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ABSTRACT

With the increasing accessibility and utilization of multilingual documents, Cross-
Lingual Information Retrieval (CLIR) has emerged as an important research area.
Conventionally, CLIR tasks have been conducted under settings where the lan-
guage of documents differs from that of queries, and typically, the documents are
composed in a single coherent language. In this paper, we highlight that in such
a setting, the cross-lingual alignment capability may not be evaluated adequately.
Specifically, we observe that, in a document pool where English documents coexist
with another language, most multilingual retrievers tend to prioritize unrelated
English documents over the related document written in the same language as the
query. To rigorously analyze and quantify this phenomenon, we introduce various
scenarios and metrics designed to evaluate the cross-lingual alignment performance
of multilingual retrieval models. Furthermore, to improve cross-lingual perfor-
mance under these challenging conditions, we propose a novel training strategy
aimed at enhancing cross-lingual alignment. Using only a small dataset consist-
ing of 2.8k samples, our method significantly improves the cross-lingual retrieval
performance while simultaneously mitigating the English inclination problem. Ex-
tensive analyses demonstrate that the proposed method substantially enhances the
cross-lingual alignment capabilities of most multilingual embedding models.

1 INTRODUCTION

Information Retrieval (IR) is a core technology that accurately identifies and provides relevant
information from large-scale document collections based on user queries. With the recent increase
in multilingual data and the growing demand for accessing it, the importance of Cross-Lingual
Information Retrieval (CLIR) has become more pronounced (Adeyemi et al., 2024; Guo et al.,
2024; Zhang et al., 2023a; Mayfield et al., 2023). Commonly adopted CLIR evaluation settings
primarily focus on scenarios where the query language differs from the language of the document
pool, which is composed of a single language. The objective is to measure retrieval performance
on a set of documents in a language different from that of query, thereby assessing the cross-
lingual representation capability when query and document languages are not equal. Similarly, the
Multilingual Information Retrieval (MLIR) task involves retrieving and ranking relevant documents
from an integrated collection containing three or more languages (Lawrie et al., 2024).

Despite these efforts, we observe that the practical effectiveness of multilingual embedding models
in this settings has not been adequately assessed, and significant performance blind spots remain.
Our research question is whether multilingual embedding models can consistently maintain retrieval
performance for queries given in different languages, in realistic scenarios where documents in
two languages coexist, without performance degradation stemming from cross-lingual semantic
misalignment or language-specific biases. In fact, our exploratory analysis reveals that when retrieving
from a document pool containing both English and another language that matches the query language,
many multilingual embedding models exhibit significant cross-lingual semantic misalignment and
language bias toward certain languages, severely degrading retrieval performance (Wu & Dredze,
2020; Park & Lee, 2025; Yang et al., 2024; Elmahdy et al., 2024). For instance, when a query is
written in language A, ideally, both the relevant document written in language A and its semantically
equivalent counterpart in English should be ranked at the top of the retrieval results. However, due to
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a prioritization bias toward English—a high-resource language—irrelevant English documents often
appear higher in the rankings, while the correct documents written in language A are relegated to
lower ranks. Furthermore, we observe a pronounced language-dependent performance disparity, in
which retrieval results vary significantly depending on the language of the query. This phenomenon
highlights a critical limitation that is difficult to accurately measure or analyze using conventional
evaluation settings. Consequently, our findings underscore the necessity of designing a more practical
evaluation environment and corresponding metrics, distinct from existing evaluation settings, to
rigorously validate balanced cross-lingual semantic alignment.
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Document [English] Document [Target] Area: 18.61 Area: 7.98

Figure 1: Illustration of distribution-level alignment.
Our method shows better alignment than InfoNCE, even
when both share the same cosine similarity of 0.99.

In this paper, we define a scenario where
documents in two languages coexist to
comprehensively evaluate cross-lingual
alignment capabilities in retrieval, and in-
troduce a new evaluation metric, Max@R.
By assessing embedding models within this
scenario and using the proposed metric, we
provide a detailed analysis of both cross-
lingual alignment aspects and retrieval per-
formance, as well as an in-depth exami-
nation of whether there exists an inherent
preference for a particular language.

Furthermore, based on our analysis of this scenario, we discuss methods to effectively mitigate
cross-lingual misalignment. In particular, we propose a unified training strategy that combines two
loss functions to jointly optimize cross-lingual alignment and retrieval performance. Specifically,
our strategy integrates Jensen-Shannon Divergence (JSD) (Lin, 1991), which aligns the semantic
embedding distributions across languages by adjusting the embedding space, with InfoNCE (van den
Oord et al., 2019), which directly enhances the retrieval ability between query and document. By
applying our proposed method, we demonstrate that even with a relatively small dataset of only 2.8K
samples, multilingual embedding models can achieve substantially enhanced cross-lingual alignment
and retrieval capabilities. Moreover, we find that performance of our method in monolingual settings,
including conventional CLIR, can be maintained or even improved relative to the baseline models.

2 PRELIMINARY

In this section, we rigorously define the cross-lingual alignment problem that arises in the evaluation
of multilingual embedding models. To accomplish this, we introduce the experimental environment
of both CLIR and MLIR, followed by a detailed explanation of the problem definition.

2.1 CONVENTIONAL SETTINGS

The objective of a typical IR task is to identify the most relevant documents from a collection in re-
sponse to a given query. This collection of documents is usually represented as D = {d1, d2, . . . , dn}.
When a query (q) is provided, similarity scores are calculated for the documents within the collection
(D), and the most similar documents are retrieved based on these scores. CLIR is characterized
by the difference between the query language (Lq) and the language of the document collection
(Ld), such that Lq ̸= Ld. For instance, when a query is provided in a specific language (L1), the
goal is to retrieve the most relevant documents written in a different language (L2). MLIR, on the
other hand, aims to effectively retrieve the documents from a collection composed of documents
in multiple languages (Ld ∈ {L2, L3, L4, . . . }) when the query is presented in a single specific
language (Lq = L1).

2.2 PROBLEM DEFINITION

Existing evaluation settings primarily address scenarios where the query and document collection
languages differ, or where multiple languages are included within documents (Lawrie et al., 2023).
However, these approaches are limited to assessing a model’s basic cross-lingual retrieval capabilities
or shallow multilingual retrieval performance, fail to reveal deeper issues such as inaccurate cross-
lingual alignment and language bias. Therefore, we consider a multi-reference cross-lingual setup that

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

can comprehensively evaluate both cross-lingual alignment and retrieval performance. For instance,
in a scenario where the document pool contains a mixture of two languages, L1 and L2, an effective
model should rank all semantically relevant documents at the top, irrespective of the languages used
in queries or documents. In other words, documents related to the query, even if expressed in different
languages, should be retrieved with equal importance. Ideally, the model should demonstrate equal
performance for queries in each language. To simulate an information retrieval scenario in such an
environment, we construct and analyze an experimental setup using a dataset that is fully parallel
across languages.
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Figure 2: Performance comparison on the XQuAD dataset: (a) CLIR setting, and (b) Multi scenario.
We evaluate four multilingual embedding models on five target languages: Arabic (AR), Chinese
(ZH), Spanish (ES), Thai (TH), and Vietnamese (VI). Values indicate Max@R gaps.

3 MULTI-REFERENCE IN CROSS-LINGUAL INFORMATION RETRIEVAL

Insufficient cross-lingual semantic alignment results in the similarity between a query and documents
in other languages not being properly reflected, causing two relevant documents to fail to be ranked at
the top. To quantitatively measure this issue and to effectively evaluate performance in this scenario
where two languages coexist, we propose a new evaluation metric.

Max@R We evaluate retrieval accuracy for a given query (q) using a set of reference documents,
denoted as Rq = {r1, r2, . . . , rm}. In our multi-reference cross-lingual scenario, these documents are
parallel ground-truths written in different languages. For the given query q, we denote an ordered list
of retrieved documents as D′(q) = {d′1, d′2, . . . , d′n}. The documents are sorted by retrieval priority
based on semantic similarity to q. We define the position i of a document d′i in the list D′(q) as its
rank. Because existing metrics (MAP, MRR, or NDCG@k) are not designed to measure when all
parallel ground-truths in this multi-reference scenario have been retrieved, we propose Max@R as an
essential diagnostic metric. Then, we define Max@R as follows:

Max@R = max({i | d′i ∈ Rq}) (1)

By calculating Max@R in this manner, Max@R represents the highest (i.e., worst) rank at which
all relevant documents in the reference set are first found in retrieval results. This is, in effect, the
‘actual cutoff point’ one must reach to retrieve all Rq documents. In other words, a lower Max@R
value indicates that all relevant documents can be retrieved within a smaller portion of the top-ranked
results, signifying a more efficient and higher-performing retrieval model.
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3.1 LIMITATIONS OF CROSS-LINGUAL INFORMATION RETRIEVAL IN PRACTICAL SCENARIOS

Figure 2 presents the evaluation results of cross-lingual retrieval performance using four different
multilingual embedding models, focusing on English as the source language and five target languages.
The experiments are conducted under two distinct settings: (a) conventional CLIR, and (b) our
proposed multi-reference cross-lingual setup, as defined in Section 2.2. This setup (b) features a doc-
ument pool with parallel documents in English and the target language, resulting in two ground-truth
documents per query. To thoroughly investigate potential biases, we report the performance achieved
when querying in both English and the respective target language. Based on these experimental
results, we identify and discuss three critical limitations of existing multilingual embedding models
and CLIR environment that were not evident in conventional assessment settings.

Performance Disparities by Query Language One of the most significant limitations observed
is the disparity in retrieval performance depending on the query language. In Fig. 2 (a), the overall
Max@R is notably low, and the performance differences by query language are relatively minor. In
contrast, Fig. 2 (b) shows a substantial gap in performance based on the query language. For the
multilingual-e5 model, the results for Chinese (ZH) queries display a marked difference of 597.9
in Max@R compared to the results for English queries. This finding indicates that cross-lingual
semantic alignment is inadequate, resulting in amplified performance discrepancies based on the
query language in the proposed scenario.

Representation Instability among Target Languages In CLIR, multilingual embedding models
tend to exhibit relatively consistent performance across target languages. However, as shown in Fig. 2
(b), there is a significant language-level instability even within the same model. For example, for
the gte-multilingual model, the Max@R for Spanish (ES) remains relatively low and stable at 12.12,
but rises sharply to 37.38 and 35.04 for Arabic and Thai, respectively—nearly a threefold increase.
These results indicate that multilingual embedding models exhibit significant semantic representation
inconsistency among target languages.

Excessively High Retrieval Ranks In Fig.2 (b), most models and languages exhibit excessively
high Max@R values, making them impractical. Notably, for the multilingual-e5 with Chinese (ZH)
queries, the Max@R reaches 650.95, meaning that hundreds of documents must be reviewed to find
all relevant documents. This result implies that the existing CLIR setting (Fig.2 (a)) fails to capture
problems that emerge in practical scenarios, particularly the comprehensive issues of cross-lingual
semantic alignment and retrieval capability.

In summary, the proposed scenario and metric have revealed critical issues that were overlooked in
conventional settings. This shows that there is still significant room for improvement in multilingual
embedding models regarding cross-lingual alignment and retrieval. This underscores the necessity
for more realistic and rigorous evaluations across various cross-lingual conditions, thereby providing
a clear direction for the advancement of multilingual embedding models.

4 METHODS

In Section 3.1, we identified the issue of language misalignment within multilingual embedding
models. Specifically, the identified problems and corresponding solutions are as follows: First, there
is a lack of semantic alignment between text embeddings expressed in different languages, leading to
an increased semantic distance between sentences and a decrease in overall retrieval performance.
To resolve this cross-lingual semantic misalignment, we align the embedding distributions between
English document (pen) and its semantically corresponding target language document (ptgt) using a
loss function based on Jensen–Shannon Divergence (JSD), explicitly optimizing semantic alignment
in the embedding space. Second, to mitigate the language bias where retrieval results show an
inclination towards documents in a particular language (primarily English), we employ InfoNCE
contrastive loss by using positive pairs between English query(qen) and target language document
(ptgt). To this end, we utilize a dataset in the form of (qen, pen, ptgt) to train the model to minimize a
combined loss of (1) JSD-based cross-lingual alignment loss LJSD and (2) InfoNCE contrastive loss
LNCE , defined as follows:

L = E(qen,pen,ptgt)[LJSD + LNCE ] (2)

4
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4.1 SEMANTIC EMBEDDING ALIGNMENT VIA LJSD

While standard CLIR objectives are designed to increase the similarity score between a query in
one language and a document in another, this approach may be insufficient for achieving robust
semantic proximity. Achieving this requires more than just high similarity scores for retrieval; it
also necessitates that their underlying embedding representations are fundamentally aligned. As
illustrated in Figure 1, representations produced by different objectives can share an identical cosine
similarity score yet remain significantly misaligned at the distribution level. To align semantically
equivalent passages, our goal is to minimize the divergence between the embedding distributions of
texts expressed in two different languages. A prominent method for measuring the disparities between
two probability distributions is Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951). It
quantifies how a distribution P diverges from another distribution Q , and it is defined as follows:

DKL(P∥Q) =
∑
i

Pi log
Pi

Qi
(3)

However, KL-divergence is asymmetric; that is, DKL(P∥Q) ̸= DKL(Q∥P ). To address this asym-
metry, Jensen–Shannon Divergence (JSD) is widely adopted. JSD first defines an intermediate
averaged distribution M between two distributions and then measures the average KL-divergence of
each distribution from this intermediate distribution. It is defined as follows:

JSD(P∥Q) =
1

2
DKL(P∥M) +

1

2
DKL(Q∥M), M =

1

2
(P +Q) (4)

Divergence measures such as KL-divergence and JS-Divergence are widely used to quantify the
differences between predicted probability distributions and reference distributions. Previous studies
typically focused on modeling the similarities between queries and documents as probability distribu-
tions and minimizing the divergence between these predicted distributions and reference distributions.
For example, in information retrieval tasks, a model is trained to minimize the distributional diver-
gence between a predicted distribution reflecting query-document similarities and a given reference
distribution. In contrast, we propose directly aligning semantic embeddings at the distribution level.
Specifically, semantic embedding vectors are interpreted as probability distributions. By explicitly
aligning these embedding distributions using JSD, our approach aligns the embedding dimensions
across languages, thereby effectively achieving enhanced cross-lingual semantic alignment. To illus-
trate, let us denote the English document embedding vector as zden

∈ Rdim, and the corresponding
target-language embedding vector as zdtgt

∈ Rdim, where Rdim represents the embedding dimension.
To transform these embedding vectors into categorical probability distributions over dimensions, we
apply the following softmax function:

P (z)i =
exp(zi)∑dim

k=1 exp(zk)
, i = 1, 2 . . . , dim (5)

After transforming the document embedding vectors into probability distributions P (zden
) and

P (zdtgt
), we perform distribution-level semantic embedding alignment by minimizing the JSD

between these probability distributions. The proposed loss function is:

minLJSD =
√

JSD
(
P (zden

)|P (zdtgt
)
)
+ ϵ. (6)

Finally, this loss function employs square root of the Jensen-Shannon divergence, a rigorous distribu-
tional distance measure between embedding distributions of two languages. Specifically, taking the
square root of JSD satisfies the three distance axioms (identity, symmetry, and triangle inequality),
thereby forming a valid metric space (Endres & Schindelin, 2003). Minimizing this distance-based
loss during optimization encourages close alignment in the dimension-level probabilistic structures
of embeddings, facilitating more effective cross-lingual semantic alignment.

4.2 RETRIEVING OBJECTIVE VIA LNCE

To improve similarity for cross-lingual query-document pairs, we train the model to maximize the
semantic similarity between an English query qen and its corresponding target language passage

5
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ptgt. We employ the InfoNCE loss, a representative loss function of contrastive learning, as the
objective function. Specifically, the InfoNCE loss for positive pairs (ptgti , qeni

+)
n

i=1 is defined by
the following equation:

minLNCE = − 1

n

∑
i

log
exp(s(ptgti , q

+
eni

))

exp(s(ptgti , q
+
eni)) +

∑
j exp(s(ptgti , q

−
enij ))

(7)

where n and m denote the total number of data and the batch size, respectively. The negative examples
{q−enij

}mj=1 are in-batch negatives (queries of other instances within the same batch). s(p, q) is the
relevance score of p and q, measured by the cosine similarity between their respective representations.
Through the optimization of this contrastive objective function, the semantic similarity between
related pairs is maximized, while the similarity with unrelated examples is minimized. This process
ultimately facilitates the semantic alignment within an embedding space for cross-lingual retrieval.

5 EXPERIMENTS

In this section, we conduct comprehensive experiments across a variety of scenarios to evaluate the
proposed method for cross-lingual alignment capability and retrieval performance.

5.1 EXPERIMENT SETUP

Scenario We design three experimental scenarios as follows: (1) Multi evaluates whether the model
can retrieve the two ground-truth documents per query in each language from a set of fully parallel
documents in two languages. (2) Multi-1 excludes the ground-truth document in the same language
as the query, requiring the model to retrieve the correct document in the opposite language. This
setup evaluates the semantic-based retrieval capabilities under a strict setting. (3) Mono assesses
retrieval performance in a single-language environment, further divided into cases where the query
and document are in the same language (Mono-Same) and in different languages (Mono-Cross), with
the latter corresponding to conventional CLIR. Through these scenarios, we evaluate the reliability of
the model in both cross-lingual and monolingual settings.

Datasets To evaluate the three cross-lingual retrieval scenarios, it is essential to use datasets that are
fully parallel across languages. This fully parallel structure is a necessary prerequisite for rigorously
validating our scenarios and the Max@R metric. This means that the same question-document
pairs must exist in multiple languages to enable the evaluation of retrieval performance across
different languages. For this purpose, we utilize the multilingual benchmarks XQuAD (Artetxe et al.,
2020) and Belebele (Bandarkar et al., 2024). These are high-quality, human-translated benchmarks,
widely adopted in standard multilingual retrieval evaluation benchmarks Enevoldsen et al. (2025). A
comprehensive description of these datasets and our rationale is provided in Appendix B. Both datasets
ensure complete parallelism, making them suitable for comprehensively validating performance across
the proposed scenarios.

Metric We employ evaluation metrics that align with the characteristics of each retrieval scenario
environment. For the Multi scenario, we utilize Complete@K (Qu et al., 2024), which considers an
answer correct only if all relevant documents are included within the top-k results. This metric is
reported as a percentage on a 0–100 scale. Additionally, we use Max@R, as proposed in Section 3,
and introduce an intuitively interpretable and generalized metric, Max@Rnorm, which normalizes
the varying Max@R values across different datasets on a logarithmic scale. This metric normalizes
the maximum rank for each query to a value between 0 and 100, represented as Max@Rnorm =
1

|Q|
∑

q∈Q[100×
log2(|D|)−log2(Max@R)

log2(|D|)−log2(|R|) ], where |D| is the size of the document pool, and |R| is the
number of ground-truth documents for each query. For the Multi-1 and Mono scenarios, where there
is only one correct document per query, we evaluate retrieval performance using metrics such as
NDCG@1 (Järvelin & Kekäläinen, 2002) and MRR (Nogueira & Cho, 2019; Khattab & Zaharia,
2020; Xiong et al., 2020; Karpukhin et al., 2020). By employing appropriate metrics for each scenario,
we systematically compare and analyze the proposed method across various scenarios, thereby
verifying its validity from multiple perspectives.

6
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Table 1: Main performance results under the Multi scenario

Doc Query
XQuAD Belebele

Comp@10 Max@R (↓) Max@Rnorm Comp@10 Max@R (↓) Max@Rnorm
Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours

multilingual-e5-base
En+Ar En 15.46 60.34 106.42 18.56 43.88 68.54 26.22 87.22 187.78 17.46 33.23 68.14

Ar 8.91 53.53 241.06 30.77 32.33 61.40 15.44 75.67 231.79 29.55 30.13 60.41
En+Zh En 29.24 61.60 53.04 17.35 53.71 69.50 63.44 86.78 44.74 15.96 54.31 69.47

Zh 0.50 55.88 650.95 23.10 18.31 65.45 3.11 82.44 476.45 18.55 19.54 67.26
En+Es En 58.99 65.63 19.83 15.38 67.61 71.19 68.67 88.89 49.14 13.44 52.94 71.99

Es 36.30 62.52 49.46 18.14 54.70 68.87 55.44 85.22 69.81 16.50 47.77 68.98
En+Th En 24.37 57.23 69.94 18.81 49.81 68.35 41.11 87.33 112.49 15.44 40.76 69.95

Th 11.76 46.81 173.13 33.66 37.01 60.13 22.44 75.89 188.02 29.60 33.21 60.39
En+Vi En 45.88 63.53 35.95 17.31 59.20 69.53 56.44 88.89 69.83 12.92 47.77 72.58

Vi 18.15 59.50 149.21 24.15 39.11 64.82 33.44 82.89 153.05 15.54 36.23 69.86
gte-multilingual-base

En+Ar En 66.05 67.23 13.63 12.64 72.90 73.97 87.44 88.56 10.03 9.17 76.29 77.62
Ar 49.58 52.10 37.38 31.38 58.65 61.12 79.67 80.33 26.23 23.55 62.16 63.75

En+Zh En 68.15 68.99 13.16 12.51 73.40 74.11 91.00 91.56 9.23 8.90 77.52 78.06
Zh 58.82 63.11 17.73 15.24 69.19 71.32 86.67 88.56 13.93 12.80 71.47 72.71

En+Es En 77.14 78.40 9.30 8.92 78.29 78.89 90.44 93.22 8.77 6.50 78.27 82.68
Es 71.01 73.78 12.12 10.51 74.56 76.57 88.11 90.78 14.18 11.06 71.21 74.86

En+Th En 64.96 67.48 13.83 13.02 72.69 73.55 88.67 89.33 9.97 9.03 76.39 77.84
Th 46.13 51.34 35.04 30.50 59.57 61.53 77.11 78.67 29.97 25.30 60.21 62.69

En+Vi En 73.11 73.19 10.85 10.78 76.12 76.22 90.56 91.33 8.33 7.71 79.03 80.16
Vi 62.10 64.71 19.46 16.75 67.87 69.99 86.33 87.56 11.63 9.94 74.12 76.43

jina-embeddings-v3
En+Ar En 55.13 70.92 25.92 11.75 63.82 74.99 85.11 90.67 19.83 9.91 66.28 76.47

Ar 57.65 65.04 28.66 19.29 62.41 68.00 82.78 86.22 22.93 16.47 64.14 69.10
En+Zh En 65.46 72.44 15.72 10.96 70.88 75.98 89.78 91.56 14.30 10.00 71.07 76.34

Zh 58.57 70.67 23.61 13.53 65.14 73.00 85.33 91.44 18.52 11.51 67.28 74.27
En+Es En 68.32 75.63 19.92 10.10 67.54 77.14 85.11 92.22 24.16 9.88 63.38 76.52

Es 68.74 73.53 18.03 11.44 68.95 75.37 88.78 90.22 18.67 12.59 67.16 72.96
En+Th En 56.39 71.51 23.19 11.59 65.39 75.19 86.44 91.89 17.63 9.77 68.03 76.69

Th 58.07 68.32 25.28 16.41 64.18 70.28 84.33 86.67 22.17 15.78 64.65 69.63
En+Vi En 59.75 71.43 24.99 11.69 64.34 75.07 83.00 91.89 22.91 9.91 64.16 76.48

Vi 61.51 67.06 25.42 18.64 64.10 68.48 87.33 90.67 19.88 12.27 66.25 73.33
bge-m3

En+Ar En 59.50 68.32 19.66 14.87 67.73 71.67 86.44 89.56 13.78 10.18 71.62 76.08
Ar 65.71 67.98 18.96 17.39 68.24 69.46 85.11 85.44 18.91 15.82 66.98 69.60

En+Zh En 67.82 71.09 15.14 13.08 71.42 73.48 89.44 90.56 12.14 10.90 73.49 75.07
Zh 63.19 68.49 14.99 13.01 71.56 73.56 88.67 90.00 12.65 11.56 72.88 74.20

En+Es En 77.90 78.82 9.88 9.36 77.44 78.21 91.78 93.00 10.25 9.29 75.98 77.43
Es 77.65 77.39 9.73 9.72 77.66 77.68 91.11 92.56 10.70 9.92 75.34 76.46

En+Th En 67.90 71.34 14.25 12.67 72.27 73.93 90.89 92.11 10.24 9.03 75.99 77.83
Th 67.23 70.08 13.28 12.95 73.27 73.63 87.00 87.67 16.73 14.57 68.78 70.81

En+Vi En 71.01 73.53 13.22 11.74 73.33 75.01 90.56 91.67 10.53 8.97 75.59 77.93
Vi 66.72 70.92 15.06 13.40 71.49 73.14 89.00 90.78 11.01 9.80 74.93 76.63

Implementation Details The experiments are conducted on a total of 10 languages. In the main
results, we report for five languages: Arabic (AR), Chinese (ZH), Spanish (ES), Thai (TH), and
Vietnamese (VI). Detailed experiments for the remaining five languages, German (DE), Greek (EL),
Hindi (HI), Romanian (RO), and Turkish (TU), are provided in the Appendix D. We employ four
multilingual embedding models for the experiments: multilingual-E5-base (Wang et al., 2024), gte-
Multilingual-base (Zhang et al., 2024), jina-embeddings-v3 (Sturua et al., 2024), and bge-M3 (Chen
et al., 2024). We utilize the MIRACL train dataset (Zhang et al., 2023b), which consists of 2.8k
English query-document pairs. To obtain documents in each target language, the positive documents
in English are translated into each target language using the GPT-4o (OpenAI, 2024). Additional
details regarding the training procedure are provided in Appendix C.

5.2 MAIN RESULTS

In this section, we evaluate our method within a multi-scenario, where documents in English and the
target language coexist, and each query has two gold documents. The results, presented in Table 1,
are analyzed by querying in both English and the target language.

Enhanced Cross-lingual Alignment The proposed method demonstrates clear and consistent
improvements over baseline models across all evaluated language pairs and metrics. Notably, based
on Complete@10, while baseline models exhibit relatively limited performance when queried in
non-English languages, our proposed method achieves significant performance enhancements for all
languages and models considered. These improvements indicate that our method effectively facilitates
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semantic alignment among different languages within an embedding space. Ultimately, these results
confirm that our method successfully addresses the limitations of existing multilingual embedding
models, which are not captured by the conventional CLIR setting.

Reducing Variance in Language Bias In addition to improving retrieval performance, the proposed
method reduces the issue of performance disparity between languages. Baseline models typically
exhibit a bias toward English data, resulting in significantly reduced performance for non-English
queries. However, the proposed method results in a relative decrease in the quantitative performance
disparity between English and target languages. For instance, the language performance gap for
jina-embeddings-v3 (En+Zh) consistently decreases from 6.89%p → 1.77%p on XQuAD and from
4.45%p → 0.12%p on Belebele. This result demonstrates that the model has mitigated the previous
misalignment between English and target languages, reducing language bias and contributing to
improved language equity.

Enhanced Full-Recall Ranking Performance To intuitively assess the cross-lingual alignment,
we focus on analyzing the Max@R metric in our experiments. The results show that our method
consistently achieves significantly lower Max@R scores across all languages and datasets compared
to the baseline. For instance, with Chinese queries on the multilingual-e5-base model, Max@R
significantly improves from 650.95 to 23.10 on XQuAD. This indicates that our method is effective in
positioning relevant passages near the top, demonstrating robust performance in cross-lingual multi-
reference scenarios. These improvements are also observed by consistent gains on the Max@Rnorm.

5.3 CASE STUDY
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Figure 3: NDCG@1 comparison in the Multi-1 scenario with [lang] as the query language

Cross-Lingual Information Retrieval in the Multi-1 Scenario The Multi-1 scenario provides a
more rigorous assessment of cross-lingual semantic alignment capabilities. As shown in Figure 3,
existing baselines encounter substantial difficulties in retrieving a relevant document written in
languages different from the query language. In contrast, our proposed method consistently improves
the NDCG@1 across all language pairs, demonstrating enhanced cross-lingual semantic proximity
within the semantic embedding space. Furthermore, the observed performance gains are consistent
and substantial, irrespective of whether the queries are in English or in the respective target languages.

Performance Validation in Monolingual Settings To confirm whether the proposed method
maintains robust retrieval performance in monolingual environments, we conduct evaluations under
two settings: Mono-Same and Mono-Cross. The results, summarized in Table 2, demonstrate that our
approach largely preserves or even modestly improves upon the baseline models in the Mono-Same
scenario. Notably, slight performance gains are observed for target language queries, suggesting
that the quality of single language semantic representations is indirectly enhanced via our alignment
method. In the Mono-Cross scenario, our method further surpasses the baseline models, providing
consistent improvements. Collectively, these findings indicate that our approach does not compromise
and sometimes even improves, monolingual retrieval performance. This affirms that reducing language
misalignment in embedding spaces improves representational quality and retrieval performance in
both cross-lingual and monolingual settings.
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Table 2: Mono scenario performance using jina-embeddings-v3: English/target language queries.

Lang Model
XQuAD Belebele

Mono-Same Mono-Cross Mono-Same Mono-Cross
NDCG@1 MRR NDCG@1 MRR NDCG@1 MRR NDCG@1 MRR

Ar Base 89.2/81.9 0.933/0.879 79.5/80.6 0.863/0.874 88.4/83.0 0.919/0.873 80.1/77.0 0.856/0.833
Ours 90.8/83.9 0.945/0.898 87.1/81.9 0.919/0.884 88.4/87.0 0.922/0.871 82.6/79.8 0.880/0.856

Zh Base 89.2/88.2 0.933/0.926 83.3/83.8 0.895/0.895 88.4/86.9 0.919/0.912 83.4/81.9 0.882/0.874
Ours 90.7/89.5 0.943/0.937 88.0/86.5 0.927/0.916 88.1/87.0 0.920/0.912 84.9/84.4 0.895/0.896

Es Base 89.2/85.6 0.933/0.907 85.3/87.5 0.905/0.922 88.4/84.9 0.919/0.895 83.4/84.4 0.882/0.890
Ours 89.2/88.8 0.936/0.931 89.3/88.0 0.935/0.925 87.7/85.4 0.918/0.898 85.6/84.7 0.901/0.892

Th Base 89.2/82.4 0.933/0.885 80.4/81.7 0.873/0.879 88.4/82.2 0.919/0.875 80.7/78.6 0.865/0.844
Ours 91.2/86.4 0.947/0.916 87.6/83.1 0.925/0.894 88.7/82.2 0.923/0.876 85.2/78.6 0.899/0.848

Vi Base 89.2/84.4 0.933/0.897 79.4/81.1 0.862/0.878 88.4/86.1 0.919/0.900 80.7/82.1 0.859/0.873
Ours 88.9/86.9 0.933/0.918 87.6/81.8 0.922/0.884 87.6/85.0 0.914/0.897 83.4/83.6 0.889/0.887

5.4 ABLATION STUDY

In this section, we perform an ablation study to clearly examine the roles of two loss components
in our method: the Jensen–Shannon divergence-based embedding alignment loss LJSD and the
InfoNCE-based query-document relevance learning loss LNCE . We also include a comparative
experiment, LNCEpsg

, on enhancing the similarity between English documents (pen) and target
language documents (ptgt) (Feng et al., 2020; Chi et al., 2020).

Results in Table 3 indicate clearly complementary roles for these components. Specifically, the
absence of LJSD negatively affects cross-lingual semantic embedding alignment and overall retrieval
performance, whereas excluding LNCE limits the retrieval effectiveness, despite embedding-level
alignment. This demonstrates that the combination of LJSD and LNCE is essential for effectively
achieving objectives of semantic alignment within an embedding space and securing retrieval perfor-
mance. It also proves that relying solely on one of these components is insufficient to enhance overall
cross-lingual retrieval.

Table 3: Ablation results (Max@Rnorm) for loss compo-
nents in multi scenario experiments on Belebele (En-
glish query / Target language query).

Methods Ar Zh Es Th Vi

gte-multilingual-base

Baseline 76.29 / 62.16 77.52 / 71.47 78.27 / 71.21 76.39 / 60.21 79.03 / 74.12

LNCEpsg
75.45 / 63.28 76.07 / 71.72 79.33 / 74.13 76.34 / 62.53 77.79 / 74.77

Ours 77.62 / 63.75 78.06 / 72.71 82.68 / 74.86 77.84 / 62.69 80.16 / 76.43

w/o LJSD 75.63 / 63.19 75.18 / 71.42 80.43 / 74.14 74.75 / 61.93 78.99 / 75.39
w/o LNCE 76.14 / 59.96 78.01 / 70.09 82.00 / 71.66 77.13 / 59.65 80.20 / 73.84

jina-embeddings-v3

Baseline 66.28 / 64.14 71.07 / 67.28 63.38 / 67.16 68.03 / 64.65 64.16 / 66.25

LNCEpsg
72.37 / 68.12 75.00 / 72.92 68.06 / 69.93 72.35 / 68.66 70.52 / 70.46

Ours 76.47 / 69.10 76.34 / 74.27 76.52 / 72.96 76.69 / 69.63 76.48 / 73.33

w/o LJSD 71.58 / 67.73 74.64 / 72.96 68.31 / 69.88 71.90 / 68.19 70.42 / 70.19
w/o LNCE 40.68 / 34.29 37.52 / 38.29 57.44 / 54.18 15.47 / 14.26 43.73 / 42.41

Additionally, we analyze LNCEpsg
. The re-

sults show that this approach generally im-
proves retrieval performance over the Base-
line. confirming that enhancing document-
level similarity is a valid strategy for im-
proving cross-lingual representations. Cru-
cially, regardless of the base model, Ours
consistently and significantly outperforms
the LNCEpsg approach. This result high-
lights the source of our method’s superior-
ity: rather than simply increasing a similar-
ity score between documents, it provides
a more fundamental solution by directly
aligning the distribution of the output rep-
resentations themselves, making it more effective for the end task of query-document retrieval.

6 RELATED WORKS

Most existing studies in Cross-Lingual Information Retrieval (CLIR) focus on bridging the semantic
gap by constructing cross-lingual embedding spaces or leveraging knowledge transfer approaches to
minimize query-document distances across languages (Huang et al., 2023a; Yu et al., 2021; Litschko
et al., 2021; Valentini et al., 2025; Lin et al., 2023). Unsupervised methods, in particular, have
attempted to reduce dependencies on translation resources by training shared embedding spaces only
from monolingual corpora (Litschko et al., 2018). Concurrently, several studies address low-resource
languages, where parallel corpora are limited, by proposing optimal transport-based knowledge
distillation or multi-stage knowledge distillation techniques to transfer ranking knowledge from
high-resource languages (Huang et al., 2023a;b). Additionally, integrating knowledge graphs into
query-document representations has shown promise in alleviating cross-lingual semantic gaps (Zhang
et al., 2022; Litschko et al., 2022). Collectively, these studies underscore that aligning and refining
cross-lingual embedding representations is critically important for CLIR. However, most prior studies
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assume either purely monolingual or entirely multilingual document pool, thus failing to adequately
address biases and misalignments that arise when two languages coexist in a single document pool.

In parallel, studies have increasingly focused on explicit approaches for aligning multilingual em-
bedding spaces. Hu et al. (2020) leverages parallel corpora and explicit alignment objectives to
enhance sentence-level cross-lingual transferability. More granular studies addressing contextual
embedding alignment have introduced nuanced evaluation tasks, such as dependency parsing or
token-level semantic retrieval, highlighting the importance of fine-grained measures (Schuster et al.,
2019; Liu et al., 2019). While insightful, these works primarily emphasize alignment in general
representation tasks, offering limited consideration of practical retrieval challenges associated with
combined-language environments.

7 CONCLUSION

To investigate severe semantic misalignment and language disparities exhibited by existing multilin-
gual embedding models, we propose a new evaluation scenario and a metric, Max@R. Through our
experiments, we reveal previously unseen issues that were not observable using existing evaluation
scenarios. To address these issues, we present a training strategy that effectively achieves semantic
proximity in the cross-lingual embedding space by leveraging Jensen-Shannon Divergence for se-
mantic embedding alignment and InfoNCE for enhancing cross-lingual retrieval performance. Our
method mitigates linguistic misalignment and language bias, significantly improving cross-lingual
retrieval performance and effectively reducing performance disparities across languages. Additionally,
our method demonstrates stable performance even in monolingual settings.

ETHICS STATEMENT

This study proposes a cross-lingual embedding alignment methodology that can positively impact
applications requiring effective information retrieval across multiple languages. The proposed method
accurately aligns semantic representations across different languages to enhance retrieval performance,
while simultaneously strengthening the generalization and robustness of multilingual embedding
models. In particular, our approach is applicable even to low-resource languages, potentially miti-
gating global information disparity and contributing to the creation of a more equitable information
access environment. Moreover, by effectively utilizing existing large-scale embedding models and
data resources, our approach significantly reduces additional costs associated with data construction
and labeling. However, because the training process involves translations generated by large language
models, there are potential risks of subtle cultural nuances being distorted or the introduction of
data biases, which may lead to inaccurate or unintended outcomes for certain cultural or linguistic
groups. This study transparently acknowledges and carefully discusses these limitations and risks.
Nevertheless, we firmly believe that the expected benefits and positive impacts of our research
substantially outweigh the aforementioned concerns.

REPRODUCIBILITY STATEMENT

Our research is designed for full reproducibility. Details on the experimental setup, including datasets
and implementation specifics, are described in Section 5.1. Further training information, such as the
specific hyperparameters used, can be found in Appendix C. For the computational resources required
to run our experiments, please refer to Appendix C.
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A LIMITATIONS

A major limitation of this study arises from the experimental setup and evaluation process for cross-
lingual alignment, which are primarily centered around English despite the extensive possibilities of
language combinations. In real-world scenarios, various language pairs that do not involve English
frequently exist, requiring consideration. Nonetheless, experiments and evaluations in this study were
intentionally centered around English, the most widely used and high-resource language, under the
assumption that multilingual models would exhibit significant bias toward alignment with English,
and to reflect the most practical real-world scenarios.

Additionally, although our evaluations considered various scenarios (Multi, Multi-1, Mono) to assess
cross-lingual retrieval performance, the current experimental design focused mainly on two languages
settings. In practice, multilingual contexts involving more than two languages frequently occur.
However, we restricted our evaluations primarily to cross-lingual settings because existing models
still struggle with performance even in these simpler setups.

Moreover, our approach utilized machine translation based on language models to build the training
dataset. Compared to human translation, automatically translated data may fail to capture subtle
linguistic nuances and cultural contexts sufficiently Toral & Way (2018); Läubli et al. (2018); Lee
et al. (2024). However, we adopted this methodology as it currently represents the most practical and
efficient solution available for constructing large-scale multilingual datasets.

B EVALUATION BENCHMARK DETAILS

In this study, we utilize multilingual Question-Answering (QA) datasets with parallel structures,
converted into retrieval tasks, to evaluate cross-lingual retrieval performance. Specifically, we use
XQuAD1, a multilingual question-answer dataset derived from SQuAD 1.1 Rajpurkar et al. (2016),
which consists of fully parallel question-answer pairs across 13 languages including English. XQuAD
was directly translated by professional translators, ensuring a precise one-to-one correspondence
between documents and queries across languages. This high-quality translation process naturally
preserves linguistic expressions and semantic meanings in each target language, making XQuAD
particularly suitable for assessing the robustness of embedding models against language variations
in cross-lingual scenarios. Additionally, we utilize Belebele2, another multilingual QA dataset
that includes diverse language pairs. Belebele was carefully translated from English into multiple
languages by native-speaking translators proficient in English, effectively capturing contextual
nuances and cultural subtleties Bandarkar et al. (2024). Due to these characteristics, Belebele provides
realistic and varied scenarios reflecting practical multilingual retrieval environments, enabling fine-
grained comparison and analysis of retrieval performance across languages. Furthermore, our use
of these specific benchmarks aligns with standard practices for robust multilingual evaluation. Both
XQuAD and Belebele are core benchmarks used for assessing multilingual retrieval capabilities in the
prominent Massive Multilingual Text Embedding Benchmark (MMTEB) Enevoldsen et al. (2025)3.

C TRAINING DETAILS

Dataset Translation We employed a Large Language Model to translate datasets for training
purposes. The format template for translation prompts used as inputs to the model is as follows:

System: #Instructions
Translate the following English passage fully and
accurately into {target language}

User: {English passage}
Assistant: {Translated passage}

1https://huggingface.co/datasets/google/xquad
2https://huggingface.co/datasets/facebook/belebele
3https://github.com/embeddings-benchmark/mteb
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Hyperparams All models were trained for a total of one epoch with a batch size of 32, em-
ploying a linear learning rate scheduler with a warm-up ratio of 0.15. We used the AdamW opti-
mizer (Loshchilov & Hutter, 2019) (with parameters β1 = 0.9, β2 = 0.99, and weight decay=0.01),
and adopted bfloat16 mixed precision for computational efficiency. Considering the characteristics of
each model, we set the initial learning rates as follows: 4e-6 for bge-M3, 2e-5 for multilingual-E5-
large, 1e-5 for gte-multilingual-base, and 3e-5 for jina-embeddings-v3.

Hardware We used 2 NVIDIA A100 GPUs, each with 80GB of memory capacity, along with
AMD EPYC 7513 processors featuring 32 cores, to train models. For evaluation, we employed a
single accelerator.

Reproducibility To ensure a fair and consistent comparison, all experimental results reported in
this paper are based on a single run using a fixed random seed (42). This fixed seed controls all
stochastic elements, including data shuffling and the batch composition and sampling order. This
approach allows us to strictly control the training environment for both baselines and our proposed
model, ensuring that the comparison fairly isolates the effect of our methodology.

D EXTENDED RESULTS FOR ADDITIONAL LANGUAGES

In this section, we provide experimental results for three scenarios involving five languages not
previously included in the main body of the paper: German (DE), Greek (EL), Hindi (HI), Romanian
(RO), and Turkish (TU).
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Figure 4: NDCG@1 comparison on additional language pairs in the Multi-1 scenario with [lang] as
the query language.
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Table 4: Performance comparison on remaining language pairs under the Multi scenario.

Doc Query
XQuAD Belebele

Comp@10 Max@R (↓) Max@R-norm Comp@10 Max@R (↓) Max@R-norm
Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours

multilingual-e5-base
En+De En 54.20 65.04 24.16 16.10 64.82 70.55 66.89 88.33 52.44 13.98 51.98 71.41

De 39.41 62.35 45.38 21.00 55.91 66.80 53.00 86.44 70.03 16.05 47.73 69.38
En+El En 24.45 62.10 63.15 17.59 51.25 69.30 33.67 86.56 140.91 15.18 37.45 70.20

El 7.73 53.18 248.40 30.10 31.91 61.71 11.78 76.78 287.99 22.93 26.94 64.14
En+Hi En 46.97 62.61 26.87 18.84 63.32 68.33 65.33 87.89 47.43 14.08 53.46 71.31

Hi 26.55 53.70 101.12 30.74 44.60 61.41 45.78 76.00 86.64 27.37 44.60 61.54
En+Ro En 53.61 65.45 23.14 15.57 65.43 71.03 64.22 89.11 55.41 14.91 51.17 70.47

Ro 23.28 61.01 89.76 24.89 46.28 64.40 39.56 82.44 145.65 20.94 39.96 65.48
En+Tu En 42.44 62.69 35.54 17.82 59.37 69.12 59.11 87.51 10.04 7.51 76.28 80.54

Tu 24.20 55.21 94.54 30.75 45.55 61.41 44.22 80.00 126.08 24.93 39.08 62.91
gte-multilingual-base

En+De En 75.13 75.71 10.45 9.86 76.65 77.48 88.56 92.67 8.79 6.99 78.23 81.61
De 67.90 71.09 16.27 14.08 70.40 72.45 87.67 89.22 13.30 9.79 72.15 76.66

En+El En 67.14 70.84 11.95 10.98 74.75 75.95 88.67 90.22 10.34 8.44 75.85 78.84
El 51.68 55.71 25.08 20.28 64.29 67.29 81.00 84.33 24.88 18.72 62.94 67.12

En+Hi En 71.93 72.27 12.07 11.52 74.61 75.28 89.00 91.67 9.35 8.82 77.33 78.18
Hi 54.96 58.66 27.76 23.51 62.86 65.20 82.11 84.00 23.81 19.66 63.59 66.40

En+Ro En 73.70 76.47 11.04 9.60 75.88 77.85 89.22 92.89 9.28 7.19 77.44 81.20
Ro 64.54 67.56 16.94 14.13 69.83 72.40 84.89 88.22 17.44 12.57 68.17 72.97

En+Tu En 69.24 71.68 12.82 11.03 73.76 75.89 90.22 92.33 10.04 7.51 76.28 80.54
Tu 55.29 61.51 26.18 20.31 63.68 67.27 83.22 86.89 19.65 14.53 66.41 70.85

jina-embeddings-v3
En+De En 69.50 75.80 15.12 10.08 71.44 77.16 89.00 92.89 14.25 9.00 71.14 77.88

De 72.86 74.79 13.94 11.08 72.58 75.82 91.33 92.33 11.16 9.30 74.75 77.41
En+El En 53.03 71.76 31.84 11.98 60.93 74.73 80.56 89.22 36.69 13.11 57.21 72.35

El 57.31 67.31 27.76 16.49 62.86 70.21 83.22 87.33 32.88 22.58 58.83 64.37
En+Hi En 61.93 74.54 20.27 10.88 67.30 76.00 87.56 91.67 20.73 11.15 65.62 74.74

Hi 62.86 69.58 24.82 16.52 64.43 70.19 85.00 86.67 28.77 20.32 60.83 65.92
En+Ro En 64.54 74.20 24.53 10.65 64.63 76.38 83.22 92.22 31.87 10.17 59.30 76.10

Ro 65.55 70.76 19.67 12.90 67.73 73.68 86.78 91.00 25.46 14.12 62.59 71.27
En+Tu En 62.44 73.87 21.33 10.54 66.58 76.53 86.67 93.00 18.45 9.39 67.35 77.27

Tu 65.71 71.60 18.89 13.19 68.28 73.36 87.56 89.89 18.65 12.71 67.19 72.82
bge-m3

En+De En 76.13 77.48 10.02 9.96 77.24 77.33 93.00 93.78 9.40 8.54 77.25 78.66
De 76.22 75.97 10.14 10.44 77.08 76.67 92.22 93.22 8.44 8.12 78.83 79.41

En+El En 68.24 72.94 13.62 12.11 72.91 74.58 89.33 91.67 11.11 9.73 74.79 76.75
El 68.32 70.84 13.23 13.23 73.32 73.32 86.22 87.89 17.75 14.01 67.91 71.38

En+Hi En 69.66 72.86 11.96 11.55 74.75 75.24 89.89 91.44 11.10 10.04 74.80 76.29
Hi 68.07 70.42 13.69 13.19 72.84 73.36 83.11 85.89 21.98 19.88 64.76 66.24

En+Ro En 78.07 78.32 9.97 9.66 77.31 77.75 92.67 93.22 9.66 8.56 76.84 78.63
Ro 74.03 75.13 11.66 11.17 75.10 75.71 91.22 92.67 10.13 9.41 76.15 77.23

En+Tu En 73.28 74.79 11.48 11.25 75.32 75.61 91.56 92.11 9.52 8.46 77.07 78.79
Tu 71.34 72.27 13.38 12.33 73.16 74.32 89.56 90.78 13.82 11.75 71.58 73.96

Table 5: Performance comparison under the Mono scenario for five additional languages using the
jina-embeddings-v3 model: English/target language queries.

Lang Model
XQuAD Belebele

Mono-Same Mono-Cross Mono-Same Mono-Cross
NDCG@1 MRR NDCG@1 MRR NDCG@1 MRR NDCG@1 MRR

De Base 89.2/90.0 0.933/0.937 87.8/87.9 0.923/0.925 88.4/89.3 0.919/0.926 84.9/86.0 0.897/0.903
Ours 90.6/88.4 0.943/0.929 89.1/88.9 0.933/0.932 87.6/88.1 0.916/0.916 86.8/86.3 0.909/0.905

El Base 89.2/80.5 0.933/0.873 79.5/81.7 0.863/0.884 88.4/83.6 0.919/0.883 80.1/78.3 0.852/0.840
Ours 90.0/86.8 0.940/0.916 88.4/83.5 0.928/0.895 88.8/84.0 0.924/0.887 83.4/81.1 0.883/0.864

Hi Base 89.2/83.3 0.933/0.891 81.6/84.4 0.883/0.899 88.4/81.1 0.919/0.860 82.3/79.4 0.875/0.852
Ours 91.6/87.5 0.950/0.922 89.0/85.2 0.933/0.907 89.1/82.2 0.926/0.872 86.0/79.4 0.902/0.857

Ro Base 89.2/84.7 0.933/0.899 82.4/85.3 0.885/0.909 88.4/85.1 0.919/0.892 81.7/82.6 0.869/0.875
Ours 88.7/86.5 0.932/0.917 88.1/85.2 0.927/0.908 87.2/87.0 0.914/0.907 84.8/85.2 0.895/0.898

Tr Base 89.2/84.9 0.933/0.901 82.2/84.8 0.883/0.903 88.4/85.9 0.919/0.896 82.0/82.2 0.874/0.874
Ours 89.5/88.6 0.938/0.928 89.1/85.2 0.935/0.907 88.4/86.7 0.921/0.908 87.0/84.9 0.911/0.892
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