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A Perception-Inspired Deep Learning Framework
for Predicting Perceptual Texture Similarity
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Abstract—Similarity learning plays a fundamental role in the
fields of multimedia retrieval and pattern recognition. Prediction
of perceptual similarity is a challenging task as in most cases
we lack human labeled ground-truth data and robust models to
mimic human visual perception. Although in the literature, some
studies have been dedicated to similarity learning, they mainly
focus on the evaluation of whether or not two images are similar,
rather than prediction of perceptual similarity which is consistent
with human perception. Inspired by the human visual perception
mechanism, we here propose a novel framework in order to
predict perceptual similarity between two texture images. Our
proposed framework is built on the top of Convolutional Neural
Networks (CNNs). The proposed framework considers both
powerful features and perceptual characteristics of contours
extracted from the images. The similarity value is computed by
aggregating resemblances between the corresponding convolu-
tional layer activations of the two texture maps. Experimental
results show that the predicted similarity values are consistent
with the human-perceived similarity data.

Index Terms—Similarity learning, perceptual similarity, tex-
ture similarity, convolutional neural networks.

I. INTRODUCTION

S a widely studied visual element in computer vision,

computer graphics and pattern recognition, texture can
be found everywhere in the real world. Since texture provides
a wealth and depth of visual information, such as coarseness,
directionality and roughness, it becomes one of the most
common vision cues in the human visual system (HVS).
Similarity is the measurement of the likeness of two samples.
It has been widely used in texture and material recognition
[1], [2], semantic segmentation [3], aerial imagery classifica-
tion [4], and person re-identification[5], and play important
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roles in object recognition and scene understanding. Accurate
prediction of texture similarity can benefit many visual tasks,
such as texture recognition and surface defect detection. When
Unmanned Aerial Vehicles (UAV) are used to identify the
ground, for example, the ground can be effectively analyzed
based on the similarity between the images captured by the
drone as they exhibit rich texture characteristics. Another
example is the identification of objects with different materials,
such as clothes, metals and plastics, by humans who are able
to determine the category of different images by analyzing the
similarity between two materials.

Although texture images contain rich visual characteristics,
they are difficult to be described due to inadequate semantic
information. In the vision science community, researchers have
managed to reveal the mystery of the human visual mechanism
for texture perception [6] [7]. Among these studies, texture
similarity perception has received much attention, which can
be used to evaluate the performance of automated systems for
texture analysis. Research in texture similarity perception can
be traced back to 1960s, when Julesz [8] conducted visual
discrimination experiments using unfamiliar stimuli generated
by a digital computer. In this experiment, he aimed to study
how the subjects observe and understand the visual attributes
of two images connected side by side. This was followed by
the texture similarity studies using psychophysical experiments
performed by human observers, including free-grouping, per-
ceptual feature scoring and pair-wise comparison [9] [10] [11].
Using these experiments, human perceptual texture similarity
data can be collected and further analyzed in order to discover
the visual mechanism behind the human perception of tex-
ture similarity. Nevertheless, psychophysical experiments are
time-consuming and are also expensive to conduct because
their special requisition on subjects, experimental setup and
environments and procedural issues. Alternatively, predicting
texture similarity by accurately mimicking human perceptual
similarity judgements can be a solution to the problem.

Perceptual texture properties have been used for estimating
texture similarity [12]. However, Dong et al. demonstrated
that there is no simple relationship between the perceptu-
al attributes and the computational features of texture im-
ages [13]. Although computational features perform well in
many tasks, such as texture classification [14] and semantic
segmentation[15], they still produced large deviation when
used to estimate perceptual texture similarity [16]. On the
other hand, researchers attempted to predict texture similarity
by constructing a perceptual texture space using manifold
learning [12], [17], [18]. Based on the perceptual data obtained
from psychophysical experiments, a texture perceptual space
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can be constructed by subspace transformation algorithms.
Then the computational features extracted from the textures
are mapped to this space. It has been shown that the per-
ceptual space can effectively describe the similarity between
textures. However, the procedure of constructing the subspaces
is cumbersome. When new samples are encountered, the
effectiveness of the texture perceptual space needs to be further
verified.

As a metric learning technique, similarity learning is impor-
tant to the research of multimedia retrieval and pattern recogni-
tion. In particular, it has been widely applied to ranking, visual
identity tracking, face verification and speaker verification[19],
[20], [21], [22]. Nevertheless, these studies normally concern
the similarity or matching of two image patches rather than
predicting the similarity of the images which is consistent with
human labeled ground-truth. In contrast, fine-grained texture
similarity has received less attention although this data is
able to provide more precise likeness estimation. The possible
reason attributes to the lack of human-derived fine-grained
texture similarity data.

One of the exceptions is the study conducted by Dong and
Chantler [23] who examined the ability of 51 different tex-
ture feature sets for estimating fine-grained human perceptual
texture similarity. It was found that none of these feature sets
produced comparable results to those of humans. Dong and
Chantler [24] further introduced a set of perceptually motivat-
ed image features by exploiting contour cues. Nevertheless,
this feature set is not good at encoding textures containing
small structures.

To our knowledge, very few of the existing studies exploit
similarity learning for estimating fine-grained texture similar-
ity. To address this challenging problem, we are inspired to
explore both the human visual mechanism on texture similar-
ity perception and recent advances on Convolutional Neural
Networks (CNN). In [25], Gatys et al. used Gram matrices
computed from a pre-trained CNN for texture synthesis. Given
a CNN, they combined the conceptual framework of spatial
summary statistics on the feature responses with the powerful
features generated by the CNN. The experiments indicated that
the established CNNs may be used to generate suitable stimuli
for perceptual or physiological studies on texture representa-
tion [26]. Zhang et al. demonstrated the effectiveness of deep
features as the perceptual metric for determining the similarity
of two pairs of image patches [27]. In addition, it has been
highlighted in the literature that contour cues are important
to the human visual system [28], [29]. In [24], Dong and
Chantler observed that contour maps provide better texture
representation than other types of local texture characteristics.
They attributed this success to the long-range interactions
between local image characteristics encoded by contours [23],
[30].

Motivated by the aforementioned studies, we here introduce
a new fine-grained texture similarity estimation approach,
which mimics human visual perception for texture similarity.
This approach not only explores the advantages of CNNs but
also benefits from contour cues which are able to encode
long-range interaction. First, contour maps of the textures are
extracted because of its importance to texture representation

[30] [24]. Second, the paired texture images and the corre-
sponding contour maps are used to train a similarity learning
network. Third, the network is used to predict the similarity
between a pair of texture images. The network contains three
parts: deep feature extraction, layer-wise similarity calculation
and perceptual similarity prediction. In particular, we use a
commonly used deep architecture for feature extraction. The
features extracted at each convolutional layer are used to
compute one layer-wise similarity. Using all the layer-wise
similarity values, we create a fully-connected network, namely,
the similarity network. The fully-connected layers are able to
automatically assign appropriate weights to different layers.

In this paper, we propose a new method to predict the
fine-grained perceptual similarity between two texture im-
ages. Both contour maps together with their corresponding
original input textures are used inspired by visual perception
studies, and our experiments show that contour information
is indeed beneficial for estimating fine-grained perceptual
texture similarity, which is consistent with that of human
observers[24]. The proposed deep learning framework also
shows that the layer-wise similarity between two CNNs is able
to achieve better performances than higher level features (e.g.
FC layer). The proposed network can be easily transferred
to the estimation of the similarity between natural images by
exploiting a publicly available dataset, and it also achieve good
results in texture retrieval experiments.

The rest of this paper is organized as follows. In Section
II, we review the related work in the area of acquiring
perceptual descriptions and estimating perceptual similarity
using computational features. We introduce the proposed fine-
grained perceptual texture similarity prediction method and
implementation details in Section IIl. In Section IV, texture
similarity prediction experiments are reported and the gener-
alization of our method to natural image similarity prediction
is investigated. The effect of different loss functions, the use of
contour information, the fusion of perceptual information and
retrieval-based evaluation experiments are further analyzed in
Section V. Finally, in Section VI, we give conclusions and
discuss the future work.

II. RELATED WORK
A. Acquiring Perceptual Descriptions

As a branch of psychology, Psychophysics [31] studies
human quantification of physical stimuli and the sensations
caused by the stimuli. Psychophysicists believe that all human
senses, including sight, hearing, etc., can be described by
the relationship between sensory and stimulus intensities.
Accordingly, texture perception is the study of stimuli and
effects of different texture images on human vision, that is,
how the human visual system describes and perceives texture
images. Texture perception is of great importance in scene
understanding and data visualization. Research in this area was
initiated by Julesz [8], who displayed visual images randomly
on digital computers to conduct visual discrimination experi-
ments whilst studying how the subjects observe and understand
two textures with the same visual attributes.

Along with continuous research on texture perception, many
natural texture databases including Brodatz [32], OuTex [33],
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and CUReT [34] have been established. Researchers began to
implement visual perception mechanisms for specific texture
images. Tamura [9] designed a psychophysical experiment
based on the Brodatz texture dataset and asked subjects for
rating texture images using six different perceptual attributes.
Amadasun [35] also performed a similar experiment on this
database, asking subjects to rate the texture attributes, and
then defining an approximate calculation form for each tex-
ture attribute and studying the visual perception of humans
according to the results of texture similarity measurement.
This research had achieved certain results, but it was not
as good as the desired because human visual perception is
a very complicated process. In subsequent studies [36] [37]
[38] [39] [40], researchers used many similar methods to
quantify the perceptual features of textures, expecting to find
texture features that are consistent with human perception. Due
to different interpretations and quantitative criteria, there are
certain deviations when a texture image is perceptually rated.
Accordingly, it is difficult to comprehensively and reasonably
analyze the experimental results of each subject. Consequently,
these experimental results were not able to provide texture
similarity values, which is the main objective of our study.
One way to obtain perceptual similarity is through a free-
grouping experiment [11], which was first performed on the
Brodatz database. The experiment required the subjects to
group 56 images stored in the database according to their own
understanding without any hint. The number of the groups
is not limited, and the number of the images allocated in
each group is not limit either. Images that are grouped by
the majority of people in the same group are considered to
have a high degree of similarity, while images that are not
grouped together are treated as no similarity. Through the
analysis of the grouping results of all subjects participating
in the experiment, the similarity values between two images
can be obtained and a 56 x 56 similarity matrix is constructed.
Although the free-grouping experiments can obtain very reli-
able texture perceptual similarity values, the experiment takes
a long time and cannot be performed on a large number of
samples. Subsequently, the small number of human labeled
similarity values provided in [11] limited further analysis or
accurate prediction of perceptual texture similarity. Later, in
[41], Halley et al. conducted a pairwise comparison experi-
ment on the Pertex dataset containing 334 texture samples. The
experiment was undertaken by thirty subjects. However, due
to the insufficient number of experiments, the result similarity
matrix contains many zero values and has a sparse matrix
structure. Based on these experiments, Clark et al. [42] further
proposed an equidistance mapping [43] algorithm to obtain a
full similarity matrix. Liu [12] further performed free-grouping
and merging experiments in the Procedural Texture Dataset
(PTD). Twenty subjects were required to group 450 texture
images according to their own understanding. After the first
grouping had been completed, the subjects were asked to
merge well-grouped textures and give each combination a con-
fidence figure. The group-merging procedure was performed
iteratively until the subjects felt that the remaining groups
could not be merged anymore. By multiplying each grouping
result with the confidence of the subjects and accumulating the

results to obtain perceptual similarity values, the experiment
successfully avoids the problem of sparsity in the similarity
matrix as occurred in [41]. In material recognition studies, [2]
derives a framework to discover locally-recognizable material
attributes automatically. The authors measure perceptual dis-
tances between materials and defined an attribute space based
on perceptual distances. However, its goal is to improve the
material recognition accuracy and they mainly use for material
dataset, which is different from our texture. In contrast, our
work focuses on perceptual similarity prediction directly from
two input texture images.

B. Estimating Perceptual Similarity Using Computational
Features

Texture feature extraction is the most critical procedure
in many visual tasks such as semantic segmentation, texture
classification and retrieval. Whether the extracted features are
good or not directly affects the accuracy of subsequent tasks.
Researchers tried to find a characteristic pattern that can best
represent a texture sample [44], [45], [46]. To achieve better
results, hand-crafted features need to be further adjusted and
different parameter settings have to be tested. Researchers
hope to find a robust texture representation, which can make
the extracted features be simultaneously applied to multiple
texture classification tasks. In recent years, it is well known
that deep learning based features demonstrated state-of-the-art
performance. Generally, deep features refer to those extraction-
s through a multi-layer convolutional neural network and can
be treated as the discriminative representation of the sample
data. Deep learning methods attempt to establish and simulate
the human brain for analysis and learning to mimick the
behavior of neurons in the human brain and to analyze and un-
derstand various data including images, sounds, and texts[47]
[48] [49] [50]. [51] proposes a deep texture encoding network,
the representation obtained in the network is particularly useful
for material and texture recognition and produced state-of-the-
art performance. However, the goal is different from ours, as
we focus on perceptual similarity prediction directly from two
input texture images. It is essentially a regression task, whereas
the Deep-TEN focus on texture encoding.

Although there are little work on the estimation of percep-
tual texture similarity, recent advances based on convolutional
neural networks for approximating natural image similarity
produced promising results. Zagoruyko [52] proposed a gener-
al similarity function based on CNN and decision networks to
compare image patches directly from image data to determine
if the two patches match, i.e. the same scene region under
different views. Han et al. [53] proposed a unified approach for
combining feature and metric learning for patch-based match-
ing, i.e. to determine whether the two patches are similar to
each other. Zhang et al. [27] proposed a method to compute the
distance between two patches, and then train a small network
to predict perceptual ranking from two distance pairs. Their
work shows the effectiveness of deep features as a perceptual
metric for evaluating whether or not each of the two patches
is similar to the original one. He [54] proposed a learned local
feature descriptors which achieved good results in ranking
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Fig. 1. The proposed framework for perceptual texture similarity learning.
The framework contains feature extraction, layer-wise similarity calculation
and perceptual similarity prediction. The input of the framework consists of
paired texture images and corresponding paired contour maps, and the output
is the similarity value between the paired images.

and matching experiments. Mots of these methods mentioned
above focus on patch similarity evaluation, i.e. to determine
whether one sample is similar to the other, whereas our method
concentrates on determining the degree of similarity between
textures. The proposed framework can output a quantative
figure that represents the degree of similarity between two
texture samples.

The most related work to ours is by Lou et al. [16], in
which Random Forests were employed to regress the sim-
ilarity data and produced promising results. In their work,
after computational features have been extracted from the
sample textures, the paired texture features were combined
together and then sent to the random forests classifier for
the prediction of fine-grained similarity values. In [55], the
combined features obtained by the same feature processing
method are sent to the trained auto-encoder, which obtained
accurate prediction results. In this situation, a large number
of feature sets need to be tested so that random forests can
produce better results. In contrast, the method proposed in this
paper can automatically learn effective features for accurately
predicting perceptual texture similarity, as our deep model
is an end-to-end architecture and can be easily trained. Our
method is more robust and has better transferability in the
task of predicting the similarity of natural image patches.

III. METHOD

In deep learning algorithms, the inputs and targets of the
models are vectorized, forming the input vector space and
target vector space. Deep learning usually uses a multi-
layered network structure to compute a multi-layered abstract
representation of the learned data [56]. Each layer in the deep
learning model consists of a number of simple but non-linear
modules, and undertakes a simple geometric transformation
for the data passing through it. Each module is responsible
for transforming the input of the layer into a higher-level,
more abstract representation and outputting it to the next
layer. After the original data is input into the network, it
is processed layer by layer, continuously transformed, and

output as a higher-level abstract feature. The deep features
learned by convolutional neural networks show comparable
or even stronger performance in many computer vision tasks
than those extracted by traditional methods [49], [50], for
example, in image classification tasks, higher-level features
can highlight the useful information of the original input that
play an important role in the final classification discrimination,
while suppressing insignificant differences between the data.
However, in similarity learning, the distance metric in the
computational feature space cannot be well correlated with
the perceptual similarity space [13]. Therefore, we propose an
image-wise layer-wise similarity learning, which treats each
network layer as a feature space transformation, and calculates
multiple feature spaces in the process of mapping the input
vector space to the target vector space. The similarity between
the two images is obtained by considering the similarities
between each feature spaces of the corresponding layers.

The proposed framework is shown in Fig. 1 and consists
of three components: deep feature extraction via a convolu-
tional neural network, layer-wise similarity calculation and
perceptual similarity value prediction. For clarity, we use X3
and X, to denote two texture images, and use y to denote
their perceptual similarity values. As we aim to predict y as
accurately as possible, we use MSE as the metric to evaluate
our prediction, which is defined as:

5(D)= - 3 (v 97 (1)

yeD,

Here, we use D,, to denote the validation set, § to denote our
predicted similarity value, and n to denote the number of valid
similarity values in the validation set. As ¢ is our predicted
value, which can be written as:

9= H(X1,Xs) (2)

in which, H denotes the prediction function. If we resolve H,
the formulation can be rewritten as:

g = P(sim(< ®(Xy),P(X2) >),
sim(< ®(contour(X1)), ®(contour(Xs)) >)) (3)

In the formulation, P denotes the function in charge of con-
verting the calculated similarity values to the final prediction
result. sim denotes the similarity calculation procedure, which
calculates similarity values in feature space set, ® denotes a
collection of feature spaces obtained by mapping of input X
and Xo, and contour denotes the hard wired method to obtain
the contour maps of the original texture images.

To give the formulation for clarity, the details of the
preprocessing, feature extraction, cosine similarity calculation
and perceptual similarity predicting stage will be discussed in
the following sections. In addition, we use quadratic loss and
cross entropy loss as objective functions in our experiments.
The quadratic loss is defined as:

1 .
Ly = 5= (=97
yeD,
1
= 5 (y — H(X1, X3))? 4)

yE€D,
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in which, D; denotes the training set, and m denotes the
number of valid similarity values in the training set. The cross
entropy loss is defined as:

Le = =5 > lyl()+ (1 - y) (i - )
yeDy
= o S WHL X)) + (1)
yeED:
ln(l — H(Xl,XQ)] (5)

Extracting contour maps

Previous study on visual perception [23], [24], [30] has
shown that edge information plays an important role in the
estimation of texture similarity. In order to learn the perceptual
similarity between the two texture images, we therefore pro-
pose to use the contour maps of the texture images as auxiliary
inputs for prediction. This step can be viewed as the incor-
poration of prior knowledge into the proposed architecture.
Thus, we first use the method proposed in [24] to compute a
contour map for each texture image. As shown in Fig. 1, X;
and X, represent the original texture images, and M7 and M,
represent the contour maps of the original texture images. The
process of extracting contour maps can be written as follows:

< Mi,My > = contour < X1, X > (6)

The paired texture images < X7, X > and the corresponding
contour maps < M, Ms > will be send to the network
together during the training process.

Deep Features Extraction

Recently, researchers have been devoting themselves to
developing variants of deep learning methods for complex
image tasks, including conventional image classification, re-
gression, multi-modal processing, semi-supervised learning,
texture synthesis, and even image generation [57], [58], [59].
Theoretically, features extracted from commonly used con-
volutional networks can be used in the proposed framework
for the prediction of perceptual texture similarity. Meanwhile,
in [25], Gatys et al. designed a texture model for texture
synthesis, in which the use of VGG-19 for feature extraction in
each convolutional layer indicates that the statistical structure
of natural images can be matched at an increasing scale, as
the number of layers used for texture generation increases. On
the other hand, it is intuitive that low layers of a convolutional
network capture finer spatial information of images, while lay-
ers in the high hierarchies capture global statistical summary
of images. Zhang etc. demonstrate the effectiveness of deep
features used as perceptual metric [27]. Their experiments on
rank prediction illustrate that the pretrained parameters of a
network are essential for feature extraction. In addition, VGG-
Net has become the de facto standard for image generation
tasks [60].

Therefore, we turn to use VGG-19 for feature extraction
in the current study. For each pair of texture samples, we
actually obtain four input images, in which two contour maps
are computed during the preprocessing procedure. As VGG-
19 is pretrained on the ILSVRC2012 dataset, in which each
sample is an RGB color image, we extend our original gray
texture images and contour maps to RGB images, and then

subtract the mean value in each channel, which are then fed
to the VGG-19 network. Finally, standard forward propagation
is performed for each input. The expressive ability of different
features from convolutional layers and pooling layers are
tested and the features of the convolutional layers are selected
for the similarity calculation. We collect features in each of
16 convolutional layers as the input. It should be noted that
the parameters of the network are fixed when the network is
used for feature extraction.

As shown in Formulation 3, we denote a paired texture
images as < X;, X2 >, and denote their contour maps as
< My, Ms >. In each convolutional layer, which corresponds
to a feature space, we construct a tensor pair:

F' = <FLF> (7)
Here, FI' represents the calculated feature maps in the Iy,
layer for image X1, and F? represents the calculated feature
maps in the [y, layer for image X5. The feature of [;; layer
for < My, Ms > can be written as:

l

' = <rl P> (8)

All the feature pairs constitute a set:

F = <FYF? . Fi6> ©)

For M, and M>, the same set is constructed as:

Fl'= <P F? . F's (10)

Here F'' is a tensor pair < F'.,F', >, in which F’}
represents the calculated feature maps in the Iy, layer for M,
and F”’ l2 represents the calculated feature maps in the [, layer
for M.
Cosine Similarity Calculation

After the feature extraction stage, we have two sets F' and
F’ for a paired texture image input. For each element of F,
we calculate a cosine similarity value. As F! and F} are the
feature maps in the Iy, layer of the convolutional network, for
each spatial position of I} and FY, there exists a vector with
the length equaling to the number of the channels in the I,
layer. For the same spatial position of F} and FY, we calculate
the cosine similarity value of the two vectors. Afterwards,
the final similarity value in the [, layer is calculated by
averaging the similarity values across the spatial positions.
Finally, a similarity vector is derived from F’, which is denoted
as Si. The same operation is performed on the set F”,
correspondingly, and the derived similarity vector is denoted
as Sa. The method to calculate similarity in each convolutional
layer is inspired by Zhang et al. [27] who proposed to calculate
distance in each layer and then summary all the distance values
to get a final distance metric for a pair of texture images.

Here, we instead calculate similarity values in every layer,
and then concatenate them together as a similarity vector.
Equation 3 illustrates the procedure to calculate the similarity
between the paired tensors stored in < FY, F} >. We use F},,,
to denote the vector at spatial position (m,n) of feature maps
Fil, which is calculated in the l;;, convolutional layer from
texture image X;, and we use Si to denote the [;;, element of



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

vector Sp. In other words, S! represents the similarity value
calculated in the [;; layer from texture pair < X7, X5 >:

Fl . Fl
St = sim(F{,F}) = —1—2-
LTI |
N
_ Zm,n:l Fllmn x FQZmn
N 2 N 2
\/Zm,n:l Fllmn X \/Zm,n:l F2lmn

Now, we have described how to construct the similarity vector
St. Tt is the same procedure to construct S, except that all
the calculations are based on the contour pair < My, My >
rather than the texture images:

Y

1 l
F'y - F
1 1
[E" L NES
N l l
— Zm,nZI Fllmn X F/2mn (12)
N 12 N 12
\/Zm,nzl Fllmn x \/Zm,n:l Fl2mn
As there are 16 convolutional layers in VGG-19, the con-
structed similarity vector S; has 16 dimensions, each of which
represents the cosine similarity calculated in the feature space
derived from a certain layer:

S = <S§,82.., 86>

SLo= sim(F",F) =

(13)
And S is of the same dimensionality as Sy:

Sy, = <83,82,..,83%> (14)

Finally, the two similarity vectors 57 and Sy are concatenated
as:

S =<5,5 > 15)

Thus, S is a 32-dimensional similarity vector, which is the
final representation of a pair of texture images.
Perceptual similarity value predicting

Deep convolutional neural networks can produce results
more consistent with human perception than traditional meth-
ods in computer vision areas. It seems that low layers in the
network tend to detect simple edge information. When we go
higher in the network, the neurons tend to learn something
more sophisticated, which may be object parts (combination
of edges) in the media layers and complicated objects in the
top layers. This observation can be explained intuitively that
complicated concepts, e.g. dogs, are composed of low-level
concepts, such as leg, arm, head, and body. It is natural that the
outputs of low-level layers serve as the components of high-
level layers. On the other hand, low-level layers own small
receptive fields due to the convolutional operation, while layers
in the high hierarchies own larger and even global perspectives
indeed.

When using deep convolutional neural network for image
feature extraction, low-level layers can be used to capture
fine texton information, while high-level layers capture global
statistical information. This has also been demonstrated in
[25] by Gatys etc. Therefore, the calculated similarity in
each convolutional layer of the network reflects the similarity
of the paired texture images in different scales. However,
the perceptual similarity in PTD and Pertex is given as a

scalar, which reflects the holistic sense of the subjects about
similarity. Thus, we need to come up with a means to convert
the calculated similarity vector to a figure consistent with hu-
man judgment. Even extracting features by deep convolutional
neural networks remains a challenging task, as this is not a
simple linear transformation. In addition, the similarity vector
So serving as auxiliary information, which has been proven to
be effective complementary of S; in our experiments, needs
to be handled properly.

To achieve this transformation, we implement a fully-
connected network, which is shown at the top of Fig.1. We
call this network as similarity network, and the prediction of
similarity value can be written as:

g=P(5) (16)

The architecture of the similarity network P is depicted as
{32, 64,128,256, 256, 128,64, 32, 16,8, 1}. Each number here
represents the neurons used in each layer, and there are 11
layers totally, including the input and output layers.

It should be noted that we use relu as the activation function
in the similarity network, except for the output layer. Because
the perceptual similarity values range from O to 1, we use the
sigmoid function in the last layer. The training objective is to
minimise the Euclidean distance between the predicted values
and the ground truth. Cross-entropy loss can also be used as
the objective function, and we use quadratic loss to achieve
better results, which are explained in our ablation experiments.

IV. EXPERIMENTAL RESULTS

In this section, we performed experimental results on three
different datasets with the proposed method. The test datasets
include Procdeural Texture Dataset (PTD), Pertex Dataset, and
Berkeley-Adobe Perceptual Patch Similarity (BAPPS) Dataset.
The experimental results are as follows.

A. Results on Procdeural Texture Dataset (PTD)

PTD contains 450 textures of resolution 512 x 512, which
are generated by 23 different procedural texture generation
models. The texture generation model generates a texture
height map with realistic procedural textures, which help us to
accurately obtain humans visual perception of textures. Fig. 2
shows four pairs of textures in the dataset with their perceptual
similarity values obtained by free-grouping experiments. For
the comparison purpose, we also list the similarity values
predicted by our methods. Each pair of textures in this dataset
has a perceptual similarity value. The fine-grained perceptual
similarity values of PTD are in a range of 0 to 1. A value
close to 1 means that the two texture images are treated to be
similar, whereas a value of O represents that the two textures
are not similar at all.

As VGG-19 receives the inputs of size 224 x 224, we resize
the textures in PTD to the size of 224 x 224 for feature
extraction. It should be noted that we only use convolutional
layers of VGG-19, so there are actually no resolution limits
for the input. However, if we do not resize texture images to
224 x 224, the relative receptive field in each convolutional
layer may be changed compared to the original VGG-19. In
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Fig. 2. Paired texture images in PTD. From left to right, the perceptual simi-
larity values of the textures set are 0.9700, 0.8617, 0.3508 and 0.3175,whereas
the predicted similarity values are 0.9825, 0.8646, 0.3494 and 0.3180.
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Fig. 3. Training process on PTD. Optimize the network with quadratic loss.
The cross-entropy loss and quadratic loss are calculated. Figure (a) illustrates
the curve of the cross-entropy loss, and Figure (b) illustrated the curve of the
quadratic loss.

other words, each neuron in the convolutional layers can only
see a smaller ratio of the whole image region. Whereas, the
granularity of features is very important for texture similarity
perception, and human observers give their opinions about
similarity by reviewing texture images from regional textons
to global distribution forms for holistic purpose. Therefore,
we do resize the high-resolution texture images in PTD to
224 x 224.

PTD contains 450 texture images, and any pair of texture
images in the dataset owns a similarity value. The 450 exper-
imental data is randomly divided into training set and testing
data with 400 and 50 images respectively. There are totally
80,200 pairs of texture images with fine-grained similarity
values in the training set, and 1,275 pairs of texture images in
the test set inputting into model for training and simulation.
We use Adam method for gradient descent, and the initial
learning rate is 0.0002. We use a mini-batch of size 40 samples
for training. In the training process, we optimize the quadratic
loss; meanwhile, the cross entropy loss is also calculated. The
training process is illustrated in Fig. 3. Fig. 3(b) illustrates the
varying curve of the quadratic loss, which is optimized during
training. Fig. 3(a) illustrates the cross entropy loss curve,
where the perturbation indicates severe noise in the process.
The optimization is performed with 680,000 iterations, and the
MSE on the test set is 0.004.

The predicted perceptual texture similarity matrix and the
texture similarity matrix obtained by the psychophysical exper-
iment are shown in Fig. 4. The size of the predicted perceptual
similarity matrix of PTD is 50 x 50 (the number of texture
samples in the test set is 50). The color of each element

Fig. 4. Visualization of perceptual texture similarity matrix. Figure (a) shows
the perceptual similarity matrix obtained by psychophysical experiments, and
Figure (b) shows the predicted texture perceptual similarity matrix.

TABLE I
EXPERIMENTAL RESULTS ON PROCEDURAL TEXTURE DATASET
Method Features Deviations ~MSE p*

LBP - N 0.2207

Distance Gabor - - 0.4447

PCANet-48D - - 0.5782

CNN-48D - - 0.6266

LBP 0.072 0012 0.8272

Gabor 0.065 0.010  0.8657

Random Forest[16] —5=arragD 0,088 0,016 0.8044

CNN-48D 0.092 0017 0.8048

LBP 0.108 0.022 06113

Gabor 0.073 0012 0.8077

Auto-Encoder(55] - —peangiagD 0.074 0.013 _0.7915

CNN-48D 0.062 0.010  0.8560

Ours Layer-wise 0.043 0.004  0.9402

* The correlation coefficients between the distance of computational
features and the psychophysical data, and the correlation coefficients
between the predicted similarity values and similarity values obtained from
psychophysical experiments.

of the matrix represents the perceptual similarity value of
the texture pair represented by the corresponding coordinates.
Red indicates that the perceptual similarity is 1, while white
indicates that the perceptual similarity is zero. The more red
the color, the more similar the two textures are.

It can be seen from the figure that the predicted texture per-
ceptual similarity matrix and the perceptual similarity matrix
obtained by psychophysical experiments are very similar to
each other. This further proves that the perceptual similarity
predicted by the similarity network can fit the psychophysical
data well. We compare our method with the similarity regres-
sion method proposed in [16] and [55], the results are shown
in Table. I. As can be seen from Table. I, our method produces
better results with smaller Mean Squared Errors (MSE) and
higher correlation coefficients. It should be noted that the
methods reported in [16] and [55] require to select the best
features but ours does not need this stage.

B. Results on Pertex Dataset

The Pertex Dataset contains 334 textures with different
resolutions ingested in a variety of real surface textures,
including: canvas, woven wallpaper, carpets, curtains, soft
fabrics, building materials, and product packaging. Fig. 5
shows four pairs of textures in the Pertex Dataset with their
fine-grained perceptual similarity values obtained in pairwise
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Fig. 5. Paired texture images in Pertex. From left to right, the perceptual
similarity values of the textures set are 0.7451, 0.4482, 0.2127 and 0.1280,
whereas the predicted similarity values are 0.7108, 0.6160, 0.4494 and 0.1933.
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Fig. 6. Training process on Pertex. Optimize the network with quadratic loss.
The cross-entropy loss and quadratic loss are calculated. Figure (a) illustrates
the curve of the cross-entropy loss, and Figure (b) illustrated the curve of the
quadratic loss.

comparison experiments. For the comparison purpose, we
also list the similarity values predicted by our methods. The
perceptual similarity values of Pertex dataset are in a range
from O to 1. A value close to 1 means that the two texture
images are perceived very similar, whereas a value of 0
represents that the two textures are not similar at all. In Pertex
dataset, we randomly choose 300 images to form the training
dataset, and the other 34 images as the test set. There are
totally 45,150 paired textures with perceptual similarity values
in the training dataset, and 595 paired textures in the test set.
The hyper-parameters of the experiment are the same as those
in the PTD, and the texture images are also resized to 224 x 224
for the reasons explained in the above section. The training
process is illustrated in Fig. 6. The optimization converges
at 340,000 iterations, and the MSE on the test set is 0.013.
We also compare our method with the similarity regression
method proposed in [16] and [S5], and the results are shown
in Table. II.

C. Transfer to Natural Images

To demonstrate the generalization ability of our proposed
model, we further transfer our trained model generated from
PTD to natural images. In [27], Zhang et al. proposed a dataset
consisting of natural images and their distortion counterparts.
In the dataset, two types of validation sets are given. The
first type consists of traditional and CNN-based distortion
methods, and the second type consists of real algorithms. In
the dataset, each sample is a triplet consisting of one reference
image and two distorted images. The distorted images are

TABLE II
EXPERIMENTAL RESULTS ON PERTEX DATASET
Method Features Deviations ~ MSE p*
LBP 0121 0025 0.5430
‘ Gabor 0111 0.021 0.6890
Random Forest[16] —peaNGagD—0.122 0,026 06259
CNN-48D 0114 0024 06171
LBP 0128 0030 03564
Gabor 0105 0.019 0.6696
Auto-Encoder[53] - —peANGagD 0138 0.032  0.4687
CNN-43D 0108 0019 0.7037
Ours Layer-wise 0.088 0.013  0.7805

* The correlation coefficients between the predicted similarity values and
similarity values obtained from psychophysical experiments.
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Fig. 7. The 2AFC scores are calculated for the predicted similarity values.
The results of different predicting methods are shown in the histogram.

the outputs of certain algorithms, which take the reference
images as the inputs and output processed results. In the triplet,
one similarity prediction algorithm will pick up one distorted
image similar to the reference. The algorithm is evaluated by a
metric called two alternative forced choice(2AFC) score, that
asks which of two textures is more similar to a reference. Six
VAL sets in [27] of 2AFC similarity evaluation experiments in
Berkeley-Adobe Perceptual Patch Similarity (BAPPS) dataset
are tested with our method and the methods proposed in
[16] and [55], and the experimental results are shown in
Fig. 7. In the 2AFC similarity judgments experiments [27], two
distortions are applied in a reference image patch, humans are
supposed to decide which distortion is closer to the original
patch. We test our model on this dataset by predicting the
fine-grained similarity values between each distortion and the
original patch, and the predicted values show which distortion
is similar to the original one. It should be noted that, samples
in PTD are texture images, which are very different from
natural images. That is to say, the target domain is really
distinguished from the source domain and the transfer is
essentially a difficult task.

The experimental results demonstrate that our method can
be transferred to natural images without fine-tuning on the
target dataset, which cannot be implemented for the absence
of similarity data in the dataset. It is understood that fine-
tuning can boost the performance of our method on natural
images. Additionally, our model performs much better than
that proposed by Lou [16] in the transfer task. All these results
demonstrate that our method has a good generalization ability.
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Fig. 8. Optimize the network with cross-entropy loss. The cross-entropy loss
and Euclidean loss in the training process are calculated. Figure (a) illustrates
the curve of the cross-entropy loss, and Figure (b) illustrates the curve of the
quadratic loss during training.

TABLE III
RESULTS ON PTD FOR LEARNING WITHOUT CONTOUR INFORMATION AND
OPTIMIZING WITH DIFFERENT LOSSES

Method Deviations ~ MSE p*

Textures+Cross Entropy Loss 0.051 0.005 0.9016
Textures+Quadratic Loss 0.047 0.005 0.9082
Textures+Contours+Cross Entropy Loss 0.044 0.005 0.9361
Textures+Contours+Quadratic Loss 0.043 0.004  0.9402

* The correlation coefficients between the predicted similarity values and
similarity values obtained from psychophysical experiments.

V. ABLATION EXPERIMENTS

In this section, we supplement some ablation experiments,
including the comparison of different losses, the importance
of contour information, the visualization of similarity net-
work weights, the correlation between perceptual similarity
and perceptual attributes, and the retrieval-based evaluation
experiments. The experimental results are as follows.

A. Quadratic Loss vs. Cross-Entropy Loss

Quadratic loss and cross-entropy loss preform differently
in different computer vision tasks[61], [62], [63]. In order to
prove that quadratic loss performs better than cross entropy
loss in the similarity prediction task, we carry out a contrastive
experiment, in which we alter to optimize the cross-entropy
loss. The experiment is conducted on PTD. The training
process is illustrated in Fig. 8, where Fig. 8(a) illustrates the
varying curve of the cross-entropy loss, and Fig. 8(b) illustrates
the quadratic loss curve. The optimization is performed with
690,000 iterations, and the MSE on the test set is 0.005, which
is shown in Table. III. Comparing the previous Fig. 3 with
Fig. 8, the training process are optimized by quadratic Loss
and cross-entropy loss respectively. The training curves are
very similar to each other, while the training process optimized
by quadratic seems more stable.

B. Contour Information

Contour cues are proved to be important in human visual
system [28], [29] attributed to their long-range interactions
encoded by contours [23], [30]. The contour maps of the im-
ages are extracted using perceptually motivated image features
(PMIF) [24], as shown in Fig. 10. The first line is the original
texture image, and the second line is the corresponding contour
map. We emphasize that contour information aids similarity
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Fig. 9. Learning similarity without contour information. (a) and (b) are the
cross entropy loss curve and the quadratic loss curve when optimized by cross
entropy loss, (c) and (d) are the cross entropy loss curve and the quadratic
loss curve when optimized by quadratic loss.
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Fig. 10. Original textures and its contour maps. The first line is the original
texture image, and the second line is the corresponding contour map.

predicting task. We design experiments to demonstrate this
process. In this experiment, we use the same architecture and
configuration as mentioned before, except that the contour
information is dropped and the batch size is set as 80. The
training process is illustrated in Fig. 9, and the final result is
shown in Table. III. The first two lines are the results of the
trained model with only original texture images,while the last
two lines shows the results with input of both texture images
and contour maps. The best result of the experiment without
contour information is shown in the second line. The optimiza-
tion is performed by 780,000 iterations, and the MSE is 0.005,
which is no good as the MSE calculated with the network
trained with both textures and contour maps. This has a more
obvious effect on the correlation analysis. When the training
network without contour information, the correlation between
the predicted similarity and ground truth is 0.9082, it is much
higher when training the network with contour information.
This demonstrates that contour information indeed helps the
similarity predicting task.

C. Weight Visualization

As shown in [25], people tend to understand which layer is
important in texture tasks, such as texture synthesis, similarity
predicting, and so on. It is tedious to design many experiments
to find good recipes of the layers used for texture represen-
tation. In our solution, we use a fully connected layer on the
calculated cosine similarity values, and let the fully connected
layer pick appropriate layers by itself. At last, we visualize
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Fig. 11. Similarity network weight visualization results. Each row represents
a similarity values calculated in certain layer, and each column represents the
weights connected to a neuron in the first fully connected layer.

the weights learned in the first fully connected layer of the
proposed similarity network, and figure out which layer is
more important in the similarity prediction task.

The visualization result is shown in Fig. 11. In Fig. 11, each
row represents a similarity value calculated in a certain layer.
The first 16 rows represent the similarity values calculated
from the raw texture images, and the subsequent 16 rows
represent the similarity values calculated from the contour
maps. Each column represents the weights connected to a
neuron in the first fully connected layer. If a similarity value
calculated in a certain layer is useless for the perceptual
similarity predicting task, the weights connected to this value
will tend to be zeros, otherwise, the weights will have a large
magnitude, regardless of signs. Therefore, in order to absorb
which layer is more important for the similarity prediction
task, we take the absolute value of the weights connected to
all these similarity values calculated in all the convolutional
layers. If the weights connected to a similarity value has a
high magnitude, they will be rendered as bright; otherwise,
they will be rendered as black. In Fig. 11, we cannot find
significant bias of the brightness distribution of the weight in
the first fully connected layer. Thus, all the layers from low to
high levels contribute equally to the similarity prediction task.

D. Perceptual Similarities V.S. Perceptual Attributes

Texture perception study has recently concentrated on the
perceptual attributes [8], [64] and semantic attributes [65]. In
the prior work, texture perceptual attributes are treated as ab-
stract concepts which represent humans subjective perception,
while texture semantic attributes are related to specific words.
Both perceptual attributes and semantic attributes are used to
express the similarities and difference between texture images
in order to attain a better understanding of the content of
images. Liu et al.[12] performed psychophysical experiments
on the procedural texture dataset, and obtained 12 kinds
of perceptual features from the quantized values of each
texture image through perceptual scoring experiments. The 12
perceptual attributes are contrast, repetitive, granular, random,
rough, feature density, direction, structural complexity, coarse,
regular, oriented, and uniform. Dong et al. [66] also semanti-
cally annotated PTD through psychophysical experiments and
obtained 43 semantic attributes. The perceptual attribute data
obtained by the perceptual scoring experiment is based on the

TABLE IV
THE CORRELATION COEFFICIENT BETWEEN THE PERCEPTUAL DISTANCE
IN THE PERCEPTUAL SPACE AND THE PERCEPTUAL SIMILARITY

Similarity ~ Predicted  Perceptual ~ Semantic
Value Similarity ~ Attributes  Attributes
Similarity Value 1 0.9929 0.4977 0.7739
Predicted Similarity 0.9929 1 0.4711 0.7741
Perceptual Attributes 0.4977 0.4711 1 0.6386
Semantic Attributes 0.7739 0.7741 0.6383 1

quantified perceptual data obtained by the human visual per-
ception system on the texture image, and the semantic attribute
of the texture image is obtained by free grouping labeling.
Since the above two kinds of perceptual data are closely related
to human perception and understanding of texture images, we
try to find the inherent connection between these attributes and
perceptual similarity. To this end, we analyze the correlation
between perception features and perceptual similarity for each
perceptual attributes and semantic attribute.

To obtain the correlation between perceptual similarities
and perceptual features, firstly, we pre-process the perceptual
data, and analyze the perception features according to the
450 texture images. Taking the repetitive as an example, we
calculate the distance of the repetitive values between all the
texture images. Since the dataset contains 450 texture images,
each texture image can be grouped with 450 textures. If the
repeatability between the two images is stronger, then the
distance is smaller; conversely, if the distance of the two
texture images is larger, the two texture images have large
difference in repeatability. We perform correlation analysis
between each perceptual attributes and semantic attributes with
perceptual similarity as shown in Fig. 12.

Through experimental results, it can be found that there is
a certain degree of connection between perceptual attributes,
semantic attributes and perceptual similarities. Overall, the
correlation between individual perception features and per-
ceptual similarity is not large. Suppose that 12 perceptual
attributes and 43 semantic attributes are distributed in a 12-
dimensional perceptual space and a 43-dimensional semantic
space respectively. The perceptual feature cosine distance
between two images in the feature space is compared with
the perceptual similarity of the original texture images. The
correlation should be significantly higher than the correlation
between individual perception features and perceptual similar-
ity. The correlation coefficient between the perceptual distance
of the texture image in the perceptual space and the real
perceptual similarity is analyzed. The results are shown in
Table. IV.

When the perception feature is 0 in the perceptual space,
the two texture images are consistent, and the corresponding
perceived similarity is 1; when the distance between perception
features in the perceptual space becomes larger, the similarity
of the two texture images decreases, and the corresponding
perceived similarity value becomes smaller. It is found in
the experiments that the perception feature distance in the
perceptual space has a stronger correlation with the real texture
perceptual similarity than the individual perceptual properties.
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Fig. 12. Correlation analysis. The orange lines represents the correlation between the real perceptual similarity and the perceptual attributes, and blue lines
represents the correlation between the predicted perceptual similarity and the perceptual attributes. Figure (a) shows 12 perceptual attributes, and Figure (b)

shows 43 semantic attributes.

It is witnessed that humans consider a variety of perceptual
factors when they perceive the similarity of texture images.

E. Retrieval-Based Evaluation Experiments

In order to augment the predicting results obtain in Sec-
tion.IV, another evaluation experiment named texture retrieval
is reported. The retrieval method we used is proposed in [13],
which compares the top N rankings sorted by humans with
the top N rankings sorted using predicted similarity values. It
allows a sequence sorted from large to small according to the
values of the similarity, which visually shows the similarity
between one query texture and other texture images. The
measure method we used is M measure and G measure, and
the data we used for ranking is the test set including 50 images.
G and M measures can compare both two identical rankings
and two nonidentical rankings. Fig. 13 presents the average M
measures and average G measures using different similarity
values predicted with different methods.

We test the similarities obtained by different similarity
prediction methods for texture retrieval as shown in Fig. 14.
Experimental results show that the proposed fine-grained
perceptual similarity prediction method can achieve the best
retrieval results. More retrieval experimental results can be
found in the supplementary material.

VI. CONCLUSION

In this paper, we propose to learn the fine-grained perceptual
similarity values. As perceptual similarity is very subjective,
and the fair data is very hard to obtain, there are few datasets
containing images and complete similarity data. As a result,
very few studies intend to learn the fine-grained perceptual
similarity values, in spite of its importance. As rank data is
relatively easy to obtain, many efforts on similarity learning
have focused on this area. In order to solve this problem,
we proposed to use deep convolutional networks, joint with
contour information for fine-grained perceptual similarity val-
ue predicting. The paired original textures and the contour
maps of the textures are fed to the network to calculate the
cosine similarities in the feature spaces. The calculated cosine
similarity values were concatenated together as a feature
vector, and then fed into a full connected network to predict
the perceptual similarity value of the paired textures.
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Fig. 13. Bar chart of the average G (a) and average M (b) measures obtained
using different similarity prediction methods.

We conducted several ablation experiments, and demon-
strate that the contour information indeed helps the similarity
predicting task. The visualization results of the fully connected
layer in the similarity network indicate that the information
coming from different layers in the convolutional network
contribute equally to the similarity predicting task. It is con-
sistent with our assumption that human beings always give
similarity result by observing the texture images from local
regions to global patterns. As predicting perceptual similarity
values is a very fundamental problem, it deserves more efforts
in this area. In future work, we will also consider integrating
more texture encoding methods with the hope to add better
features to the existing architecture, and we also would like
to see texture similarity learning can be to other areas, such
as material similarity prediction.
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Fig. 14. Top 6 ranking of the textures in the retrieval experiments. The first column on the left is the query texture, and the images on the right are the
ranking of the top 6 images. The corresponding G Measure and M Measure values are noted below.
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