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Abstract

This study examines the potential of integrating
Learning-to-Rank (LTR) with Query-focused
Summarization (QFS) to enhance the summary
relevance via content prioritization. Using a
shared secondary decoder with the summariza-
tion decoder, we carry out the LTR task at the
segment level. Compared to the state-of-the-art,
our model outperforms on QMSum benchmark
(all metrics) and matches on SQUALITY bench-
mark (2 metrics) as measured by Rouge and
BertScore while offering a lower training over-
head. Specifically, on the QMSum benchmark,
our proposed system achieves improvements,
particularly in Rouge-L (+0.42) and BertScore
(+0.34), indicating enhanced understanding and
relevance. While facing minor challenges in
Rouge-1 and Rouge-2 scores on the SQuAL-
ITY benchmark, the model significantly excels
in Rouge-L (+1.47), underscoring its capability
to generate coherent summaries. Human evalu-
ations emphasize the efficacy of our method in
terms of relevance and faithfulness of the gen-
erated summaries, without sacrificing fluency.
A deeper analysis reveals our model’s superi-
ority over the state-of-the-art for broad queries,
as opposed to specific ones, from a qualitative
standpoint. We further present an error analy-
sis of our model, pinpointing challenges faced
and suggesting potential directions for future
research in this field.

1 Introduction

Query-focused summarization (QFS) is gaining
prominence in research community. Unlike con-
ventional summarization tasks that aim to capture
the overall essence of a document or a set of docu-
ments, QFS focuses on generating concise sum-
maries in response to posed queries. This spe-
cialization enables a more targeted information re-
trieval process, offering summaries that directly
address the informational needs rather than provid-
ing a broad overview of the source material.

The advancements in QFS have been notably
driven by the introduction of invaluable datasets
such as QMSum (Zhong et al., 2022) and SQuAL-
ITY (Wang et al., 2022a), which have facilitated
deeper exploration and innovation in this field.
These datasets have laid the groundwork for the
development of Transformers-based models which
have shown strong potential in generating sum-
maries that respond accurately to queries (Su et al.,
2021; Laskar et al., 2022; Vig et al., 2022; Pagnoni
et al., 2022; Sotudeh and Goharian, 2023; Yu et al.,
2023). However, despite this proficiency, their abil-
ity to effectively prioritize information—assessing
its importance relative to a query to enhance sum-
mary relevance—remains an area for improvement.
This study seeks to address this limitation, aim-
ing to improve the capability of QFS models to
deliver summaries with more effective information
ranking.

Particularly, in this study, we present a novel
enhancement to QFS through the incorporation
of learning-to-rank (LTR), a technique with es-
tablished efficacy in Information Retrieval. Our
approach aims to refine the system’s capability to
discern and prioritize content segments not only
by their relevance but also by their relative impor-
tance. This methodological advancement ensures
that the produced summaries more accurately re-
flect the query’s intent and hierarchically organize
information by its significance.

Central to our approach is the augmentation of
use of the decoder that shares parameters with
the summarization decoder !, specifically designed
for executing the LTR task at the segment level.
This strategy, inspired by the work of (Zhuang
et al., 2022) in adapting the TS5 (Raffel et al,,
2020) encoder-decoder framework for text rank-
ing in query-document scenarios, is tailored to

"Particularly, we use the single decoder for two tasks: sum-
marization and learning-to-rank.



address the nuances of segment ranking within
the QFS context. Through the joint fine-tuning
of summarization with cross-entropy loss, and LTR
task—utilizing listwise cross-entropy softmax loss,
our system not only aims to elevate the relevance
of generated summaries but also to introduce a nu-
anced understanding and representation of informa-
tion importance, which can aid the summarization
system at attending to the source content given their
relative importance. In short, our contributions are
threefold:

* We propose an LTR-assisted system for QFS
that integrates the intuition of ranking and
relative importance of segments during the
summary generation process;

¢ Our proposed system outperforms across all
automatic metrics (QMSum) and attains com-
parable performance in two metrics (SQuAL-
ITY) with lower training overhead compared
to the SOTA. Additionally, our system en-
hances the relevance and faithfulness of gen-
erated summaries without sacrificing fluency;

* We undertake an error analysis to discern the
challenges faced by our model including label
imbalance, and segment summarizer’s hurdles,
providing insights into potential avenues for
further research.

2 Related work

The field of Query-focused Summarization
(QFS) (Dang, 2005) has evolved significantly over
the years, moving from early unsupervised extrac-
tive models (Mohamed and Rajasekaran, 2006;
Wan et al., 2007; Zhao and Tang, 2010; Badrinath
et al., 2011; Litvak and Vanetik, 2017) to recent
approaches leveraging Transformer-based models
(Vaswani et al., 2017; Lewis et al., 2020; Zhang
et al., 2020). This evolution has been marked by
the introduction of various techniques aimed at
improving the relevance of summaries. Passage
retrieval techniques (Baumel et al., 2018; Laskar
et al., 2022; Su et al., 2021; Zhong et al., 2022;
Wang et al., 2022a), transfer learning from the QA
task (Xu and Lapata, 2020; Zhang et al., 2021;
Yuan et al., 2022), query modeling (Xu and Lapata,
2021, 2022; Yu et al., 2023), segment encoding
(Vig et al., 2022), and attention mechanisms to
capture query-utterance relations (Liu et al., 2023)
have all played a pivotal role in this advancement.

Furthermore, the adoption of question-driven pre-
training (Pagnoni et al., 2022) and contrastive learn-
ing (Sotudeh and Goharian, 2023) has introduced
new dimensions to the task, simplifying the identifi-
cation and summarization of salient content. How-
ever, the comprehensive modeling of segment im-
portance within the long QFS task remains a less
explored area. Our work builds upon these foun-
dational studies and introduces a learning-to-rank
(LTR) (Burges et al., 2005; Cao et al., 2007) mecha-
nism to address this challenge, drawing inspiration
from the successful application of LTR in broader
Information Retrieval contexts (Wang et al., 2022b;
Li et al., 2023).

3 Background: Segment Summarizer
(SegEnc)

The current state-of-the-art systems for query-
focused long summarization are built upon the Seg-
ment Encoding (SEGENC) approach (Vig et al.,
2022). SEGENC operates by encoding fixed-length,
overlapping segments of the source text, which
are then integrated into a cohesive summary in an
end-to-end manner, leveraging the decoder’s ability
to simultaneously attend to all encoded segments.
To specifically adapt to query-focused summariza-
tion framework, SEGENC embeds the query within
each segment of the source text. This is achieved
through a particular input framing technique, where
the query is encapsulated by special markers and
placed adjacent to each segment, adhering to the
format: <s>query</s>Segment. This incorpora-
tion of the query into the summarization process is
designed to enhance the focus on the query, offer-
ing a tailored approach to generating query-focused
summaries.

4 Model: LTR-assisted Summarization

This study introduces an extension to the SEGENC
summarizer by integrating the Learning-to-Rank
(LTR) principles, a notable ranking technique
from the realm of information retrieval. This in-
tegration enables the summarizer to effectively
learn the ranking of the gold segments. The seg-
ments’ relevance labels are determined using a span
probability-based heuristic (details in Section 5.1)
during the preprocessing step. An auxiliary LTR
task is then formulated to instruct the summarizer
in ranking source segments while performing the
summarization task.
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Figure 1: Overview of our proposed system (i.e., LTRSUM). Our system utilizes a shared-parameter decoder across
two tasks, for the sake of learning to rank source segments (right-side decoder) alongside summarization (left-side
decoder). It is important to note that our system uses a single decoder that shares parameters across both tasks, but

for visual clarity, two decoders are depicted here.

Figure 1 shows the overview of our proposed
system. In particular, we exploit a shared decoder
to perform two tasks including summarization and
learning-to-rank. This shared decoder operates by
executing two forward passes, one for each task.
For the LTR task, following encoding of each seg-
ment (denoted as Enc(S;)), Dec|1r takes in the seg-
ment encoder representations (i.e., the encoder rep-
resentations associated with <s> token) and pro-
cesses them through the LTR-dedicated decoder,
followed by an LTR head (i.e., a feed-forward neu-
ral network (FFNN)) that is applied to the decoder
outputs:

Ui = FFNN(Dec_tr(Enc(S;)))

wherein S; represents the i-th segment, and ;
corresponds to the decoder output for the same
segment. Furthermore, an additional unused to-
ken is defined, analogous to the method described
in (Zhuang et al., 2022), and its unnormalized
logits are extracted from the decoder output g;
to serve as the segment ranking score: rank; =
Qi <extra_token_id>-

Having obtained the ranking outputs for all seg-
ments with the above procedure, a listwise softmax
cross-entropy function is used to compute the Soft-
max loss as follows:

Gy”
Csoftmax (Yi, Ui) = Z Yij log <Z i ey” )

where y; and y; are the gold, and predicted rel-
evance, respectively, and m denotes the number
of segments. After computing the Softmax loss,
we combine it with the generation loss for joint
training:

Etotal = ggeneration + )\£Softmax (yia Z)z)

in which Zgeneration i a cross-entropy loss com-
puted for generation task, and A is a balancing
parameter that should be tuned.

5 Experimental Setup

5.1 Research questions

We seek to address the following research ques-
tions:

* RQ1: How does integrating the relative im-
portance of segments influence the automatic
and qualitative metrics of summaries?

* RQ2: How does the specific type of query
affect our system’s performance compared to
the SOTA?



* RQ3: What effect does the integration of
LTR offer for segment retrieval?

* RQ4: What challenges does the model en-
counter in underperformed cases?

5.2 Datasets

We used two query-focused datasets during our
study: (1) The QMSum dataset (Zhong et al., 2021)
consists of 1,808 query-focused summaries ex-
tracted from 232 multi-turn meetings across dif-
ferent domains. The dataset is split into training,
validation, and testing sets with 1,257, 272, and
279 instances, respectively. The average source
length is 9K tokens, and the summary length is 70
tokens. (2) SQUALITY (Wang et al., 2022a) is a
collection of question-focused abstractive summa-
rization data with 100 stories, 500 questions, and
2,000 summaries. Each question is accompanied by
four reference summaries written by trained writ-
ers. The dataset provides train/validation/test splits
of 39/25/36, equivalent to 195/125/180 document-
question pairs with average document and sum-
mary lengths of 5.2K and 237 tokens, respectively.

5.3 Relevance labeling

Given the absence of relevance labels within the
instances of datasets employed for experiments, we
develop a probability-based heuristic to create such
pseudo labels, which signifies the extent to which
a segment aligns with the gold summary. Initially,
the SUPERPAL approach, as mentioned in (?), was
employed as an external pseduo-labeling heuris-
tic to match summary spans and their originating
source spans, represented by a probability value,
p. A specified threshold was then empirically de-
termined for p, allowing only spans exceeding this
threshold to be considered as gold during the label-
ing process. Subsequently, the source spans were
mapped to their respective segments, and a scoring
function was employed to determine the segment
score as follows:

Score(S;) = ij log(|span;)
J
where S; denotes the i-th segment, span; repre-
sents the j-th span within the segment S;, and p;
shows the probability of span; being aligned to
the gold summary. Intuitively, segments that have
more common tokens with the gold summary (i.e.,
|span,|) and assigned a higher probability by SU-
PERPAL approach (i.e., p), are more likely to be

ranked higher. Following the calculation of seg-
ment scores, they were organized in a sequence,
and relevance labels were assigned according to
the sorted scores.

5.4 Implementation details

We built upon the code base provided by Vig et al.
(2022), adhering to the default hyperparameters.
The A hyperparameter was explored within the set
{0.5, 1, 1.5}, and finally tuned to 1. Furthermore,
a probability threshold (p) of 40% was employed
to filter gold segments. It has to be mentioned that
all parameters, including A\ and p, were empirically
determined and fixed. Our model comprises 406
million parameters. We employed a single NVIDIA
A6000 GPU for both training and evaluation. Each
experimental training session spanned a duration
of two days.

5.5 Comparison

We compare our model to the well-established
SOTA baselines on QFS:

- SEGENC (Vig et al., 2022): An abstractive sum-
marizer that segments input, encodes and then
decodes with joint attention. Versions include:
(1) Finetuned on BART large (SEGENC); (2) pre-
finetuned on Wikisum (SEGENC-W);

- SOCRATIC (Pagnoni et al., 2022): A question-
driven pre-training framework for controllable
summarization, fine-tuned on SEGENC. Also, a
PEGASUS variant pre-trained on Book3 is pre-
sented.

- QONTSUM (Sotudeh and Goharian, 2023): A
contrastive learning-based summarizer that dis-
tinguishes salient content from top-scored non-
salient content.

6 Experimental Results

In this section, we present the automatic and human
study results, followed by relevant analyses over
query type impact, and segment retrieval.

6.1 Automatic evaluation

As shown in Table 1, we compare the performance
of our proposed system with existing state-of-
the-art summarization techniques on the QMSum
and SQUALITY benchmarks, employing ROUGE
and BERTSCORE evaluation metrics to address
RQ1 on automatic performance. For the QMSum



RG-1 RG-2 RG-L BS
SEGENC (Vig et al., 2022) 37.05 13.03 3262 87.44
+ Wikisum Pre-Finetuned (Vig et al., 2022) 37.80 13.43 33.38 -
SOCRATIC Pret. 1M (Pagnoni et al., 2022)  37.46 13.32 3279 87.54
SOCRATIC Pret. 30M (Pagnoni et al., 2022) 38.06 13.74 33.51 87.63
QONTSUM (Sotudeh and Goharian, 2023) 3842 13.50 34.03 87.72
LTRSUM (this work) 38.82 14.11 34.45 88.07
(@)
RG-1 RG-2 RG-L BS
SEGENC (Vig et al., 2022) 45.68 14.51 2247 85.86
+ Wikisum Pre-Finetuned (Vig et al., 2022) 4579 1453 22.68 85.96
PEGASUS Pret. (Pagnoni et al., 2022) 4578 14.43 2290 85.94
SOCRATIC Pret. 30M (Pagnoni et al., 2022) 46.31 14.80 22.76 86.04
QONTSUM (Sotudeh and Goharian, 2023) 4576 1427 24.14 86.07
LTRSUM (this work) 46.11 14.68 24.23 86.04

(b)

Table 1: Average of ROUGE and BERTSCORE (BS) performance of summarization baselines over (a) QMSum and
(b) SQUALITY benchmarks. The baseline performances are reported from previous works.

benchmark, LTRSUM surpasses state-of-the-art ap-
proaches. In particular, when compared with the
QONTSUM, our method achieves relative improve-
ments of approximately 1.0%, 4.5%, 1.2%, on the
ROUGE-1, ROUGE-2, ROUGE-L metrics, respec-
tively. Likewise, LTRSUM surpasses SOCRATIC
Pret. by relative improvements of 2.0% (ROUGE-
1), 2.7% (ROUGE-2), 2.8% (ROUGE-L). Addition-
ally, the BERTSCORE for LTRSUM slightly edges
out both QONTSUM and SOCRATIC Pret. On the
SQUALITY dataset, LTRSUM’s performance re-
veals mixed results; over the QONTSUM model,
it slightly improves ROUGE-1 and ROUGE-2 met-
rics. However, when compared to SOCRATIC Pret.,
LTRSUM matches on ROUGE-1 and ROUGE-2
(with relative deficits under 0.01%), demonstrates
a remarkable 5.4% improvement in ROUGE-L and
aligns closely with the BERTSCORE metrics, on
SQUALITY benchmark. This is likely due to
the challenges in automatically identifying high-
quality ground-truth labels in SQUALITY, unlike
QMSum, where our system benefits from human-
annotated span labels, while the SQUALITY span
labels were determined via a heuristic approach.
Furthermore, another likely explanation for SO-
CRATIC’s performance boost may be attributed
to its pretraining on the BOOK3 dataset, which

likely shares closer linguistic characteristics with
the SQUALITY dataset.

It is essential to note that SOCRATIC undergoes
a large-scale pre-training process, driven by ques-
tions, which encompasses a vast number of exam-
ples drawn from the BOOK3 corpus, amounting
uo to 30M pre-training instances. This approach,
while effective, is likely resource-intensive. Con-
versely, our model, LTRSUM, bypasses the exten-
sive pre-training stage and centers on learning an
auxiliary task during the fine-tuning phase, making
it a more resource-efficient alternative.

6.2 Human evaluation

We conducted human evaluations to assess the
quality of the summaries generated by LTR-
SUM, in comparison with QONTSUMand SoO-
CRATICbaseline systems. The evaluations were
performed on the QMSum and SQUALITY bench-
marks. Specifically, we randomly selected 64 test
cases (QMSum) and 36 cases (entire test set of
SQUALITY), resulting in a total of 100 cases. For
each case, we provided two annotators > with shuf-
fled summaries, including the gold-spans from the
source. To prevent bias, we shuffled summaries

2 Annotators were PhD students in Science and Engineer-
ing.



such that the correspondence could not be guessed.
We then ask the annotators to score each case on
a scale of 1 to 5 (worst to best) in terms of three
qualitative metrics listed below, consistent with the
ones employed by Sotudeh and Goharian (2023):

* Fluency: To gauge the understandability of
a summary, focusing on grammaticality, non-
redundancy, and coherence aspects;

* Relevance: To assess the extent to which a
summary is pertinent as an answer to the given

query;

* Faithfulness: To measure the degree to which
the content covered in the source is faithfully
reflected in the generated summary.

Table 2 reports the human evaluation scores over
QMSum and SQUALITY datasets. As observed,
the LTRSUM model shows superior qualitative per-
formance as compared to the QONTSUM and SO-
CRATIC baselines on both datasets. The improve-
ments are yet more tangible in the relevance and
faithfulness metrics, possibly due to the LTRSUM’s
model objective of finding segments that are more
relevant to the query with respect to their relative
importance. The close performance of the experi-
mented systems over fluency is expected, given the
extensive data the language model has encountered
during pre-training to learn to generate coherent
text.

The inter-rater agreement scores are as follows:
for QMSum, 51%, 52%, and 55% and for SQuAL-
ITY, 51%, 57%, and 54% across fluency, relevance,
and faithfulness metrics, respectively, indicating
a moderate level of consensus among evaluators.
While automatic improvements are numerically im-
proved, our system still offers benefits in terms of
qualitative (over QONTSUM and SOCRATIC) and
training overhead (over SOCRATIC) baselines, as
mentioned earlier. This assessment addresses our
RQ1 on qualitative performance.

6.3 Query type impact

We observed a potential relation between the sys-
tem’s qualitative performance and the nature of the
query (i.e., query type). Specifically, we noticed
that broad queries like “Summarize the whole
meeting” tend to have more gold labels as opposed
to specific queries like “Why did the Marketing dis-
agree with the Industrial Design when discussing
the possible advanced techniques on the remote

Fluency Relevance Faithfulness

OMSum

QONTSUM 4.09 4.03 3.60

SOCRATIC 4.10 4.15 3.72

LTRSUM 4.14 4.36 3.88
SQuUALITY

QONTSUM 4.01 3.58 3.62

SOCRATIC 4.02 3.70 3.69

LTRSuM 4.02 3.81 3.78

Table 2: Results of the human study on evaluation sam-
ples from the QMSum and SQUALITY datasets (64
cases from QMSum and 36 cases from SQuUALTTY)

control?”, targeting particular details within the
source. To explore this, we categorized the evalua-
tion cases from each dataset based on their query
type and compared the human-assigned scores to
explore any potential links between the query type
and the quality of the generated summaries.

Table 3 presents a comparison of the LTR-
SUM system against QONTSUM and SOCRATIC
systems, categorized by query types across two
datasets. For broad queries, LTRSUM outperforms
QONTSUM and SOCRATIC, with notable win rates
highlighted in bold; e.g., win rates of 37% (QM-
Sum), and 33% (SQUALITY) in terms of relevance
against QONTSUM. However, with specific queries,
our system’s performance drops, often trailing the
QONTSUM and SOCRATIC baselines, as evidenced
by the high lose rates in bold; e.g., 32% (QMSum)
and 34% (SQUALITY) lose rates in relevance com-
pared to QONTSUM. This trend, both highs and
lows, is consistent across all qualitative metrics
for both datasets. The differential performance of
LTRSUM vs. QONTSUM and SOCRATIC across
query types can be attributed to the inherent gran-
ularity. In other words, broad queries give LTR-
SUMmore room to maneuver since they cover a
wide range of gold segments, available for ranking
by the LTR component of our model. However,
specific queries are trickier; they focus on narrow
details within narrow segments, where any slight
oversight by the model in identifying salient seg-
ments leads to a less relevant summary. In the
case of SOCRATIC, the outperformance on spe-
cific queries can be attributed to its particular pre-
training objective, where narrowed questions are
generated for document’s single sentences, and the
language model is forced to learn to ask & answer
the generated questions. Likewise, QONTSUM ex-
cels in handling specific queries compared to broad



Dataset Query type (%) Flu. Rel. Faith.

OMSum Broad (53%) 29/45/26  28/55/17 25/60/15
Specific (47%) 21/54/25 15/57/28 19/53/28
Broad (46%) 24/55/21 28/56/16 26/58/16

SQUALITY Specific (54%) 19/58/23  14/57/29 16/55/29

(a) LTRSUM vs. QONTSUM

Dataset Query type (%) Flu. Rel. Faith.

QMSum Broad (53%) 16/66/18  41/29/29  35/32/32
Specific (47%) 17/65/18 20/38/42 27/33/40
Broad (46%) 21/58/18 35/41/24 31/41/28

SQUALITY Specific (54%) 18/60/22 26/32/42 21/47/32

(b) LTRSUM vs. SOCRATIC

Table 3: Query type impact per model and model comparison with respect to query type. The reported numbers
show the win/tie/lose % of LTRSUM against the baselines (i.e., QONTSUM and SOCRATIC), respectively.
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Figure 2: Segment retrieval performance of the models
in terms of nDCG score.

queries, suggesting that its contrastive objective is
more effective when there are fewer gold segments
associated with the query, thereby enhancing the
robustness of the objective. This analysis addresses
our RQ2.

6.4 Segment retrieval

In order to assess the effectiveness of the summa-
rization system in terms of lifting salient segments
w.r.t their relative importance (i.e., ranking), we
present a comparative analysis in Figure. 2. To per-
form this analysis, we first rank the segments per
summarization model, given their relative contribu-
tion (computed from decoder’s attention over the
segment tokens) at generating the summary. Subse-
quently, with the predicted ranked list of segments
in hand, we calculate the Normalized Discounted
Cumulative Gain (NDCG) score (Wang et al., 2013)
as follows:

Z log2 1+ 1
DCG

D _ D

DG = ipca,

where p is a particular ranking position, rel(i)
is the relevance score (ranking label) of the seg-
ment at position ¢, and IDCG,, is the ideal cumu-
lative gain (i.e., when the segments are ranked
given their gold importance). The relevance scores
are obtained by greedily matching the system’s
ranked segments against the human-annotated im-
portant segments. As observed, our system consis-
tently improves the ranking scores on QMSum and
is comparable with the best-performing baseline
(SOCRATIC) on SQUALITY dataset. This analysis
provides support for RQ3.

7 Error Analysis

Two sources of underperformance were identified
in response to our RQ4:

Imbalanced Labels. We discovered that in ap-
proximately 48% of the underperformed cases, the
model exhibited a tendency to misidentify gold seg-
ments when generating summaries. Upon further
investigation, we observed that these cases were
commonly characterized by a label imbalance is-
sue, wherein the model selected segments that con-
tained partially relevant information but were not
the actual gold segments. As shown in the example



Query: Why did the Marketing disagree with the Industrial Design when discussing the possible
advanced techniques on the remote control?

Human: When discussing adding several advanced techniques onto the remote control to make it
more unique, the Industrial Design put forward to using the touchscreen. Notwithstanding the merits
of the touchscreen, for instance, a touch screen would make the remote control easier and smaller,the
Marketing did not agree to do so just because in that case they would be beyond the budget. [Written
from the 14th segment]

LTRSUM generated: The Marketing believed that it would be too expensive to make a touch screen
on the remote control. The Industrial Design believed that the strength of remote controls were most
likely to fall down on the ground and get broken. Therefore, it would not be easy to make it fold open
and look like a remote control with a touchscreen. [Written from the 15th segment]

Query: What did User Interface think about user interface design of remote control?

Human: User Interface found two kinds of remote controls: the multi-functional one and the one easy
to use. He emphasized on user-friendliness, but considering that the target people were less than forty
years old, multi-function should also be taken into account. [Written from the 9th segment]

LTRSUM generated: User Interface thought that the remote control should be easy to use with not so
many buttons, just a round button which can be pushed in four directions instead of a stick. It should be
the same as in the cell phone, just light in the device that shines on all the buttons. [Written from the 9th

segment]

Table 4: Comparison between human and LTRSUM generated summaries for given queries. Left: The model identifies relevant
content (highlighted in yellow) from the 15th segment, which is marked in gold due to its 50% overlap with the 14th segment,
but also generates irrelevant information from the same 15th segment. Right: The model finds the gold segment (segment 9) but

picks up on less relevant parts of the segment.

within Table 4 (left), while both human and LTR-
SUM-generated summaries capture the budgetary
concerns, LTRSUM adds unrelated information
about remote control durability. This finding sheds
light on the challenge of identifying and ranking the
gold segments within an imbalanced regime, which
may be mitigated in future work through Transfer
Learning from a larger dataset (Ruder et al., 2019;
Cao et al., 2019).

Segment Summarizer Deficiency. In approx-
imately 39% of the underperformed cases, LTR-
SUM faced challenges in extracting the most per-
tinent details from the identified gold segments.
For instance, as illustrated in Table 4 (right), both
the human-written summary and the summary gen-
erated by LTRSUM drew from the 9th segment
(gold). The human summary provided a nuanced
understanding of the topic, emphasizing both user-
friendliness and multi-functionality for a specific
age group. Conversely, the LTRSUM summary fo-
cused more on the physical attributes of the remote

control, missing out on the multi-functionality as-
pect and the target demographic. This observed
suboptimality could be attributed to the model’s
challenges in discerning sentential saliency within
the segment which affects the relevancy of the sum-
mary. To address this, future work might consider
hybrid approaches that combine methods for iden-
tifying salient sentences within the identified seg-
ments (Pilault et al., 2020).

8 Conclusion

Our method combines Learning-to-Rank with QFS,
ensuring content relevance via prioritization. It
matches or exceeds SOTA at reduced training costs.
Human evaluations highlight improved relevance
and faithfulness without compromising fluency.
Further analysis suggests that the system outper-
forms on broad queries while lagging on specific
ones, with errors linked to imbalanced labels and
segment summarizer challenges.



9 Ethical Considerations

While the proposed summarization system in our
paper offers time-saving benefits, it still may pro-
duce outputs factually inconsistent with input doc-
uments. Such discrepancies risk promoting online
misinformation, especially when it is being used
on the production scale. This challenge is com-
mon in abstractive summarization, necessitating
rigorous research and cautious use to prevent false
information spread.
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