
Learning to Rank Salient Content for Query-focused Summarization

Anonymous ACL submission

Abstract001

This study examines the potential of integrating002
Learning-to-Rank (LTR) with Query-focused003
Summarization (QFS) to enhance the summary004
relevance via content prioritization. Using a005
shared secondary decoder with the summariza-006
tion decoder, we carry out the LTR task at the007
segment level. Compared to the state-of-the-art,008
our model outperforms on QMSum benchmark009
(all metrics) and matches on SQuALITY bench-010
mark (2 metrics) as measured by Rouge and011
BertScore while offering a lower training over-012
head. Specifically, on the QMSum benchmark,013
our proposed system achieves improvements,014
particularly in Rouge-L (+0.42) and BertScore015
(+0.34), indicating enhanced understanding and016
relevance. While facing minor challenges in017
Rouge-1 and Rouge-2 scores on the SQuAL-018
ITY benchmark, the model significantly excels019
in Rouge-L (+1.47), underscoring its capability020
to generate coherent summaries. Human evalu-021
ations emphasize the efficacy of our method in022
terms of relevance and faithfulness of the gen-023
erated summaries, without sacrificing fluency.024
A deeper analysis reveals our model’s superi-025
ority over the state-of-the-art for broad queries,026
as opposed to specific ones, from a qualitative027
standpoint. We further present an error analy-028
sis of our model, pinpointing challenges faced029
and suggesting potential directions for future030
research in this field.031

1 Introduction032

Query-focused summarization (QFS) is gaining033

prominence in research community. Unlike con-034

ventional summarization tasks that aim to capture035

the overall essence of a document or a set of docu-036

ments, QFS focuses on generating concise sum-037

maries in response to posed queries. This spe-038

cialization enables a more targeted information re-039

trieval process, offering summaries that directly040

address the informational needs rather than provid-041

ing a broad overview of the source material.042

The advancements in QFS have been notably 043

driven by the introduction of invaluable datasets 044

such as QMSum (Zhong et al., 2022) and SQuAL- 045

ITY (Wang et al., 2022a), which have facilitated 046

deeper exploration and innovation in this field. 047

These datasets have laid the groundwork for the 048

development of Transformers-based models which 049

have shown strong potential in generating sum- 050

maries that respond accurately to queries (Su et al., 051

2021; Laskar et al., 2022; Vig et al., 2022; Pagnoni 052

et al., 2022; Sotudeh and Goharian, 2023; Yu et al., 053

2023). However, despite this proficiency, their abil- 054

ity to effectively prioritize information—assessing 055

its importance relative to a query to enhance sum- 056

mary relevance—remains an area for improvement. 057

This study seeks to address this limitation, aim- 058

ing to improve the capability of QFS models to 059

deliver summaries with more effective information 060

ranking. 061

Particularly, in this study, we present a novel 062

enhancement to QFS through the incorporation 063

of learning-to-rank (LTR), a technique with es- 064

tablished efficacy in Information Retrieval. Our 065

approach aims to refine the system’s capability to 066

discern and prioritize content segments not only 067

by their relevance but also by their relative impor- 068

tance. This methodological advancement ensures 069

that the produced summaries more accurately re- 070

flect the query’s intent and hierarchically organize 071

information by its significance. 072

Central to our approach is the augmentation of 073

use of the decoder that shares parameters with 074

the summarization decoder 1, specifically designed 075

for executing the LTR task at the segment level. 076

This strategy, inspired by the work of (Zhuang 077

et al., 2022) in adapting the T5 (Raffel et al., 078

2020) encoder-decoder framework for text rank- 079

ing in query-document scenarios, is tailored to 080

1Particularly, we use the single decoder for two tasks: sum-
marization and learning-to-rank.
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address the nuances of segment ranking within081

the QFS context. Through the joint fine-tuning082

of summarization with cross-entropy loss, and LTR083

task—utilizing listwise cross-entropy softmax loss,084

our system not only aims to elevate the relevance085

of generated summaries but also to introduce a nu-086

anced understanding and representation of informa-087

tion importance, which can aid the summarization088

system at attending to the source content given their089

relative importance. In short, our contributions are090

threefold:091

• We propose an LTR-assisted system for QFS092

that integrates the intuition of ranking and093

relative importance of segments during the094

summary generation process;095

• Our proposed system outperforms across all096

automatic metrics (QMSum) and attains com-097

parable performance in two metrics (SQuAL-098

ITY) with lower training overhead compared099

to the SOTA. Additionally, our system en-100

hances the relevance and faithfulness of gen-101

erated summaries without sacrificing fluency;102

• We undertake an error analysis to discern the103

challenges faced by our model including label104

imbalance, and segment summarizer’s hurdles,105

providing insights into potential avenues for106

further research.107

2 Related work108

The field of Query-focused Summarization109

(QFS) (Dang, 2005) has evolved significantly over110

the years, moving from early unsupervised extrac-111

tive models (Mohamed and Rajasekaran, 2006;112

Wan et al., 2007; Zhao and Tang, 2010; Badrinath113

et al., 2011; Litvak and Vanetik, 2017) to recent114

approaches leveraging Transformer-based models115

(Vaswani et al., 2017; Lewis et al., 2020; Zhang116

et al., 2020). This evolution has been marked by117

the introduction of various techniques aimed at118

improving the relevance of summaries. Passage119

retrieval techniques (Baumel et al., 2018; Laskar120

et al., 2022; Su et al., 2021; Zhong et al., 2022;121

Wang et al., 2022a), transfer learning from the QA122

task (Xu and Lapata, 2020; Zhang et al., 2021;123

Yuan et al., 2022), query modeling (Xu and Lapata,124

2021, 2022; Yu et al., 2023), segment encoding125

(Vig et al., 2022), and attention mechanisms to126

capture query-utterance relations (Liu et al., 2023)127

have all played a pivotal role in this advancement.128

Furthermore, the adoption of question-driven pre- 129

training (Pagnoni et al., 2022) and contrastive learn- 130

ing (Sotudeh and Goharian, 2023) has introduced 131

new dimensions to the task, simplifying the identifi- 132

cation and summarization of salient content. How- 133

ever, the comprehensive modeling of segment im- 134

portance within the long QFS task remains a less 135

explored area. Our work builds upon these foun- 136

dational studies and introduces a learning-to-rank 137

(LTR) (Burges et al., 2005; Cao et al., 2007) mecha- 138

nism to address this challenge, drawing inspiration 139

from the successful application of LTR in broader 140

Information Retrieval contexts (Wang et al., 2022b; 141

Li et al., 2023). 142

3 Background: Segment Summarizer 143

(SegEnc) 144

The current state-of-the-art systems for query- 145

focused long summarization are built upon the Seg- 146

ment Encoding (SEGENC) approach (Vig et al., 147

2022). SEGENC operates by encoding fixed-length, 148

overlapping segments of the source text, which 149

are then integrated into a cohesive summary in an 150

end-to-end manner, leveraging the decoder’s ability 151

to simultaneously attend to all encoded segments. 152

To specifically adapt to query-focused summariza- 153

tion framework, SEGENC embeds the query within 154

each segment of the source text. This is achieved 155

through a particular input framing technique, where 156

the query is encapsulated by special markers and 157

placed adjacent to each segment, adhering to the 158

format: <s>query</s>Segment. This incorpora- 159

tion of the query into the summarization process is 160

designed to enhance the focus on the query, offer- 161

ing a tailored approach to generating query-focused 162

summaries. 163

4 Model: LTR-assisted Summarization 164

This study introduces an extension to the SEGENC 165

summarizer by integrating the Learning-to-Rank 166

(LTR) principles, a notable ranking technique 167

from the realm of information retrieval. This in- 168

tegration enables the summarizer to effectively 169

learn the ranking of the gold segments. The seg- 170

ments’ relevance labels are determined using a span 171

probability-based heuristic (details in Section 5.1) 172

during the preprocessing step. An auxiliary LTR 173

task is then formulated to instruct the summarizer 174

in ranking source segments while performing the 175

summarization task. 176
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Figure 1: Overview of our proposed system (i.e., LTRSUM). Our system utilizes a shared-parameter decoder across
two tasks, for the sake of learning to rank source segments (right-side decoder) alongside summarization (left-side
decoder). It is important to note that our system uses a single decoder that shares parameters across both tasks, but
for visual clarity, two decoders are depicted here.

Figure 1 shows the overview of our proposed177

system. In particular, we exploit a shared decoder178

to perform two tasks including summarization and179

learning-to-rank. This shared decoder operates by180

executing two forward passes, one for each task.181

For the LTR task, following encoding of each seg-182

ment (denoted as Enc(Si)), DecLTR takes in the seg-183

ment encoder representations (i.e., the encoder rep-184

resentations associated with <s> token) and pro-185

cesses them through the LTR-dedicated decoder,186

followed by an LTR head (i.e., a feed-forward neu-187

ral network (FFNN)) that is applied to the decoder188

outputs:189

ŷi = FFNN(DecLTR(Enc(Si)))190

wherein Si represents the i-th segment, and ŷi191

corresponds to the decoder output for the same192

segment. Furthermore, an additional unused to-193

ken is defined, analogous to the method described194

in (Zhuang et al., 2022), and its unnormalized195

logits are extracted from the decoder output ŷi196

to serve as the segment ranking score: ranki =197

ŷi <extra_token_id>.198

Having obtained the ranking outputs for all seg-199

ments with the above procedure, a listwise softmax200

cross-entropy function is used to compute the Soft-201

max loss as follows:202

ℓSoftmax(yi, ŷi) = −
m∑
j=1

yij log

(
eŷij∑m

j′=1 e
ŷij′

)
203

where yi and ŷi are the gold, and predicted rel- 204

evance, respectively, and m denotes the number 205

of segments. After computing the Softmax loss, 206

we combine it with the generation loss for joint 207

training: 208

ℓtotal = ℓgeneration + λℓSoftmax(yi, ŷi) 209

in which ℓgeneration is a cross-entropy loss com- 210

puted for generation task, and λ is a balancing 211

parameter that should be tuned. 212

5 Experimental Setup 213

5.1 Research questions 214

We seek to address the following research ques- 215

tions: 216

• RQ1: How does integrating the relative im- 217

portance of segments influence the automatic 218

and qualitative metrics of summaries? 219

• RQ2: How does the specific type of query 220

affect our system’s performance compared to 221

the SOTA? 222

3



• RQ3: What effect does the integration of223

LTR offer for segment retrieval?224

• RQ4: What challenges does the model en-225

counter in underperformed cases?226

5.2 Datasets227

We used two query-focused datasets during our228

study: (1) The QMSum dataset (Zhong et al., 2021)229

consists of 1,808 query-focused summaries ex-230

tracted from 232 multi-turn meetings across dif-231

ferent domains. The dataset is split into training,232

validation, and testing sets with 1,257, 272, and233

279 instances, respectively. The average source234

length is 9K tokens, and the summary length is 70235

tokens. (2) SQuALITY (Wang et al., 2022a) is a236

collection of question-focused abstractive summa-237

rization data with 100 stories, 500 questions, and238

2,000 summaries. Each question is accompanied by239

four reference summaries written by trained writ-240

ers. The dataset provides train/validation/test splits241

of 39/25/36, equivalent to 195/125/180 document-242

question pairs with average document and sum-243

mary lengths of 5.2K and 237 tokens, respectively.244

5.3 Relevance labeling245

Given the absence of relevance labels within the246

instances of datasets employed for experiments, we247

develop a probability-based heuristic to create such248

pseudo labels, which signifies the extent to which249

a segment aligns with the gold summary. Initially,250

the SUPERPAL approach, as mentioned in (?), was251

employed as an external pseduo-labeling heuris-252

tic to match summary spans and their originating253

source spans, represented by a probability value,254

p. A specified threshold was then empirically de-255

termined for p, allowing only spans exceeding this256

threshold to be considered as gold during the label-257

ing process. Subsequently, the source spans were258

mapped to their respective segments, and a scoring259

function was employed to determine the segment260

score as follows:261

Score(Si) =
∑
j

pj log(|spanj |)262

where Si denotes the i-th segment, spanj repre-263

sents the j-th span within the segment Si, and pj264

shows the probability of spanj being aligned to265

the gold summary. Intuitively, segments that have266

more common tokens with the gold summary (i.e.,267

|spanj |) and assigned a higher probability by SU-268

PERPAL approach (i.e., p), are more likely to be269

ranked higher. Following the calculation of seg- 270

ment scores, they were organized in a sequence, 271

and relevance labels were assigned according to 272

the sorted scores. 273

5.4 Implementation details 274

We built upon the code base provided by Vig et al. 275

(2022), adhering to the default hyperparameters. 276

The λ hyperparameter was explored within the set 277

{0.5, 1, 1.5}, and finally tuned to 1. Furthermore, 278

a probability threshold (p) of 40% was employed 279

to filter gold segments. It has to be mentioned that 280

all parameters, including λ and p, were empirically 281

determined and fixed. Our model comprises 406 282

million parameters. We employed a single NVIDIA 283

A6000 GPU for both training and evaluation. Each 284

experimental training session spanned a duration 285

of two days. 286

5.5 Comparison 287

We compare our model to the well-established 288

SOTA baselines on QFS: 289

- SEGENC (Vig et al., 2022): An abstractive sum- 290

marizer that segments input, encodes and then 291

decodes with joint attention. Versions include: 292

(1) Finetuned on BART large (SEGENC); (2) pre- 293

finetuned on Wikisum (SEGENC-W); 294

- SOCRATIC (Pagnoni et al., 2022): A question- 295

driven pre-training framework for controllable 296

summarization, fine-tuned on SEGENC. Also, a 297

PEGASUS variant pre-trained on Book3 is pre- 298

sented. 299

- QONTSUM (Sotudeh and Goharian, 2023): A 300

contrastive learning-based summarizer that dis- 301

tinguishes salient content from top-scored non- 302

salient content. 303

6 Experimental Results 304

In this section, we present the automatic and human 305

study results, followed by relevant analyses over 306

query type impact, and segment retrieval. 307

6.1 Automatic evaluation 308

As shown in Table 1, we compare the performance 309

of our proposed system with existing state-of- 310

the-art summarization techniques on the QMSum 311

and SQuALITY benchmarks, employing ROUGE 312

and BERTSCORE evaluation metrics to address 313

RQ1 on automatic performance. For the QMSum 314
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RG-1 RG-2 RG-L BS

SEGENC (Vig et al., 2022) 37.05 13.03 32.62 87.44
+ Wikisum Pre-Finetuned (Vig et al., 2022) 37.80 13.43 33.38 -

SOCRATIC Pret. 1M (Pagnoni et al., 2022) 37.46 13.32 32.79 87.54
SOCRATIC Pret. 30M (Pagnoni et al., 2022) 38.06 13.74 33.51 87.63
QONTSUM (Sotudeh and Goharian, 2023) 38.42 13.50 34.03 87.72

LTRSUM (this work) 38.82 14.11 34.45 88.07

(a)

RG-1 RG-2 RG-L BS

SEGENC (Vig et al., 2022) 45.68 14.51 22.47 85.86
+ Wikisum Pre-Finetuned (Vig et al., 2022) 45.79 14.53 22.68 85.96

PEGASUS Pret. (Pagnoni et al., 2022) 45.78 14.43 22.90 85.94
SOCRATIC Pret. 30M (Pagnoni et al., 2022) 46.31 14.80 22.76 86.04
QONTSUM (Sotudeh and Goharian, 2023) 45.76 14.27 24.14 86.07

LTRSUM (this work) 46.11 14.68 24.23 86.04

(b)

Table 1: Average of ROUGE and BERTSCORE (BS) performance of summarization baselines over (a) QMSum and
(b) SQuALITY benchmarks. The baseline performances are reported from previous works.

benchmark, LTRSUM surpasses state-of-the-art ap-315

proaches. In particular, when compared with the316

QONTSUM, our method achieves relative improve-317

ments of approximately 1.0%, 4.5%, 1.2%, on the318

ROUGE-1, ROUGE-2, ROUGE-L metrics, respec-319

tively. Likewise, LTRSUM surpasses SOCRATIC320

Pret. by relative improvements of 2.0% (ROUGE-321

1), 2.7% (ROUGE-2), 2.8% (ROUGE-L). Addition-322

ally, the BERTSCORE for LTRSUM slightly edges323

out both QONTSUM and SOCRATIC Pret. On the324

SQuALITY dataset, LTRSUM’s performance re-325

veals mixed results; over the QONTSUM model,326

it slightly improves ROUGE-1 and ROUGE-2 met-327

rics. However, when compared to SOCRATIC Pret.,328

LTRSUM matches on ROUGE-1 and ROUGE-2329

(with relative deficits under 0.01%), demonstrates330

a remarkable 5.4% improvement in ROUGE-L and331

aligns closely with the BERTSCORE metrics, on332

SQuALITY benchmark. This is likely due to333

the challenges in automatically identifying high-334

quality ground-truth labels in SQuALITY, unlike335

QMSum, where our system benefits from human-336

annotated span labels, while the SQuALITY span337

labels were determined via a heuristic approach.338

Furthermore, another likely explanation for SO-339

CRATIC’s performance boost may be attributed340

to its pretraining on the BOOK3 dataset, which341

likely shares closer linguistic characteristics with 342

the SQuALITY dataset. 343

It is essential to note that SOCRATIC undergoes 344

a large-scale pre-training process, driven by ques- 345

tions, which encompasses a vast number of exam- 346

ples drawn from the BOOK3 corpus, amounting 347

uo to 30M pre-training instances. This approach, 348

while effective, is likely resource-intensive. Con- 349

versely, our model, LTRSUM, bypasses the exten- 350

sive pre-training stage and centers on learning an 351

auxiliary task during the fine-tuning phase, making 352

it a more resource-efficient alternative. 353

6.2 Human evaluation 354

We conducted human evaluations to assess the 355

quality of the summaries generated by LTR- 356

SUM, in comparison with QONTSUMand SO- 357

CRATICbaseline systems. The evaluations were 358

performed on the QMSum and SQuALITY bench- 359

marks. Specifically, we randomly selected 64 test 360

cases (QMSum) and 36 cases (entire test set of 361

SQuALITY), resulting in a total of 100 cases. For 362

each case, we provided two annotators 2 with shuf- 363

fled summaries, including the gold-spans from the 364

source. To prevent bias, we shuffled summaries 365

2Annotators were PhD students in Science and Engineer-
ing.
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such that the correspondence could not be guessed.366

We then ask the annotators to score each case on367

a scale of 1 to 5 (worst to best) in terms of three368

qualitative metrics listed below, consistent with the369

ones employed by Sotudeh and Goharian (2023):370

• Fluency: To gauge the understandability of371

a summary, focusing on grammaticality, non-372

redundancy, and coherence aspects;373

• Relevance: To assess the extent to which a374

summary is pertinent as an answer to the given375

query;376

• Faithfulness: To measure the degree to which377

the content covered in the source is faithfully378

reflected in the generated summary.379

Table 2 reports the human evaluation scores over380

QMSum and SQuALITY datasets. As observed,381

the LTRSUM model shows superior qualitative per-382

formance as compared to the QONTSUM and SO-383

CRATIC baselines on both datasets. The improve-384

ments are yet more tangible in the relevance and385

faithfulness metrics, possibly due to the LTRSUM’s386

model objective of finding segments that are more387

relevant to the query with respect to their relative388

importance. The close performance of the experi-389

mented systems over fluency is expected, given the390

extensive data the language model has encountered391

during pre-training to learn to generate coherent392

text.393

The inter-rater agreement scores are as follows:394

for QMSum, 51%, 52%, and 55% and for SQuAL-395

ITY, 51%, 57%, and 54% across fluency, relevance,396

and faithfulness metrics, respectively, indicating397

a moderate level of consensus among evaluators.398

While automatic improvements are numerically im-399

proved, our system still offers benefits in terms of400

qualitative (over QONTSUM and SOCRATIC) and401

training overhead (over SOCRATIC) baselines, as402

mentioned earlier. This assessment addresses our403

RQ1 on qualitative performance.404

6.3 Query type impact405

We observed a potential relation between the sys-406

tem’s qualitative performance and the nature of the407

query (i.e., query type). Specifically, we noticed408

that broad queries like “Summarize the whole409

meeting” tend to have more gold labels as opposed410

to specific queries like “Why did the Marketing dis-411

agree with the Industrial Design when discussing412

the possible advanced techniques on the remote413

Fluency Relevance Faithfulness

QMSum
QONTSUM 4.09 4.03 3.60
SOCRATIC 4.10 4.15 3.72
LTRSUM 4.14 4.36 3.88

SQuALITY
QONTSUM 4.01 3.58 3.62
SOCRATIC 4.02 3.70 3.69
LTRSUM 4.02 3.81 3.78

Table 2: Results of the human study on evaluation sam-
ples from the QMSum and SQuALITY datasets (64
cases from QMSum and 36 cases from SQuALTIY)

control?”, targeting particular details within the 414

source. To explore this, we categorized the evalua- 415

tion cases from each dataset based on their query 416

type and compared the human-assigned scores to 417

explore any potential links between the query type 418

and the quality of the generated summaries. 419

Table 3 presents a comparison of the LTR- 420

SUM system against QONTSUM and SOCRATIC 421

systems, categorized by query types across two 422

datasets. For broad queries, LTRSUM outperforms 423

QONTSUM and SOCRATIC, with notable win rates 424

highlighted in bold; e.g., win rates of 37% (QM- 425

Sum), and 33% (SQuALITY) in terms of relevance 426

against QONTSUM. However, with specific queries, 427

our system’s performance drops, often trailing the 428

QONTSUM and SOCRATIC baselines, as evidenced 429

by the high lose rates in bold; e.g., 32% (QMSum) 430

and 34% (SQuALITY) lose rates in relevance com- 431

pared to QONTSUM. This trend, both highs and 432

lows, is consistent across all qualitative metrics 433

for both datasets. The differential performance of 434

LTRSUM vs. QONTSUM and SOCRATIC across 435

query types can be attributed to the inherent gran- 436

ularity. In other words, broad queries give LTR- 437

SUMmore room to maneuver since they cover a 438

wide range of gold segments, available for ranking 439

by the LTR component of our model. However, 440

specific queries are trickier; they focus on narrow 441

details within narrow segments, where any slight 442

oversight by the model in identifying salient seg- 443

ments leads to a less relevant summary. In the 444

case of SOCRATIC, the outperformance on spe- 445

cific queries can be attributed to its particular pre- 446

training objective, where narrowed questions are 447

generated for document’s single sentences, and the 448

language model is forced to learn to ask & answer 449

the generated questions. Likewise, QONTSUM ex- 450

cels in handling specific queries compared to broad 451
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Dataset Query type (%) Flu. Rel. Faith.

QMSum
Broad (53%) 29/45/26 28/55/17 25/60/15
Specific (47%) 21/54/25 15/57/28 19/53/28

SQuALITY
Broad (46%) 24/55/21 28/56/16 26/58/16
Specific (54%) 19/58/23 14/57/29 16/55/29

(a) LTRSUM vs. QONTSUM

Dataset Query type (%) Flu. Rel. Faith.

QMSum
Broad (53%) 16/66/18 41/29/29 35/32/32
Specific (47%) 17/65/18 20/38/42 27/33/40

SQuALITY
Broad (46%) 21/58/18 35/41/24 31/41/28
Specific (54%) 18/60/22 26/32/42 21/47/32

(b) LTRSUM vs. SOCRATIC

Table 3: Query type impact per model and model comparison with respect to query type. The reported numbers
show the win/tie/lose % of LTRSUM against the baselines (i.e., QONTSUM and SOCRATIC), respectively.

SegEnc-W Socratic QontSum Ours
Models

20

25

30

35

40

45

50

55

ND
CG

 (%
)

QMSum
SQuALITY

Figure 2: Segment retrieval performance of the models
in terms of nDCG score.

queries, suggesting that its contrastive objective is452

more effective when there are fewer gold segments453

associated with the query, thereby enhancing the454

robustness of the objective. This analysis addresses455

our RQ2.456

6.4 Segment retrieval457

In order to assess the effectiveness of the summa-458

rization system in terms of lifting salient segments459

w.r.t their relative importance (i.e., ranking), we460

present a comparative analysis in Figure. 2. To per-461

form this analysis, we first rank the segments per462

summarization model, given their relative contribu-463

tion (computed from decoder’s attention over the464

segment tokens) at generating the summary. Subse-465

quently, with the predicted ranked list of segments466

in hand, we calculate the Normalized Discounted467

Cumulative Gain (NDCG) score (Wang et al., 2013)468

as follows:469

DCGp =

p∑
i=1

2reli − 1

log2 (i+ 1)

nDCGp =
DCGp

IDCGp

470

where p is a particular ranking position, rel(i) 471

is the relevance score (ranking label) of the seg- 472

ment at position i, and IDCGp is the ideal cumu- 473

lative gain (i.e., when the segments are ranked 474

given their gold importance). The relevance scores 475

are obtained by greedily matching the system’s 476

ranked segments against the human-annotated im- 477

portant segments. As observed, our system consis- 478

tently improves the ranking scores on QMSum and 479

is comparable with the best-performing baseline 480

(SOCRATIC) on SQuALITY dataset. This analysis 481

provides support for RQ3. 482

7 Error Analysis 483

Two sources of underperformance were identified 484

in response to our RQ4: 485

Imbalanced Labels. We discovered that in ap- 486

proximately 48% of the underperformed cases, the 487

model exhibited a tendency to misidentify gold seg- 488

ments when generating summaries. Upon further 489

investigation, we observed that these cases were 490

commonly characterized by a label imbalance is- 491

sue, wherein the model selected segments that con- 492

tained partially relevant information but were not 493

the actual gold segments. As shown in the example 494
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Query: Why did the Marketing disagree with the Industrial Design when discussing the possible
advanced techniques on the remote control?

Human: When discussing adding several advanced techniques onto the remote control to make it
more unique, the Industrial Design put forward to using the touchscreen. Notwithstanding the merits
of the touchscreen, for instance, a touch screen would make the remote control easier and smaller,the
Marketing did not agree to do so just because in that case they would be beyond the budget. [Written
from the 14th segment]

LTRSUM generated: The Marketing believed that it would be too expensive to make a touch screen
on the remote control. The Industrial Design believed that the strength of remote controls were most
likely to fall down on the ground and get broken. Therefore, it would not be easy to make it fold open
and look like a remote control with a touchscreen. [Written from the 15th segment]

Query: What did User Interface think about user interface design of remote control?

Human: User Interface found two kinds of remote controls: the multi-functional one and the one easy
to use. He emphasized on user-friendliness, but considering that the target people were less than forty
years old, multi-function should also be taken into account. [Written from the 9th segment]

LTRSUM generated: User Interface thought that the remote control should be easy to use with not so
many buttons, just a round button which can be pushed in four directions instead of a stick. It should be
the same as in the cell phone, just light in the device that shines on all the buttons. [Written from the 9th
segment]

Table 4: Comparison between human and LTRSUM generated summaries for given queries. Left: The model identifies relevant
content (highlighted in yellow) from the 15th segment, which is marked in gold due to its 50% overlap with the 14th segment,
but also generates irrelevant information from the same 15th segment. Right: The model finds the gold segment (segment 9) but
picks up on less relevant parts of the segment.

within Table 4 (left), while both human and LTR-495

SUM-generated summaries capture the budgetary496

concerns, LTRSUM adds unrelated information497

about remote control durability. This finding sheds498

light on the challenge of identifying and ranking the499

gold segments within an imbalanced regime, which500

may be mitigated in future work through Transfer501

Learning from a larger dataset (Ruder et al., 2019;502

Cao et al., 2019).503

Segment Summarizer Deficiency. In approx-504

imately 39% of the underperformed cases, LTR-505

SUM faced challenges in extracting the most per-506

tinent details from the identified gold segments.507

For instance, as illustrated in Table 4 (right), both508

the human-written summary and the summary gen-509

erated by LTRSUM drew from the 9th segment510

(gold). The human summary provided a nuanced511

understanding of the topic, emphasizing both user-512

friendliness and multi-functionality for a specific513

age group. Conversely, the LTRSUM summary fo-514

cused more on the physical attributes of the remote515

control, missing out on the multi-functionality as- 516

pect and the target demographic. This observed 517

suboptimality could be attributed to the model’s 518

challenges in discerning sentential saliency within 519

the segment which affects the relevancy of the sum- 520

mary. To address this, future work might consider 521

hybrid approaches that combine methods for iden- 522

tifying salient sentences within the identified seg- 523

ments (Pilault et al., 2020). 524

8 Conclusion 525

Our method combines Learning-to-Rank with QFS, 526

ensuring content relevance via prioritization. It 527

matches or exceeds SOTA at reduced training costs. 528

Human evaluations highlight improved relevance 529

and faithfulness without compromising fluency. 530

Further analysis suggests that the system outper- 531

forms on broad queries while lagging on specific 532

ones, with errors linked to imbalanced labels and 533

segment summarizer challenges. 534
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9 Ethical Considerations535

While the proposed summarization system in our536

paper offers time-saving benefits, it still may pro-537

duce outputs factually inconsistent with input doc-538

uments. Such discrepancies risk promoting online539

misinformation, especially when it is being used540

on the production scale. This challenge is com-541

mon in abstractive summarization, necessitating542

rigorous research and cautious use to prevent false543

information spread.544
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