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ABSTRACT

Graph clustering algorithms with autoencoder structures have recently gained
popularity due to their efficient performance and low training cost. However, for
existing graph autoencoder clustering algorithms based on GCN or GAT, not only
do they lack good generalization ability, but also the number of clusters clus-
tered by such autoencoder models is difficult to determine automatically. To solve
this problem, we propose a new framework called Graph Clustering with Masked
Autoencoders (GCMA). It employs our designed fusion autoencoder based on the
graph masking method for the fusion coding of graph. It introduces our im-
proved density-based clustering algorithm as a second decoder while decoding
with multi-target reconstruction. By decoding the mask embedding, our model can
capture more generalized and comprehensive knowledge. The number of clusters
and clustering results can be output end-to-end while improving the generalization
ability. As a nonparametric class method, extensive experiments demonstrate the
superiority of GCMA over state-of-the-art baselines.

1 INTRODUCTION

Figure 1: The selected algorithm on the Cora
dataset includes the current SOTA method
based on the trend of ACC changes in the
number of clusters k.

Graph clustering is an important unsupervised learn-
ing task. Moreover, in the unsupervised (more real-
istic) setting, the number of classes (denoted by k)
and their relative sizes (i.e., class weights) are un-
known. With the development of deep learning tech-
niques, many deep learning based methods are able
to cluster large rows of high-dimensional datasets
more efficiently, still not bypassing this problem.
Most of the existing high-performance methods are
parametric class methods, either for the classical
clustering problem for large image datasets (Xie
et al., 2016), or for clustering more complex graph-
structured datasets (Kipf & Welling, 2016; Hasan-
zadeh et al., 2019). Non-parametric methods are few
and far between.

However, it is clear that non-parametric class meth-
ods (Ronen et al., 2022) are more advantageous in
real-world use. This is because the automatic deter-
mination of the correct k-value by non-parametric methods can have a positive effect on the clus-
tering performance, e.g., through the process of dividing individual clusters into multiple clusters
whose clustering labels change accordingly. This may lead to convergence to better local optima
and performance gains (Chang & III, 2013). Also, good clustering results are based on determining
the correct k-value, if the k-value is wrong even with the sota method, the performance becomes
poor as in Fig. 1. It is clear to see that even with the current SOTA method, without the correct value
of k its performance plummets.

Also for graph data, the high dimensionality and complex graph topology further increase the dif-
ficulty of clustering. Most of the existing methods (Zhang et al., 2019; Zhang & Li, 2023; Wang
et al., 2019a) attempt to cluster after learning the representation first by generating perspectives,
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such as clustering based on graph autoencoder structure (GAE), which treats the graph input itself
as self-supervised and learns to reconstruct the graph (Wang et al., 2019a). However, literatures
(Hassani & Ahmadi, 2020; Velickovic et al., 2019; Zhu et al., 2020) suggest that GAE following
this simple graph reconstruction principle may overemphasize proximity information, which is not
always beneficial for self-supervised learning. Therefore, designing better excuse tasks is the key to
improving the quality of learned graph embedding.

Masked autocoding has been successfully applied in both NLP and CV domains, with prominent
examples being BERT (Devlin et al., 2019) and MAE (He et al., 2022), respectively. In fact, masked
autocoding should also be well suited for graph data, since both edges and nodes can be easily
masked or unmasked as self-supervised, as demonstrated by existing studies (Shi et al., 2020; Ma
et al., 2018). Whereas its strong generalization ability is more conducive to learning good graph
embeddings, few relevant studies have confirmed its performance in clustering.

In our work, we use a autoencoder that learns graph embeddings mainly in a graph masking manner
to reconstruct the structural decoding after the graph embeddings, so that the learned representations
have better interpretability. The generalization capability is then increased by introducing our im-
proved density-based clustering algorithm as a second decoder, which automatically determines the
appropriate k-value. Our main contributions are as follows:

• To the best of our knowledge, this is the first work to apply a graph masking autocoder to
a clustering task, and the first method to determine the number of clusters specifically for
graph data.

• Our model uses the mask graph mechanism to have better generalization ability and inter-
pretability. This allows learned representations to be applied to multiple types of down-
stream tasks

• Extensive experiments on five datasets demonstrate that our model outperforms existing
state-of-the-art baselines.

2 RELATED WORK

2.1 NONPARAMETRIC DEEP LEARNING CLUSTERING METHODS

Among the few non-parametric classes of methods(Shah & Koltun, 2018; Zhao et al., 2019; Wang
et al., 2022; Ronen et al., 2022; Wang et al., 2018) for predicting the number of clusters, we consider
the most representative to be DeepDPM (Ronen et al., 2022) and DED (Wang et al., 2018). DED
utilizes the advantages of feature representation learning techniques and density-based clustering
algorithms. It uses a deep convolutional autoencoder (Walker et al., 1984) and t-SNE to learn ap-
propriate embedding features, and then predicts the number of clusters using a new density-based
clustering algorithm (Rodriguez & Laio, 2014). However, DED belongs to the classical two-step
algorithm, which does not output end-to-end results with the value of k. DeepDPM is based on
the Dirichlet process and adapts to the dynamic architecture of judging the changing k using a
split/merge framework. It verified performance on the ImageNet dataset and is the current SOTA
method. However, this method is not applicable to graph data due to its inability to capture graph
topology information. And it also has some limitations in terms of interpretability and generalization
ability.

2.2 MASKED AUTOENCODERS FOR GRAPH

The learning task of masking autocoding is to mask the part of the input information and predict
the hidden content. This is a self-supervised learning method. Masked language modeling (MLM)
(Devlin et al., 2019) is the first successful application of masked autocoding in natural language
processing. Its working principle is similar to the cloze test in English. Recently, masked image
modeling (MIM) (He et al., 2022) follows a similar principle by masking redundant pixel blocks and
predicting them for learning. Although masked autocoding technology is very popular in language
and visual research, it is relatively less studied in the graph domain. In the work of the first graph
masking automatic encoder, MGAE (Tan et al., 2023) tried to implement the masking strategy on
the edges of the graph structure as a self-supervised learning paradigm. MaskMAE (Li et al., 2023)

2



Under review as a conference paper at ICLR 2024

Figure 2: Flowchart of GCMA. The top half represents the overall model architecture and the bottom
half represents our improved clustering algorithm process.

adds a new one-sided mask and path mask strategy and also adds a theoretical analysis of the side
mask strategy. Similar to us, the GiGaMAE (Shi et al., 2023) method masks both nodes and edges.
However, they focus more on how to improve generalization ability and lack some improvements
for interpretability and clustering tasks.

2.3 DEEP GRAPH CLUSTERING

For graph data, the long-standing research direction lies in single-structure graph autoencoders,
mainly GNNs. They utilize GCN or GAT structures and apply convolutional structures or attention
mechanisms to graph structures. Node weights are assigned through graph topology specific infor-
mation, which in turn leads to graph embedding representations. For example, (Kipf & Welling,
2016; Wang et al., 2019a; Zhang & Li, 2023). However, some scholars believe that such a struc-
ture will cause the model to pay too much attention to the graph topology information and lose the
node feature information, so they proposed a fusion graph autoencoder structure. Their basic idea
is to fuse the linear neural network layer with the coding layer of the graph autoencoder to get a
more powerful fusion representation. The difference lies in the fusion mechanism. For example, the
mechanism used in Bo et al. (2020) is a linear fusion between layers, while Tu et al. (2021) uses a
deep fusion mechanism under triple validation. Compared to our improved masked graph autoen-
coder, as revealed in the literature (Hassani & Ahmadi, 2020; Velickovic et al., 2019), such GAE
structure class methods lead to a disproportionate ratio of learned structural, proximity and feature
information, resulting in limiting the learning of graph embeddings to a large extent. What’s more,
they all belong to parameter class methods, which need to set the correct k value in advance.

3 METHOD

Our framework is shown in Fig. 2 and consists of 3 parts: the mask fusion network consists of an
encoder, a decoder with multiple reconstruction targets and a modified density-based algorithm as a
second decoder, with the graph embedded in a self-optimizing module.
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3.1 MASKING FUSION ENCODER

3.1.1 GRAPH MASK ENCODER

Our graph mask encoder consists of 2 components: graph mask and encoder. The first thing that
needs to be explained is the graph mask and encoder. The original graph G = {V,A,X} is used as
the input and is masked into G′ = mask(G) by edge masking (Tan et al., 2023) or feature masking
(Wang et al., 2017). V denotes the set of nodes, A denotes the adjacency matrix and X denotes
the node features. The encoder can adopt GAT (Velickovic et al., 2017) and GCN (Kipf & Welling,
2017) architectures. The encoder takes G′ as the input, encodes the nodes into a representation
graph, and embeds it to obtain a low-dimensional feature representation. Finally, the decoder is
reconstructed from the graph embedding.

It is worth noting that masking both modal information at the same time will have a negative impact
on model learning, because it may lack enough information for graph reconstruction. However, only
masking and reconstructing one mode limits the ability of the model to learn from another mode,
which hinders the learning of comprehensive representation. GiGaMAE (Shi et al., 2023) has found
a multi-objective reconstruction that can mask both edge and node features of the original graph
during the training process. Formally, we denote the mask process by M , M = {Me,Mf}. Where
the edge mask matrix Me ∈ {0, 1}|V |×|V | and the feature mask matrix Mf ∈ {0, 1}|V | are randomly
generated binary matrices. The perturbation can be controlled by the sparsity of Me and Mf . In
this way we can obtain M(G = {V,A,X}) = {V,A ∗ Me, Xdiag(Mf )} = {V,A′, X ′} = G′ ,
where A′, X ′ and ∗ respectively represent the mask feature matrix, the mask adjacency matrix and
the Hadamard product. We refer to these nodes, which are masked with edge or node characteristics,
as Ṽ . Enter the mask map into the encoder to obtain the potential representation Zm.

3.1.2 FEATURE ENCODING AND INTEGRATION MECHANISMS

Considering the problems mentioned in Chapter 1, the graph autoencoder structure will overem-
phasize the proximity information and distort the node feature information. Therefore, here we
introduce a simple AE network dedicated to extracting the feature information of the nodes and can
also be used as a reconstruction target to fully utilize the node features of the graph. Where each
layer of AE calculates the node features are represented as follows,wl and bl are hyperparameters:

Zl
ae = f(wlz

l−1 + bl), (1)

We use a linear fusion mechanism to fuse the two graph embeddings to obtain a more complete and
robust representation. ϵ is the learnable coefficient which is automatically adjusted according to the
gradient fitting method, thus adjusting the importance of the two embedded parts. In this work, ϵ is
initialized to 0.1:

Z = (1− ϵ)Zm + ϵZae (2)

Technically, our cross-modal linear fusion mechanism takes into account sample correlation in terms
of node characteristics and proximity information. Therefore, it has potential advantages in finely
fusing and refining cross-modal information to learn potential representations.

3.2 MULTI TARGET DECODER

3.2.1 MASKING GRAPH DECODING

Different graph models focus on different focuses of graph information. For example, GAE prior-
itizes learning graph structure information, while AE trained on feature matrix X mainly encodes
graph node attribute information. Therefore we consider embedding reconstruction methods that
aim at fusing multiple models such as graph models. The loss function is constructed based on
mutual information (MI). Here Zn ∈ R|V |×dn is used to denote the n− th reconstruction objective.
The information from various modalities is stored in the chi-square continuous embedding space
Zn.

We remask (Hou et al., 2022) Zm in order to obtain more node compression denoted V̂ ∈ R|V |×d.
This way we can represent each node vi as v̂i = V̂ [i, :] = encoder(A′, X ′). At the same time, We
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remask Zn to get Sn. Let Sn[i, :] = sni , then sni = Zn[i, :], vi ∈ Ṽ . We implement the decoder with
a set of mapping functions P , which are designed to map V̂ to the target embedding space Sn. Each
mapping is implemented as a multilayer perceptron (MLP). So we have V̂n = P (V̂ ) ∈ R|v|×d.

When reconstructing the targets, l2 − norm loss considers the characteristics of each target alone
ignoring the relationship between them. While cross entropy is more suitable for discrete variables.
Since we are computing the reconstruction loss with multiple targets, we need to capture as much
useful information as possible from the targets. So we choose to use MI as the basis for calculating
the loss. Maximize the compression representation v̂ with target embedding Sn. For two targets the
reconstruction loss function Lp is:

Lp = λ1P1(V̂ , S1) + λ2P2(V̂ , S2) + λ3P3(V̂ , {S1, S2}) (3)
λ is the parameter that regulates the importance of the information source. And we set λ ≥ 0.
The specific calculation steps in Eq.(3) are as follows. ξ is the temperature hyperparameter. Pn

represents the mapping for different Sn. ⊕ denotes concatenation.

P3(v̂, (s1, s2)) = exp(
1

ξ
× P (v̂)× [s1 ⊕ s2]

||P (v̂)|| × ||[s1 ⊕ s2]||
), P1(v̂, s) = exp(

1

ξ
× P (v̂)× s

||P (v̂)|| × ||s||
) (4)

For the choice of reconstruction target, we choose to reconstruct the GAE model with the AE model.
First we use the output of GAE as our structural target embedding. Given graph G as input, GAE
preserves topological information and target embedding by reconstructing the graph structure. Then
we use the reconstructed feature structure of the AE part as the reconstruction target to learn the
feature information of the input graph. Similarly we can learn the graph node feature information. It
should be noted that we linearly fuse the graph embedding of the AE layer in the encoding process,
so we also need to take the reconstruction loss La =

∑n
i=1 ||X−X ′

a|| of the AE part into account.X ′
a

represents the reconstructed node characterization information.

3.2.2 CFSFDP DECODER

The peak density-based clustering algorithm (CFSFDP) (Rodriguez & Laio, 2014) has two main
criteria: local density (ρ) and minimum distance (δ) to higher densities. One is that data points
near the clustering center have lower ρ, and the other is that data points are farther away from other
denser δ. However, the original algorithm still requires observation to determine the threshold value
through experience. Whereas for clustering centers, ρ values are usually much higher than their
thresholds, and δ values may be very close to the thresholds in some cases. Therefore, we judge the
range of values of the threshold by many iterations, while using the Gaussian function instead of
the indicator function to make the δ value as much higher than its threshold as possible. Thus the
clustering center can be clearly separated from the rest of the data points to get the best k value.

We need smaller spacing within the same cluster as a goal to guide the network to influence the
distribution of learning data. Therefore, the mean square error of each sample vector to the corre-
sponding cluster mean vector is calculated, and the mean vector of sample points within each cluster
is µk = 1/Nk

∑
xi∈Ck

xi, where Ck denotes cluster k and Nk is the number of samples contained
in cluster Ck. Thus the loss function is Lc =

∑K
k=1

∑
xi∈Ck

||xi − µk||22.

3.3 SELF-OPTIMIZING MODULES

We used a self-supervised method to optimize the fused graph embedding. We use the t-distribution
of Students (van der Maaten & offrey Hinton., 2008) to measure it. The similarity between the node
embedding Z and the clustering center embedding was first measured using the qiu metric.

qij =
(1 + ||zi − µj ||2/v)−1∑
K(1 + ||zi − µk||2/v)−1

(5)

Thus our optimized affiliation matrix p is constructed based on the obtained q as follows.

pij =
q2ij/

∑n
i=1 qij∑

j′ q
2
ij′/

∑n
i=1 qik

(6)
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To minimize the clustering loss, we construct the loss using the KL scatter:

Ls = KL(P ||Q) =
∑
i

∑
j

piulog
piu
qiu

(7)

The above method is considered to be a self-supervision mechanism that forces the current distribu-
tion Q to converge towards the target distribution P by minimizing the KL divergence loss between
the Q and P distributions. We consider fusion coding as a Q-distribution. This can make the spacing
between points within the same cluster smaller and the spacing between clusters larger.

3.4 JOINT EMBEDDING

Our model is end-to-end, so the above modules can jointly optimize graph embedding and clustering
learning. The total objective function is defined as:

L = Lp + αLa + βLc + γLs (8)
Where α, γ and β are used to balance the various losses. The overall algorithm is shown in Algo-
rithm 1.

Algorithm 1 GRAPH CLUSTERING WITH MASKED AUTOENCODERS (GCMA)
Input: Graph G with n nodes; Number of iterations Iter; Number of layers Lay.

while max iterations< iter or convergence do
Randomly masking G as G′;
Encoding of data according to the encoder. This includes performing fusion coding;
Decoding of multiple reconstruction targets according to Eq. (3);
Overall optimization after self-optimization process and CFSFDP process according to
Eq. (8);

Return: Clustering results,cluster number k and hidden embedding Z.

4 EXPERIMENTS

4.1 DATASET AND BASELINE

In our experiments, we evaluated the proposed algorithm on four popular public datasets, including
three graph datasets (cora, citeseer (Sen et al., 2008), and DBLP (Wang et al., 2019b)) and a larger
dataset (ogbn-arxiv (Hu et al., 2020)), as shown in Table 1.

Table 1: Information of dataset

Dataset Nodes Features Clusters

Cora 2708 1433 7
Cite 3312 3703 6
DBLP 4058 334 4
Ogbn-arxiv 169343 128 40

In our experiments, we compared
a variety of algorithms with our
method. First, there are four nonpara-
metric methods. They are MTL (Pi-
mentel & de Carvalho, 2020), DNB
(Wang et al., 2022), DED (Wang
et al., 2018), and DeepDMP (Ronen
et al., 2022). It should be noted that
these methods are not specifically de-
signed for graph data clustering, so we need to make some necessary changes during the runtime. In
addition to this, there are other parametric graph clustering algorithms that we mainly use to com-
pare our clustering performance. They are: DNGR (Cao et al., 2016), TADW (Yang et al., 2015),
ARGE (Pan et al., 2018), ARVGE (Pan et al., 2018), AGC (Zhang et al., 2019),DAEGC (Wang et al.,
2019a),EGAE (Zhang & Li, 2023), SDCN (Bo et al., 2020), DFCN (Tu et al., 2021). In this paper,
three metrics, clustering accuracy (ACC), normalized mutual information (NMI) and adjusted rand
index (ARI), are used to validate the performance of various models.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We first compared the accuracy of predicting k values with non-parametric methods. As shown in
Table 2. We ran it 10 times on the dataset and came up with the accuracy and average for k value
prediction. It can be seen that our method performs much better than other methods.
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Table 2: This is a comparison of the experimental results with the baseline method. We compute
the accuracy as the number of times we get the correct result after 10 runs on the dataset. The mean
value is the average of the predicted k values.

Methods MtL DNB DED DeepDPM GCMA
mean Accuracy mean Accuracy mean Accuracy mean Accuracy mean Accuracy

Cora 3.0(±1.0) 0/10 6.0(±0.0) 0/10 10.2(±0.7) 0/10 5.1(±2.3) 1/10 7.0(±0.3) 10/10
Citeseer 6.7(±3.0) 1/10 5.0(±0.0) 0/10 8.0(±2.0) 1/10 4.0(±5.2) 2/10 5.9(±0.6) 10/10
DBLP 2.1(±3.8) 0/10 2.0(±0) 0/10 2.8(±2.1) 0/10 3.0(±11.3) 0/10 3.7(±0.8) 8/10

Ogbn-arxiv 20.4(±12.1) 0/10 20.0(±0) 0/10 32.0(±14.9) 0/10 50.0(±20.3) 0/10 48.2(±10.1) 3/10

Table 3: This is a performance comparison with the best graph clustering algorithms(%).

dataset m1 DNGR TADW ARGE ARVGE AGC DAEGC EGAE SDCN DFCN GCMA-A GCMA

Cora
ACC 41.91 56.03 64.00 63.80 68.92 70.40 72.42 71.00 74.02 73.82 74.74
NMI 31.84 44.11 44.90 45.00 53.68 52.80 53.96 50.25 53.90 58.00 59.16
ARI 14.22 33.20 35.20 37.40 - 49.60 47.22 47.02 48.10 53.04 55.41

Citeseer
ACC 32.59 45.48 57.30 54.40 67.00 67.20 67.42 66.00 69.50 67.20 67.30
NMI 18.02 29.14 35.00 26.10 41.13 39.70 41.18 38.70 43.90 45.00 44.30
ARI 4.29 22.81 34.10 24.50 - 41.00 43.18 40.20 45.50 45.00 46.07

DBLP
ACC 30.00 49.00 59.30 59.50 63.00 63.10 65.90 68.10 74.00 67.00 68.43
NMI 15.73 20.90 26.00 26.28 32.10 33.55 38.72 38.70 43.21 40.00 44.10
ARI 9.03 14.00 17.20 18.00 20.00 23.80 39.00 39.20 46.00 45.28 47.55

Ogbn-arxiv
ACC - - - - - 29.40 30.11 30.10 31.00 28.94 28.95
NMI - - - - - 40.00 43.20 44.09 44.60 44.80 45.00
ARI - - - - - 19.30 20.00 20.19 20.01 20.10 22.03

The experimental results for testing the clustering performance are shown in Table 3. We can see
that our method clearly outperforms all baselines in most of the evaluation metrics. However, our
advantage is that we are a non-parametric method. That is, we do not need the pre-input k value
of parametric methods, and we perform better on graph data than other non-parametric methods. −
in the table indicates that the run is out of memory or that the relevant data were not found in the
original text.

4.3 PARAMETER SETTINGS

Figure 3: he variation of ACC and NMI on each
data set for different values of α

In our experiment, the first thing to deter-
mine is that α, β and γ are important balanc-
ing parameters. The search range of alpha is
{10−2, 10−1, 100, 101, 102, 103, 104}. The fi-
nal selection is shown in Fig. 3. The selection
method for β and γ are same. Depending on
the training data, the maximum number of iter-
ations for training is set to 100 to 1000. The
pre-training method is to first train the mask
network and AE network for 15 rounds, and
then jointly train the model for 30 rounds. After
pre-training, the learning rate for fine-tuning is
set to 10−4. The dimension of the embedding
layer is set to 64. All training is completed on a
server with 4 RTX 3080 GPUs.

4.4 ABLATION STUDY

In the previous subsection, we incidentally investigated the impact of fused AE coding on the algo-
rithm as a whole, i.e., the results of GCMA-A. In this subsection, we focus on exploring the impact
of the graph autoencoder part and the graph embedding self-optimization part on GCMA. We re-
place the graph masking part with the autoencoder of the normal GAT layer and adjust the number
of factors for the Q-value of the self-optimization part.

As can be seen from Fig. 4(a) and (b), the effect of the GCMA-s model without the self-optimization
step is inferior on both datasets. In contrast, in the results Fig. 4(c) and (d) obtained by replacing
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(a) Cora (b) Citeseer (c) Cora (d) Citeseer

Figure 4: (a) and (b) shows the effect of the presence or absence of a self-optimization step on the
results. (c) and (d) gives the effect of replacing the mask portion with a normal GAT layer.

the GAT layer, the decrease in ACC values is not significant, but both NMI and ARI values are
significantly decreased. This means that the interpretability and generalization performance of the
results decreased.
Table 4: Qg stands for
using only Zm as the Q-
distribution.The Qag represen-
tation uses Zae and Zm. Q
stands for the default setting.

Methods ACC NMI

Qg 72.64 56.60
Qag 72.28 55.30
Q 74.74 59.16

Table 5: We conducted exper-
iments using 1 Layer,2 Layer
(default settings), and 4 Layer
GAT as the basis of the mask
encoder.

Methods ACC NMI

1 layer 67.00 49.80
2 layers 74.74 59.16
4 layers 73.05 56.00

Table 6: The effect of differ-
ent truncation distances d. dc
stands for before improvement
and dI is GCMA’s. Experimen-
tation in 10 and 20 rounds.

Methods mean K

dc 7.80 7/10
dI 7.10 10/10
dI 7.17 19/20

Table 7: Performance comparison table for differ-
ent reconstruction target models. The experiments
were performed on two smaller datasets.

Methods Cora Citeseer
ACC NMI ARI ACC NMI ARI

GCMA-N 73.88 58.68 54.90 67.00 43.91 45.82
GCMA-E 73.15 58.60 55.00 65.06 43.86 45.57
GCMA-G 74.70 59.06 55.10 67.05 43.90 45.93
GCMA-All 74.75 59.10 55.30 67.33 44.32 46.04

GCMA 74.74 59.16 55.41 67.30 44.30 46.07

Table 8: Generalization ability test results.The se-
lected dataset is similar in size to Cora and Cite-
seer.

Methods USPS HHAR
mean Accuracy mean Accuracy

MtL 7.0(±2.0) 5/10 7.2(±1.0) 3/10
DNB 8.0(±4.0) 4/10 5.0(±0.0) 0/10
DED 11.0(±1.1) 4/10 9.0(±2.2) 6/10
DeepDPM 9.4(±1.0) 9/10 6.0(±0.9) 9/10

GCMA 10.0(±0.0) 10/10 6.0(±0.3) 9/10

Then we also analyzed the reconstructed targets with corresponding experiments. As shown in Table
7. We distinguished the reconstruction targets separately. GCMA-N, GCMA-E, and GCMA-G are
used to denote the Node2vec-only target, AE structure-only target, and GAE overall structure-only
target. Finally, GCMA-All represents the reconstruction with the goal of combining them together.
Based on the data in the table we can conclude as follows: the performance of the three models
GCMA-N, GCMA-E, and GCMA-G are comparable, and the performance of GCMA and GCMA-
All is better and comparable. However, GCMA has less computational complexity and is more
efficient.

Table 9: Generalization ability performance experiment

Model GCA VGAE GraphMAE SDCN GCMA

Average rank 3.2 4.1 2.1 4.6 1.8

Finally, we also explored some exper-
imental default settings in depth. The
experiments include the selection of
the number of encoder layers, the se-
lection of the sub-distributions of the
self-optimizing partial Q-distribution,
and the excellent performance test of
the improved and optimized density clustering algorithm. The results are shown in Table 4,5 and 6,
respectively. All experiments were obtained by running on the Cora dataset.

To test the generalization ability of our model, we also ran experiments on non-graph datasets
(USPS, HHAR). As shown in Table. For the dataset with a missing affinity matrix, we follow
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(a) Raw features of Cora (b) GCMA-A (c) GCMA

(d) Raw features of Citeseer (e) GCMA-A (f) GCMA

Figure 5: 2D visualization of 3 datasets: Clustering Process and the Effect of Parameters

(Bo et al., 2020) and construct the matrix using the heat kernel method. As shown in Table 8. The
results prove that as a nonparametric class algorithm, our method not only can effectively predict
the number of clusters’ k value but also shows a performance comparable to the best baseline of
the moment. Additionally, we conducted dedicated experiments in Table 9, wherein the model was
applied to two distinct tasks—node classification and link prediction. The obtained average rankings
are presented in tabular form, clearly demonstrating the robust performance of our model on these
novel tasks.

4.5 VISUALIZATION OF THE CLUSTERING PROCESS

In Fig 5, in order to visually verify the effectiveness of GCMA,We show a visualization of the
clustering process. We can see from the figure that the clustering of GCMA-A is tighter, but the
performance in Table 3 shows the opposite result. This is due to the fact that the clustering results
obtained are clusters distributed by density, and therefore some sample points that originally strayed
from belonging to the original clusters were misclassified. With the addition of the AE fusion coding
influenced by the node information, this error is corrected to a limited extent, so that plots such as
Fig 5(c) and (f) are obtained.

5 CONCLUSION

In this paper, we propose a new graph masking autoencoder framework GCMA. Its core compo-
nents are our designed fusion image masking autoencoder and improved density-based clustering
algorithm. At the same time, a self-supervised method was designed and used to optimize graph
embedding. This method encodes and fuses more modal information from both sides, effectively
and accurately inducing network training. In addition, the proposed fusion image masking autoen-
coder can help improve the generalization ability of the model, while also outputting the number of
clusters and clustering results end-to-end. We demonstrate the additional value that nonparametric
methods bring to deep clustering, namely the sensitivity and importance of hypothesis k. Numerous
experiments have demonstrated that GCMA performs better than most parametric and nonparamet-
ric methods, achieving good SOTA results.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural deep clustering
network. In WWW, pp. 1400–1410. ACM / IW3C2, 2020.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph representations.
In AAAI, pp. 1145–1152. AAAI Press, 2016.

Jason Chang and John W. Fisher III. Parallel sampling of DP mixture models using sub-cluster
splits. In NIPS, pp. 620–628, 2013.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1), pp. 4171–4186. As-
sociation for Computational Linguistics, 2019.

Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna R. Narayanan, Nick Duffield, Mingyuan Zhou,
and Xiaoning Qian. Semi-implicit graph variational auto-encoders. In NeurIPS, pp. 10711–
10722, 2019.

Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning on
graphs. In ICML, volume 119 of Proceedings of Machine Learning Research, pp. 4116–4126.
PMLR, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked
autoencoders are scalable vision learners. In CVPR, pp. 15979–15988. IEEE, 2022.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In KDD, pp. 594–604. ACM, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS,
2020.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. CoRR, abs/1611.07308, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR (Poster). OpenReview.net, 2017.

Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian, Liang Zhu, Changhua Meng, Zibin
Zheng, and Weiqiang Wang. What’s behind the mask: Understanding masked graph modeling for
graph autoencoders. In KDD, pp. 1268–1279. ACM, 2023.

Tengfei Ma, Cao Xiao, Jiayu Zhou, and Fei Wang. Drug similarity integration through attentive
multi-view graph auto-encoders. In IJCAI, pp. 3477–3483. ijcai.org, 2018.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. In IJCAI, pp. 2609–2615. ijcai.org, 2018.
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Bengio. Graph attention networks. CoRR, abs/1710.10903, 2017.

Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
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