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ABSTRACT

Accelerating model convergence in resource-constrained environments is essential
for fast and efficient neural network training. This work presents learn2mix, a new
training strategy that adaptively adjusts class proportions within batches, focusing
on classes with higher error rates. Unlike classical training methods that use static
class proportions, learn2mix continually adapts class proportions during training,
leading to faster convergence. Empirical evaluations on benchmark datasets show
that neural networks trained with learn2mix converge faster than those trained with
classical approaches, achieving improved results for classification, regression, and
reconstruction tasks under limited training resources and with imbalanced classes.
Our empirical findings are supported by theoretical analysis.

1 INTRODUCTION

Deep neural networks have become essential tools across various applications of machine learning,
including computer vision (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He et al., 2016),
natural language processing (Vaswani et al., 2017; Devlin et al., 2018; Radford et al., 2019; Touvron
et al., 2023), and speech recognition (Hinton et al., 2012; Baevski et al., 2020). Despite their ability
to learn and model complex, nonlinear relationships, deep neural networks often require substantial
computational resources during training. In resource-constrained environments, this demand poses a
significant challenge (Goyal et al., 2017), making the development of efficient and scalable training
methodologies increasingly crucial to fully leverage the capabilities of deep neural networks.

Training deep neural networks relies on the notion of empirical risk minimization (Vapnik & Bottou,
1993), and typically involves optimizing a loss function using gradient-based algorithms (Rumelhart
et al., 1986; Bottou, 2010; Kingma & Ba, 2014). Techniques such as regularization (Srivastava et al.,
2014; Ioffe & Szegedy, 2015) and data augmentation (Shorten & Khoshgoftaar, 2019), learning rate
scheduling, (Smith, 2017) and early stopping (Prechelt, 1998), are commonly employed to enhance
generalization and prevent overfitting. However, the efficiency of the training process itself remains
a critical concern, particularly in terms of convergence speed and computational resources.

Within this context, adaptive training strategies, which target enhanced generalization by modifying
aspects of the training process, have emerged as promising approaches. Methods such as curriculum
learning (Bengio et al., 2009; Wang et al., 2021) adjust the order and difficulty of training samples to
facilitate more effective learning. These methods expand upon educational paradigms, progressively
introducing more complex samples as the model proficiency increases (Graves et al., 2017). Insights
from the above adaptive training strategies can also be applied to the class imbalance problem (Wang
et al., 2019), where underrepresented classes are inherently harder to learn due to data scarcity (Buda
et al., 2018). These methods are typically categorized into data-level methods, such as oversampling
and undersampling (Chawla et al., 2002), and algorithm-level approaches, including class-balanced
loss functions (Lin et al., 2017). However, developing adaptive training approaches that accelerate
model convergence, while ensuring robustness to class imbalance, remains an open problem.

Building upon these insights, a critical aspect of training efficiency lies in the composition of batches
used during stochastic gradient descent. Classical training paradigms maintain approximately fixed
class proportions within each shuffled batch, mirroring the overall class distribution in the training
dataset (Buda et al., 2018; Peng et al., 2019). However, this static approach fails to account for the
varying levels of difficulty associated with different classes, which can hinder optimal convergence
rates. For example, classes with higher error rates or those that are inherently more challenging may
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Figure 1: Illustration of the learn2mix training mechanism. The class-wise composition of batches
is adaptively modified during training using instantaneous class-wise error rates.

require greater emphasis during training to enhance model performance. Ignoring these nuances can
lead to suboptimal learning trajectories and prolonged training periods. While existing approaches
address class imbalance by adjusting sample weights or dataset resampling, they do not dynamically
change the class-wise composition of batches during training via real-time performance metrics.

This observation motivates the central question of this paper: Can we dynamically adjust the propor-
tion of classes within batches, across training epochs, to accelerate model convergence? Addressing
this question involves developing strategies that dynamically modify the proportion of classes using
real-time performance metrics, thereby directing the learning procedure towards more challenging or
underperforming classes. Such adaptive batch construction has the potential to enhance convergence
rates and model accuracy, providing more efficient training, especially in scenarios characterized by
class imbalance or heterogeneous class difficulties (Liu et al., 2008; Ren et al., 2018).

To address these nuances, in this work, we introduce learn2mix, a new training strategy that dynam-
ically modifies class proportions in batches by emphasizing classes with higher instantaneous error
rates. In contrast with classical training schemes that have fixed class proportions, learn2mix contin-
ually adapts these proportions during training via real-time class-wise error metrics. This dynamic
adjustment facilitates faster convergence and improved performance across various tasks, including
classification, regression, and reconstruction. An illustration of the learn2mix training methodology
is provided in Figure 1, demonstrating the adaptive class-wise composition of batches.

This paper is organized as follows. In Section 2, we formalize learn2mix, and prove relevant proper-
ties. In Section 3, we detail the algorithmic implementation of the learn2mix training methodology.
In Section 4, we present empirical evaluations on benchmark datasets, demonstrating the efficacy of
learn2mix in accelerating model convergence and enhancing performance. Finally, in Section 5, we
summarize our paper. Our main contributions are outlined as follows:

1. We propose learn2mix, an adaptive training strategy that dynamically adjusts class propor-
tions within batches, using class-wise error rates, to accelerate model convergence.

2. We prove that neural networks trained using learn2mix converge faster than those trained
using classical approaches when certain properties hold, wherein the class proportions con-
verge to a stable distribution proportional to the optimal class-wise error rates.

3. We empirically validate that neural networks trained using learn2mix consistently observe
accelerated convergence, outperforming classical training methods in terms of convergence
speed across classification, regression, and reconstruction tasks.

Related Work. The landscape of neural network training methods is characterized by a diverse set
of approaches aiming to enhance model performance and training efficiency. Handling class imbal-
ance has been extensively analyzed, with methods including oversampling (Chawla et al., 2002), un-
dersampling (Tahir et al., 2012), and class-balanced loss functions (Lin et al., 2017; Ren et al., 2018)
being proposed to mitigate biases towards majority classes. In parallel, curriculum learning (Bengio
et al., 2009) and reinforcement learning-centric approaches (Florensa et al., 2017) have introduced
ways to facilitate more effective learning trajectories. Meta-learning, or learn2learn methodologies
(Arnold et al., 2020), including model-agnostic meta-learning (MAML) (Finn et al., 2017), focus on
optimizing the learning process itself to enable rapid adaptation to new tasks, highlighting the im-
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portance of adaptability in model training. Additionally, adaptive data sampling strategies (Liu et al.,
2008) and boosting algorithms (Freund & Schapire, 1997) emphasize the significance of prioritizing
harder or misclassified examples to improve model robustness and convergence rates. Despite these
advances, most existing training methods either adjust sample weights, resample datasets, or modify
the sequence of training examples without specifically altering the class proportions within batches
in an adaptive manner. Our proposed learn2mix strategy distinguishes itself by continually adapting
class proportions within these batches throughout the training process, directly targeting classes with
higher error rates to accelerate convergence. This approach not only addresses class imbalance but
also integrates principles from adaptive training, offering a unified framework that enhances training
efficiency by accelerating model convergence across diverse tasks.

2 THEORETICAL RESULTS

Consider the random variables X ∈ Rd and Y ∈ Rk, wherein X denotes the feature vector, Y are the
labels, and k is the number of classes. We consider the original training dataset, J = {(xj , yj)}Nj=1,
where (xj , yj)

i.i.d.∼ (X,Y ), ∀j ∈ {1, . . . , N}. The class proportions for this dataset are given by the
vector of fixed-proportion mixing parameters, α̃ = [α̃1, . . . , α̃k]

T , which reflects the distribution of
classes. We define α = [α1, . . . , αk]

T as a variable denoting the vector of mixing parameters, where
αi ∈ [0, 1] and

∑
k
i=1 αi = 1. The value of α specifies the class proportions utilized during training,

and can vary depending on the chosen training mechanism. In classical training, α = αt is constant
over time and reflects the class proportions in the original training dataset, wherein αt = α̃, ∀t ∈ N.
In learn2mix training, α = αt is time-varying, and is initialized at time t = 0 as α0 = α̃.

LetH ⊂ {h : Rd → Rk} be the class of hypothesis functions that model the relationship between X
and Y . For our empirical setting, we letH denote the set of neural networks that have predetermined
architectures. We noteH is fully defined by a vector of parameters, θ ∈ Rm, whereH = hθ denotes
a set of parameterized functions. The generalized form of the loss function for classical training and
the loss function form under learn2mix training are given below.
Definition 2.1 (Loss Function for Classical Training). Consider α̃ ∈ [0, 1]k as the vector of fixed-
proportion mixing parameters, and let L(θt) ∈ Rk denote the vector of class-wise losses at time t.
The loss for classical training at time t is given by:

L(θt, α̃) =
k∑

i=1

α̃iLi(θ
t) = α̃TL(θt). (1)

Definition 2.2 (Loss Function for Learn2Mix Training). Consider αt, αt−1 ∈ [0, 1]k as the vector
of mixing parameters at time t and time t − 1, and let L(θt),L(θt−1) ∈ Rk denote the respective
class-wise loss vectors at time t and time t− 1. Consider γ ∈ (0, 1) as the mixing rate. The loss for
learn2mix training at time t is given by:

L(θt, αt) =

k∑
i=1

αt
iLi(θ

t) = (αt)TL(θt), (2)

Where: αt = αt−1 + γ

(
L(θt−1)

1T
kL(θt−1)

− αt−1

)
. (3)

Let θ∗ ∈ Rm denote the parameters of the optimal hypothesis function hθ∗ , such that hθ∗ = E[Y |X]
almost surely. In the following proposition, we demonstrate that using gradient-based optimization
under learn2mix training, the parameters converge to θ∗, with the mixing proportions converging to
a stable distribution that reflects the relative difficulty of each class under the optimal parameters.
Proposition 2.3. Let L(θt),L(θ∗) ∈ Rk denote the respective class-wise loss vectors for the model
parameters at time t and for the optimal model parameters. Suppose each class-wise loss Li(θ) ∈ R
is strongly convex in θ, with strong convexity parameter µi ∈ R>0, ∀i ∈ {1, . . . , k}, and each class-
wise loss gradient∇θLi(θ) ∈ Rm is Lipschitz continuous in θ, having Lipschitz constant Li ∈ R≥0,
∀i ∈ {1, . . . , k}. Let µ∗ = mini∈{1,...,k} µi, L∗ = maxi∈{1,...,k} Li. Then, if the model parameters
at time t+ 1 are obtained via the gradient of the loss for learn2mix training, where:

θt+1 = θt − η∇θL(θt, αt), with: η ∈ R>0, (4)
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It follows that for learning rate, η ∈ (0, 2/L∗), and mixing rate, γ ∈ (0, 1):

lim
t→∞

θt = θ∗, and: lim
t→∞

αt = α∗ =
L(θ∗)

1T
kL(θ∗)

. (5)

The complete proof of Proposition 2.3 is provided in Section A.1 of the Appendix. We now detail the
convergence behavior of the learn2mix and classical training strategies, and suppose that αt−1 = α̃.
We first present Corollary 2.4, which will be used to prove the convergence result in Proposition 2.5.
This corollary leverages Lipschitz continuity and strong convexity to bound the loss gradient norm.
Corollary 2.4. Let L(θt) ∈ Rk denote the class-wise loss vector at time t. Suppose each class-wise
loss,Li(θ) ∈ R, is strongly convex in θ, with strong convexity parameter µi ∈ R>0, ∀i ∈ {1, . . . , k},
and suppose each class-wise loss gradient∇θLi(θ) ∈ Rm is Lipschitz continuous in θ with Lipschitz
constant Li ∈ R≥0, ∀i ∈ {1, . . . , k}. Let µ∗ = mini∈{1,...,k} µi, L∗ = maxi∈{1,...,k} Li. Then, the
following condition and inequality hold, ∀α ∈ [0, 1]k where

∑
k
i=1 αi = 1:

µ∗

2
∥θt − θ∗∥ ≤ ∥∇θL(θt, α)∥ ≤ L∗∥θt − θ∗∥, (6)

Wherein: ∥∇θL(θt, αt)∥+ ∥∇θL(θt, α̃)∥ ≤ 2L∗∥θt − θ∗∥. (7)

The proof of Corollary 2.4 is provided in Section A.1 of the Appendix — we note that the inequality
in Eq. (7) relates the loss gradient norm under classical training with that under learn2mix training.
We now present Proposition 2.5, which demonstrates that under the condition expressed in Eq. (8),
updates obtained via the gradient of the loss for learn2mix training bring the model parameters closer
to the optimal solution than those obtained via the gradient of the loss for classical training.
Proposition 2.5. Let L(θt),L(θ∗) ∈ Rk denote the respective class-wise loss vectors for the model
parameters at time t and for the optimal model parameters. Suppose each class-wise loss,Li(θ) ∈ R
is strongly convex in θ with strong convexity parameter µi ∈ R>0, ∀i ∈ {1, . . . , k}, and each class-
wise loss gradient∇θLi(θ) ∈ Rm is Lipschitz continuous in θ, having Lipschitz constant Li ∈ R≥0,
∀i ∈ {1, . . . , k}. Moreover, suppose the loss gradient∇θL(θ, α) ∈ Rm is Lipschitz continuous in α,
having Lipschitz constant Lα ∈ R≥0, and let µ∗ = mini∈{1,...,k} µi, L∗ = maxi∈{1,...,k} Li. Then,
if and only if the following condition holds:[(µ∗

2
− L∗

)
∥θt − θ∗∥2 + α̃T (L(θt)− L(θ∗))

][
∥θt − θ∗∥ − (L(θt)− L(θ∗))

]
> 0, (8)

It follows that for every learning rate, η > 0, there exists a mixing rate, γ ∈ (0, β], such that:∥∥(θt − η∇θL(θt, αt)
)
− θ∗

∥∥ ≤ ∥∥(θt − η∇θL(θt, α̃)
)
− θ∗

∥∥ . (9)

The complete formula for β can be found in Section A.1 of the Appendix.

The complete proof of Proposition 2.5 is provided in Section A.1 of the Appendix.

3 ALGORITHM

In this section, we outline our approach for training neural networks using learn2mix. The learn2mix
mechanism consists of a bilevel optimization procedure, where we first update the parameters of the
neural network, θt, and then modify the mixing parameters, αt, using the vector of class-wise losses,
L(θt). Deriving from the original training dataset, J , consider Ji = {(xj , yj)}α̃iN

j=1 , ∀i ∈ {1, . . . , k}
as each class-specific training dataset, wherein J =

⋃k
i=1 Ji. These k class-specific training datasets

are leveraged to speed up batch construction under learn2mix, as we will later delineate. We consider
the case of training a neural network using batched stochastic gradient descent, wherein for a given
training epoch, t, the empirical loss is computed over P = N

M total batches, where M ∈ Z+ denotes
the batch size. Each batch is formed by sampling αt

iM distinct examples from the ith class-specific
training dataset, denoted as Sp

i ⊆ Ji, for Sp =
⊎k

i=1 S
p
i . We let

⊎
denote the set union operator that

preserves duplicate elements. For learn2mix training, the class-wise errors, Li(θ
t),∀i ∈ {1, . . . , k},

at training epoch t are empirically computed as:

Li(θ
t) =

1

P

P∑
p=1

[
1

αt
iM

∑
(xj ,yj)∈Sp

i

ℓ(hθt(xj), yj)

]
, (10)
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Algorithm 1: Neural Network Training Under Learn2Mix
Input: J (Original Training Dataset), θ (Initial NN Parameters), α̃ (Initial Mixing Parameters),

η (Learning Rate), γ (Mixing Rate), M (Batch Size), P (No. of Batches), E (Epochs)
Output: θ (Trained NN Parameters)

1 for i = 1, 2, . . . k do
2 Ji ← {(xj , yj)}αiN

j=1 (Initialize class-specific training datasets)
3 αi ← α̃i (Initialize time-varying mixing parameters)
4 for epoch = 1, 2, . . . , E do
5 for i = 1, 2, . . . , k do
6 Ji ← Shuffle(Ji) (Randomly shuffle each class-specific training dataset)
7 for p = 1, 2, . . . , P do
8 for i = 1, 2, . . . , k do
9 Sp

i ← Sample(Ji, αiM) (Select αiM distinct examples from Ji)
10 Sp ←

⊎k
i=1 S

p
i (Aggregate samples to form batch Sp)

11 Lp(θ, α)← 1
M

∑
(xj ,yj)∈Sp ℓ(hθ(xj), yj) (Compute loss on batch Sp)

12 L(θ, α)← 1
P

∑P
p=1 Lp(θ, α) (Compute overall loss across all batches)

13 θ ← θ − η∇θL(θ, α) (Update model parameters, θ)
14 for i = 1, 2, . . . , k do
15 Li(θ)← 1

P

∑P
p=1

1
αiM

∑
(xj ,yj)∈Sp

i
ℓ(hθ(xj), yj) (Compute loss for class i)

16 α← Update Mixing Parameters(α,L(θ), γ)
17 return θ

Where ℓ : Y ×Y → R≥0 is a bounded per-sample loss function and computes the error between the
model prediction, hθt(xj), and the true label, yj . Accordingly, the overall empirical loss at training
epoch, t, under the learn2mix training mechanism is given by:

L(θt, αt) =

k∑
i=1

αt
iLi(θ

t) =

k∑
i=1

αt
i

[
1

P

P∑
p=1

[
1

αt
iM

∑
(xj ,yj)∈Sp

i

ℓ(hθt(xj), yj)

]]
. (11)

Utilizing the empirical loss formulation from Eq. (11), we now detail the algorithmic implementation
of the learn2mix training methodology on a per-sample basis, for consistency with the mathematical
preliminaries in Section 2. We note that the batch processing equivalent of this procedure is a trivial
extension to the domain of matrices, and was used to generate the empirical results from Section 4.
Algorithm 1 outlines the primary training loop, where for each epoch, the class-specific datasets, Ji,
are shuffled. Within each epoch, we iterate over the P total batches, forming each batch by choosing
αiM examples from every Ji. The empirical loss within each batch is computed and aggregated to
obtain the overall loss, L(θ, α), which is then used to update the neural network parameters through
gradient descent. Lastly, the vector of class-wise losses, L(θ), is calculated to inform the adjustment
of the mixing parameters, α, through Algorithm 2.

Algorithm 2 encapsulates the mechanism for adjusting class proportions via the mixing parameters,
α, based on the computed class-wise losses. For each class, i ∈ {1, . . . , k}, the algorithm normalizes
the class-wise loss, Li(θ), by the cumulative loss across classes to obtain Li. The mixing parameter
αi is then updated by moving it towards Li, with the step size controlled by the mixing rate, γ. This
adaptive update ensures that classes with higher error rates receive increased attention in subsequent
epochs, promoting balanced and focused learning across all classes.

Finally, we recall that during the batch construction phase, for each class, i ∈ {1, . . . , k}, we select
αiM examples from each Ji to form the subset Sp

i ⊆ Ji. Given the dynamic nature of the mixing
parameters, α, it is possible that this cumulative selection across batches may exhaust all the samples
within a particular Ji before the epoch concludes. To address this, we incorporate a cyclic selection
mechanism. Formally, we define an index τpi , ∀i ∈ {1, . . . , k} and p ∈ {1, . . . , P}, such that:

τpi =
(
τp−1
i + αiM

)
mod α̃iN, (12)
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Algorithm 2: Updating Mixing Parameters Using Learn2Mix
Input: α (Previous Mixing Parameters), L(θ) (Class-wise loss vector), γ (Mixing Rate)
Output: α (Updated Mixing Parameters)

1 for i = 1, 2, . . . , k do
2 Li ← Li(θ)∑k

j=1 Lj(θ)
(Compute normalized class-wise losses)

3 αi ← αi + γ (Li − αi) (Update mixing parameter for class i)
4 return α

Where τ0i = 0, ∀i ∈ {1, . . . , k}. Accordingly, when selecting Sp
i , if τp−1

i + αiM > α̃iN , we wrap
around to the beginning of Ji, effectively resetting the selection index, τpi — this ensures that every
example in Ji is selected uniformly and repeatedly as needed throughout the training process. Thus,
the selection procedure to construct Sp

i can be defined as:

Sp
i =

⊎αiM−1

w=0
Ji

[
(τp−1

i + w) mod α̃iN
]
. (13)

This cyclic selection procedure ensures that the required number of samples, αiM , for each class in
every batch is maintained, even as αi is dynamically updated across epochs.

4 EMPIRICAL RESULTS

In this section, we present our empirical results on classification, regression, and image reconstruc-
tion tasks, across both benchmark and modified imbalanced datasets. We first present the classifica-
tion results on three benchmark datasets (MNIST (Deng, 2012), Fashion-MNIST (Xiao et al., 2017),
CIFAR-10 (Krizhevsky et al., 2009)), and three standard datasets with manually imbalanced classes
(Imagenette (Howard, 2020), CIFAR-100 (Krizhevsky et al., 2009), and IMDB (Maas et al., 2011)).
We note that for the imbalanced case, we only introduce the manual class-imbalancing to the training
dataset, J , wherein the test dataset, K = {(xj , yj)}Ntest

j=1, is not changed. This choice ensures that the
generalization performance of the network is benchmarked in a class-balanced setting. Next, for the
regression task, we study two benchmark datasets with manually imbalanced classes (Wine Quality
(Cortez et al., 2009), and California Housing (Géron, 2022)), and a synthetic mean estimation task,
wherein the manual class-imbalancing parallels that of the classification case. Finally, we reconsider
the MNIST, Fashion MNIST and CIFAR-10 datasets in the context of image reconstruction, again
considering the aforementioned manual class-imbalancing procedure. A comprehensive description
of these datasets and class-imbalancing strategies is provided in Section B of the Appendix.

We note that the intuition behind the application of learn2mix to regression and reconstruction tasks
stems from its ability to adaptively handle different data distributions. As an example, for regression
tasks involving a categorical variable taking k distinct values, the samples from the original training
dataset, J , that correspond to each of these k values, can be aggregated to obtain each class-specific
training dataset, Ji. Here, each dataset, Ji, represents a different underlying distribution. Paralleling
the classification case, learn2mix will adaptively adjust the proportions of the class-specific datasets
during training. Similarly, in the context of image reconstruction, we can treat the k distinct classes
being reconstructed as the values taken by a categorical variable, paralleling the regression context.
This formulation supports the adaptive adjustment of class proportions under learn2mix training.

For the evaluations that follow, to ensure a fair comparison between the learn2mix training strategy
and the classical training strategy, we use the same learning rate, η, and neural network architecture
with initialized parameters, θ, across all experiments for a given dataset. Additionally, we train each
neural network through learn2mix (with mixing rate γ) and classical training for E training epochs,
where E is dataset and task dependent1. In classification tasks, we also benchmark learn2mix and
classical training versus ‘focal training’ (training through focal loss (Lin et al., 2017) — see Section
C.2 of the Appendix for further details). The complete list of considered neural network architectures
and hyperparameter choices is provided in Section C of the Appendix.

1Practically, we observe that choosing γ ∈ [0.01, 0.5] yields improved performance (see empirical results).
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Table 1: Test classification accuracy for learn2mix (L2M), classical (CL), and focal (FCL) training.

Epoch t = 0.25E
Dataset MNIST Fash. MNIST CIFAR-10 Imagenette CIFAR-100 IMDB
Acc (L2M) 74.16±2.79 44.84±5.12 51.06±0.74 33.83±0.81 11.20±0.32 70.82±1.69

Acc (CL) 61.81±4.80 40.91±5.07 50.04±0.94 23.31±0.91 8.713±0.30 53.82±3.93

Acc (FCL) 67.94±3.84 41.05±5.05 49.59±1.02 23.41±0.83 5.496±0.48 50.89±1.10

Epoch t = 0.5E
Dataset MNIST Fash. MNIST CIFAR-10 Imagenette CIFAR-100 IMDB
Acc (L2M) 83.30±1.62 60.44±1.61 56.36±0.90 41.27±0.57 15.69±0.30 76.12±2.36

Acc (CL) 80.50±2.22 54.06±2.20 55.27±0.98 31.19±0.96 12.59±0.19 72.32±3.28

Acc (FCL) 82.16±1.68 55.95±2.28 54.60±1.12 27.89±0.44 8.104±0.22 69.33±3.89

Epoch t = E
Dataset MNIST Fash. MNIST CIFAR-10 Imagenette CIFAR-100 IMDB
Acc (L2M) 90.74±0.93 68.12±1.29 62.01±0.59 47.43±0.65 19.45±0.45 82.33±0.50

Acc (CL) 88.89±1.22 66.41±1.52 61.27±0.77 38.52±0.26 16.28±0.28 80.03±0.48

Acc (FCL) 89.22±1.14 67.26±1.52 60.91±0.66 31.92±0.57 10.72±0.25 79.83±0.71

(a) MNIST (b) Fashion MNIST (c) CIFAR-10

(d) Imagenette (e) CIFAR-100 (f) IMDB

Figure 2: Comparing model classification accuracies across six datasets (MNIST, Fashion MNIST,
CIFAR-10, Imagenette, CIFAR-100, and IMDB Sentiment Analysis) using Cross Entropy Loss for
classical training, learn2mix training, and focal training. The x-axis denotes the number of elapsed
training epochs, while the y-axis indicates the classification accuracy.

4.1 CLASSIFICATION TASKS

As illustrated in Table 1 and Figure 2, we observe a consistent trend across all tested classification
benchmarks, whereby neural networks trained using learn2mix converge faster than their classically-
trained and focal loss-trained counterparts. More concretely, we first consider the MNIST bench-
mark for our experiments. We train LeNet-5 (Lecun et al., 1998) using the Adam optimizer (Kingma
& Ba, 2014) and Cross Entropy Loss for E = 60 epochs on MNIST, via learn2mix, classical, and
focal training. We note that the learn2mix-trained CNN achieves faster convergence, eclipsing a test
accuracy of 70% after 12 epochs, whereas the respective classically-trained and focal loss-trained
CNNs achieve this test accuracy after 20 epochs and 16 epochs. Subsequently, we consider the more
challenging Fashion MNIST benchmark. We train LeNet-5 for E = 70 epochs utilizing the Adam
optimizer and Cross Entropy Loss on Fashion MNIST, via learn2mix, classical, and focal training.
Paralleling the MNIST case, we note that the learn2mix-trained CNN achieves faster convergence,
yielding a test accuracy of 60% after 34 epochs, whereas the respective classically-trained and focal
loss-trained CNNs achieve this test accuracy after 45 epochs and 40 epochs. The final class-balanced
benchmark dataset that we investigate is the CIFAR-10 dataset, which offers a greater challenge than
MNIST and Fashion MNIST. We train LeNet-5 for E = 125 epochs using the Adam optimizer and
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Cross Entropy Loss on CIFAR-10, leveraging learn2mix, classical, and focal training. Once again,
we observe that the learn2mix-trained CNN achieves faster convergence, reaching a test accuracy
of 55% after 55 epochs, while the respective classically-trained and focal loss-trained CNNs exceed
this test accuracy after 62 epochs and 64 epochs. Cumulatively, these evaluations demonstrate the ef-
ficacy of learn2mix training even in settings with balanced classes, wherein the adaptive adjustment
of class proportions accelerates convergence.

We now consider the case of benchmarking classification accuracy when the training dataset con-
sists of imbalanced classes. We first consider the Imagenette dataset, which comprises a subset of
10 classes from ImageNet (Deng et al., 2009), and modify the training dataset such that the number
of samples is reduced by a factor of 10 in half of the classes. We train ResNet-18 (He et al., 2016)
utilizing the Adam optimizer and Cross Entropy Loss for E = 60 epochs on Imagenette, leveraging
learn2mix, classical, and focal training. We note that the learn2mix-trained ResNet-18 model sees
faster convergence, achieving a test accuracy of 40% after 25 epochs, at which point the respec-
tive classically-trained and focal loss-trained ResNet-18 models have test accuracies of 28.5% and
26.4%. Next, we consider the CIFAR-100 dataset, and again modify the training dataset such that the
number of samples is reduced by a factor of 20 in half of the classes. We train LeNet-5 for E = 80
epochs using the Adam optimizer and Cross Entropy Loss on CIFAR-100, via learn2mix, classical,
and focal training. We find that the learn2mix-trained LeNet-5 model observes faster convergence,
achieving a test accuracy of 15% after 37 epochs, at which point the respective classically-trained
and focal loss-trained CNNs have test accuracies of 12% and 8%. We also note that the k = 100
mixing parameters within learn2mix are a small fraction of the total model parameters, making this
overhead negligible. Regarding the IMDB dataset, we modify the training dataset such that the pos-
itive class keeps 30% of its original samples. We train a transformer for E = 40 epochs using the
Adam optimizer and Cross Entropy Loss on IMDB, via learn2mix, classical, and focal training. We
find that the learn2mix-trained transformer converges faster, reaching a test accuracy of 75% after
16 epochs, at which point the respective classically-trained and focal loss-trained transformers have
test accuracies of 68% and 62%. These experiments demonstrate the efficacy of learn2mix training
over classical training and focal training in imbalanced classification settings.

We observe across the class-imbalance evaluations that learn2mix not only accelerates convergence,
but also achieves a tighter alignment between training and test errors compared to classical training.
This correspondence indicates reduced overfitting, as learn2mix inherently adjusts class proportions
based on class-specific error rates, Li. By biasing the optimization procedure away from the original
class distribution and towards Li, learn2mix improves the model’s generalization performance. We
note that this property is not unique to classification and also applies to regression and reconstruction.
This behavior is empirically verified in Section 4.2 and Section 4.3.

4.2 REGRESSION TASKS

As illustrated in Table 2 and Figure 3, we observe that learn2mix maintains accelerated convergence
in the regression context, wherein all the considered datasets are class imbalanced. We first consider
the synthetic Mean Estimation dataset, which comprises sets of samples gathered from k = 4 unique
distributions and their associated means. Using the Adam optimizer and Mean Squared Error (MSE)
Loss, we train a fully connected network for E = 500 epochs on Mean Estimation using learn2mix
and classical training. We see that the learn2mix-trained neural network observes rapid convergence,
achieving a test error below 2.0 after 100 epochs, at which point the classically-trained network has
a test error of 13.0. For the Wine Quality dataset, we modify the training dataset such that the white
wine class has 10% of its original samples. Utilizing the Adam optimizer and MSE Loss, we train a
fully connected network for E = 300 epochs on Wine Quality using learn2mix training and classical
training. We observe that the learn2mix-trained neural network yields faster convergence, achieving
a test error below 2.5 after 200 epochs, at which point the classically-trained network has a test error
of 5.0. Finally, on the California Housing dataset, we modify the training dataset such that three of
the classes have 5% of their original samples. Using the Adam optimizer and MSE Loss, we train a
fully connected network for E = 1200 epochs on California Housing using learn2mix and classical
training. We again notice that the learn2mix-trained network converges faster, achieving a test error
below 0.8 after 1200 epochs, whereas the classically-trained network has a test error of 0.99. These
empirical evaluations support our previous intuition pertaining to the extension of learn2mix to class-
imbalanced regression settings, wherein we observe faster convergence and reduced overfitting.
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Table 2: Test mean squared error (MSE) for learn2mix (L2M) and classical (CL) training.

Epoch t = 0.25E Epoch t = 0.5E Epoch t = E
Dataset Err (L2M) Err (CL) Err (L2M) Err (CL) Err (L2M) Err (CL)
Mean Estim. 1.81±0.84 6.51±1.52 1.45±0.26 1.52±0.27 1.07±0.09 1.17±0.06

Wine Quality 17.7±1.64 19.8±1.51 4.26±1.55 9.72±1.94 1.75±0.21 2.03±0.18

Cali. Housing 2.52±0.68 2.95±0.67 1.33±0.32 1.82±0.39 0.77±0.08 0.99±0.10

MNIST 19.6±0.81 20.8±0.93 12.9±0.39 14.0±0.52 9.31±0.24 10.1±0.56

Fash. MNIST 89.3±2.63 91.9±2.37 65.1±1.21 70.9±1.28 45.5±1.21 51.6±1.60

CIFAR-10 193±1.23 194±1.98 175±2.85 179±3.87 144±1.71 148±1.37

(a) Mean Estimation (b) Wine Quality (c) California Housing

(d) MNIST (e) Fashion MNIST (f) CIFAR-10

Figure 3: Comparing model performance errors across six datasets (Mean Estimation, Wine Quality,
California Housing, MNIST, Fashion MNIST, and CIFAR-10) using MSE Loss for classical training
and learn2mix training. The x-axis denotes the number of elapsed training epochs, while the y-axis
indicates the mean squared error (MSE).

4.3 IMAGE RECONSTRUCTION TASKS

Per Table 2 and Figure 3, we note that the class-imbalanced image reconstruction tasks also observe
faster convergence using learn2mix. For the MNIST case, we modify the training dataset such that
half of the classes retain 20% of their original samples. Leveraging the Adam optimizer and MSE
Loss, we train an autoencoder for E = 40 epochs on MNIST using learn2mix and classical training.
We observe that the learn2mix-trained autoencoder exhibits improved convergence, achieving a test
error below 1.0 after 35 epochs, which the classically-trained autoencoder achieves after 40 epochs.
Correspondingly, for Fashion MNIST, we modify the training dataset such that half of the classes
retain 20% of their original samples (paralleling MNIST). Using the Adam optimizer and MSE Loss,
we train an autoencoder for E = 70 epochs on Fashion MNIST, leveraging learn2mix and classical
training. We observe that the learn2mix-trained autoencoder converges faster, achieving a test error
below 54.0 after 50 epochs, which the classically-trained autoencoder achieves after 65 epochs. We
also consider CIFAR-10, wherein we modify the training dataset such that all but two classes retain
20% of their original samples. Utilizing the Adam optimizer and MSE Loss, we train an autoencoder
for E = 110 epochs on CIFAR-10, leveraging learn2mix and classical training. We observe that the
learn2mix-trained autoencoder also converges faster and achieves a test error below 148.0 after 100
epochs, which the classically-trained autoencoder achieves after 110 epochs. Cumulatively, these
empirical evaluations demonstrate the improved performance yielded by learn2mix trained models
over classically trained models in limited and constrained training regimes.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSION

In this work, we introduced learn2mix, an adaptive training strategy that dynamically modifies class
proportions in batches via real-time class-wise error rates to accelerate neural network convergence.
We formalized the learn2mix mechanism through a bilevel optimization framework, and outlined its
theoretical advantages in aligning class proportions with optimal error rates. Empirical evaluations
across classification, regression, and reconstruction tasks on both balanced and imbalanced datasets
confirmed that learn2mix not only accelerates convergence compared to classical training methods,
but also reduces overfitting in the presence of class-imbalances. As a consequence, models trained
with learn2mix achieved improved performance in constrained training regimes and also maintained
closer alignment between training and test errors. Our findings underscore the potential of dynamic
batch composition strategies in optimizing neural network training, paving the way for more efficient
and robust machine learning models in resource-constrained environments.
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Vladimir Vapnik and Léon Bottou. Local algorithms for pattern recognition and dependencies esti-
mation. Neural Computation, 5(6):893–909, 1993.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE transactions on
pattern analysis and machine intelligence, 44(9):4555–4576, 2021.

Yiru Wang, Weihao Gan, Jie Yang, Wei Wu, and Junjie Yan. Dynamic curriculum learning for
imbalanced data classification. In 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 5016–5025, 2019. doi: 10.1109/ICCV.2019.00512.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROOFS OF THE THEORETICAL RESULTS

In this section, we present the proofs of the theoretical results outlined in the main text.

Proposition 2.3. Let L(θt),L(θ∗) ∈ Rk denote the respective class-wise loss vectors for the model
parameters at time t and for the optimal model parameters. Suppose each class-wise loss Li(θ) ∈ R
is strongly convex in θ, with strong convexity parameter µi ∈ R>0, ∀i ∈ {1, . . . , k}, and each class-
wise loss gradient∇θLi(θ) ∈ Rm is Lipschitz continuous in θ, having Lipschitz constant Li ∈ R≥0,
∀i ∈ {1, . . . , k}. Let µ∗ = mini∈{1,...,k} µi, L∗ = maxi∈{1,...,k} Li. Then, if the model parameters
at time t+ 1 are obtained via the gradient of the loss for learn2mix training, where:

θt+1 = θt − η∇θL(θt, αt), with: η ∈ R>0, (14)

It follows that for learning rate, η ∈ (0, 2/L∗), and mixing rate, γ ∈ (0, 1):

lim
t→∞

θt = θ∗, and: lim
t→∞

αt = α∗ =
L(θ∗)

1T
kL(θ∗)

. (15)

Proof. We begin by recalling that Li(θ) is strongly convex in θ with strong convexity parameter µi,
∀i ∈ {1, . . . , k}. Accordingly, ∀α ∈ [0, 1]k, with

∑
k
i=1 αi = 1, the loss function L(θ, α) is strongly

convex in θ with parameter, µ′ ∈ R>0, which is lower bounded by µ∗ ∈ R>0, as per Eq. (16).

µ′ ≥ µ∗ > 0, where: µ∗ = min
i∈{1,...,k}

µi, and: µ′ =
∑k

i=1
αiµi. (16)

We note that this lower bound on the strong convexity parameter, µ′ ≥ µ∗, holds independently of α.
Now, recall that ∇θLi(θ), is Lipschitz continuous in θ with Lipschitz constant Li, ∀i ∈ {1, . . . , k}.
Accordingly, ∀α ∈ [0, 1]k, where

∑
k
i=1 αi = 1, the loss gradient∇θL(θ, α) is Lipschitz continuous

in θ with Lipschitz constant, L′ ∈ R≥0, which is upper bounded by L∗ ∈ R≥0, as per Eq. (17).

L∗ ≥ L′ ≥ 0, where: L∗ = max
i∈{1,...,k}

Li, and: L′ =
∑k

i=1
αiLi. (17)

We affirm that this upper bound on the Lipschitz constant, L′ ≤ L∗, holds independently of α. Now,
suppose that α = αt, whereL(θ, αt) is strongly convex in θ with parameter µ′ ≥ µ∗ and∇θL(θ, αt)
is Lipschitz continuous in θ with constant L′ ≤ L∗. Let ρ = max{|1 − ηµ∗|, |1 − ηL∗|}. By the
gradient descent convergence theorem, for learning rate, η ∈ (0, 2/L∗), it follows that:

lim
t→∞

∥θt − θ∗∥ ≤ lim
t→∞

ρt∥θ0 − θ∗∥ = ∥θ0 − θ∗∥ lim
t→∞

ρt = 0. (18)

Therefore, limt→∞ θt = θ∗. Let βt−1 = L(θt−1)/
[
1T
kL(θt−1)

]
, wherein βt−1 ∈ [0, 1]k. Unrolling

the recurrence relation from Eq. (5) and expressing it in terms of βt−1, we obtain:

αt = (1− γ)tα0 + γ

t−1∑
l=0

(1− γ)t−1−lβl. (19)

Taking the limit and re-indexing the summation using n = t− 1− l and l = t− 1− n, we obtain:

lim
t→∞

αt = lim
t→∞

[
(1− γ)tα0

]
+ lim

t→∞

[
γ

t−1∑
n=0

(1− γ)nβt−1−n

]
(20)

= 0k + γ lim
t→∞

[
t−1∑
n=0

(1− γ)nβt−1−n

]
. (21)

We proceed with the steps to invoke the dominated convergence theorem. We note that for fixed n:

lim
t→∞

[
(1− γ)nβt−1−n

]
= (1− γ)n lim

t→∞

[
L(θt−1)

1T
kL(θt−1)

]
= (1− γ)n

L(θ∗)
1T
kL(θ∗)

. (22)
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Now, consider g(n) = (1− γ)n. For this choice of g(n), we have that:

∥(1− γ)nβt−1−n∥ ≤ (1− γ)n∥βt−1−n∥ ≤ g(n), ∀t, n ∈ N (23)
∞∑

n=0

g(n) =

∞∑
n=0

(1− γ)n =
1

1− (1− γ)
=

1

γ
<∞. (24)

We now invoke the dominated convergence theorem. Recalling Eq. (21), we observe that:

lim
t→∞

αt = γ lim
t→∞

[
t−1∑
n=0

(1− γ)nβt−1−n

]
(25)

= γ

∞∑
n=0

(1− γ)n lim
t→∞

βt−1−n = γ

∞∑
n=0

(1− γ)n
L(θ∗)

1T
kL(θ∗)

(26)

= (γ)

(
1

γ

)
L(θ∗)

1T
kL(θ∗)

=
L(θ∗)

1T
kL(θ∗)

= α∗. (27)

Therefore, limt→∞ αt = α∗ = L(θ∗)/
[
1T
kL(θ∗)

]
. Cumulatively, for η ∈ (0, 2/L∗) and γ ∈ (0, 1),

under learn2mix training, limt→∞ θt = θ∗, and limt→∞ αt = α∗ = L(θ∗)/
[
1T
kL(θ∗)

]
.

Corollary 2.4. Let L(θt) ∈ Rk denote the class-wise loss vector at time t. Suppose each class-wise
loss,Li(θ) ∈ R, is strongly convex in θ, with strong convexity parameter µi ∈ R>0, ∀i ∈ {1, . . . , k},
and suppose each class-wise loss gradient∇θLi(θ) ∈ Rm is Lipschitz continuous in θ with Lipschitz
constant Li ∈ R≥0, ∀i ∈ {1, . . . , k}. Let µ∗ = mini∈{1,...,k} µi, L∗ = maxi∈{1,...,k} Li. Then, the
following condition and inequality hold, ∀α ∈ [0, 1]k where

∑
k
i=1 αi = 1:

µ∗

2
∥θt − θ∗∥ ≤ ∥∇θL(θt, α)∥ ≤ L∗∥θt − θ∗∥, (28)

Wherein: ∥∇θL(θt, αt)∥+ ∥∇θL(θt, α̃)∥ ≤ 2L∗∥θt − θ∗∥. (29)

Proof. We begin by recalling that Li(θ) is strongly convex in θ with strong convexity parameter µi,
∀i ∈ {1, . . . , k}. Accordingly, ∀α ∈ [0, 1]k, with

∑
k
i=1 αi = 1, the loss function L(θ, α) is strongly

convex in θ with parameter, µ′ ∈ R>0, which is lower bounded by µ∗ ∈ R>0, as per Eq. (30).

µ′ ≥ µ∗ > 0, where: µ∗ = min
i∈{1,...,k}

µi, and: µ′ =
∑k

i=1
αiµi. (30)

Now, recall that ∇θLi(θ), is Lipschitz continuous in θ with Lipschitz constant Li, ∀i ∈ {1, . . . , k}.
Accordingly, ∀α ∈ [0, 1]k, where

∑
k
i=1 αi = 1, the loss gradient∇θL(θ, α) is Lipschitz continuous

in θ with Lipschitz constant, L′ ∈ R≥0, which is upper bounded by L∗ ∈ R≥0, as per Eq. (31).

L∗ ≥ L′ ≥ 0, where: L∗ = max
i∈{1,...,k}

Li, and: L′ =
∑k

i=1
αiLi. (31)

Note that∇θL(θ∗, α) = 0m. Since L(θ, α) is strongly convex in θ, the following inequalities hold:

L(θt, α)− L(θ∗, α) ≥ ∇θL(θ∗, α)T (θt − θ∗) +
µ′

2
∥θt − θ∗∥2 =

µ′

2
∥θt − θ∗∥2, (32)

L(θt, α)− L(θ∗, α) ≤ ∇θL(θt, α)T (θt − θ∗) ≤ ∥∇θL(θt, α)∥∥θt − θ∗∥. (33)
Combining Eq. (32) and Eq. (33), and recalling Eq. (30), we obtain the following inequality:

∥∇θL(θt, α)∥ ≥
L(θt, α)− L(θ∗, α)

∥θt − θ∗∥
≥ µ∗

2
∥θt − θ∗∥. (34)

Furthermore, since∇θL(θ, α) is Lipschitz continuous in θ and recalling Eq. (31), it follows that:
∥∇θL(θt, α)−∇θL(θ∗, α)∥ ≤ L′∥θt − θ∗∥ =⇒ ∥∇θL(θt, α)∥ ≤ L∗∥θt − θ∗∥. (35)

Altogether, combining Eq. (34) and Eq. (35), we arrive at the final inequality:
µ∗

2
∥θt − θ∗∥ ≤ ∥∇θL(θt, α)∥ ≤ L∗∥θt − θ∗∥. (36)

Furthermore, since Eq. (35) holds ∀α ∈ [0, 1]k where
∑

k
i=1 αi = 1, it follows that:

∥∇θL(θt, αt)∥+ ∥∇θL(θt, α̃)∥ ≤ 2L∗∥θt − θ∗∥. (37)
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Proposition 2.5. Let L(θt),L(θ∗) ∈ Rk denote the respective class-wise loss vectors for the model
parameters at time t and for the optimal model parameters. Suppose each class-wise loss,Li(θ) ∈ R
is strongly convex in θ with strong convexity parameter µi ∈ R>0, ∀i ∈ {1, . . . , k}, and each class-
wise loss gradient∇θLi(θ) ∈ Rm is Lipschitz continuous in θ, having Lipschitz constant Li ∈ R≥0,
∀i ∈ {1, . . . , k}. Moreover, suppose the loss gradient∇θL(θ, α) ∈ Rm is Lipschitz continuous in α,
having Lipschitz constant Lα ∈ R≥0, and let µ∗ = mini∈{1,...,k} µi, L∗ = maxi∈{1,...,k} Li. Then,
if and only if the following condition holds:[(µ∗

2
− L∗

)
∥θt − θ∗∥2 + α̃T (L(θt)− L(θ∗))

][
∥θt − θ∗∥ − (L(θt)− L(θ∗))

]
> 0, (38)

It follows that for every learning rate, η > 0, there exists a mixing rate, γ ∈ (0, β], such that:∥∥(θt − η∇θL(θt, αt)
)
− θ∗

∥∥ ≤ ∥∥(θt − η∇θL(θt, α̃)
)
− θ∗

∥∥ , (39)

Where: β =

(
µ∗

2 − L∗)∥θt − θ∗∥2 + α̃T (L(θt)− L(θ∗))

ηLαL∗
∥∥∥ L(θt−1)

1T
k L(θt−1)

− α̃
∥∥∥[∥θt − θ∗∥ − (L(θt)− L(θ∗))

] (40)

Proof. We note that for all subsequent derivations, F(θt, θ∗, η, αt) = ∥(θt − η∇θL(θt, αt))− θ∗∥,
and G(θt, θ∗, η, α̃) = ∥(θt − η∇θL(θt, α̃))− θ∗∥, where αt−1 = α̃. We begin by observing that:[

F(θt, θ∗, η, αt)
]2

= ∥θt − θ∗∥2 − 2η(θt − θ∗)T∇θL(θt, αt) + η2∥∇θL(θt, αt)∥2, (41)[
F(θt, θ∗, η, α̃)

]2
= ∥θt − θ∗∥2 − 2η(θt − θ∗)T∇θL(θt, α̃) + η2∥∇θL(θt, α̃)∥2. (42)

Accordingly, the difference between
[
F(θt, θ∗, η, αt)

]2
and

[
G(θt, θ∗, η, α̃)

]2
is given by:[

F(θt, θ∗, η, αt)
]2 − [

G(θt, θ∗, η, α̃)
]2

= −2η
[
(θt − θ∗)T (∇θL(θt, αt)−∇θL(θt, α̃))

]
+ η2

[
∥∇θL(θt, αt)∥2 − ∥∇θL(θt, α̃)∥2

]
.

(43)

Consequently, suppose thatH(θt, θ∗, η, α̃, αt) = 2η
[
(θt − θ∗)T (∇θL(θt, αt)−∇θL(θt, α̃))

]
, and

let J (θt, η, α̃, αt) = η2
[
∥∇θL(θt, αt)∥2−∥∇θL(θt, α̃)∥2

]
. Suppose the loss gradient,∇θL(θ, α),

is Lipschitz continuous in α with Lipschitz constant, Lα. We now upper bound J (θt, η, α̃, αt):

J (θt, η, α, αt) = η2
[
∇θL(θt, αt)−∇θL(θt, α̃)

]T [∇θL(θt, αt) +∇θL(θt, α̃)
]

≤ ∥∇θL(θt, αt)−∇θL(θt, α̃)∥∥∇θL(θt, αt) +∇θL(θt, α̃)∥ (44)

≤ 2η2Lα∥αt − α̃∥
[
∥∇θL(θt, αt)∥+ ∥∇θL(θt, α̃)∥

]
(45)

≤ 2η2LαL
∗∥αt − α̃∥∥θt − θ∗∥ (46)

= 2η2LαL
∗
∥∥∥∥α̃+ γ

(
L(θt−1)

1T
kL(θt−1)

− α̃

)
− α̃

∥∥∥∥∥θt − θ∗∥ (47)

= 2η2LαL
∗γ

∥∥∥∥ L(θt−1)

1T
kL(θt−1)

− α̃

∥∥∥∥∥θt − θ∗∥. (48)

We note that this upper bound follows from the Cauchy-Schwarz inequality and Corollary 2.4. We
proceed by lower boundingH(θt, θ∗, η, α̃, αt):

H(θt, θ∗, η, α̃, αt) = 2η
[
(θt − θ∗)T∇θL(θt, αt)− (θt − θ∗)T∇θL(θt, α̃)

]
(49)

≥ 2η
[
(θt − θ∗)T∇θL(θt, αt)− ∥θt − θ∗∥∥∇θL(θt, α̃)∥

]
(50)

≥ 2η
[
(θt − θ∗)T∇θL(θt, αt)− L∗∥θt − θ∗∥2

]
(51)

= 2η

[
µ∗

2
∥θt − θ∗∥2 + L(θt, αt)− L(θ∗, αt)− L∗∥θt − θ∗∥2

]
(52)

= 2η

[(µ∗

2
− L∗

)
∥θt − θ∗∥2 + α̃T (L(θt)− L(θ∗))

+ γ

(
L(θt−1)

1TL(θt−1)
− α̃

)T

(L(θt)− L(θ∗))
]
. (53)
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We note that this lower bound also follows from the Cauchy-Schwarz inequality and Corollary 2.4,
and further invokes the strong convexity of L(θ, α) in θ. Combining Eq. (48) and Eq. (53), we derive
the following upper bound on [F(θt, θ∗, η, αt)]2 − [G(θt, θ∗, η, α̃)]2:[

F(θt, θ∗, η, αt)
]2 − [

G(θt, θ∗, η, α̃)
]2 ≤ K(θt, θ∗, η, γ, α̃, αt), (54)

Where: K(θt, θ∗, η, γ, α̃, αt) = −2η
[(µ∗

2
− L∗

)
∥θt − θ∗∥2 + α̃T (L(θt)− L(θ∗))

+ γ

(
L(θt−1)

1TL(θt−1)
− α̃

)T

(L(θt)− L(θ∗))
]

+ 2η2LαL
∗γ

∥∥∥∥ L(θt−1)

1T
kL(θt−1)

− α̃

∥∥∥∥∥θt − θ∗∥. (55)

Now, consider the following chain of inequalities deriving from Eq. (54):

K(θt, θ∗, η, γ, α̃, αt) ≤ 0 =⇒
[
F(θt, θ∗, η, αt)

]2 − [
G(θt, θ∗, η, α̃)

]2 ≤ 0

=⇒
[
F(θt, θ∗, η, αt)

]
≤

[
G(θt, θ∗, η, α̃)

]
.

(56)

Accordingly, we aim to find a condition on the mixing rate, γ, under which the chain of inequalities
is satisfied. We proceed by letting K(θt, θ∗, η, γ, α̃, αt) ≤ 0, and rearrange the terms:(µ∗

2
− L∗

)
∥θt − θ∗∥2 + α̃T (L(θt)− L(θ∗)) ≥ γ

[
ηLαL

∗
∥∥∥∥ L(θt−1)

1T
kL(θt−1)

− α̃

∥∥∥∥∥θt − θ∗∥ (57)

−
(
L(θt−1)

1TL(θt−1)
− α̃

)T

(L(θt)− L(θ∗))
]
.

We note that this chain of inequalities is satisfied if, for every η > 0, there exists a γ such that:

γ ≤
(
µ∗

2 − L∗)∥θt − θ∗∥2 + α̃T (L(θt)− L(θ∗))

ηLαL∗
∥∥∥ L(θt−1)

1T
k L(θt−1)

− α̃
∥∥∥∥θt − θ∗∥ −

(
L(θt−1)

1TL(θt−1)
− α̃

)T

(L(θt)− L(θ∗))
(58)

≤
(
µ∗

2 − L∗)∥θt − θ∗∥2 + α̃T (L(θt)− L(θ∗))

ηLαL∗
∥∥∥ L(θt−1)

1T
k L(θt−1)

− α̃
∥∥∥[∥θt − θ∗∥ − (L(θt)− L(θ∗))

] = β. (59)

However, such a γ exists iff the numerator and denominator in Eq. (59) have the same sign, ensuring
that γ > 0. Accordingly, iff the condition provided in Eq. (60) is satisfied:[(µ∗

2
− L∗

)
∥θt − θ∗∥2 + α̃T (L(θt)− L(θ∗))

][
∥θt − θ∗∥ − (L(θt)− L(θ∗))

]
> 0, (60)

It follows that for every learning rate η > 0 there exists a mixing rate γ ∈ (0, β] satisfying Eq. (59)
such that ∥(θt − η∇θL(θt, αt))− θ∗∥ ≤ ∥(θt − η∇θL(θt, α̃))− θ∗∥.

B DATASET DESCRIPTIONS

B.1 MNIST DATASET

The MNIST (Modified National Institute of Standards and Technology) dataset is a collection of
handwritten digits commonly used to train image processing systems. For the MNIST classification
result from Section 4.1, the original training dataset, J , comprises N = 60000 samples, wherein the
fixed-proportion mixing parameters (for default numerical class ordering of digits from 1− 10) are:

α̃ = [0.0987, 0.1124, 0.0993, 0.1022, 0.0974, 0.0904, 0.0986, 0.1044, 0.0975, 0.0991]T

The test dataset, K, comprises Ntest = 10000 samples, with class proportions equivalent to the class
proportions in the base MNIST test dataset. For MNIST reconstruction (see Section 4.3), we utilize
manual class imbalancing, reducing the number of samples comprising each numerical class 6− 10
by a factor of 5. The original training dataset, J , now contains N = 36475 samples, wherein the
fixed-proportion mixing parameters (for default numerical class ordering of digits from 1− 10) are:

α̃ = [0.1624, 0.1848, 0.1633, 0.1681, 0.1602, 0.0297, 0.0324, 0.0344, 0.0321, 0.0326]T

We note that the test dataset maintains the same class proportions as in the base MNIST test dataset.
The features and labels within MNIST are summarized as follows:
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• Each feature (image) is of size 28× 28, representing grayscale intensities from 0 to 255.
• Target Variable: The numerical class (digit) the image represents, ranging from 1 to 10.

B.2 FASHION MNIST DATASET

The Fashion MNIST dataset is a collection of clothing images commonly used to train image pro-
cessing systems. For the Fashion MNIST classification result from Section 4.1, the original training
dataset, J , consists of N = 60000 samples, wherein the fixed-proportion mixing parameters (for
default numerical class ordering of clothing from 1− 10) are:

α̃ = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]T = (0.1)110

The test dataset, K, comprises Ntest = 10000 samples, with class proportions equivalent to the class
proportions in the base Fashion MNIST test dataset. For Fashion MNIST reconstruction (see Section
4.3), we use manual class imbalancing, reducing the number of samples within each numerical class
6 − 10 by a factor of 5. The original training dataset J , now has N = 36000 samples. The fixed-
proportion mixing parameters (for default numerical class ordering of clothing from 1− 10) are:

α̃ = [(0.1667)1T
5 , (0.0333)1

T
5 ]

T

We note that the test dataset maintains the same class proportions as in the base Fashion MNIST test
dataset. The features and labels within Fashion MNIST are summarized as follows:

• Each feature (image) is of size 28× 28, representing grayscale intensities from 0 to 255.
• Target Variable: The numerical class (clothing) the image represents, ranging from 1 to 10.

B.3 CIFAR-10 DATASET

The CIFAR-10 dataset is a collection of color images categorized into 10 different classes, and is
commonly used to train image processing systems. For the CIFAR-10 classification result in Section
4.1, the original training dataset, J , comprises N = 50000 samples, wherein the fixed-proportion
mixing parameters (for default numerical class ordering of categories from 1− 10) are:

α̃ = (0.1)110

The test dataset, K, comprises Ntest = 10000 samples, with class proportions equivalent to the class
proportions in the base CIFAR-10 test dataset. For CIFAR-10 reconstruction (see Section 4.3), we
use manual class imbalancing, reducing the number of samples in numerical classes 1−4, 7−10 by
a factor of 10. The original training dataset, J , now has N = 14000 samples. The fixed-proportion
mixing parameters (for default numerical class ordering of categories from 1− 10) are:

α̃ = [(0.0357)1T
4 , (0.3571)1

T
2 , (0.0357)1

T
4 ]

T

We note that the test dataset maintains the same class proportions found in the base CIFAR-10 test
dataset. The features and labels within CIFAR-10 are summarized as follows:

• Each feature (image) is of size 32× 32× 3, with three color channels (RGB), and size 32
x 32 pixels for each channel, represented as a grayscale intensity from 0 to 255.

• Target Variable: The numerical class (category) the image represents, ranging from 1 to 10.

B.4 IMAGENETTE DATASET

The Imagenette dataset contains a subset of 10 classes from the ImageNet dataset of color images,
and is commonly used to train image processing systems. The base Imagenette training dataset, J ,
consists of N = 9469 samples, and the base Imagenette test dataset, K, is comprised of Ntest = 3925
samples. For the Imagenette classification result in Section 4.1, we utilize manual class imbalancing,
reducing the number of samples in each numerical class 6−10 by a factor of 10. The original training
dataset, J , now has N = 5185 samples, wherein the fixed-proportion mixing parameters (for default
numerical class ordering of categories from 1− 10) are:

α̃ = [0.1857, 0.1842, 0.1915, 0.1655, 0.1815, 0.0183, 0.0185, 0.0179, 0.0183, 0.0185]T

We note that the test dataset maintains the same class proportions found in the base Imagenette test
dataset. The features and labels within Imagenette are summarized as follows:
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• Each feature (image) is of size 224 × 224 × 3, with three color channels (RGB), and size
224 x 224 pixels for each channel, represented as a grayscale intensity from 0 to 255.

• Target Variable: The numerical class (category) the image represents, ranging from 1 to 10.

B.5 CIFAR-100 DATASET

The CIFAR-100 dataset is a collection of color images categorized into 100 different classes, and is
commonly used to train image processing systems. The base CIFAR-100 training dataset, J , consists
of N = 50000 samples, and the base CIFAR-100 test dataset, K, has Ntest = 10000 samples. For
the CIFAR-100 classification result in Section 4.1, we utilize manual class imbalancing, reducing the
number of samples in each numerical class 1−50 by a factor of 20. The original training dataset, J ,
now has N = 26250 samples, where the fixed-proportion mixing parameters (for default numerical
class ordering of categories from 1− 100) are:

α̃ = [(0.001)1T
50, (0.019)1

T
50]

T

We note that the test dataset maintains the same class proportions found in the base CIFAR-100 test
dataset. The features and labels within CIFAR-100 are summarized as follows:

• Each feature (image) is of size 32× 32× 3, with three color channels (RGB), and size 32
x 32 pixels for each channel, represented as a grayscale intensity from 0 to 255.

• Target Variable: The numerical class (category) the image denotes, ranging from 1 to 100.

B.6 IMDB DATASET

The IMDB dataset is a collection of movie reviews, categorized as positive or negative in sentiment.
We split the IMDB dataset such that the base IMDB training dataset, J , has N = 40000 samples, and
the base IMDB test dataset, K, contains Ntest = 10000 samples. For the IMDB classification result
in Section 4.1, we leverage manual class imbalancing, wherein numerical class 1 retains 30% of its
samples. The original training dataset, J , now has N = 26000 samples, where the fixed-proportion
mixing parameters (for default numerical class ordering of sentiment from 1, 2) are:

α̃ = [0.2307, 0.7693]T

We note that the test dataset maintains the same class proportions as in the base IMDB test dataset.
The features and labels within the IMDB dataset are summarized as follows:

• Each feature (review) is tokenized and encoded as a sequence of word indices with a max
length of 500 tokens. Sequences are padded or truncated to ensure uniform length.

• Target Variable: The numerical class (sentiment) the review represents, either 1 or 2.

B.7 MEAN ESTIMATION DATASET

The Mean Estimation dataset is a synthetic benchmark designed for regression tasks, wherein each
example, (xj , yj), comprises a 10-dimensional feature vector, xj , of samples from one of four statis-
tical distributions, and the mean, yj , of this distribution. We create an imbalanced original training
dataset, J , with N = 3000 samples, where J1 has 1000 examples drawn from a normal distribution
with σ = 1, J2 has 1000 examples drawn from an exponential distribution, J3 has 800 examples
drawn from a chi-squared distribution, and J4 has 200 samples drawn from a uniform distribution.
The fixed-proportion mixing parameters (for numerical ordering of distributions from 1− 4) are:

α̃ = [0.333, 0.333, 0.267, 0.067]T

The test dataset, K, is created as a balanced dataset that has 1000 examples from each distribution,
wherein Ntest = 4000. The Mean Estimation dataset features and labels are summarized as follows:

• Each feature (vector of samples) is generated from one of four statistical distributions (nor-
mal, exponential, chi-squared, uniform). The feature vectors are created by sampling from
these distributions with means uniformly drawn from the interval [0, 1] for normal, expo-
nential, and chi-squared distributions, and from [20, 50] for the uniform distribution.

• Target Variable: The mean parameter used to generate the vector of samples, representing
the underlying expected value of the chosen distribution.
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B.8 WINE QUALITY DATASET

The Wine Quality dataset consists of physicochemical tests on white and red wine samples, and the
corresponding quality rating. We treat the wine type (white = 1, red = 2) as a categorical variable,
wherein k = 2. We split the Wine Quality dataset such that the base Wine Quality training dataset,
J , has N = 3248 samples, and the base Wine Quality test dataset, K, has Ntest = 3249 samples.
For the Wine Quality regression result in Section 4.2, we utilize manual class imbalancing, reducing
the number of samples in numerical class 1 by a factor of 10. The original training dataset, J , now
has N = 1043 samples, where the fixed-proportion mixing parameters (for numerical class ordering
of wine type from 1, 2) are:

α̃ = [0.234, 0.766]T

We note that the test dataset maintains the same class proportions as in the base Wine Quality test
dataset. The features and labels within the Wine Quality dataset are summarized as follows:

• Each feature (physicochemical tests) contains a set of test results, and is of size 11× 1.

• Target Variable: The wine quality rating given to the set of physicochemical tests.

B.9 CALIFORNIA HOUSING DATASET

The California Housing dataset contains housing data from California and their associated prices.
As the ocean proximity variable is categorical (<1H OCEAN = 1, INLAND = 2, NEAR BAY = 3,
NEAR OCEAN = 4), we denote k = 4. We split the California Housing dataset such that the base
California Housing training dataset, J , has N = 10214 samples, and the base California Housing
test dataset, K, has Ntest = 10214 samples. For the California Housing regression result in Section
4.2, we use manual class imbalancing, reducing the number of samples in numerical classes 1, 2, 4
by a factor of 20. The original training dataset, J , now has N = 3641 samples. The fixed-proportion
mixing parameters (for numerical class ordering of ocean proximity from 1− 4) are:

α̃ = [0.0615, 0.9055, 0.0154, 0.0176]T

We note that the test dataset maintains the same class proportions as in the base California Housing
test dataset. The features and labels in the California Housing dataset are summarized as follows:

• Each feature (housing data) contains various housing attributes, and is of size 8× 1.

• Target Variable: The housing price associated with the housing data.

C EXPERIMENT DETAILS

C.1 NEURAL NETWORK ARCHITECTURES

We provide comprehensive descriptions for six different neural network architectures designed for
various tasks: classification, regression, and image reconstruction. Each of these architectures were
employed to generate the respective empirical results pertaining to the aforementioned tasks.

C.1.1 FULLY CONNECTED NETWORKS

We leverage fully connected networks in our analysis for regression on Mean Estimation, California
Housing, and Wine Quality. The network consists of the following layers, wherein d = 10 for Mean
Estimation, d = 11 for Wine Quality, and d = 8 for California Housing:

• Fully Connected Layer (fc1): Transforms the input features from a d-dimensional space
to a 64-dimensional space.

• ReLU Activation (relu): Applies the ReLU activation function to the output of fc1.

• Fully Connected Layer (fc2): Maps the 64-dimensional representation from relu to a
1-dimensional output.
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C.1.2 CONVOLUTIONAL NEURAL NETWORKS

We utilize the LeNet-5 convolutional neural network architecture in our analysis for image classifi-
cation on MNIST and Fashion MNIST. The network consists of the following layers:

• Convolutional Layer (conv1): Applies a 2D convolution with 1 input channel, 6 output
channels, and a kernel size of 5.

• ReLU Activation (relu1): Applies the ReLU activation function to the output of conv1.
• Max Pooling Layer (pool1): Performs 2x2 max pooling on the output of relu1.
• Convolutional Layer (conv2): Applies a 2D convolution with 6 input channels, 16 output

channels, and a kernel size of 5.
• ReLU Activation (relu2): Applies the ReLU activation function to the output of conv2.
• Max Pooling Layer (pool2): Performs 2x2 max pooling on the output of relu2.
• Flatten Layer: Reshapes the pooled feature maps into a 1D vector.
• Fully Connected Layer (fc1): Maps the flattened vector to a 120-dimensional space.
• ReLU Activation (relu3): Applies the ReLU activation function to the output of fc1.
• Fully Connected Layer (fc2): Maps the 120-dimensional input to a 84-dimensional space
• ReLU Activation (relu4): Applies the ReLU activation function to the output of fc2.
• Fully Connected Layer (fc3): Produces a 10-dimensional output for classification.

For image classification on CIFAR-10 and CIFAR-100, we employ an adapted, larger version of the
LeNet-5 model. The network consists of the following layers, wherein k = 10 for CIFAR-10 and
k = 100 for CIFAR-100.

• Convolutional Layer (conv1): Applies 2D convolution with 3 input channels, 16 output
channels, and a kernel size of 3.

• ReLU Activation (relu1): Applies the ReLU activation function to the output of conv1.
• Max Pooling Layer (pool1): Performs 2x2 max pooling on the output of relu1.
• Convolutional Layer (conv2): Applies 2D convolution with 16 input channels, 32 output

channels, and a kernel size of 3.
• ReLU Activation (relu2): Applies the ReLU activation function to the output of conv2.
• Max Pooling Layer (pool2): Performs 2x2 max pooling on the output of relu2.
• Convolutional Layer (conv3): Applies 2D convolution with 32 input channels, 64 output

channels, and a kernel size of 3.
• ReLU Activation (relu3): Applies the ReLU activation function to the output of conv3.
• Max Pooling Layer (pool3): Performs 2x2 max pooling on the output of relu3.
• Flatten Layer: Reshapes the pooled feature maps into a 1D vector of size 4× 4× 64.
• Fully Connected Layer (fc1): Maps the flattened vector to a 500-dimensional space.
• ReLU Activation (relu4): Applies the ReLU activation function to the output of fc1.
• Dropout Layer (dropout1): Applies dropout with p = 0.5 to the output of relu4.
• Fully Connected Layer (fc2): Produces a k-dimensional output for classification.

C.1.3 RESIDUAL NEURAL NETWORKS

For image classification on Imagenette, we employ the ResNet-18 residual neural network architec-
ture, which consists of the following layers:

• Convolutional Layer (conv1): Applies a 7x7 convolution with 3 input channels, 64 out-
put channels, and a stride of 2.

• Batch Normalization (bn1): Normalizes the output of conv1.
• ReLU Activation (relu): Applies the ReLU activation function to the output of bn1.
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• Max Pooling Layer (maxpool): Performs 3x3 max pooling with a stride of 2 on the
output of relu.

• Residual Layer 1 (layer1): Contains two residual blocks, each with 64 channels.

• Residual Layer 2 (layer2): Contains two residual blocks, each with 128 channels.

• Residual Layer 3 (layer3): Contains two residual blocks, each with 256 channels.

• Residual Layer 4 (layer4): Contains two residual blocks, each with 512 channels.

• Average Pooling (avgpool): Applies adaptive average pooling to reduce the spatial di-
mensions to 1x1.

• Fully Connected Layer (fc): Produces a 10-dimensional output for classification.

C.1.4 TRANSFORMER MODELS

For sentiment classification on IMDB Sentiment Analysis, we leverage a transformer architecture,
which consists of the following layers:

• Embedding Layer (embedding): Maps input tokens to 64-dimensional embeddings.

• Positional Encoding (pos encoder): Adds positional information to the embeddings
with a maximum sequence length of 500.

• Transformer Encoder (transformer encoder): Applies a transformer encoder with
1 layer, 4 attention heads, and a hidden dimension of 128.

• Pooling Layer (pool): Averages the transformer outputs across the sequence length.

• Dropout Layer (dropout): Applies dropout with probability 0.1 to the pooled output.

• Fully Connected Layer (fc1): Maps the 64-dimensional pooled vector to 32-dimensional
space.

• ReLU Activation (relu1): Applies the ReLU activation function to the output of fc1.

• Fully Connected Layer (fc2): Maps the 32-dimensional input to 2 output classes.

C.1.5 AUTOENCODER MODELS

For image reconstruction on MNIST, Fashion MNIST, and CIFAR-10, we employ an autoencoder.
This network consists of the following layers, where d = 784 for MNIST and Fashion MNIST, and
d = 3072 for CIFAR-10:

• Fully Connected Layer (fc1): Transforms the input features from a d-dimensional space
to a 128-dimensional space.

• ReLU Activation (relu1): Applies the ReLU activation function to the output of fc1.

• Fully Connected Layer (fc2): Reduces the 128-dimensional representation to a 32-
dimensional encoded vector.

• Fully Connected Layer (fc3): Expands the 32-dimensional encoded vector back to a
128-dimensional space.

• ReLU Activation (relu1): Applies the ReLU activation function to the output of fc3.

• Fully Connected Layer (fc4): Maps the 128-dimensional representation back to the orig-
inal d-dimensional space.

• Sigmoid Activation (sigmoid1): Applies the Sigmoid activation function to ensure the
output values are between 0 and 1.

C.2 FOCAL TRAINING

For the classification tasks outlined in Section 4.1, we compare learn2mix and classical training with
focal loss-based neural network training (focal training). Let α̃ ∈ [0, 1]k denote the vector of fixed-
proportion mixing parameters, let L(θt) ∈ Rk denote the vector of class-wise cross entropy losses
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at time t, and let ω ∈ Rk denote the vector of class-wise weighting factors, where ∀i ∈ {1, . . . , k}:

ωi =
[1/(α̃iN)]∑k

i′=1[1/(α̃i′N)]
× k (61)

The vector of predicted class-wise probabilities, p ∈ [0, 1]k, is given by p = exp (−L(θt)), and we
let Γ ∈ R≥0 be the focusing parameter. The focal loss at time t, LFCL(θ

t, ω) ∈ R≥0, is given by:

LFCL(θ
t, α̃) =

1

k

k∑
i=1

(−ωi)(1− pi)
Γ log(pi). (62)

Per the recommendations in (Lin et al., 2017), we choose Γ = 2 in compiling the empirical results.

C.3 NEURAL NETWORK TRAINING HYPERPARAMETERS

The relevant hyperparameters used to train the neural networks outlined in Section C.1 are provided
in Table 3. All results presented in the main text were produced using these hyperparameter choices.

Table 3: Neural network training hyperparameters (grouped by task).

Dataset Task Optimizer Learning
Rate (η)

Mixing Rate (γ)
(Learn2Mix)

Batch
Size (M )

MNIST Classification Adam 1.0e-5 0.1 1000
Fashion MNIST Classification Adam 5.0e-6 0.5 1000

CIFAR-10 Classification Adam 1.0e-5 0.1 1000
Imagenette Classification Adam 1.0e-6 0.1 100
CIFAR-100 Classification Adam 0.0001 0.5 5000

IMDB Classification Adam 0.0001 0.1 500
Mean Estimation Regression Adam 5.0e-5 0.01 500

Wine Quality Regression Adam 0.0001 0.05 100
California Housing Regression Adam 5.0e-5 0.01 1000

MNIST Reconstruction Adam 0.0005 0.1 1000
Fashion MNIST Reconstruction Adam 1.0e-5 0.1 1000

CIFAR-10 Reconstruction Adam 1.0e-5 0.1 1000
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