses on evaluating EGRAFFs for molecular dynamics (MD) simulations, we
consider only datasets with included time dynamics—i.e., all the datasets represent the dynamics of atom
(see Fig. 2). We consider a total of 10 datasets (see Tab. 8 and App. A.1).

MD17 is a widely used Batzner et al. (2022); Liao & Smidt (2023); Batatia et al. (2022a;b); Thölke & Fab-
ritiis (2022); Fu et al. (2023) dataset for benchmarking ML force fields. It was proposed by Chmiela et al.
(2017) and constitutes a set of small organic molecules, including benzene, toluene, naphthalene, ethanol,
uracil, and aspirin, with energy and forces generated by ab initio MD simulations (AIMD). Here, we se-
lect four molecules, namely aspirin, ethanol, naphthalene, and salicylic acid, to cover a range of chemical
structures and topology. Further, zero-shot evaluation is performed on benzene. We train the models on 950
configurations and validate them on 50.
3BPA contains a large flexible drug-like organic molecule 3-(benzyloxy)pyridin-2-amine (3BPA) sampled
from different temperature MD trajectories Kovács et al. (2021). It has three consecutive rotatable bonds
leading to a complex dihedral potential energy surface with many local minima, making it challenging to
approximate using classical or ML force fields. The models can be trained either on 300 K snapshots or on
mixed temperature snapshots sampled from 300 K, 600 K, and 1200 K. In the following experiments, we
train models on 500 configurations sampled at 300 K and test 1669 configurations sampled at 600 K.
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LiPS consists of lithium, phosphorous, and sulfur (Li6.75P3S11), which is used in similar benchmarking
analysis Fu et al. (2023), as a representative system for the MD simulations to study kinetic properties in
materials. Note that LiPS is a crystalline (ordered structure) that can potentially be used in battery develop-
ment. We have adopted this dataset from (Batzner et al., 2022)and benchmarked all models for their force
and energy errors. The training and testing datasets have 19000 and 1000 configurations, respectively.
Acetylacetone (AcAc) The dataset was generated by conducting MD simulations at both 300K and 600K
using a Langevin thermostat(Batatia et al., 2022a). The uniqueness of this dataset stems from the varying
simulation temperatures and the range of sampled dihedral angles. While the training set restricts sampling
to dihedral angles below 30°, our models are tested on angles extending up to 180°. The model must effec-
tively generalize on the Potential Energy Surface (PES) for accurate generalization at these higher angles.
This challenge presents an excellent opportunity for benchmarking GNNs. The dataset consists of 500 train-
ing configurations and 650 testing configurations.
GeTe is a new dataset generated by a Car-Parrinello MD (CPMD) simulations Hutter (2012) of Ge and Te
atoms, which builds on a density functional theory (DFT) based calculation of the interatomic forces, prior to
a classical integration of the equations of motions. It consists of 200 atoms, of which 40 are Ge and 160 are
Te, i.e., corresponding to the composition GeTe4 whose structural properties have been investigated in detail
and reproduce a certain number of experimental data in the liquid and amorphous phase from neutron/X-
ray scattering Micoulaut et al. (2014b); Gunasekera et al. (2014) and Mössbauer spectroscopy Micoulaut
et al. (2014a). As GeTe belongs to the promising class of phase-change materials Zhang et al. (2019), it is
challenging to simulate using classical force fields because of the increased accessibility in terms of time
and size. Thus, an accurate force field is essential to understand the structural changes in GeTe during the
crystalline to disordered phase transitions. Here, our dataset consists of 1,500 structures in training, 300 in
test, and 300 in validation.
LiPS20 is a new dataset generated from AIMD simulations of a series of systems containing Li, P, and S
elements, including both the crystalline and disordered structures of elementary substances and compounds,
such as Li, P, S, Li2P2S6, β-Li3PS4, γ-Li3PS4, and xLi2S–(100− x)P2S5 (x = 67, 70, 75, and 80) glasses
using the CP2K package Kühne et al. (2020). Details of dataset generation, structures, and compositions in
this dataset are given in App. A.2.

4.2 EVALUATION METRICS

Ideally, once trained, the forward simulations by EGRAFFs should be close to the ground truth (first princi-
ple simulations) both in terms of the atomic structure and dynamics. To this extent, we propose four metrics.
Note that these metrics are evaluated based on the forward simulation, starting from an arbitrary structure
for n steps employing the force fields; a task for which it is not explicitly trained. All the forward simula-
tions were performed using the Atomic Simulation Environment (ASE) package (Larsen et al., 2017). The
simulations were conducted in the canonical (NV T ) ensemble, where the temperature and timesteps were
set in accordance with the sampling conditions specified in the respective datasets. See details in App. A.3

4.2.1 STRUCTURE METRICS
We propose two metrics to evaluate the proximity of structures predicted by the EGRAFF to the ground truth.
Wright’s Factor (WF), Rχ: Grimley et al. (1990) represents the relative difference between the radial
distribution function (RDF) of the ground truth atomic structure (gref (r)) and the structure obtained from
the atomistic simulations employing the EGRAFFs (g(r)) as

Rχ =

[∑n
i=1 (g(r)− gref(r))

2∑n
i=1 (gref(r))

2

]
(2)

RDF essentially represents the local time-averaged density of atoms at a distance r from a central atom (see
App. A.4). Hence, it captures the structure simulated by a force field concisely and one-dimensionally. A
force field is considered acceptable if it can provide a WF less than 9% for bulk systems Bauchy (2014).
Jensen-Shannon Divergence(JSD) of radial distribution function: Jensen-Shannon Divergence
(JSD) Cover & Thomas (1991); Shannon (1948) is a useful tool for quantifying the difference or similarity
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NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET PaiNN DimeNET++
E F E F E F E F E F E F E F E F

Acetylacetone 1.38 4.59 0.92 4.4 2.0 10.0 2.0 8.0 4.0 4.0 1.0 5.0 4.92 7.73 102.39 15.28
3BPA 3.15 7.86 4.13 10.0 5.0 14.0 4.0 12.0 6.0 7.0 3.0 11.0 36.67 40.41 796.74 46.72
Aspirin 6.84 13.89 5.00 9.17 7.99 14.06 8.53 14.01 6.15 15.29 5.33 8.97 41.49 12.41 133.24 22.07
Ethanol 2.67 7.49 2.34 5.01 2.60 6.80 2.36 3.19 2.66 9.73 2.67 5.93 7.77 11.81 149.55 17.19
Naphthalene 5.70 6.20 5.14 2.64 6.67 6.07 6.26 1.98 3.88 7.01 2.55 4.03 10.56 4.07 175.04 19.65
Salicylic Acid 5.78 8.42 5.76 6.30 5.56 10.21 5.34 4.24 5.22 12.39 6.85 7.19 24.15 11.12 169.18 25.48
LiPS 165.43 5.04 31.75 2.46 28.0 13.0 30.0 15.0 83.20 51.10 67.0 61.0 128.80 112.43 55.22 42.23
LiPS20 26.80 3.04 33.17 3.31 24.59 5.51 14.05 4.64 3274.93 57.63 20.47 57.19 - - - -
GeTe 1780.951 244.40 1009.4 253.45 3034.0 258.0 2670.0 247.0 666.34 363.17 2613.0 371.0 884.28 330.05 51704.65 222.39

Table 1: Energy (E) and force (F) mean absolute error in meV and meV/Å, respectively, for the trained
models on different datasets. Darker colors represent the better-performing models. We use shades of green
and blue color for energy and force, respectively.

between two probability distributions in a way that overcomes some of the limitations of the KL Diver-
genceKullback & Leibler (1951). Since the RDF is essentially a distribution of the atomic density, JSD
between two predicted RDF and ground truth RDF can be computed as:

JSD(g(r) ∥ gref (r)) =
1

2
(KL(g(r) ∥ ĝ(r)) + KL(gref (r) ∥ ĝ(r))) (3)

where ĝ(r) = 1/2(g(r) + gref (r)) is the mean of the predicted and ground-truth RDFs. (see App. A.4)
4.2.2 DYNAMICS METRICS
We monitor the energy and force error over the forward simulation trajectory to evaluate how close the
predicted dynamics are to the ground truth. Specifically, we use the following metrics, namely, energy
violation error, EV(t), and force violation error, FV(t), defined as:

EV (t) =
(Ê(t)− E(t))2

Ê(t)2 + E(t)2
, and FV (t) =

∥ ˆF(t)−F(t)∥2(
∥ ˆF(t)∥2 + ∥F(t)∥2

) (4)

where Ê(t) and E(t) are the predicted and ground truth energies respectively and ˆF(t) and F(t) are the
predicted and ground truth forces. Note that this metric ensures that the energy and the force violation errors
are bounded between 0 and 1, with 0 representing exact agreement with the ground truth and 1 representing
no agreement. Further, we compute the geometric mean of EV (t) and FV (t) over the trajectory to represent
the cumulative EV and FV .

4.3 RESULTS

4.3.1 ENERGY AND FORCES
To evaluate the performance of the trained models on different datasets, we first compute the mean absolute
error in predicting the energy and force (see Table 1). First, we observe that no single model consistently
outperforms others for all datasets, highlighting the dataset-specific nature of the models. TORCHMDNET
model has notably lower energy error than other models for most datasets, while NEQUIP has minimum
force error on majority of datasets with low energy error. On bulk systems such as LiPS and LiPS20, MACE
and BOTNET show the lowest energy error. Interestingly, GeTe, the largest dataset in terms of the number of
atoms, exhibits significant energy errors across all models, with the EQUIFORMER having the lowest energy
error. EQUIFORMER also exhibits lower force error for datasets like Acetylacetone, 3BPA, and MD17, but
suffers high force error on GeTe, LiPS, and LiPS20. Overall, ALLEGROseems to perform well in terms of
both energy and force errors for several datasets. It is also interesting to note that the models exhibiting low
energy error often exhibit high force error, suggesting that the gradient of energy is not captured well by
these models. This will potentially lead to poor simulations as the updated positions are computed directly
from the forces.

4.3.2 FORWARD SIMULATIONS
To evaluate the ability of the trained models to simulate realistic structures and dynamics, we perform MD
simulations using the trained models, which are compared with ground truth simulations, both employing
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NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET PaiNN DimeNET++
JSD WF JSD WF JSD WF JSD WF JSD WF JSD WF JSD WF JSD WF

Acetylacetone 28.24 24.55 29.63 22.17 30.61 26.04 31.07 22.90 29.86 21.78 29.34 22.49 26.97 22.33 66.0 143.36
3BPA 0.82 6.02 1.13 7.98 1.07 7.13 0.98 8.36 0.94 7.44 0.87 7.31 1.39 6.65 6.87 89.97
Aspirin 0.133 30.66 0.108 23.29 0.122 27.36 0.111 18.92 0.120 23.58 0.131 23.99 0.03 4.0 0.31 167.48
Ethanol 0.526 18.34 0.450 15.89 0.360 15.57 0.494 17.93 0.549 23.48 0.464 17.70 0.78 9.42 3.75 205.75
Naphthalene 0.089 20.96 0.082 19.44 0.093 24.65 0.095 22.89 0.090 26.72 0.081 19.25 0.02 2.52 0.23 130.40
Salicylic Acid 0.077 16.95 0.124 27.58 0.076 14.65 0.097 19.35 0.072 14.17 0.077 16.12 0.08 7.63 0.50 208.95
LiPS 0.0 3.89 0.0 3.57 0.0 3.93 0.0 3.66 0.0 1.97 0.0 1.49 0.0 0.51 0.0 28.55
LiPS20 0.001 14.92 0.001 18.32 0.001 17.08 0.001 17.70 - - 0.006 41.70 - - - -
GeTe 0.0 2.78 0.0 2.06 0.0 2.03 0.0 2.02 - - 0.0 2.80 0.0 2.29 0.0 16.77

Table 2: JSD and WF for six EGRAFFs on all the datasets. The values are computed as the average of five
forward simulations for 1000 timesteps on each dataset with different initial conditions.

the same initial configuration and velocities. For each model, five forward simulations of 1000 timesteps are
performed on each dataset. Root mean square displacement plots for each dataset are shown in App. A.9
Tables 2 and 3 show the JSD and WF, and EV and FV, respectively, of the trained models on the datasets
(see App. A.5, A.6 and A.7 for figures). Both in terms of JSD and WF, we observe that NEQUIP performs
better on most datasets. Interestingly, even on datasets where other models have lower MAE on energy and
force error, NEQUIP performs better in capturing the atomic structure. Altogether, we observe that NEQUIP
followed by TORCHMDNET performs best in capturing the atomic structure for most datasets. We now
evaluate the models’ EV and FV during the forward simulation. Interestingly, we observe that NEQUIP and
ALLEGRO exhibit the least FV for most datasets, while MACE and BOTNET perform better in terms of
EV. Interestingly, TORCHMDNET, despite having the lowest MAE on energy for most datasets, does not
exhibit low EV, indicating that having low MAE during model development does not guarantee low energy
error during MD simulation.

4.3.3 TRAINING AND INFERENCE TIME

Table 4 shows different models’ training and inference time. MACE and TORCHMDNET have the low-
est per epoch training time. The total training time is higher for transformer models TORCHMDNET and
EQUIFORMER because of the larger number of epochs required for training. Although NEQUIP and ALLE-
GRO require more time per epoch, they get trained quickly in fewer epochs. LiPS dataset, having the largest
dataset size in training of around 20000, has the largest per epoch training time. Since MD simulations
are generally performed on CPUs, we report inference time as a mean over five simulations for 1000 steps
performed on a CPU. TORCHMDNET is significantly fast on all the datasets while ALLEGRO and MACE
show competitive performance. A visual analysis of the models on these metrics are given in App. A.7.

NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET PaiNN DimeNET++
E F E F E F E F E F E F E F E F

Acetylacetone 0.960 0.709 0.820 0.710 0.923 0.713 0.813 0.710 0.810 0.711 0.836 0.713 2.129 0.705 1.043 0.705
(0.361) (0.042) (0.275) (0.041) (0.331) (0.041) (0.275) (0.041) (0.276) (0.043) (0.282) (0.042) (0.457) (0.042) (0.353) (0.041)

3BPA 0.810 0.711 0.729 0.710 0.680 0.711 0.760 0.710 0.803 0.709 0.814 0.710 0.893 0.716 1.92 0.707
(0.394) (0.032) (0.292) (0.033) (0.248) (0.032) (0.281) (0.032) (0.310) (0.032) (0.30) (0.032) (0.446) (0.031) (0.367) (0.032)

Aspirin 1.068 0.626 1.009 0.625 1.083 0.627 1.004 0.628 1.023 0.637 1.096 0.626 2.908 0.662 1.188 0.680
(0.351) (0.081) (0.358) (0.085) (0.337) (0.078) (0.338) (0.075) (0.36) (0.083) (0.352) (0.077) (0.598) (0.061) (0.265) (0.055)

Ethanol 3.287 0.684 3.497 0.686 3.239 0.698 3.579 0.690 3.252 0.698 3.420 0.686 4.828 0.687 3.071 0.708
(1.275) (0.071) (1.209) (0.071) (1.206) (0.078) (1.255) (0.076) (1.245) (0.072) (1.327) (0.074) (1.133) (0.070) (0.719) (0.073)

Naphthalene 2.45 0.624 2.305 0.603 2.524 0.599 2.59 0.604 2.593 0.616 2.700 0.604 4.071 0.661 1.778 0.693
(0.685) (0.073) (0.688) (0.062) (0.644) (0.063) (0.663) (0.072) (0.675) (0.075) (0.688) (0.070) (0.839) (0.061) (0.520) (0.059)

Salicylic Acid 2.135 0.625 1.955 0.604 2.042 0.621 2.14 0.610 1.996 0.616 2.146 0.594 4.107 0.687 2.15 0.694
(0.468) (0.068) (0.465) (0.064) (0.45) (0.072) (0.444) (0.063) (0.477) (0.065) (0.529) (0.062) (0.696) (0.056) (36.01) (0.058)

LiPS 87.52 0.711 97.64 0.710 100.07 0.712 100.30 0.765 78.93 0.718 160.60 0.712 662.431 0.705 222.94 0.699
(36.342) (0.054) (39.990) (0.053) (36.839) (0.053) (39.041) (0.053) (47.28) (0.050) (76.441) (0.049) (89.605) (0.042) (42.777) (0.052)

LiPS20 45.10 0.720 32.79 0.721 27.99 0.726 41.47 0.722 - - 15108.75 0.834 - - - -
(14.206) (0.043) (8.09) (0.040) (8.201) (0.039) (8.613) (0.039) - - (27106.23) (0.065) - - - -

GeTe 495.30 0.800 294.39 0.756 351.86 0.764 352.46 0.765 - - 346.44 0.779 175.928 0.77 3914.07 0.807
(36.945) (0.064) (23.563) (0.063) (27.139) (0.072) (27.055) (0.073) - - (25.362) (0.060) (80.01) (0.052) (181.98) (0.081)

Table 3: Geometric mean of energy (×10−5) and force violation error over the simulation trajectory. The
values are computed as the average of five forward simulations for 1000 timesteps on each dataset with
different initial conditions. Values in the parenthesis represent the standard deviation.
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NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET
T I T I T I T I T I T I

Acetylacetone 0.66 3.18 0.17 1.94 0.11 1.90 0.04 2.66 0.52 9.98 0.11 1.79
3BPA 1.07 7.07 1.80 4.92 0.12 4.46 0.06 4.18 0.68 19.25 0.13 4.83
Aspirin 5.23 2.93 1.61 1.68 0.21 1.76 0.14 2.45 0.85 13.04 0.15 1.41
Ethanol 5.49 2.05 1.62 0.68 5.03 1.07 1.15 1.28 0.81 5.70 0.14 0.80
Naphthalene 5.26 3.75 2.11 1.07 13.47 1.27 4.728 2.28 0.85 14.67 0.14 1.37
Salicylic Acid 5.24 3.30 1.61 0.87 11.68 1.26 3.858 2.29 0.82 9.79 0.14 1.17
LiPS 89.91 35.83 20.89 13.91 4.82 10.29 3.61 6.52 18.51 46.34 3.18 6.95
LiPS20 2.78 25.51 0.76 11.42 0.36 15.187 0.18 6.75 1.86 56.59 0.21 5.12
GeTe 7.22 105.62 4.49 220.43 2.07 78.2 0.58 26.75 9.33 143.91 1.55 21.67

Table 4: Training time (T) per epoch and inference time (I) in minutes/epoch and minutes, respectively,
for the trained models on all the datasets. Inference time is the mean over 5 forward simulations of 1000
steps on the CPU.

NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET
E F E F E F E F E F E F

Acetylacetone 300K 0.959 0.7092 0.817 0.7110 0.924 0.7131 0.813 0.7096 0.810 0.7113 0.836 0.7128
600K 1.806 0.7145 1.912 0.7137 1.893 0.7140 2.215 0.7127 2.169 0.7137 1.996 0.7120

3BPA 300K 0.809 0.7106 0.708 0.7102 0.677 0.7109 0.759 0.7097 0.803 0.7089 0.814 0.7097
600K 1.180 0.7095 1.603 0.7092 1.607 0.7102 1.214 0.7087 1.319 0.7104 1.160 0.7121

Table 5: Geometric mean of energy (×10−5) and force violation at 300 K and 600 K using model trained at
300 K for acetylacetone and 3BPA dataset.

4.4 CHALLENGING TASKS ON EGRAFF

4.4.1 GENERALIZABILITY TO HIGHER TEMPERATURES

At higher temperatures, the sampling region in the energy landscape widens; hence, the configurations ob-
tained at higher temperatures come from a broader distribution of structural configurations. In the 3BPA
molecule, at 300K, only the stable dihedral angle configurations are present, while at 600K, all configu-
rations are sampled. Here, we evaluate the model trained at lower temperatures for simulations at higher
temperatures. Table 5 shows the obtained mean energy and force violation of the forward simulation trajec-
tory, and Table 6 shows the corresponding JSD and WF. We observe that the models can reasonably capture
the behavior, both structure and dynamics, at higher temperatures.

4.4.2 OUT OF DISTRIBUTION TASKS ON THE LIPS20 DATASET

Unseen crystalline structures: Crystal structures are stable low-energy structures with inherent symmetries
and periodicity. Predicting their energy accurately is an extremely challenging task and a cornerstone in
materials discovery. Here, we train the models on liquid (disordered) structures and test them on the out-of-
distribution crystalline structures to evaluate their generalizability capabilities. Table 7 shows that BOTNET
performs appreciably well with almost the same energy and force error on crystal structures as the obtained
training error. Both the transformer models have poor performance on the LiPS20 system, in terms of both
the training and testing datasets. TORCHMDNET has significantly high energy and force errors, whereas
EQUIFORMER exhibits instability during the forward simulation.

Generalizability to unseen composition: The LiPS20 dataset consists of 20 different compositions with
varying system sizes and cell geometries (see App. A.2). In Tables 7a(a) and 7b, we show the results on the
test structures that are not present in the training datasets. The test dataset consists of system sizes up to 260
atoms, while the models were trained on system sizes with < 100 atoms. It tests the models’ generalization
as well as inductive capability. We observe that MACE and BOTNET have the lowest mean energy, force
violation, and low WF. NEQUIP and ALLEGRO have significantly higher test errors.

5 CONCLUDING INSIGHTS

In this work, we present EGRAFFBench, a benchmarking suite for evaluating machine-learned force fields.
The key insights drawn from the extensive evaluation are as follows.
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NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET
JSD WF JSD WF JSD WF JSD WF JSD WF JSD WF

Acetylacetone 300K 28.244 24.552 29.628 22.166 30.612 26.038 31.072 22.904 29.863 21.783 29.335 22.485
600K 18.868 31.480 21.068 26.178 18.332 26.620 19.295 28.708 17.938 27.414 19.054 29.626

3BPA 300K 0.821 6.024 1.130 7.986 1.069 7.129 0.976 8.358 0.923 6.991 0.874 7.309
600K 0.758 6.202 0.596 5.137 0.778 5.861 0.683 5.120 1.053 6.648 0.859 6.985

Table 6: JSD and WF at 300 K and 600 K using the model trained at 300 K for acetylacetone and 3BPA.

NEQUIP ALLEGRO BOTNET MACE TORCHMDNET

Train structures E 45.100 32.786 27.997 41.475 15108.747
F 0.719 0.721 0.726 0.722 0.834

Crystal structures E 108.842 197.276 27.159 50.380 40075.532
F 0.717 0.720 0.726 0.722 0.886

Test structures E 15439.338 16803.125 117.531 99.390 59906.813
F 0.763 0.766 0.729 0.723 0.902

(a) Geometric mean of energy (×10−5) and force viola-
tion error over the simulation trajectory for the LiPS20
Train structures, Crystal Structures and Test structures.

NEQUIP ALLEGRO BOTNET MACE TORCHMDNET

Train structures JSD 0.001 0.001 0.001 0.001 0.006
WF 14.920 18.318 17.076 17.697 41.703

Crystal structures JSD 0.0 0.0 0.0 0.0 0.006
WF 7.909 8.7305 10.525 12.661 61.201

Test structures JSD 0.009 0.01 0.002 0.001 0.0159
WF 37.974 35.747 14.234 14.936 70.133

(b) JSD and WF on LiPS20 dataset for Train structures,
Crystal structures, and Test structures for different mod-
els.

Table 7: LiPS20 test on train structures, unseen crystalline structures, and test structures: (a) Energy and
Force violation and (b) JSD and WF.

1. Dataset matters: There was no single model that was performing best on all the datasets and all
the metrics. Thus, the selection of the model depends highly on the nature of the atomic system,
whether it is a small molecule or a bulk system, for instance.

2. Structure is important: Low force or energy error during model development does not guarantee
faithful reproduction of the atomic structure. Conversely, models with higher energy or force error
may provide reasonable structures. Accordingly, downstream evaluation of atomic structures using
structural metrics is important in choosing the appropriate model.

3. Stability during dynamics: Models exhibiting low energy or force errors during the model devel-
opment on static configurations do not guarantee low errors during forward simulation. Thus, the
energy and force violations during molecular dynamics should be evaluated separately to under-
stand the stability of the simulation.

4. Out-of-distribution is still challenging: Discovery of novel materials relies on identifying hitherto
unknown configurations with low energy. We observe that the models still do not perform reliably
on out-of-distribution datasets, leaving an open challenge in materials modeling.

5. Fast to train and fast on inference: We observe that some models are fast on training, while
others are fast on inference. For instance, TORCHMDNET is slow to train but fast on inference.
While MACE is fast both on training and inference, it does not give the best results in terms of
structure or dynamics. Thus, in cases where larger simulations are required, the appropriate model
that balances the training/inference time and accuracy may be chosen.

Limitations and future work: Our research clearly points to developing a foundation model trained on
large datasets. Further, improved training strategies that (i) ensure the learning of gradients of energies and
forces, (ii) take into account the dynamics during simulations, and (iii) reproduce the structure faithfully
need to be developed. This suggests moving away from the traditional training approach only on energy and
forces and rather focusing on the system’s dynamics. Further strategies combining experimentally observed
structures and simulated dynamics can be devised through experiment-simulation fusion to develop reliable
force fields that are faithful to both experiments and simulations. Another interesting aspect is the empirical
evaluation of which particular architectural feature of a model helps in giving a superior performance for a
given dataset or system (defined by the type of bonding, number of atoms, crystalline vs disordered, etc.).
Such a detailed analysis can be a guide to designing improved architecture while also providing thumb rules
toward the use of an appropriate architecture for a given system.
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A APPENDIX

A.1 DATASET DETAILS

Table 8 shows the details of which models have been evaluated on which datasets in the literature. We note
that there have been no exhaustive analysis of all the models on even one dataset.

Dataset # Atoms # Atom types NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET

MD17 9-21 2-3 ✓ ✓ - - ✓ ✓
LiPS 83 3 ✓ - - - - -
3BPA 27 4 - ✓ ✓ ✓ - -
AcAc 15 3 - - ✓ ✓ - -
LiPS20 32-260 1-3 - - - - - -
GeTe 200 2 - - - - - -

Table 8: Datasets considered in the present work. The tick represents the datasets that have been evaluated
on the respective EGRAFF model in previous work. Note that none of the datasets have been evaluated and
compared for all the models in the literature. LiPS20 and GeTe are two new datasets in the present work.

A.2 LIPS20

Material Composition Atom number Number of configurations
β-Li3P4S4 Li24P8S32 64 1000
γ-Li3P4S4 Li48P16S64 128 1000
Li2P2S6 Li16P16S48 80 1000

Hexagonal Li2PS3 Li32P16S48 96 1000
Orthorhombic Li2PS3 Li32P16S48 96 1000

Li2S Li64S32 96 1000
Li3P Li48P16 64 1000

Li4P2S6 Li32P16S48 96 1000
Li7P3S11 Li28P12S44 84 1000
Li7PS6 Li28P4S24 56 1000

Li48P16S61 Li48P16S61 125 1000
P2S5 P8S20 28 1000
P4S3 P32S24 56 1000

67Li2S − 33P2S5 Li82P40S138 260 1000
70Li2S − 30P2S5 Li82P38S133 253 1000
75Li2S − 25P2S5 Li91P35S129 255 1000
80Li2S − 20P2S5 Li92P34S128 254 1000

Li Li54 54 1000
P P48 48 1000
S S32 32 1000

Table 9: Different compositions in LiPS20 dataset

All the ab initio calculations were carried out at the DFT level (Kohn & Sham (1965)) using the Quick-
step module of the CP2K package(Kühne et al. (2020)) with the hybrid Gaussian and plane wave method
(GPW)(VandeVondele et al. (2005)). The basis functions are mapped onto a multi-grid system with the
default number of four different grids with a plane-wave cutoff for the electronic density to be 500 Ry, and
a relative cutoff of 50 Ry to ensure the computational accuracy. The AIMD trajectories at 3000 K were
obtained in the NVT ensemble with a timestep of 0.5 fs for 2.5 ps. The temperature selection of 3000 K
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can enable the sampling of the melting process within the short time scale, which can be used for simulating
both the crystal and glass structure afterward. The temperature was controlled using the Nosé–Hoover ther-
mostat (Nosé (1984)). The exchange-correlation energy was calculated using the Perdew-Burke-Ernzerhof
(PBE) approximation(Perdew et al. (1996)), and the dispersion interactions were handled by utilizing the
empirical dispersion correction (D3) from Grimme (Grimme et al. (2010)). The pseudopotential GTH-PBE
combined with the corresponding basis sets were employed to describe the valence electrons of Li (DZVP-
MOLOPT-SR-GTH), P (TZVP-MOLOPT-GTH), and S (TZVP-MOLOPT-GTH), respectively(Goedecker
et al. (1996)). In addition to the dataset from the AIMD trajectories, the expanded dataset was realized by
single energy calculation using the active machine learning method implemented in the DP-GEN package
(Zhang et al. (2020)). The active machine learning scheme was carried out based on the glass structure
of xLi2S-(100-x)P2S5 (x = 67, 70, 75, and 80) in order to strengthen the capability of the force field in
reproducing the glass structures of different lithium thiophosphates. The training dataset consists follow-
ing compositions, shuffled randomly: Li, Li2S,Li48P16S61, P4S3, Li7PS6. Crystal structures set included
beta − Li3PS4, Li2PS3 − hex, gamma − Li3PS4, Li2PS3 − orth, and rest compositions were used as
the test dataset.

A.3 TIMESTEP AND TEMPERATURE DETAILS

Table 10 displays the temperature in Kelvin and the corresponding timestep in femtoseconds for various
datasets utilized in the forward simulations. These values remain consistent with the original sampled
datasets.

Dataset Temperature(K) Timestep(fs)
Acetylacetone 300, 600 1.0,0.5

3BPA 300, 600 1.0
MD17 500 0.5
LiPS 520 1.0

LiPS20 3000 1.0
GeTe 920 0.12

Table 10: Temperature (T) and Timestep(fs) for the forward simulation on different datasets

A.4 RADIAL DISTRIBUTION FUNCTION

Figure 3 shows the reference and generated radial distribution functions(RDFs) for 3BPA, Acetylacetone,
LiPS and GeTe. The generated RDFs are obtained after averaging over five simulations trajectories of 1000
steps.

A.5 MEAN ENERGY AND FORCE VIOLATION

Figure 4 shows the obtained geometric mean of energy and force violation errors for the trained models on
all the datasets. We observe that the variation of energy error among the models is quite large for some
datasets like MD17 and LiPS20, and very small for datasets like 3BPA and Acetylacetone.

A.6 ROLLOUT ENERGY AND FORCE VIOLATION

The evolution of energy violation error, EV(t), and force violation error, FV(t), obtained as average over five
forward simulations for different datasets are shown in Figure 5.
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Figure 3: Pair distribution function(PDF) over the simulation trajectory. Reference PDF in red and generated
PDF in blue represent ground truth and predicted RDFs. The values are computed as the average of five
forward simulations for 1000 timesteps on each dataset with different initial conditions.

Figure 4: Geometric mean of energy (×10−5) and force violation error over the simulation trajectory. The
error bar shows a 95% confidence interval. The values are computed as the average of five forward simula-
tions for 1000 timesteps on each dataset with different initial conditions.
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Figure 5: Energy (×10−5) and force violation error over the simulation trajectory. The error bar shows
a 95% confidence interval. The values are computed as the average of five forward simulations for 1000
timesteps on each dataset with different initial conditions.

A.7 COMPARATIVE ANALYSIS

Figure 6 shows the comparative radial plots for different metrics for all the datasets. For better interpretabil-
ity, we normalize all the metrics with respect to the its largest value in the dataset. Figure 7 shows the
comparison of different pairs of related metrics for all the datasets and models.

A.8 HARDWARE DETAILS

All the models are trained using A100 80GB PCI GPUs, and inference performed using AMD EPYC 7282
16-Core Processor @ 2.80GHz with 1TB installed RAM. All the models uses PyTorch environment, with
Atomic simulation environment (ASE) package for forward simulations. Specific versions details are given
on the code repository.

A.9 ROOT MEAN SQUARE DISPLACEMENT PLOTS

A.10 HYPERPARAMETER DETAILS

The details of hyperparameters used for training each of the models are provided in the following tables.
NEQUIP in Table 11, ALLEGRO in Table 12, BOTNET in Table 13, MACE in Table 14, EQUIFORMER in
Table 15, ,TORCHMDNET in Table 16, PaiNN in Table 18, and DimeNET++ in Table 17

A.11 LITERATURE COMPARISON

A.11.1 GENERALIZABILITY TO UNSEEN STRUCTURES

The first task focuses on evaluating the models on an unseen small molecule structure. To this extent, we
test the models, trained on four molecules of the MD17 dataset (aspirin, ethaenol, naphthalene, and salicylic

16
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Figure 6: Comparative analysis of different metrics for all models across datasets. The color of the line
indicates model identity. The values are normalized by dividing their respective maximum values and then
multiplying it by 100.

Figure 7: Comparision of (a) Energy violation and Force Violation,(b) JSD and WF, (c) Training time and
Inference time, and (d) Mean absolute energy error(MAE) and Mean absolute force error (MAF), for all
dataset. The values are normalized by the largest values to scale between 0 and 1.

17



Under review as a conference paper at ICLR 2024

Figure 8: Root mean square displacement plots for models on all datasets. The values are computed as the
average of five forward simulations for 1000 timesteps on each dataset with different initial conditions.

acid), on the benzene molecule, an unseen molecule from the MD17 dataset. Note that the benzene molecule
has a cyclic ring structure. Aspirin and Salicylic acid contain one ring, naphthalene is polycyclic with two
rings, while ethanol has a chain structure with no rings. Table 20 shows the EV and FV and Table 21 shows
the corresponding JSD and WF. We observe that all the models suffer very high errors in force and energy.
EQUIFORMER trained on ethanol and salicylic acid exhibits unstable simulation after the first few steps.
Interestingly, non-cyclic ethanol models perform better than aspirin and salicylic acid, although the latter
structures are more similar to benzene. Similarly, the model trained on polycyclic Naphthalene performs
better than other models. Altogether, we observe that despite having the same chemical elements, models
trained on one small molecule do not generalize to an unseen molecule with a different structure.

A.12 LOSS CURVES: PAINN AND DIMENET++

18
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Figure 9: Root mean square displacement plots for all the models on all datasets. The values are computed
as the average of five forward simulations for 1000 timesteps on each dataset with different initial conditions.

19
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Hyper-parameter Value or description
R max 5.0
Number of Layers 6
L max 2
Number of Features 32
Nonlinearity Type Gate
Nonlinearity Scalars (e) Silu
Nonlinearity Scalars (o) Tanh
Nonlinearity Gates (e) Silu
Nonlinearity Gates (o) Tanh
Number of Basis 8
BesselBasis Trainable True
Polynomial Cutoff 6
Invariant Layers 3
Invariant Neurons 64
Learning Rate 0.005
Batch Size 1
EMA Decay 0.99
EMA Use Num Updates True
Early Stopping Patiences (Validation Loss) 50
Early Stopping Lower Bounds (LR) 1.0e-6
Early Stopping Upper Bounds (Cumulative Wall) 5 days
Loss Coeffs (Forces) 1
Loss Coeffs (Total Energy) 1
Optimizer Name Adam
LR Scheduler Name ReduceLROnPlateau
LR Scheduler Patience 5
LR Scheduler Factor 0.8

Table 11: NEQUIP Hyperparameters
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Parameter Value
R Max 5.0
PolynomialCutoff 6
L Max 2
Num Layers 2
Env Embed Multiplicity 64
Embed Initial Edge True
Two Body Latent MLP Dimensions [128, 256, 512, 1024]
Two Body Latent MLP Nonlinearity Silu
Latent MLP Latent Dimensions [1024, 1024, 1024]
Latent MLP Nonlinearity Silu
Latent Resnet True
Edge Eng MLP Latent Dimensions [128]
Edge Eng MLP Nonlinearity None
Learning Rate 0.005
Batch Size 1
Max Epochs 10000
EMA Decay 0.99
Early Stopping Patiences(Validation loss) 50
Early Stopping Lower Bounds(LR) 1.0× 10−6

Early Stopping Upper Bounds(Cumulative wall) 5 days
Loss Coefficients(Forces) 1
Loss Coefficients(Total energy) 1
Optimizer Name Adam
LR Scheduler Name ReduceLROnPlateau
LR Scheduler Patience 5
LR Scheduler Factor 0.8

Table 12: ALLEGRO Hyperparameters
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Hyper-parameter Value or description
Rmax 5.0
Correlation order 1
Number of Radial basis 8
Numcber of Cutoff basis 5
Lmax 3
Number of Interactions 5
MLP Irreps 16x0e
Hidden Irreps 16x0e+16x1o+16x2e
Gate Silu
E0s {1:-13.663181292231226, 3:-216.78673811801755,

6:-1029.2809654211628, 7:-1484.1187695035828,
8:-2042.0330099956639, 15:-1537.0898574856286,
16:-1867.8202267974733}

Forces weight 10.0
SWA Forces Weight 1.0
Energy Weight 1.0
SWA Energy Weight 1000.0
Virials Weight 1.0
SWA Virials Weight 10.0
Config type Weights {”Default”:1.0}
optimizer AMSGrad Adam
Batch Size 5
Validation Batch Size 5
Learning rate 0.01
SWA learning rate 0.001
Weight decay 5e-7
EMA True
EMA Decay 0.99
Scheduler ReduceLROnPlateau
LR factor 0.8
Scheduler patience 50
LR Scheduler gamma 0.9993
SWA True
Max number of epochs 1500
Clip gradiants 10.0

Table 13: BOTNET Hyperparameters
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Hyper-parameter Value or description
Rmax 5.0
Correlation order 3
Number of Radial basis 8
Numcber of Cutoff basis 5
Lmax 3
Number of Interactions 2
MLP Irreps 16x0e
Hidden Irreps 16x0e+16x1o+16x2e
Gate Silu
E0s {1:-13.663181292231226, 3:-216.78673811801755,

6:-1029.2809654211628, 7:-1484.1187695035828,
8:-2042.0330099956639, 15:-1537.0898574856286,
16:-1867.8202267974733}

Forces weight 10.0
SWA Forces Weight 1.0
Energy Weight 1.0
SWA Energy Weight 1000.0
Virials Weight 1.0
SWA Virials Weight 10.0
Config type Weights {”Default”:1.0}
optimizer AMSGrad Adam
Batch Size 5
Validation Batch Size 5
Learning rate 0.01
SWA learning rate 0.001
Weight decay 5e-7
EMA Decay 0.99
Scheduler ReduceLROnPlateau
LR factor 0.8
Scheduler patience 50
LR Scheduler gamma 0.9993
SWA True
Max number of epochs 1500
Clip gradiants 10.0

Table 14: MACE Hyperparameters
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Hyper-parameters Value or description
Optimizer
Learning rate scheduling
Warmup epochs
Maximum learning rate
Batch size
Number of epochs
Weight decay
Energy weight
Force weight
Dropout rate

AdamW
Cosine learning rate with linear warmup
10
5× 10−4

8
5000
1× 10−6

1.0
1.0
0.0

Cutoff radius (Å)
Number of radial basis
Hidden size of radial function
Number of hidden layers in radial function

5
32
64
2

Equiformer
Number of Transformer blocks
Embedding dimension dembed
Spherical harmonics embedding dimension dsh
Number of attention heads h
Attention head dimension dhead
Hidden dimension in feed forward networks dffn
Output feature dimension dfeature

6
[(128, 0), (64, 1), (32, 2)]
[(1, 0), (1, 1), (1, 2)]
4
[(32, 0), (16, 1), (8, 2)]
[(384, 0), (192, 1), (96, 2)]
[(512, 0)]

Table 15: EQUIFORMER Hyperparameters

Figure 10: Loss curves for PaiNN and DimeNET++ models on MD17 molecules
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Hyper-parameter Value or description
Activation Silu
Aggregation Add
Attention Activation Silu
Batch Size 8
Radius Cutoff Lower 0.0
Radius Cutoff Upper 5.0
Derivative True
Early Stopping Patience 300
EMA Alpha Force 1.0
EMA Alpha Energy 0.05
Embedding Dimension 128
Energy Weight 0.2
Force Weight 0.8
Inference Batch Size 64
Learning Rate 0.001
Learning Rate Factor 0.8
Minimum Learning Rate 1.0× 10−7

Learning Rate Patience 30
Learning Rate Warmup Steps 1000
Max Number of Neighbors 32
Max Z 100
Neighbor Embedding True
Number of Epochs 5000
Number of Heads 8
Number of Layers 6
Number of Nodes 1
Number of Radial basis function 32
Number of Workers 6
Output Model Scalar
Precision 32
Radial basis function Type Expnorm
Reduce Operation Add
Train Size 500
Weight Decay 0.0

Table 16: TORCHMDNET Hyperparameters
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Hyper-parameters Value
Hidden Channels 128
Output Embedding Channels 256
Interaction Embedding Size 64
Basis Embedding Size 8
Number of Blocks 4
Cutoff Distance 5.0
Envelope Exponent 5
Number of Radial Functions 6
Number of Spherical Functions 7
Number of Layers Before Skip 1
Number of Layers After Skip 2
Number of Output Layers 3
Regress Forces True
Batch Size 1
Evaluation Batch Size 1
Number of Workers 4
Initial Learning Rate 0.001
Optimizer Adam
Scheduler ReduceLROnPlateau
Patience 5
Factor 0.8
Minimum Learning Rate 0.000001
Maximum Epochs 2000
Force Coefficient 1000
Energy Coefficient 1
Exponential Moving Average Decay 0.999
Gradient Clipping Threshold 10
Early Stopping Time 604800
Early Stopping Learning Rate 0.000001

Table 17: DimeNeT++ hyperparameters

Hyper-parameters Value or desciption
Number of Atom Basis 128
Number of Interactions 3
Number of Radial Basis Functions 20
Cutoff Distance 5.0
Cutoff Network ’cosine’
Radial Basis Function BesselBasis
Activation Function silu
Maximum Atomic Number 100

Table 18: PaiNN hyperparameters
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NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET PaiNN DimeNET++
E F E F E F E F E F E F F F

Aspirin(Ours) 6.84 13.89 5.00 9.17 7.99 14.06 8.53 14.01 6.15 15.29 5.33 8.97 12.41 22.07
Aspirin(Liao & Smidt (2023)) 5.7 8.0 - - - - - - 5.3 7.2 5.3 11.0 - -
Aspirin(Fu et al. (2023)) - 2.3 - - - - - - - - - - 9.2 10.0
Aspirin(Thölke & Fabritiis (2022)) - 15.09 - - - - - - - - 5.33 10.97 - –

Ethanol(Ours) 2.67 7.49 2.34 5.01 2.60 6.80 2.36 3.19 2.66 9.73 2.67 5.93 11.81 17.19
Ethanol(Liao & Smidt (2023)) 2.2 3.1 - - - - - - 2.2 3.1 2.3 4.7 - -
Ethanol(Fu et al. (2023)) - 1.3 - - - - - - - - - - 5.0 4.2
Ethanol(Thölke & Fabritiis (2022)) - 9.02 - - - - - - - - 2.25 4.73 - -

Naphthalene(Ours) 5.70 6.20 5.14 2.64 6.67 6.07 6.26 1.98 3.88 7.01 2.55 4.03 4.07 19.65
NaphthaleneLiao & Smidt (2023) 4.9 1.7 - - - - - - 3.7 2.1 3.7 2.6 - -
Naphthalene(Fu et al. (2023)) - 1.10 - - - - - - - - - - 3.8 5.7
Naphthalene(Thölke & Fabritiis (2022)) - 4.21 - - - - - - - - 3.69 2.64 - -

Salicylic Acid(Ours) 5.78 8.42 5.76 6.30 5.56 10.21 5.34 4.24 5.22 12.39 6.85 7.19 11.12 25.48
Salicylic acid(Liao & Smidt (2023)) 4.6 3.9 - - - - - - 4.5 4.1 4.0 5.6 - -
Salicylic acid(Fu et al. (2023)) - 1.6 - - - - - - - - - - 6.5 9.6
Salicylic acid(Thölke & Fabritiis (2022)) - 10.32 - - - - - - - - 4.03 5.59 - -

LiPS(Ours) 165.43 5.04 31.75 2.46 28.0 13.0 30.0 15.0 83.20 51.10 67.0 61.0 112.43 42.23
LiPS(Fu et al. (2023)) - 3.7 - - - - - - - - - - 11.7 3.2

Table 19: Literature comparison

NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET
E F E F E F E F E F E F

Aspirin 22650 0.762 22676 0.765 21880 0.760 21881 0.766 47027.742 0.769 46864 0.765
(11.622) (0.060) (0.311) (0.070) (6.874) (0.061) (12.11) (0.061) (3.88) (0.065) (184.678) (0.058)

Ethanol 6154.4 0.740 6224.2 0.711 5860.5 0.935 5863.2 0.921 - - 20262 0.712
(0.402) (0.056) (12.501) (0.040) (0.325) (0.016) (0.338) (0.022) (19.401) (0.052)

Naphthalene 4783.8 0.759 4799.7 0.743 4572.4 0.970 4572.1 0.959 24546 0.761 24440 0.777
(16.411) (0.067) (-) (0.070) (0.32) (0.008) (0.324) (0.012) (6.069) (0.061) (-) (0.057)

Salicylic acid 22840 0.766 22849 0.753 22055 0.982 2205 0.965 - - 35947 0.769
(0.308) (0.067) (0.314) (0.076) (0.309) (0.005) (0.310) (0.007) (0.000) (2.907) (0.057)

Table 20: EV (E) and FV (F) on the forward simulation of benzene molecule by the models trained on
aspirin, ethanol, naphthalene, and salicylic acid.

NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET
JSD WF JSD WF JSD WF JSD WF JSD WF JSD WF

Aspirin 360854 73.801 573039 61.158 311916 62.842 473362 89.692 482522 75.081 494492 76.828
Ethanol 509375 63.321 1130600 51.601 1108865 57.181 1095829 41.878 - - 1163851 65.746
Naphthalene 337082 65.799 339412 51.018 673988 21.228 821416 31.497 365549 65.117 475078 110.906
Salicylic acid 495068 70.401 525441 50.78 1308028 68.034 1340236 61.483 - - 339296 71.778

Table 21: JSD and WF over simulation trajectory of benzene molecule using models trained on aspirin,
ethanol, naphthalene, and salicylic acid.
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