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ABSTRACT

With the proliferation of machine learning services, the risk of privacy breaches
has never been higher, owing to the need for collecting — sometimes by any means
necessary — valuable, yet sensitive training data. When an unsanctioned data access
occurs, it may become apparent after the fact, in the predictive models that have
been trained on compromised data. This calls for effective membership inference
methods, enabling an evaluator to identify privacy breaches. Distinct from tradi-
tional membership inference attacks (MIAs), which focus on determining whether
individual data records were used in training, this study centers on the evaluation
of sets of records, particularly when only a small proportion of the set are training
members. In this scenario, traditional MIAs often suffer from non-ideal evaluation
reliability. To address this issue, from a privacy evaluator’s perspective, we propose
a novel approach for membership inference, applicable not to individual records
but to sets thereof. It relies on a non-parametric two-sample test, which leverages
the differences between high-level representation to infer membership. Based
on extensive experiments, our proposed High-level Representation-based MMD
(HR-MMD) test exhibits high sensitivity in distinguishing between the training
and non-training sets, with ideal type I error, making it a powerful membership
detection tool. Our study offers insights into an alternative privacy breach detec-
tion scenario and opens up a promising avenue for privacy evaluation based on
membership inference tests.

1 INTRODUCTION

Machine learning (ML) models have become indispensable in critical domains such as healthcare,
genomics, and image recognition, playing a pivotal role in tasks like disease diagnosis, genetic pattern
analysis, and image classification (Xiong et al., 2015; He et al., 2016; Miotto et al., 2018). These
models, particularly deep neural networks, excel at extracting complex patterns and correlations from
diverse datasets, enabling them to make accurate predictions (Song et al., 2017; Carlini et al., 2019;
Zhang et al., 2021). However, this proficiency comes with a potential drawback — the models can
inadvertently memorize training data, introducing a potential vulnerability to various privacy attacks.

As a vulnerability, this propensity of models to memorize data facets has been explored extensively,
with studies revealing that attackers can exploit model memorization through several methodologies,
including model extraction, attribute inference, property inference, and, crucially, membership
inference (whether a given data record may have been used to train a model or not) (Fredrikson
et al., 2015; Tramer et al., 2016; Shokri et al., 2017b; Ganju et al., 2018). The last one, being the
most related to the focus of our discussion, stands out for specifically targeting the confidentiality of
training data points (Shokri et al., 2017b; Yeom et al., 2018b; Salem et al., 2019b; Chen et al., 2021).

But what is mostly regarded as a vulnerability in this context can also be exploited as an opportunity
for privacy evaluators to detect unsanctioned data accesses in hindsight, from predictive models that
have been trained on compromised data. For example, a clinical trial for a common disease may be
conducted across multiple hospitals, with each hospital recruiting its patients from a large population,
following a uniform recruitment strategy. Although clinical records are highly sensitive, different
hospitals may be more or less able to protect them. Some data may be exposed to data theft, and
may then make its way into training datasets for third-party predictive models (for that disease). By
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(a) True Positive Rate. (b) Members. (c) Non-members.

Figure 1: Motivation figures. Subfigure (a) compares the true positive rates between prior MIA methods and our
proposed HR-MMD test. We evaluate a scenario where the testing subjects consist of 10% training members and
90% non-training members, aiming for an ideal true positive rate of 100%. Thresholds for prior methods were
set at different false positive rates (1% for group a, e.g., Loss-a; 10% for group b, e.g., Loss-b). The false positive
rate of our proposed HR-MMD test is 0%. The results demonstrate that our method provides a clearer distinction
between cases where Sy contains members and those where it does not. Note that the experimental settings
in Subfigure (a), detailed in Appendix G.7, differ from those used in the main experiments comparing with
standard statistical baselines. Subfigures (b) and (c) use t-SNE (Maaten & Hinton, 2008) to visualize high-level
representations in ResNet-18, where different colors represent different semantics (i.e., classes in CIFAR-10).

identifying whether a particular hospital’s records have been used to train such models, a privacy
evaluator could infer that those records were exposed to attackers.

The breach of privacy is a general and profound concern in the current machine learning landscape,
prompting urgent discussions around user data protection. Recognizing this, legislative bodies have
enacted robust privacy protection laws such as the general data protection regulation (GDPR) in
the European Union, the california consumer privacy act (CCPA) in California, and the personal
information protection and electronic documents act (PIPEDA) in Canada, which have legally consol-
idated the privacy protection. In particular, these laws provide individuals with the legal framework
to protect their membership privacy, recognizing the risk of breaches through membership inference
from ML models, calling for privacy-aware learning approaches. However, when unsanctioned data
accesses do occur, and when compromised data does make its way, later on, into training datasets for
third-party predictive models, membership inference can also be an effective tool for privacy auditors
/ evaluators, allowing them to detect data breaches from such models.

There are however essential differences between the well-studied membership inference problem,
viewed from an attacker’s perspective, and a membership inference problem reframed from a privacy
evaluator’s perspective, in terms of objectives and data granularity, as discussed next.

Membership inference attacks (MIAs) are commonly used to discern whether a given data record
is used to train a target model (member) or not (non-member) (Hayes et al., 2017; Pyrgelis et al.,
2017; Nasr et al., 2018; Rahman et al., 2018; Salem et al., 2018; Yeom et al., 2018b; Truex et al.,
2018; Jia et al., 2019; Sablayrolles et al., 2019; Song & Marn, 2020; Leino & Fredrikson, 2020b;
Rahimian et al., 2020; Song & Mittal, 2021; Choquette-Choo et al., 2021; Li et al., 2021; Liu et al.,
2022; Ye et al., 2022; Carlini et al., 2022). However, by their positioning and objectives, traditional
MIAs often suffer from high false positive rate when aiming for high true positive rate, even with
the currently considered state-of-the-art Likelihood Ratio Attack (LiRA) (Carlini et al., 2022). This
drawback persists in scenarios where the subject being tested are sets of records (Maini et al., 2021;
Kandpal et al., 2023; Maini et al., 2024), yet only a small proportion are training members (as seen in
Figure 1 (a)). This renders them unreliable as a tool serving a privacy evaluator — i.e., using them
directly to evaluate third-party models that are potentially trained on compromised (leaked) data. An
evaluation’s reliability when using MIAs approaches directly would therefore not be sufficient in
practice, as it would return a prediction with a high false positive rate or low true positive rate. Such
an evaluation may not provide enough evidence to impose penalties, and the third-party owning the
model could argue that their samples were mis-classified by the evaluation.

To address the issue of non-ideal evaluation reliability, we turn to the domain of two-sample tests and
we adopt a membership test working at a coarser granularity, for sets of records. Two-sample tests are
hypothesis tests that determine if two sets of samples come from the same distribution. Traditional
methods such as ¢-tests and Kolmogorov-Smirnov tests are effective only on data in extremely
low-dimensional spaces and require strong parametric assumptions about the distributions being
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studied. Recent work in statistics and machine learning has focused on relaxing these assumptions,
resulting in methods either generally applicable or specific to various complex domains (Gretton et al.,
2012a; Székely & Rizzo, 2013; Heller & Heller, 2016; Jitkrittum et al., 2016; Chen & Friedman,
2017; Ghoshdastidar et al., 2017; Ramdas et al., 2017; Li & Wang, 2018; Gao et al., 2018).

A popular class of non-parametric two-sample tests is based on kernel methods (Smola & Scholkopf,
2001). Such tests construct a kernel mean embedding (Berlinet & Thomas-Agnan, 2004; Muandet
et al., 2017) for each distribution, and measure the difference in these embeddings. For any char-
acteristic kernel, two distributions are the same if and only if their mean embeddings are the same,
and the distance between mean embeddings is the maximum mean discrepancy (MMD) (Gretton
et al., 2012a). Tests based on checking for differences in mean embeddings evaluated at specific
locations (Chwialkowski et al., 2015; Jitkrittum et al., 2016) and the kernel Fisher discriminant
analysis (Harchaoui et al., 2007) are also related methods. These non-parametric tests work well for
samples from simple distributions when using appropriate kernels and can be applied to machine
learning problems such as domain adaptation, generative modeling, and causal discovery (Gong et al.,
2016; Lopez-Paz & Oquab, 2017; Binkowski et al., 2018; Stojanov et al., 2019).

The detection problem we address can be framed as the statistical membership inference for privacy

breach detection. In short, given a well-trained classifier f on St, the problem we are concerned
with is determining if an incoming data set Sy has the same distribution as a non-training set Sx and
contains no elements from the training set S7. Although previous two-sample tests can readily solve
the former challenge, they are incapable of addressing the latter. This is because the raw features of
both the non-training and training sets originate from the same underlying distribution. Therefore, in
this paper, we focus on solving the latter issue. Our motivation stems from studies on the overfitting
phenomenon (Shokri et al., 2017a; Long et al., 2018; Leino & Fredrikson, 2020a), which reveal that
neural networks inevitably capture noise, leading to varying degrees of overfitting. This, in turn,
results in the generalization gap between non-training and training data. Through our investigation,

we have discovered that the high-level representations extracted by the well-trained classifier f exhibit
significant differences between the non-training and training data (e.g., as graphically illustrated in
Figure 1 (b-c)). This inherent disparity in high-level representations forms the foundation of our
proposed method, which leverages these differences to effectively distinguish between members and
non-members. In this study, we broaden the scope of our analysis on high-level representations by
incorporating a wider array of statistics derived from these representations, including confidence
scores and several widely-recognized metrics within the MIA literature, such as loss value (Yeom
et al., 2018b), entropy (Salem et al., 2019a), and likelihood ratio (Carlini et al., 2022).

In summary, we propose a novel and effective test that employs a high-level representation-based
kernel, termed High-level Representation-based MMD (HR-MMD), to assess whether a given privacy-
evaluation dataset contains elements from the training set. Unlike existing MIAs, which focus on
distinguishing individual data records as members or non-members and often exhibit non-ideal
evaluation reliability, our approach is designed to operate at a broader granularity, distinguishing
between entire sets of records. Our objective is to achieve high test power and an ideal type I
error rate. By developing a non-parametric two-sample test for membership inference, our goal
is to establish a robust statistical methodology capable of accurately detecting privacy breaches
in hindsight when compromised records have been used to train a third-party model. Extensive
experiments across image and non-image datasets demonstrate that our HR-MMD test successfully
meets these objectives, exhibiting high sensitivity in distinguishing between training and non-training
records.

Our contribution lies in being the first to introduce a non-parametric two-sample test for membership
inference, and we provide theoretical analysis on the asymptotics of HR-MMD to further substantiate
its robustness. We emphasize that existing two-sample test methods cannot effectively address the
problem of statistical membership inference for privacy breach detection. The effectiveness of our
HR-MMD test stems from two key aspects: the superior performance of high-level representations and
the novel deep kernel design. Our utilization of these high-level representations and the incorporation
of a high-level representation-based deep kernel in the context of MIAs distinguishes our work from
existing literature. As membership privacy is one of the most established methods for quantifying
privacy risks in ML models (Murakonda & Shokri, 2020), we believe our contribution offers valuable
insights into an alternative scenario for privacy breach detection and, in the long run, opens up a
promising avenue for privacy evaluation based on membership inference tests.
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2 PRELIMINARIES

2.1 CLASSIFICATION

In this paper, we focus on classification, one of the most common machine learning tasks. Let
f:R™ — [0, 1]¥ denote a neural network and let K denote the number of classes. The output of the
network is computed using the softmax function, which ensures that the output is a proper probability
vector. Namely, given an input z € R", we have f(x) = [p1,...,px] = p, where Zfil pi=1
and p; is the probability that input x belongs to class 7. Before softmax, the output of the network
represents the logits z, i.e., p = softmax(z). The classifier assigns the label y = arg max; f(z),. To
construct a machine learning model, one needs to collect a set of data samples, which is referred to
as the training set S7. The model is then built through a training process that aims to minimize a
predefined loss function using optimization algorithms, such as SGD.

2.2 NON-PARAMETRIC TWO-SAMPLE TEST

Let X C R? and P, Q be Borel probability measures on X'. Given IID samples Sy = {x;}7_, ~ P"
and Sy = {y;}7; ~ Q™, in the two-sample test problem, we aim to determine if Sx and Sy come
from the same distribution, i.e., if P = Q.

We use the null hypothesis testing framework, where the null hypothesis Hy : P = Q is tested
against the alternative hypothesis H; : P # Q. We perform a two-sample test in four steps: (i)
select a significance level o € [0, 1], (ii) compute a test statistic #(Sp, Sg), (iii) compute the p-value
p = Pry, (T > t), i.e., the probability of the two-sample test returning a statistic as large as £ when
Hy is true, and (iv) finally, reject Hy if p < a.

2.3 MAXIMUM MEAN DISCREPANCY

The maximum mean discrepancy (MMD) aims to measure the closeness between two distributions [P
and Q:

MMD(P, Q; F) := iuglE[f(X)] —E[f(Y)]l, M

fe
where F is a set containing all continuous functions (Gretton et al., 2012a). To obtain an analytic
solution regarding the sup in Eq.(1), Gretton et al. (2012a) restricts F to be a unit ball in the
reproducing kernel Hilbert space (RKHS) and obtains the kernel-based MMD defined as follows:
MMD(P,Q;Hy) :=  sup  [E[f(X)] - E[f(Y)]]
FEH N fll5, <1

=llue — nollyy, 2

where k is a bounded kernel w.r.t. a RKHS #Hy, (i.e., |k(-,-)] < +00), X ~ P, Y ~ Q are two
random variables, and up := E[k(-, X)] and pg := E[k(-,Y")] are kernel mean embeddings of P and
Q, respectively (Gretton et al., 2005; 2012a; Jitkrittum et al., 2016; 2017; Sutherland et al., 2017; Liu
et al., 2020b). From Eq.(1), it is clear that MMD equals zero if and only if P = Q (Gretton et al.,
2008). As for the MMD defined in Eq.(2), Gretton et al. (2012a) also proves this property, which
means that we could in principle use the MMD to test whether two distributions are the same.

In the MMD-based test, we are given two samples observed from PP and @, and we aim to check
whether these two samples come from the same distribution. Specifically, we first estimate the MMD
value from two samples, and then compute the p-value corresponding to the estimated MMD value
(Sutherland et al., 2017). If the p-value is above a given threshold «, then two samples are considered
to come from the same distribution. In the last decade, MMD-based tests have been used to detect
the distributional discrepancy in several application scenarios, including high-energy physics data
(Chwialkowski et al., 2015), amplitude modulated signals (Gretton et al., 2012b), and challenging
image datasets, e.g., the MNIST and the CIFAR-10 (Liu et al., 2020b).

2.4 ESTIMATING MMD

There are several natural estimators of the MMD from samples. We will assume n = m and estimate
the MMD (Eq.(2)) using the U-statistic estimator, which is unbiased for MMD? and has nearly
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minimal variance among unbiased estimators (Gretton et al., 2012a):

2 1
MMD k)= —— S H,,, 3
u(SXasYa ) n(n — 1) ; J ( )
where x;, ¢; € Sx and y;,y; € Sy.

3 PROBLEM SETTING

We aim to address the following problem of statistical membership inference for privacy breach
detection.

Problem 1. Let X be a subset of R% and P be a Borel probability measure on X, and let St =
{x;}"_, ~ P™ be IID observations from P. Assume that the privacy evaluator can obtain (i) a

well-trained classifier f trained on S, and (ii) IID observations Sx from P, where St N Sx = 0 (a

validation dataset for f). For reasonably large m values, we aim to determine if a given privacy-
evaluation dataset Sy = {y;}", contains elements from the training set St.

In Problem 1, if Sy does not contain elements from the S, given a significance level «, we aim to
accept the null hypothesis Hy (i.e., Sy are not the members of the training set of the classifier f)

against the alternative hypothesis Hy (i.e., Sy contains members of the training set of the classifier f )
with the probability 1 — c. Conversely, if Sy contains elements from the S, we aim to reject the null
hypothesis H with a probability near to 1. The probability of not committing a type II error is called
the power of the hypothesis test. Achieving a high test power requires sufficient samples, which can
accurately reflect the sample distribution. Unsurprisingly, the test power is influenced by the sample
size (denoted as m in Problem 1). A minimum sample size M can be set to prevent an inadequately
small sample size, leading to unreliable hypothesis testing. More details on this aspect can be found
in our analysis on the test power of our hypothesis under varying sample sizes. Additionally, we
discussed the scenario where Sy contains out-of-distribution samples in Appendix D. The used
important notations can also refer to Table 1.

In our framework, we rely on the following assumptions: I. The evaluator has access to the target
model, which essentially follows the setting of black-box MIAs (see Appendix A for a more detailed
literature review). We believe this is a realistic assumption, whenever the target black-box model can
be queried freely, e.g., in the setting of Machine Learning as a Service (MLaaS), where query results
can be stored locally by the evaluator; II. The evaluator has a validation set (Sx in Problem 1),
which is also a realistic assumption as validation sets are widely used in machine learning (e.g., the
local shadow dataset in (Chen et al., 2021)); IIL. A generalization gap (test error minus training
error) holds. Note that a generalization gap has been observed by practitioners during the training
of deep learning models (Song et al., 2017; Carlini et al., 2019; Murakonda & Shokri, 2020; Zhang
et al., 2021). It is a common assumption in MIAs and many works (Shokri et al., 2017b; Yeom et al.,
2018b; Salem et al., 2019b; Leino & Fredrikson, 2020b; Chen et al., 2020) have pointed out that
overfitting of the target ML models is the main factor contributing to the success of MIAs; IV. All
the data mentioned in Problem 1 are independent and identically distributed (IID) observations.

4 LIMITATIONS OF PRIOR RESEARCH FOR PRIVACY BREACH DETECTION

There is a consensus in established computer security practices (Lazarevic et al., 2003; Vangelis et al.,
2006; Kolter & Maloof, 2006; Kantchelian et al., 2015; Ho et al., 2017) that designing methods should
focus on achieving low false positive rate (FPR). This viewpoint is also supported by previous state-of-
the-art MIAs (Carlini et al., 2022), which argue that membership inference should prioritize the true
positive rate (TPR) at exceedingly low FPRs, often approaching zero. Such stringent requirements
are essential to ensure the reliability and credibility of privacy breach detections, thereby preventing
unjustified accusations that could have severe repercussions for stakeholders.

In alignment with these security standards, our research is premised on the assertion that any detection
method exhibiting a non-ideal FPR cannot be deemed successful for evaluating privacy breaches. Our
objective is to develop privacy breach detection techniques that achieve an ideal TPR of 100% while
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Figure 2: Visualization of high-level representation in ResNet-18, by t-SNE (Maaten & Hinton, 2008). Each
subfigure corresponds to a CIFAR-10 class, with red dots representing the confidence scores of non-members
and blue dots representing the confidence scores of members. The high-level representation of members appears
different from the one of non-members in each class.

maintaining an FPR of 0%, thereby adhering to the rigorous demands of computer security protocols.
However, existing MIAs and two-sample tests fall short of meeting these stringent criteria. Traditional
MIAs are fundamentally designed to assess individual instances, often leading to a compromised
balance between TPR and FPR. And the drawback persists in scenarios where the subject being tested
are sets of records (Maini et al., 2021; Kandpal et al., 2023; Maini et al., 2024), yet only a small
proportion are training members. For instance, an intuitive application of traditional MIAs involves
computing average statistics such as loss and setting a threshold to predict the presence of training
members within a dataset. Nonetheless, this approach proves unreliable because these methods are
constrained by their heuristic foundations, which lack the robust statistical guarantees necessary for
high-stakes privacy evaluations.

Moreover, the inherent design limitations of existing MIAs render them incapable of providing the
ideal FPR required for dependable privacy breach detection. These methods, which rely heavily
on heuristic motivations—such as the assumption that samples with lower loss values are more
likely to be members—fail to offer the same level of statistical rigor as our proposed HR-MMD
test. Consequently, they invariably result in non-ideal FPRs, which undermine their utility in
practical scenarios where false positives must be minimized. Empirical evaluations, detailed in
Appendix H.1, demonstrate that existing MIAs including Loss (Yeom et al., 2018b), Entropy (Salem
etal., 2019a), Attack R (Ye et al., 2022), and Likelihood Ratio Attack (LiRA) (Carlini et al., 2022) fail
to simultaneously achieve the desired TPR and FPR under conditions where non-training members
predominate the dataset. Specifically, as illustrated in Figure 1 (a), these traditional MIA methods are
unable to attain an ideal TPR of 100% and an FPR of 0%, primarily due to their disproportionate
focus on the characteristics of non-training members, who constitute the majority in such settings.

Additionally, while two-sample tests provide a robust statistical framework for assessing whether two
datasets originate from the same distribution and for maintaining an ideal FPR, they are unsuitable
for addressing the specific challenge of statistical membership inference in privacy breach detection.
This limitation is particularly pronounced when both members and non-members are drawn from
identical distributions. Such inadequacies reveal a significant gap in existing privacy breach detection
methodologies, underscoring the necessity for innovative approaches that can operate effectively at
the granularity of record sets while ensuring both high sensitivity and reliability.

5 A HIGH-LEVEL REPRESENTATION-BASED MMD TEST

In response to above significant limitations, we introduce the High-level Representation-based
MMD (HR-MMD) test. HR-MMD leverages high-level representations extracted from well-trained
classifiers to enhance the discriminative power between training and non-training sets. By integrating
novel deep kernel designs specifically tailored to capture membership-induced variations, HR-MMD
overcomes the inherent deficiencies of prior MIAs and existing two-sample tests. This innovative
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approach offers a robust and statistically rigorous solution for privacy breach detection, capable of
meeting the stringent requirements of ideal FPR and ideal TPR in complex real-world scenarios.

High-level Representation. As outlined in Section 3, a generalization gap, defined as the difference
between test error and training error (¢ = €est — €yrain > 0), is commonly observed in real-world
machine learning models. Formally, it is expressed as:

1 Nlruin 1 Nlexl
= E tram train o E ICS[ test , 4
9™ Nein ; (F @) 0™ = 5 2 (f (5) 95™) @)

where £(-,-) denotes the loss function. The condition g > 0 signifies that there is a discrepancy in
the error distributions between the training set (members) and the test set (non-members).

Based on how machine learning models work, this divergence in error distributions implies that the
difference may also exist in other high-level representations. Empirical evidence supporting this phe-
nomenon is illustrated in Figures 1 (b-c) and 2, where t-SNE (Maaten & Hinton, 2008) visualizations
of the high-level representations extracted from a well-trained deep neural network (e.g., ResNet-18)
reveal distinct clustering patterns between members and non-members. Notably, while the raw input
features of these datasets may appear similarly distributed within their respective semantic classes,
the high-level representations exhibit clear separations attributable to the underlying generalization
gap. Additional visualizations across different network layers are provided in Appendix F.

Motivated by these observations, we propose to develop a statistical testing method to distinguish
members from non-members by leveraging the differences in high-level representations. Unlike
traditional MIAs that rely on specific metrics such as loss values, our high-level representation-based
approach explores a broader spectrum of high-level representations to enhance the discriminative
power between training and non-training sets, and previous statistics like loss, entropy, and likelihood
ratio can also be easily included in our framework. This flexibility is particularly advantageous in
real-world scenarios where certain information may be unavailable or deliberately obfuscated. For
instance, in settings where true labels are inaccessible, making loss-based metrics infeasible, our
framework can leverage alternative high-level representations like confidence scores. Furthermore,
adversarial strategies such as MemGuard (Jia et al., 2019) introduce perturbations to confidence
scores to thwart membership inference, rendering loss-based and confidence score-based methods less
effective. In such cases, our HR-MMD test can employ other high-level representations, such as those
from the penultimate layer, to maintain robust membership inference capabilities. By accommodating
a diverse array of high-level representations, HR-MMD extends the evaluative toolkit for privacy
breach detection, ensuring adaptability and resilience across varying operational conditions.

High-level Representation-based MMD. Based on the high-level representation, we consider the
following deep kernel k,, (x, y) to measure the feature similarity:

hu(,y) = [(1 = co)sj(@,y) + o (. y), )
where s :(x,y) = K(dp(x), ¢p(y)) is a deep kernel function that measures the feature similarity

between x and y using high-level representations extracted by f . We use ¢, to extract high-level
representations, which can include features from any higher layer, confidence scores, loss value,
entropy (Salem et al., 2019a), and likelihood ratio (Carlini et al., 2022). « is the Gaussian kernel (with
bandwidth o4 ), a € [0, 1] is the weight for s4(x, ), while ¢y € (0,1) and g(x, y) (the Gaussian
kernel with bandwidth o) are key components to ensure that k,, (x, y) is a characteristic kernel (i.e.,
ensuring that HR-MMD equals zero if and only if two distributions are the same (Liu et al., 2020b)).

Since f is fixed, the set of parameters of k,, is w = {eg,04,,0,}. Based on k,(x,y) in Eq.(5),
HR-MMD(P, Q) is

VE [k (X, X') + ko (Y, Y) = 2k, (X, Y)],
where X, X' ~ P, Y, Y’ ~ Q. We can estimate HR-MMD(PP, Q) using the U-statistic estimator,
which is unbiased for HR-MMD? (P, Q):

HmD (SX,SY, - ZH'L]; (6)
z;ﬁ]



Under review as a conference paper at ICLR 2025

Algorithm 1 High-level Representation-based MMD Test

Input: Sx, Sy, ¢, various hyperparameters used below;

W wo A 1078; 5+ 0.5; > Initialize parameters
Split the data as Sx = SE}" U SE? and Sy = S{}’ U S{f; > Divide data into training and testing sets

# Phase 1: training the kernel parameters w on S% and S
forT=1,2,...,T 4 do

S’ <« minibatch from S¥; > Sample a minibatch from S%
S}, < minibatch from S¥; > Sample a minibatch from S

k., < kernel function with parameters w using Eq.(5); > Define kernel function based on current w
2
M (w) < HR-MMD,,(S%, S; k,,) using Eq.(6); > Compute the HR-MMD statistic for minibatch

Vi (w ) — 6'%[ )\(SS(, Sg/; k) using Eq.(9); > Estimate variance under Hy with regularization
J >\( w)/+/Va(w) using Eq.(8); > Compute the objective function for optimization
W w+ UvAdamJ/\( ) > Update kernel parameters via gradient ascent to maximize JA( )
end for
# Phase 2: testing with k,, on S% and Si¢
2
est + HR-MMD,, (S%, S k) > Compute the HR-MMD statistic on the test data
fori=1,2,...,perm do
Shuffle S U Sg/e into XandY > Shuffle data to create permutation samples
perm,; <— HR-MMDu(X Y k) > Compute the HR-MMD statistic for each permutation
end for
Output: p-value: — LS~ 1(perm; > est) > Return the p-value
perm

where H;; = ko, (2, ;) + ko (¥i, ¥5) — ko (i, Y5) — ko (i, x5).

Asymptotics and test power of HR-MMD. We analyze next the asymptotics of HR-MMD, when
Sy represents the target data. Based on the asymptotics of HR-MMD, we can estimate its test power
and use it to optimize HR-MMD (i.e., optimize the parameters in k, (x, y)).

Theorem 1 (Asymptotics under H; — simplified). Under the alternative Hy : Sy are from a stochastic
process {Yz}j':of, under mild assumptions, we have

_—— 2
Vn(HR-MMD,, — HR-MMD?) % N(0,C20%. ),

where Yi = G, ;(B[Xi]) ~ Q X; ~ P, oy, = 4(Ez [(EZ/h(Z Z)? — [(Ez,z0(Z,2))?]),
WMZ,7") = ko(X, X))+ k(YY) =k, (X,Y) =k, (X',Y), Z .= (X,Y)and C1 < +x0isa
constant for a given w.

The detailed formulation and proof of Theorem 1 can be found in Appendix C.

Using Theorem 1, we have

pHR-MMD g (\f nHR-MMD? r )
Hir CIUHl \/ECHJHI

2
where Pr?}i'yMD = Prpy, (nHR—MMDu > r) is the test power of HR-MMD, @ is the standard
normal CDF and r is the rejection threshold related to P and Q.

)

Via Theorem 1, we know that r, HR-MMD(P, Q), and oy, are constants. Thus, for reasonably large
n, the test power of HR-MMD is dominated by the first term (inside ®), and we can optimize k,, by
maximizing

J(P,Q; k.,) = HR-MMD? (P, Q; ko) /o, (P, Qs k).

Note that we omit Cy in J(IP, Q; k,,), since C; can be upper bounded by a constant Cy (see Ap-
pendix C).
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Optimization of HR-MMD. Although a higher value for the criterion J (PP, Q; k,,) means a higher
test power for HR-MMD, we cannot directly maximize J (P, Q; k,,), since HR-MMD?(P, Q; k,,) and
om, (P, Q; k) depend on the particular P and Q that are unknown. However, we can estimate it with

2
_ HR-MMD,, (Sx, Sy; k)

In(Sx, Sy k) == — : 8
A Sy = (S S k) ®
where 67;, , is a regularized estimator of o7, (Liu et al., 2020b):
4 n n 2 4 n n 2
L5 (m) A (v o o
=1 \j=1 =1 j=1

Then, we can optimize HR-MMD by maximizing .J A(Sx, Sy; k) on the S¥ and Si (see Algo-
rithm 1).

Note that, although (Sutherland et al., 2017) and (Sutherland, 2019) have given an unbiased estimator
for Ji,l , it is much more complicated to implement.

The HR-MMD test. Given the assumption that the target data records are 11D, we can test if Sy
are from P and Sy N Sx = 0. To this end, Algorithm 1 describe the complete flow of the HR-MMD
test. In Appendix C, we shown that, under mild assumptions, the proposed HR-MMD test is a
provably consistent test to detect privacy breaches by membership inference for sets of records.

Time complexity. The time complexity of Algorithm 1 can be broken down into two phases:
training and testing. During the training phase, the complexity per iteration is O(nE + n’K),
where E represents the cost of computing an embedding ¢, (z), K is the cost of computing Eq.(5)
given ¢, (), #,(y), and n is the minibatch size. For moderate values of n that fit within a GPU-
sized minibatch, the nE term typically dominates, making the complexity comparable to that of
C2STs (Lopez-Paz & Oquab, 2017). In the testing phase, the time complexity is O(nE + n?K +
nznpe,m), compared to the O(nE + nnpem) for permutation-based C2STs.

6 EXPERIMENTS

We evaluate the effectiveness of our methods across four image datasets: CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), CINIC-10 (Darlow
et al., 2018), across two different model architectures: ResNet-18 (He et al., 2016), and Wide-
ResNet-34 (Zagoruyko & Komodakis, 2016). We also show the capacity for extending to a tabular
dataset Purchase-100 (Shokri et al., 2017b) and a text dataset IMDB (Maas et al., 2011).

Baseline methods selection. Traditional MIAs are not standard hypothesis testing methods (such
as two-sample tests that guarantee the ideal type I error and then compare test power), making
them unacceptable from a statistical perspective. Therefore, when comparing our methods with
traditional MIAs, we use an experimental setting (FPR vs TPR) that differs from the one used for
comparisons with statistical testing methods, ensuring an appropriate and fair comparison. The
detailed experimental setup and results can be found in Appendices G.7 and H.1, respectively. As
discussed in Section 4 and Appendix G.5, although the limitations of traditional MIA methods prevent
them from being directly applied to privacy breach detection problems, the statistics from MIAs can be
incorporated into our non-parametric two-sample test framework (L-MMD, E-MMD, LI-MMD). In
the main experiments, we focus on comparing our six HR-MMD test series (HR1-MMD, HR2-MMD,
CS-MMD, L-MMD, E-MMD, LI-MMD), defined in Appendix G.5, with six traditional two-sample
tests (MMD-G, MMD-O, ME, SCF, C2ST, MMD-D), introduced in Appendix G.3. Additionally,
we compare two of our baselines, LR1-MMD and LR2-MMD, also described in Appendix G.5. All
baselines are specifically selected for their ability to maintain an ideal type I error rate.

Experimental results. As shown in Figure 3, our extensive experimental evaluation demonstrates
the effectiveness of the HR-MMD tests. The ablation study further highlights the superior perfor-
mance of the high-level representations and our deep kernel design. Comprehensive supplementary
experimental results, including detailed analyses across different datasets, model architectures, sample
sizes, and practical scenarios involving mixed data, are provided in Appendix H.
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Figure 3: Comparison between our HR-MMD test and other baselines. As shown in subfigure (a), traditional
MIAs fail to simultaneously achieve the desired TPR and FPR when non-training members make up 90% of
the testing dataset. Thresholds for MIAs were set at different false positive rates (1% for group a, e.g., Loss-a;
10% for group b, e.g., Loss-b). The false positive rate of our proposed HR-MMD test is 0%. The detailed
experimental setup is provided in Appendix G.7. Subfigure (b) shows that all statistical baselines achieve an
ideal type I error around the significance level of 0.05. In subfigures (c-f), only our HR-MMD test achieves
effective test power (greater than 0.05). The experiments are conducted on CIFAR-10 with ResNet-18. Detailed
experimental settings and comprehensive results can be found in Appendices G and H.

7 CONCLUSION

The risk of unsanctioned data accesses, leading to sensitive data being used in third-party predictive
models cannot be ignored. Such accesses may become apparent after the fact, in the models that
have been trained on compromised data. This calls for effective membership inference methods,
enabling an evaluator to identify privacy breaches'. Existing membership inference attacks (MIAs) —
on whether a given data record may have been used to train a model or not — suffer from non-ideal
evaluation reliability. Therefore, a change both in perspective and in approach in necessary, compared
to the MIAs’ setting, to enable privacy evaluators to do membership inference for sets of records.
In this paper, we propose a novel non-parametric two-sample test, which leverages the differences
between high-level representations, from training data and non-training data, to detect whether a set
of samples was used for training a given model. Our experiments show that the proposed HR-MMD
test exhibits remarkably high sensitivity in distinguishing between the training and non-training sets,
with the ideal type I error, making it a powerful membership inference tool for detecting data breaches
from machine learning models.

'We describe three additional application scenarios, pertaining to privacy auditing in machine unlearning,
user inference and dataset inference, in Appendix B.

10
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A RELATED WORKS

A.1 PRIVACY ATTACKS IN MACHINE LEARNING

Machine learning (ML) models, owing to their deep integration in critical domains like health-
care (Miotto et al., 2018), genomics (Xiong et al., 2015), and image recognition (He et al., 2016),
hold immense responsibility in safeguarding sensitive information. The success of these models
primarily depends on extensive datasets and computational resources (Bengio et al., 2021). However,
their capability to memorize training data (Song et al., 2017; Carlini et al., 2019; Zhang et al., 2021)
opens avenues for various privacy attacks, highlighting the crucial need for robust defenses against
privacy breaches.

Privacy attacks targeting ML models can be broadly categorized into model extraction attacks (Tramer
et al., 2016), attribute inference attacks (Fredrikson et al., 2015), property inference attacks (Ganju
et al., 2018), and membership inference attacks (MIAs) (Shokri et al., 2017b). These attacks differ
in their objectives and methodologies. While model extraction attacks replicate the target model’s
functionality, attribute and property inference attacks aim at deducing sensitive information or global
properties of the training data, respectively. MIAs, conversely, ascertain whether a particular record
was part of the model’s training data, thereby posing severe privacy risks.

MIAs specifically target the data used in the training phase of ML models. The confidentiality
breach through MIAs is so significant that it’s recognized by institutions like the National Institute of
Standards and Technology (NIST) (Tabassi et al., 2019) and regulations such as the General Data
Protection Regulation (GDPR) (Wikipedia, 2021). The genesis of MIAs traces back to the work of
Homer et al. (Homer et al., 2008), evolving over time to affect various ML models including, but
not limited to, classification (Shokri et al., 2017b), regression (Gupta et al., 2021), and generation
models (Hayes et al., 2019). The threat model typically assumes black-box access, where the attacker
only has the model’s prediction outputs.

Concurrently, research has proliferated around defensive mechanisms aiming to mitigate the risks
posed by MIAs, balancing between preserving data privacy and maintaining model utility. These
proposed defenses span across diverse methodologies, indicating the depth and complexity involved in
securing ML models against MIAs. As machine learning continues to permeate sensitive applications,
understanding and mitigating privacy attacks, especially MIAs, become paramount.

A.2 MEMBERSHIP INFERENCE ATTACKS

Membership Inference Attacks (MIAs) in machine learning (ML) are pivotal in assessing privacy
risks, where the attacker aims to determine if a specific data instance was used in training an ML
model. Central to MIAs is the exploitation of the model’s learned parameters and predictions.
The efficacy of these attacks is closely linked to the adversary’s knowledge, which encompasses
insights into the training data distribution and details of the target model, including its architecture
and parameters. The classification of MIAs into white-box and black-box attacks hinges on this
knowledge spectrum, ranging from full access to the model’s internals to limited information based
on prediction outputs (Shokri et al., 2017b).

In binary classifier-based MIAs, the attack employs a classifier trained to distinguish between training
data (members) and non-training data (non-members). This classifier’s training involves shadow
models to simulate the target model’s behavior, a concept introduced by Shokri et al. (2017b). These
shadow models, varying in the amount of accessible information, help construct datasets for training
the attack classifier. The sophistication of the attack model differs in white-box and black-box settings,
with the former having complete access to the target model, including intermediate computations and
gradients, and the latter limited to prediction vectors.

Metric-based MIAs, a less complex alternative, infer membership status by calculating metrics on
prediction vectors of data records against a predetermined threshold. These MIAs are categorized into
several types based on the metric used, such as prediction correctness, loss, confidence, and entropy-
based attacks, each with its implications and effectiveness in inferring membership (Yeom et al.,
2018b; Salem et al., 2019b). Song & Mittal (2021) improved upon traditional entropy-based MIAs
by incorporating ground truth label information into the entropy calculation, making the inference
more accurate. Recently, advanced MIAs such as Attack R (Ye et al., 2022) and the Likelihood Ratio
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Table 1: Notations

Notation [ Description [ Availability for evaluator
f H The classifier trained on St H Yes (black-box)
St H The training set of f H No
Sx H A non-training set of f H Yes
Sy I The input test data I N/A

Attack (LiRA) (Carlini et al., 2022) have been proposed to enhance the effectiveness of membership
inference. Attack R introduces refined techniques to better capture differences in samples behaviors
between the target model and the reference model. LiRA leverages likelihood ratios to improve the
statistical power of the attack, achieving state-of-the-art results in certain settings.

In addition to instance-level MIAs, there is a growing interest in set-based membership inference
attacks, where the adversary aims to determine if a set of records was part of the training data.
Maini et al. (2021) introduced Dataset Inference, providing strong statistical evidence to detect if a
given model is derived from its private training data. The key intuition behind their method is that
classifiers maximize the distance of training examples from the model’s decision boundaries, while
test examples are closer to these boundaries since they have no impact on the model weights.

In the context of large language models (LLMs), Maini et al. (2024) introduced dataset inference
methods to detect datasets used for training. They utilized adaptively weighted statistics but relied
on weak t-tests for distinction. Similarly, Kandpal et al. (2023) proposed User Inference attacks
targeting sets of samples to determine if data from specific users were included in the training set.
This approach is akin to applying Attack R (Ye et al., 2022) in the context of LLMs. However, in
non-large model scenarios, these methods exhibit significant limitations, as the statistical methods
employed may not provide sufficient discriminatory power.

Overall, MIAs represent a significant privacy concern in ML, underscoring the necessity for effective
defense mechanisms. The success of these attacks depends on the adversarial knowledge and the
chosen methodology, ranging from sophisticated binary classifier-based attacks to simpler metric-
based approaches, and extending to set-based attacks in the context of large models. This broad
spectrum of attack strategies and defense considerations in MIAs reflects a dynamic area of research,
essential for safeguarding privacy in the evolving landscape of machine learning and artificial
intelligence (Shokri et al., 2017b; Song et al., 2017; Carlini et al., 2019; Nasr et al., 2019; Murakonda
& Shokri, 2020; Zhang et al., 2021; Song & Mittal, 2021; Ye et al., 2022; Carlini et al., 2022; Maini
et al., 2021; Kandpal et al., 2023; Maini et al., 2024).

A.3 TwoO-SAMPLE TESTS

Two-sample tests aim to check whether two datasets come from the same distribution. Traditional
tests such as t-test and Kolmogorov-Smirnov test are the mainstream of statistical applications, but
require strong assumptions on the distributions being studied. Researchers in statistics and machine
learning have been focusing on relaxing these assumptions, with methods specific to various real-
world domains (Sugiyama et al., 2011; Yamada et al., 2011; Kanamori et al., 2012; Gretton et al.,
2012a; Jitkrittum et al., 2016; Sutherland et al., 2017; Chen & Friedman, 2017; Ghoshdastidar et al.,
2017; Lopez-Paz & Oquab, 2017; Li & Wang, 2018; Kirchler et al., 2020; Liu et al., 2020b). In
order to involve distributions with complex structure such as images, deep kernel approaches has
been proposed (Sutherland et al., 2017; Wenliang et al., 2019; Jean et al., 2018), the foremost study
has shown that kernels parameterized by deep neural nets, can be trained to maximize test power in
high-dimensional distribution such as images (Liu et al., 2020b). They propose statistical tests of
the null hypothesis that the two distributions are equal against the alternative hypothesis that the two
distributions are different. Such tests have applications in a variety of machine learning problems
such as domain adaptation, covariate shift, label-noise learning, generative modeling, fairness and
causal discovery (Binkowski et al., 2018; Fang et al., 2020a; Gong et al., 2016; Fang et al., 2020b;
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Liu et al., 2019; Zhang et al., 2020b;a; Liu et al., 2020a; Zhong et al., 2021; Yu et al., 2020; Stojanov
et al., 2019; Lopez-Paz & Oquab, 2017; Oneto et al., 2020).

A.4 MACHINE UNLEARNING

The right to be forgotten is a legal principle that allows individuals to request the deletion of their
personal data from entities that store it. This right has gained significant attention in recent years due
to concerns over privacy and data protection. To implement the right to be forgotten in the context
of machine learning, it is necessary to ensure that any influence that the data sample may have on
the original model is removed (Cao & Yang, 2015; Villaronga et al., 2018). This process, known as
machine unlearning, has gained momentum both in academia and industry (Neel et al., 2021; Cao &
Yang, 2015; Xue et al., 2016; Cao et al., 2018; Du et al., 2019; Ginart et al., 2019; Sommer et al.,
2020; Golatkar et al., 2020; Guo et al., 2020; Liu et al., 2020c; Baumhauer et al., 2020; Izzo et al.,
2021; Neel et al., 2021; Bourtoule et al., 2021).

In practice, implementing machine unlearning can be challenging. The most legitimate approach
is to remove the data sample requested to be deleted (referred to as farget data) and retrain the
machine learning model from scratch. The model generated by this approach is referred to as the
retrained model. However, this approach can incur high computational overhead. To mitigate this,
several approximate approaches to machine unlearning have been proposed. The models generated
by these approaches are referred to as the unlearned models. These techniques aim to minimize the
computational overhead while ensuring that the outputs of the unlearned model and the retrained
model are statistically indistinguishable (Izzo et al., 2021; Cao & Yang, 2015; Baumhauer et al., 2020;
Bourtoule et al., 2021).

In addition to the approaches of machine unlearning, it is increasingly necessary to conduct research
on their evaluation. Legislation such as the general data protection regulation (GDPR) in the
European Union, the california consumer privacy act (CCPA) in California, and the personal
information protection and electronic documents act (PIPEDA) in Canada have legally solidified
the right to be forgotten. These laws provide individuals with the legal framework to exercise
their right to request the deletion of their personal data, which makes the effective evaluation of
machine unlearning approaches necessary. For example, as the regulator, we need to inspect the
privacy protection effectiveness of machine unlearning of artificial intelligence service providers.
Alternatively, as an artificial intelligence service provider who has employed a contractor to complete
the machine unlearning service, we need to inspect the contractor’s performance. Although statistical
indistinguishability is a good measure of machine unlearning approaches in previous research (Izzo
et al., 2021; Cao & Yang, 2015; Baumhauer et al., 2020; Bourtoule et al., 2021), it is not applicable
in real-world scenarios where the retrained model is unavailable for evaluators.

B PRACTICAL SCENARIOS FOR MEMBERSHIP INFERENCE BY PRIVACY
EVALUATORS

Scenario 1 - Privacy breach detection. A large-scale clinical trial for a common disease is conducted
across multiple hospitals. Each hospital may recruit patients from a broad population base, ensuring
a diverse and representative sample. This recruitment strategy is uniform across all hospitals, leading
to an IID distribution of patient data at each hospital. Although clinical records are highly sensitive,
different hospitals may be more or less able to protect them. Some data may be exposed to data
theft, and may then make its way into training datasets St for third-party predictive models (for that
disease). By identifying whether a particular hospital’s records (Sy) have been used to train such
models, a privacy evaluator aims to determine if clinical records from a specific hospital have been
exposed to privacy attackers. Therefore, the regulator has black-box access to the model f associated
with that disease and has access to a validation dataset Sx, and the goal is to assess whether the data
Sy from the specific hospital contains elements of the training set St.

Scenario 2 — Privacy auditing in machine unlearning. In this scenario, the evaluator needs to
assess the effectiveness of privacy measures achieved through machine unlearning by an ML service
provider. The service provider claims to have performed machine unlearning on data Sy for the

model f and asserts that data Sy has been successfully "unlearned" from the model. The evaluator,
with black-box access to the updated model f (after the unlearning process), also has access to a
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validation dataset Sx. The objective is to determine whether the data Sy-, which was supposedly
unlearned, still poses any membership privacy risks by auditing if the model retains traces of Sy in
its training set St.

Scenario 3 — User inference in personalized recommendation systems. A streaming service
collects user interaction data to enhance its recommendation algorithms. While the service assures
users that their personal data is anonymized and securely handled, concerns arise about whether
specific users’ data (Sy) have been directly utilized in training the recommendation model f A
privacy evaluator, with black-box access to f and a validation dataset Sx, aims to determine if
the model’s training set St includes data from a particular user. The goal is to assess potential
privacy risks and verify the company’s compliance with user data protection policies by detecting any
inadvertent inclusion of individual user data in the training process.

Scenario 4 — Dataset inference for compliance auditing. An organization develops a machine
learning model f using a vast amount of data sourced from various datasets. Due to legal restrictions
and licensing agreements, certain datasets (Sy) are prohibited from being used in training. The
organization claims adherence to these regulations, but an external auditor seeks to verify this
compliance. With black-box access to the trained model f and a validation dataset Sy, the auditor
employs dataset inference techniques to determine whether the restricted data Sy was inadvertently
included in the training set Sp. This assessment helps ensure that the organization is not violating
data usage policies and maintains the integrity of legal and ethical standards in its model development.

C ASYMPTOTICS OF THE HR-MMD

In this section, we will prove the asymptotics of the HR-MMD by assuming that the upcoming
data {Y;};cz+ are an absolutely regular process with mixing coefficients {5y }r~o defined in the
following.

Definition 1 (Absolutely regular process). (i) Let (€2, A, Q) be a probability space, and let Ay, A
be sub-o-field of A. We define

n

B(A, Ag) = sup DD 104N By) — Q(A)Q(By), (10)

AvpoAn BB (24 55
where the supremum is taken over all partitions A1, ..., A, and By, ..., By, of Q into elements of
A1 and As, respectively.
(ii) Given a stochastic process {Y;};cz+ and integers 1 < a < b, we denote by A® the o-field
generated by the random variables Y, 1,...,Yy,. We define the mixing coefficients of absolute
regularity by

B = sup AT, AT ). an
nezZt

The process {Y;};ez+ is called absolutely regular if limy,_, o B = 0.

Then, we can obtain the main theorem in the following.
Theorem 2 (Asymptotics under Hy). Under the alternative, Hy : Sy are from a stochastic progress
{35, if {Yi Y2 is an absolutely regular process with mixing coefficients { By} x>0 satisfying

2
S ﬂz/(%&) < 400 for some 6 > 0, then HR-MMD,, is Op(1/n), and in particular

/n(HR-MMD,, — HR-MMD?) % A/(0,C20%,.),
where Y; = G4 (Be[X]]) ~ Q X{ ~ P, ofy, = A(Ez[(Ezh(Z,2)%] - (Ez,2h(Z,2))%),
WZ,Z") = ko(X, X") + ko(Y,Y") — ko (X,Y") — ko (X, Y), Z := (X,Y), X ~ P and X" are

independent and Cy < +00 is a constant for a given w.

Proof. Without loss of generality, let Z be a random variable on a probability space (27, 4%, Q%).
We will first prove that {Z j:f is an absolutely regular process. According to Eq.(10), we have

BZ (A7, AY) = sup > > IQ%(AZ N BY) - Q7(AD)Q4(BY)|,  (12)

A7, AZ.BY,..BE i1 j—1

n?
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where AZ ,A2 are sub-o-field of AZ generated by {Z}}% and the supremum is taken over all
partitions AZ ..., AZ and BZ, .. Z of Q) into elements of AZ and A%, respectively. Since X and
Y are 1ndependent and Z = (X, Y) QT%(Z € A%) ngX € AX Y € A) = P(AX)Q(A). Thus,
we have Q7 (A7 N BY?) = P(A* N B¥)Q(A; ﬂ B;) P(A)Q(A;), and Q% (BZ) =
P(B*)Q(B;). Since X and X' are independent, we have ]P’(AZX N BlX) = P(AX)P(B), meaning
that

BA(AY,AS) = sup ZZP (A¥ N BMIQ(A; N Bj) — Q(A)Q(By)].  (13)

.,AZ BZ . BZ

m = 1] 1

Due to the supremum, we can safely make P(AX N B#) be 1. Thus, we have 3% (A% AZ) =
B(Ai1, Az). Namely, {Z};1% is an absolutely regular process with mixing coefficients {3 }x>0

satisfying Zk 1 2/(2+5) < +o00. Based on Theorem 1 in (Denker & Keller, 1983), since h(-,:) < 2,
we know that

J/i(HR-MMD,, — HR-MMD?) % A/(0, 402), (14)
where
+oo
o> =E[h(Z)? 42 cov(hn(Z1), h(Z;)), (15)
T j:l

hi(Z;) = Ez,h(Z;, Z;) — 0,and 0 = Ez, 7, h(Z;, Z;). Note that, due to P # Q, we know o > 0;
due to the absolute regularity, o < +o00. Since the possible dependence between Z; and Z; are
caused by Y7 and Y}, we will calculate the second term in the right side of Eq.(15) in the following.
First, we introduce two notations for the convenience.

EY = Ex[ko(Xi, X) — ku(Yi, X)], (16)
EY = By [ky (X;,Y) — ko (Y:, V). (17)

Thus, we know
h(Z) =EQ +EY —0, h(Z;) =EY +EY —0, 0 =Bz, [EY +EY], (18

%,_/ ——
h1(Z1) h1(Zj)
and
0> =B [EQ +EVIES EY + BY] = (B4 [EQ] + B4, [ED)) (B, D] + Bz, [BY]).

(19)

Then, we can compute the cov(hi(Z1), hi(Z;)).

cov(hi(Z1), h(Z))) =Ez,,z,[(h1(Z1) = 0)(h1(Z;) — 0)]
=Bz, z,(m(Z1)h1(Z;) — 0h1(Z;) — Oha(Z1) + 6°]
=Bz, z,[h(Z1)hi(Z;)) - 6°
—Ez, 7,[(EY +E)ED +EY)) - 62 (20)
1

)E(J) —‘r]E(l)E(j) —‘rE(l)E(j)] 92

Ez[EY) |z [EY] + Ez, 2, [EYEY] - 6°.
Substituting Eq.(19) into Eq.(20), we have
COV(hl(Zl)v hl(ZJ)) = IEZ17Z]' [ngl)Eg)} - EZI [ngl)]EZ] [Eg)] (21)
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Then, substituting Eq.(17) into Eq.(21), we have

cov(h1(Z1),11(Z;)) =Evs v, [Ey Ey [k (Ye, Y Vo (V5. V)] = Evs [Ey [k (Y2, V)] By, [y [k (Y,
=EyEy [Ev, v; [k (Y1, Y)ko (Y}, Y)] = Ey; [ko (Y1, Y)Ey; ko, (Y5, Y]]
(22)
Since ky(-,-) < 1, according to Lemma 1 in (Yoshihara, 1976), we have cov(hi(Z1), hi1(Z;)) <
456/(2+6) Because Z::i g/(2+6) < 400, we know, Ve’ € (0,1), there exists an N such that
S B 5/(2+6) < €. Hence

ZCOV hl Zl) h1 Z]EYEY EYl, [kw(ylvy)kw(yjay)]
Jj=1 j=1
— Ey, [ko (Y1, Y)]Ey; [k (Y5, Y)]] +¢

(23)

where ¢’ is a small constant. Without loss of generality, we assume the small constant ¢’ is smaller
than E[h1(Z1)]?. Thus, there exists a constant C — 1 such that 2 Z X cov(hi(Z1),h(Z5)) =
(C} — 1)E[h1(Z1)]?. Namely, 0 = Cfo, , which completes the proof. O

D DISCUSSION ON ADDITIONAL SCENARIOS

As outlined in the main paper, our primary objective is to evaluate whether Sy contains elements
from the training set S, under Assumption IV presented in Section 3 that Sy consists solely of
in-distribution samples. In this section, we extend our analysis to encompass scenarios where the
dataset Sy may include out-of-distribution (OOD) samples.

D.1 ASSUMPTION OF IN-DISTRIBUTION SAMPLES

Initially, our analysis operates under the assumption that Sy does not contain any OOD samples.
This simplification enables the direct application of our proposed HR-MMD test to ascertain whether
Sy contains elements from S, thereby detecting potential privacy breaches through statistical
membership inference. Under this assumption, traditional two-sample tests (TST) are unnecessary, as
the focus remains exclusively on membership verification within a consistent data distribution. There
is also a common assumption in the field of membership inference (Hayes et al., 2017; Pyrgelis et al.,
2017; Nasr et al., 2018; Rahman et al., 2018; Salem et al., 2018; Yeom et al., 2018b; Truex et al.,
2018; Jia et al., 2019; Sablayrolles et al., 2019; Song & Marn, 2020; Leino & Fredrikson, 2020b;
Rahimian et al., 2020; Song & Mittal, 2021; Choquette-Choo et al., 2021; Li et al., 2021; Liu et al.,
2022; Ye et al., 2022; Carlini et al., 2022).

D.2 INCLUSION OF OUT-OF-DISTRIBUTION SAMPLES

Previous MIA methods have exclusively conducted experiments on samples from the same distribution
to ascertain whether a sample is a training member. However, in practical applications, Sy may
inadvertently include OOD samples. To address this more complex scenario, we propose a two-step
approach:

e Detection of OOD Samples: When there is a possibility that Sy contains OOD samples, the
initial step involves employing traditional two-sample tests (TST) to evaluate whether Sy deviates
from the distribution of Sx. This preliminary detection is crucial to ensure the integrity of
subsequent membership inference analyses.

¢  Membership Inference on In-Distribution Samples: If the TST confirms that Sy does not
include OOD samples, we proceed to apply our HR-MMD test to determine whether Sy contains
any elements from Sp. This sequential approach ensures that membership inference is conducted
solely on in-distribution data, thereby mitigating the risk of adversarial outcomes arising from the
presence of OOD samples.
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Table 2: Misclassification Rate of MIAs on Perturbed OOD Samples.

Testing samples Loss-b Entropy-b Attack R-b LiRA-b

CIFAR-10

Perturbed non-training set 100% 100% 100% 100%
CIFAR-100

Perturbed non-training set 100% 100% 100% 100%

SVHN

Perturbed non-training set 100% 100% 100% 100%
CINIC-10

Perturbed non-training set 100% 100% 100% 100%

Our two-step approach is necessary in real-world scenarios where OOD samples may be inadvertently
included. This necessity arises primarily because membership inference cannot reliably perform on
out-of-distribution samples.

It is important to note that not all out-of-distribution samples are more likely to be classified as
non-members. We leveraged a classic method from the adversarial attack domain, Projected Gradient
Descent (PGD) (Madry et al., 2017), which aims to add perturbations to natural data, thereby
increasing the loss of newly generated samples on the target classifier. By reversing the objective
function of PGD, we added perturbations to non-training data to decrease their loss on the target
classifier. Following the methodology of Madry et al. (2017), we used the £, norm to constrain the
perturbations, ensuring they do not exceed 8,/255 for each pixel.

We performed four Membership Inference Attacks (MIAs), including Loss (Yeom et al., 2018b),
Entropy (Salem et al., 2019a), Attack R (Ye et al., 2022), and Likelihood Ratio Attack (LiRA)
(Carlini et al., 2022), on the generated out-of-distribution non-members, with the MIA threshold set
to achieve a 10% False Positive Rate (FPR) on natural in-distribution data. As illustrated in Table 2,
the deliberately generated out-of-distribution non-members successfully deceived the MIAs into
classifying them as members, achieving a success rate of up to 100%.

These results demonstrate the vulnerability of existing MIAs when faced with out-of-distribution non-
members, highlighting the necessity of our proposed two-step approach to enhance the robustness of
membership inference techniques. By doing so, we can ensure that our HR-MMD test operates under
the correct assumptions, thereby maintaining the integrity and effectiveness of privacy evaluations in
diverse and potentially adversarial environments.

E DISCUSSION ON THE USE OF HIGH-LEVEL REPRESENTATIONS

Unlike traditional MIAs that rely on specific metrics such as loss values, our approach leverages
high-level representations to enhance the discriminative power between training and non-training sets.
Additionally, previous statistics like loss, entropy, and likelihood ratios can be seamlessly integrated
into our framework. This flexibility is particularly advantageous in real-world scenarios where certain
information may be unavailable or deliberately obfuscated.

For instance, in settings where true labels are inaccessible, making loss-based metrics infeasible, our
framework can utilize alternative high-level representations such as confidence scores. Furthermore,
adversarial strategies like MemGuard (Jia et al., 2019) introduce perturbations to confidence scores
to thwart membership inference, thereby reducing the effectiveness of loss-based and confidence
score-based methods. In such cases, our HR-MMD test can employ other high-level representations,
such as those from the penultimate layer of a neural network, to maintain robust membership inference
capabilities. By accommodating a diverse array of high-level representations, HR-MMD extends the
evaluative toolkit for privacy breach detection, ensuring adaptability and resilience across varying
operational conditions.
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Our approach distinctly differs from previous metric-based MIAs (Yeom et al., 2018a; Salem et al.,
2018; Song & Mittal, 2021) in several key aspects. It does not rely on predefined functions and preset
thresholds. Instead, we propose a comprehensive and reliable hypothesis testing framework coupled
with a high-level representation-based deep kernel. Crucially, our method does not merely select an
existing kernel; it innovatively learns one by optimizing its parameters during training. To the best of
our knowledge, we are the first to introduce such a non-parametric two-sample test into the field of
membership privacy.

Our ablation study, presented in Figure 7, demonstrates that using a non-deep kernel-based method
with high-level representations (HR+MMD-G) does not achieve the same effectiveness as our pro-
posed HR-MMD approach. This underscores the superiority of our deep kernel learning methodology
in enhancing membership inference performance.

While many studies have highlighted the utility of the penultimate layer of Deep Neural Networks
(DNNGs) for tasks such as out-of-Distribution (OOD) detection and adversarial detection (Lee et al.,
2018), our high-level representation-based MMD test offers significant implications beyond mem-
bership inference. Specifically, the objective of OOD detection is to verify whether input testing
data is out of distribution, and the goal of adversarial detection is to identify whether input testing
data comprises adversarial samples. Our work reveals that even when input testing samples are
neither out of distribution nor adversarial, differences in the high-level representations of members
and non-members relative to the same model still exist. This insight has been largely overlooked by
previous detection research.

As membership privacy remains one of the most established methods for quantifying privacy risks
associated with machine learning models, our contribution offers valuable insights into an alternative
scenario for privacy breach detection. By demonstrating that high-level representations can effectively
distinguish between members and non-members, our work provides a robust foundation for enhancing
privacy protection mechanisms in various machine learning applications.
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Algorithm 2 Using the HR-MMD test in our experiments.

Input: S,,,,, Sy, ¢, various hyperparameters used below;

W wo A 1078, 8+ 0.5; a < 0.05; > Initialize parameters
Split the data as .S,,,,, = E}" us;,, and Sy = S{}" U S{f; > Divide data into training and testing sets

# Phase 1: training the kernel parameters w on S% and S
forT=1,2,..., T4 do

S’ <« minibatch from S¥; > Sample a minibatch from S%
S}, < minibatch from S¥; > Sample a minibatch from S

k., < kernel function with parameters w using Eq.(5); > Define kernel function based on current w
2
M (w) < HR-MMD,,(S%, S; k,,) using Eq.(6); > Compute the HR-MMD statistic for minibatch

N (w) 6’?{1 1 (8%, Sy k) using Eq.(9); > Estimate variance under Hy with regularization
I\ (w) < M(w)/+/Vx(w) using Eq.(8); > Compute objective function for optimization
w 4 W+ NV adamIr (W); > Update kernel parameters via gradient ascent to maximize J (w)
end for
# Phase 2: testing with k,, on S!, . and S multiple times
fori=1,2,...,n¢yq do
St <+ random selection from S7, > Randomly select test samples from Sy, ,,,
2
est < HR-MMD,, (S%, Si¢; k.,) > Compute the HR-MMD statistic on test data
for j =1,2,...,nperm do
Shuffle S U S into X and Y > Shuffle data to create permutation samples
2
perm; <— HR-MMD,,(X,Y; k,,) > Compute HR-MMD statistic for each permutation
end for
P L Z?ZIW L(perm; > est) > Compute p-value for each evaluation
perm
end for '
Output: rejection rate: L 1 Yot 1(pt < @) > Return average rejection rate over evaluations

F THE VISUALIZATION OF HIGH-LEVEL REPRESENTATION

In this section, we vizualize the high-level representation of the penultimate layer of a well-tained
DNN using t-SNE (Maaten & Hinton, 2008) in Figure 4 and Figure 5. These figures show that the
high-level representation of members is different from that of non-members.
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(a) Members. (b) Non-members. (c) Members (d) Non-members

Figure 4: Visualization of high-level representations using t-SNE (Maaten & Hinton, 2008). Subfigures (a)
and (b) depict the confidence scores, while subfigures (c) and (d) illustrate the high-level representations of the
penultimate layers in ResNet-18. Different colors represent different semantics (classes in CIFAR-10). It is
apparent that the high-level representations of members differ from those of non-members. This distinction can
help in differentiating between members and non-members.
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Figure 5: Visualization of high-level representation using t-SNE (Maaten & Hinton, 2008). Subfigures (a-j)
depict the confidence scores, while subfigures (k-t) illustrate the high-level representations of the penultimate
layers in ResNet-18. Different subfigures represent different classes in the CIFAR-10. In each subfigure, red dots
represent the high-level representation of non-members and blue dots represent the high-level representation of
members. It is apparent that, within each class, the high-level representation of members is rather different from
the one of non-members.
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G EXPERIMENTAL DETAILS

G.1 DATASETS

CIFAR-10 (Krizhevsky et al., 2009) CIFAR-10 is a widely-used dataset consisting of 60,000
color images, each with a resolution of 32 x 32 x 3. The images are evenly distributed across 10
distinct classes, which represent various objects such as airplanes, automobiles, birds, and more.
In our preprocessing, we follow the standard procedure recommended in the PyTorch ResNet
documentation?, which involves normalizing the pixel values so that the dataset has a mean of zero
and a standard deviation of one. This normalization aids in stabilizing the training process of deep
neural networks and ensures faster convergence.

CIFAR-100 (Krizhevsky et al., 2009) CIFAR-100 shares the same structure and resolution as
CIFAR-10, with 60,000 color images of 32 x 32 x 3. However, it poses a more complex classification
challenge, as it is divided into 100 classes, each containing 600 images. Similar to CIFAR-10, we
preprocess CIFAR-100 using mean subtraction and standardization, normalizing the pixel values to
achieve a mean of zero and a standard deviation of one. This ensures consistency across the datasets
and helps improve model training performance, particularly for complex models like ResNet.

SVHN (Netzer et al., 2011) The Street View House Numbers (SVHN) dataset consists of over
600,000 digit images captured from real-world street views. Each image has a resolution of 32 x 32 x 3
and contains a single digit (0-9). SVHN is particularly challenging due to variations in lighting,
backgrounds, and digit orientations. For preprocessing, we apply normalization similar to CIFAR-10
and CIFAR-100, scaling the pixel values to have a mean of zero and a standard deviation of one.

CINIC-10 (Darlow et al., 2018) CINIC-10 is an extension of the CIFAR dataset, designed to bridge
the gap between CIFAR-10 and more complex datasets like ImageNet. It contains 270,000 images
with a resolution of 32 x 32 x 3, with classes and data distribution similar to CIFAR-10. CINIC-10
combines CIFAR-10 images with a subset of ImageNet images, providing a larger and more diverse
dataset. We apply the same preprocessing steps as in CIFAR-10 and CIFAR-100, ensuring pixel
normalization to improve training stability and ensure compatibility with deep learning models.

Purchase-100 (Shokri et al., 2017b) Purchase-100 is a comprehensive dataset comprising 100,000
samples of purchase records from an online retail platform. Each sample is represented by a 600-
dimensional binary vector, where each dimension indicates the presence or absence of a specific
product in a transaction. The dataset is categorized into 100 distinct classes, corresponding to different
product categories, with 80,000 samples allocated for training and 20,000 samples designated for
testing. This dataset is instrumental for tasks such as multi-label classification, purchase prediction,
and customer behavior analysis.

IMDB (Maas et al., 2011) The IMDB dataset consists of 50,000 movie reviews labeled as positive
or negative sentiment. Each review is a sequence of words with varying lengths, making it a suitable
benchmark for natural language processing tasks such as sentiment analysis. We preprocess the text
data by tokenizing the reviews, converting words to lower case, removing stop words, and applying
techniques like padding or truncation to ensure uniform input length. Additionally, we employ word
embeddings to transform textual data into dense vector representations, facilitating the learning
process of deep neural networks.

G.2 MODEL STRUCTURE

ResNet-18 (He et al., 2016) ResNet-18 is a deep residual neural network consisting of 18 layers,
designed to address the vanishing gradient problem in deep networks through the introduction of
residual connections. These connections allow gradients to flow more easily during backpropagation,
enabling the training of deeper architectures without degradation in performance. ResNet-18 com-
prises multiple residual blocks, each containing convolutional layers, batch normalization, and ReLU
activation functions. The architecture concludes with a fully connected layer for classification. In our

https://pytorch.org/hub/pytorch_vision_resnet/
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experiments, we utilize ResNet-18 due to its balance between computational efficiency and model
performance, making it suitable for a variety of image classification tasks.

Wide-ResNet-34 (Zagoruyko & Komodakis, 2016) Wide-ResNet-34 is an extension of the
original ResNet architecture, characterized by increased width (i.e., more convolutional filters)
instead of deeper layers. This modification allows the network to capture more complex features
without the computational overhead associated with very deep networks. Wide-ResNet-34 consists
of 34 layers with widened residual blocks, incorporating more filters in each convolutional layer
to enhance the model’s capacity. Additionally, it employs techniques such as dropout and batch
normalization to improve generalization and training stability. In our study, Wide-ResNet-34 is
chosen for its superior performance on more challenging datasets, where increased model capacity
can lead to better feature representation and classification accuracy.

G.3 BASELINES

We compare our methods against six state-of-the-art (SOTA) two-sample tests and two of our defined
baselines, which were specifically chosen for their capability to maintain an ideal type I error rate.

These include: 1) the MMD-G test (Grosse et al., 2017), 2) the MMD-O test (Sutherland et al., 2017),
3) the Mean Embedding (ME) test (Jitkrittum et al., 2016), 4) the Smooth Characteristic Functions
(SCF) test (Chwialkowski et al., 2015), 5) the Classifier Two-Sample Test (C2ST) (Lopez-Paz &
Oquab, 2017), and 6) the MMD-D test (Liu et al., 2020b). Additionally, we include two of our
defined baselines, LR1-MMD and HR2-MMD, which use low-level representations as described in
Appendix G.5.

G.4 EXPERIMENTAL SETUP

We verify our methods with the model structures ResNet-18 (He et al., 2016) and Wide-ResNet-34
(WRN-34) (Zagoruyko & Komodakis, 2016), on the four benchmark image datasets (CIFAR-10
(Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), CINIC-
10 (Darlow et al., 2018)). We adopt a training setup for the classifier f that is consistent with prior
studies. All networks are trained for 100 epochs using SGD with 0.9 momentum. The initial learning
rate is 0.1 (0.01 for SVHN), and is divided by 10 at epoch 60 and 90, respectively. The weight decay
is 0.0002 (0.0035 for SVHN). We also verify our methods on a tabular dataset Purchase-100 (Shokri
et al., 2017b). Following the training details from (Ye et al., 2022), we use a 4-layer MLP model with
layer units [512, 256, 128, 64], employing the SGD optimizer algorithm. Additionally, we verify our
methods on a text dataset IMDB (Maas et al., 2011) on a simple 2-layer LSTM model with hidden
sizes [128, 128].

We implemented all methods on Python 3.7 (Pytorch 1.7.1) with an NVIDIA GeForce RTX 3090
GPU with AMD Ryzen Threadripper 3960X 24 Core Processor. The CIFAR-10, the SVHN, the
CIFAR-100 and CINIC-10 dataset can be downloaded via Pytorch.

G.5 CHOICES OF HR-MMD TEST SERIES

Our approach leverages high-level representations to enhance the discriminative power between
training and non-training sets. Additionally, statistics such as loss value, entropy, and likelihood
ratio can be seamlessly integrated into our framework. This flexibility is particularly advantageous in
real-world scenarios where certain information may be unavailable or deliberately obfuscated.

For instance, in settings where true labels are inaccessible, rendering loss-based metrics infeasible, our
framework can utilize alternative high-level representations such as confidence scores. Furthermore,
adversarial strategies like MemGuard (Jia et al., 2019) introduce perturbations to confidence scores
to thwart membership inference, thereby reducing the effectiveness of loss-based and confidence
score-based methods. In such cases, our HR-MMD test can employ other high-level representations,
such as those from the penultimate layer of a neural network, to maintain robust membership inference
capabilities. By accommodating a diverse array of high-level representations, HR-MMD extends the
evaluative toolkit for privacy breach detection, ensuring adaptability and resilience across varying
operational conditions.

29



Under review as a conference paper at ICLR 2025

Our HR-MMD test framework encompasses a wide range of series. In the experimental section, we
employed the following six HR-MMD variants:

* HRI1-MMD: In the deep kernel defined in Eq.(5), ¢,, is used to extract high-level representations
from the last layer of the target model.

* HR2-MMD: In the deep kernel defined in Eq.(5), ¢, is used to extract high-level representations
from the second-to-last layer of the target model.

* CS-MMD: In the deep kernel defined in Eq.(5), ¢, is used to the confidence scores (derived from
high-level representations).

e L-MMD: In the deep kernel defined in Eq.(5), ¢,, is used to calculate the loss values (derived
from high-level representations).

* E-MMD: In the deep kernel defined in Eq.(5), ¢, is used to calculate the entropies (derived from
high-level representations).

* LI-MMD: In the deep kernel defined in Eq.(5), ¢,, is used to calculate the likelihood ratio (derived
from high-level representations).

Additionally, we incorporate our deep kernel approach using low-level representations into the
baseline methods:

* LR1-MMD: In the deep kernel defined in Eq.(5), ¢, is used to extract low-level representations
from the first layer of the target model.

* LR2-MMD: In the deep kernel defined in Eq.(5), ¢,, is used to extract low-level representations
from the second layer of the target model.

G.6 IMPLEMENTATION DETAILS OF THE COMPARISON WITH TRADITIONAL TWO-SAMPLE
TESTS

In our experimental framework, the training set size of f , denoted by S, is set to 25, 000 for CIFAR-
10, CIFAR-100 and SVHN, and 90, 000 for CINIC-10. Additionally, we assume the evaluator has a
non-training set Sy,,,,, €ach containing 5, 000 images from the respective datasets. S% and S% are
selected from S,,,,,. We fix the size of the input test dataset Sy to 1,000 in our main experiments.
When comparing our method with the baseline methods in terms of test power, the samples Sy are
randomly selected from the training subsets (St) of the above datasets. In this context, ST NSy = 0,
St NSy = Sy, and Sy NSy = (. When comparing our method with the baselines in terms of type
I error, the samples Sy are randomly selected from the testing subsets of the four datasets. In this
context, the sets are disjoint such that S N Sx = 0, ST NSy = 0, and Sx N Sy = 0.

In Algorithm 1, for the input test data set Sy (size 1,000) and the non-training set Sx (size 1, 000),
we select subsets containing 500 images each for S¥ and S¥’ and train our deep kernel on these
subsets. The evaluation is conducted once on S% and Si¢ with the set size of 500, each disjoint
from the training sets S% and S¥’, of the remaining data. We compare the p-value obtained from
Algorithm 1 with the significance level « to determine whether to reject Hy.

Recall that, in our experiments, to obtain a more reliable assessment, the evaluation (Phase 2 in
Algorithm 1) is repeated 100 times on a fixed Sf/e (size 500) and 100 different random subsets Sé?
(size 500). Here we assume the evaluator has a non training set Sy, comprising 5, 000 samples. Out
of these, 500 samples are selected for S, and the remaining 4, 500 samples are used to generate
100 different random subsets S%. Algorithm 2 describes the complete flow of this process. When
the inputted samples Sy are non-members, the rejection rate outputted is the type I error. When
the inputted samples Sy are members, the rejection rate outputted is the test power. We repeat this
process 10 times, and report the mean test power of each test. The learning rate of our HR-MMD test
and all baselines is 0.02.

It is noteworthy that the size of Sy in our main experiments is significantly smaller compared to the
ones used in previous two-sample tests studies. For instance, the experiments in (Liu et al., 2020b)
use an Sy of size 2,000. Our results, as presented in Figure 12 and Figure 13, demonstrate the
effectiveness of our HR-MMD test even with smaller sample datasets.
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G.7 IMPLEMENTATION DETAILS OF THE COMPARISON WITH TRADITIONAL MIAS

In our experiments comparing the false positive rates and true positive rates between prior Membership
Inference Attacks (MIAs) and our proposed HR-MMD test, we conducted comparisons with four
typical MIA methods: Loss Attack (Yeom et al., 2018b), Entropy Attack (Salem et al., 2019a), Attack
R (Ye et al., 2022), and the Likelihood Ratio Attack (LiRA) (Carlini et al., 2022).

We focused on predicting membership risks for datasets where only a small proportion (10%) of
the records are training members. For the LiRA attack, we selected its offline attack version to save
computational cost. For model training, we followed the process in (Carlini et al., 2022), training
a ResNet-18 model to 60% accuracy on 25,000 CIFAR-10 examples, denoted as S, which were
randomly selected from the original CIFAR-10 training set. We assumed that the adversary (evaluator)
has access to a non-training set S,,,,, containing the remaining 25,000 examples from the original
CIFAR-10 training set, which were used to train 64 shadow models.

For the baseline MIAs, which output decisions for individual data points, we aggregated their outputs
to the dataset level by computing average statistics such as loss, entropy, or likelihood ratio over
the input test dataset Sy, and setting thresholds to make set-level decisions, similar to the approach
used in set-based attacks like (Kandpal et al., 2023; Maini et al., 2024). In the evaluation, when
assessing the false positive rate, we selected Sy of size 1,000 from the original CIFAR-10 testing
set (10,000 samples), containing no training members. When assessing the true positive rate, we
selected Sy of size 1,000, where 90% of the samples were from the CIFAR-10 testing set and 10%
were from the training set St, thereby containing training members. We repeated this full process
1,000 times for datasets with members and 1,000 times for datasets without members, and reported
the average statistics. When the average statistics such as loss for one dataset Sy was no greater than
the threshold, we considered that Sy contained training members. When the average statistics was
greater than the threshold, we considered that Sy~ contained no training members.

For our HR-MMD test methods, we also assumed that the evaluator has a non-training set .S,
comprising 5,000 samples. Out of these, 500 samples were selected for S%7, and the remaining 4,500
samples were used to randomly generate 100 different subsets S%¢. We divided the input test data Sy
(size 1,000) into S and Sif, each of size 500. We trained our deep kernel once on S¥ and Si/, and
then evaluated on S and 100 different S%¢ sets. We repeated this process 1,000 times for datasets
with members and 1,000 times for datasets without members, and reported the rejection rate of each
dataset. When the rejection rate for one dataset Sy was no greater than 0.065, we considered that Sy
contained no training members. When the rejection rate was greater than 0.065, we considered that
Sy contained training members.

In our experiments, the true positive rate (TPR) is defined as the proportion of datasets correctly
identified as containing training members, and the false positive rate (FPR) is the proportion of
datasets incorrectly identified as containing training members when they do not. Experimental results
show that our HR-MMD test significantly outperforms prior set-based MIAs.

H SUPPLEMENTARY EXPERIMENTAL RESULTS

In this section, we present very comprehensive supplementary experimental results to detail the
performance of our method HR-MMD alongside various baselines. The results comprehensively
demonstrate the advantages of our method over the baselines. It should be noted that LR1-MMD and
LR2-MMD are our deep kernels that utilize the low-level representations from the first and second
layers of the target model, respectively, while HR1-MMD and HR2-MMD are our deep kernels that
employ the high-level representations from the last and second-to-last layers of the target model.

H.1 COMPARISON WITH TRADITIONAL MIAS.

Figure 6 (a) assesses cases where the testing subjects are non-training members, targeting an ideal
false positive rate of 0%. Figure 6 (b) assesses cases where the testing subjects are a mix of 10%
training members and 90% non-training members, aiming for an ideal true positive rate of 100%.
Thresholds for prior methods were set for different false positive rates (1% for group (a) (e.g., Loss-a);
10% for group (b) (e.g., Loss-b)). A critical limitation of these attacks is that striving for a low false
positive rate often results in a low true positive rate. This is contrasted with our proposed HR-MMD
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Figure 6: Comparison of false positive rates (subfigure a) and true positive rates (subfigure b) between MIAs
methods and our proposed HR-MMD test. Subfigure (a) assesses where the testing subjects are non-training
members, targeting an ideal false positive rate of 0%. Subfigure (b) assesses where the testing subjects are a
mix of 10% training members and 90% non-training members, aiming for an ideal true positive rate of 100%.
Thresholds for prior methods were set for different false positive rates (1% for group a (e.g., Loss-a); 10% for
group b (e.g., Loss-b)). A critical limitation of these attacks is that striving for a low false positive rate often
results in a low true positive rate. This is contrasted with our proposed HR-MMD test, which perform more
effectively as illustrated in the figure.
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Figure 7: Ablation study: the test power (%) of the HR-MMD test and MMD-based methods on ResNet-18. As
seen in subfigure (a), all methods achieve an ideal type I error around the significance level of 0.05. Results
in subfigure (b) further support our thesis that high-level representation are more effective in differentiating
between members and non-members, compared to raw features and low-level representation (CS-MMD (or
HR1-MMD) vs MMD-O; CS-MMD (or HR1-MMD) vs MMD-G; CS-MMD (or HR1-MMD) vs LR-MMD), as
well as outperform learned features in other deep kernels (CS-MMD (or HR1-MMD) vs MMD-D). Additionally,
our findings indicate that our deep kernel approach outperforms the non-deep kernel methods (CS-MMD (or
HR1-MMD) vs HR+MMD-G). The experiments were conducted on CIFAR-10 using ResNet-18.

test, which performs more effectively as illustrated in the figure. Note that traditional MIAs are not
standard hypothesis testing methods, so when comparing our methods with traditional MIAs, we use
the experimental setup in Appendix G.7 to conduct an appropriate and fair comparison.

H.2 TEST POWER ON DIFFERENT DATASETS AND MODEL STRUCTURES.

We evaluate the effectiveness of our methods across four image datasets: CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and CINIC-10
(Darlow et al., 2018), across two different model architectures: ResNet-18 (He et al., 2016) and
Wide-ResNet-34 (Zagoruyko & Komodakis, 2016). We also demonstrate the capacity for extending
to a tabular dataset Purchase-100 (Shokri et al., 2017b) and a text dataset IMDB (Maas et al., 2011).
The experimental results are detailed in Figure 10, Figure 11, Figure 16 and Figure 17. The results
demonstrate the effectiveness of our HR-MMD tests over the baselines across extensive datasets and
model structures.

H.3 TEST POWER ON DIFFERENT SET SIZES.
From Eq.(7), it is clear that the test power of the HR-MMD test is contingent upon the sample size,

with larger m yielding enhanced test power. This is consistent with other kernel-based non-parametric
two-sample tests, such as C2ST and MMD-D (Lopez-Paz & Oquab, 2017; Liu et al., 2020b). In the
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Table 3: The test power and type I error rates (%) of the HR-MMD test and baselines on the LLMs
scenarios.

Test Power (%) Type I Error Rate (%)
Set size HR-T HR-MMD HR-MMD-G HR-T HR-MMD HR-MMD-G
100 22 18.7 8.6 1.6 2.3 22
200 1.6 21.7 12.7 0.5 33 3.1

realm of high-dimensional data analysis with deep kernels, the minimal sample size necessary to
ensure test validity is dataset-dependent and challenging to estimate. Consequently, we conducted a
comparative analysis of our HR-MMD tests against the baseline methods for various sample sizes.
The outcomes in Figure 12 and Figure 13 further corroborate the effectiveness of our HR-MMD tests,
which surpass the baselines for diverse sample sizes.

H.4 TEST POWER FOR A MIXTURE OF TRAINING AND NON-TRAINING RECORDS.

In a more practical scenario, it may be the case that only part of the tested data has been breached
and used for training. We analyze the test power of the HR-MMD test and the baseline methods in
this case, with the proportion of members ranging from 10% to 100%. The experimental results on
ResNet-18 are presented in Figure 14 and Figure 15. These results show that the performance of our
HR-MMD test is once again superior to that of the baseline methods.

H.5 ABLATION STUDY.

Finally, to demonstrate the superior performance of the high-level representations, we conducted a
comparative analysis of our HR-MMD tests against other MMD-based methods. The experimental
results are detailed in Figure 7. They further support our thesis that high-level representations are
more effective in differentiating between members and non-members compared to raw features and
low-level representations (CS-MMD (or HR1-MMD) vs MMD-0O; CS-MMD (or HR1-MMD) vs
MMD-G; CS-MMD (or HR1-MMD) vs LR-MMD), as well as outperforming learned features in
other deep kernels (CS-MMD (or HR1-MMD) vs MMD-D). Additionally, our findings indicate that
our deep kernel approach outperforms the non-deep kernel methods (CS-MMD (or HR1-MMD) vs
HR+MMD-G).

I DISCUSSION OF APPLICATIONS IN LARGE LANGUAGE MODEL SCENARIOS

In this section, we demonstrate the applicability of our HR-MMD test within the context of large
language models (LLMs), focusing specifically on dataset inference scenarios as discussed in cutting-
edge LLMs studies (Kandpal et al., 2023; Maini et al., 2024). These LLM dataset inference tasks
represent a subset of the privacy breach detection problems that our method aims to address. We
illustrate how our approach can be effectively integrated with the current state-of-the-art (SOTA)
method proposed by Maini et al. (2024), yielding improved results and offering valuable insights into
privacy breach detection in the realm of LLM:s.

The dataset inference procedure outlined by Maini et al. (2024) comprises two primary components.
The first involves aggregating features using Membership Inference Attacks (MIAs). Specifically, the
suspect set and validation set are passed through the LLLM to obtain features derived from various
MIAs, resulting in a single feature vector for each sample. This aggregated feature vector is then used
to train a linear regression model, which learns the importance weights for different MIA features to
predict membership status. The second component performs dataset inference using statistical t-tests
to determine whether the suspect set was utilized during the model’s training.

Our method integrates seamlessly with the first component of Maini et al. (2024)’s procedure. We
adhere strictly to their experimental setup, utilizing the weighted results from the linear regression
model as our high-level representations. Specifically, we replace the feature extractor ¢, of our
deep kernel in Eq.(5) with these weighted MIA features. Unlike traditional t-tests, our deep kernel,
equipped with a learning process, effectively captures distributional differences, providing a more
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Table 4: The test power (%) of the HR-MMD test and baselines using the z/ib_ratio feature on
different set sizes.

Method 100 200 300 400 500 600 700 800 900
HR-T 1.2 0.7 2.7 8.5 234 18.7 44.7 62.7 755
HR-MMD-G 3.5 4.4 6.3 8.9 10.5 12.4 229 32.5 41.1
HR-MMD 5.6 9.2 12.1 24.2 33.3 30.5 58.9 73.8 93.1

powerful statistical test. We then employ our Algorithm 1 to perform the HR-MMD test and compute
the p-value.

Our experimental setup closely follows that of Maini et al. (2024). We conduct dataset inference
experiments on subsets of the Pile dataset (Gao et al., 2020), utilizing models from the Pythia family
(Biderman et al., 2023) at the 410M parameter scale. Although computational resource limitations
preclude experiments with larger models, this scale suffices to demonstrate the feasibility and efficacy
of our strategy. The Pile dataset comprises 50,000 records used in training the Pythia models and
2,434 records not included in the training set. Following the methodology of Maini et al. (2024),
we use 1,000 of the 50,000 training records and 1,000 of the 2,434 non-training records to train the
linear regression model, thereby learning the importance weights for different MIA features. We then
apply the weighted results from the linear regression model to the remaining data to evaluate dataset
inference performance.

Aligning with the well-established two-sample test framework (Grosse et al., 2017; Sutherland et al.,
2017; Jitkrittum et al., 2016; Chwialkowski et al., 2015; Lopez-Paz & Oquab, 2017; Liu et al.,
2020b), and similar to the implementation details described in Appendix G.6, we conduct multiple
tests: 100 evaluations on a fixed S§ (with sizes ranging from 100 to 200) and 100 different random
subsets S'¢ (of corresponding sizes). It is noteworthy that the set sizes are relatively small due to
the limited size of the known non-training set in the Pile dataset. Larger set sizes could diminish the
diversity of sample pairs in multiple tests, potentially affecting test performance. Additionally, since
statistical test performance generally improves with larger set sizes, conducting comparisons under
this challenging small set size setting allows for a more effective distinction of test power among
different methods. When the input samples Sy are non-members, the rejection rate corresponds to
the type I error, whereas for members, it reflects the test power. We repeat this process 10 times and
report the mean rejection rate of each test.

In this comparative study, we refer to the method employing t-tests on the weighted results as
HR-T. We compare our HR-MMD test, which utilizes a deep kernel, against HR-T using the same
high-level representations (weighted results from Maini et al. (2024)). Additionally, we examine the
performance of using a fixed non-deep kernel (e.g., a standard Gaussian kernel) in the same setting,
which we denote as the HR-MMD-G test.

Furthermore, we explore different high-level representations by directly using the original feature
vectors (e.g., zlib_ratio) without employing the weighted results from Maini et al. (2024). In this
setting, we do not require training a linear regression model as in Maini et al. (2024), enabling us to
utilize more data for evaluating dataset inference performance. Consequently, we conduct tests with
larger set sizes, performing 100 evaluations on fixed S (sizes ranging from 100 to 500) and 100
different random subsets S of corresponding sizes.

Our results, presented in Table 3 and Table 4, indicate that our HR-MMD test enhances the detection
of whether the suspect set was employed during model training compared to using t-tests in (Maini
et al., 2024). The HR-MMD test more effectively distinguishes the distributional differences between
the suspect and validation sets, leading to higher rejection rates when appropriate. This demonstrates
that our method is applicable to LLM dataset inference scenarios and can augment current SOTA
methods, providing substantial insights into privacy breach detection within the context of large
language models.
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J DISCUSSION OF EVALUATIONS UNDER MEMBERSHIP INFERENCE DEFENSES

In this section, we delve into the robustness of our HR-MMD test when confronted with advanced
membership inference defenses. Our aim is to demonstrate that our method maintains high efficacy
even when models employ sophisticated techniques to obfuscate membership information. The
experimental setup aligns with the details provided in Appendix G.6, ensuring consistency and
comparability across our evaluations. To rigorously assess the resilience of our HR-MMD test, we
implemented three prevalent membership inference defense strategies in training ResNet-18 models
on the CIFAR-10 dataset:

Knowledge Distillation. We utilized a teacher-student framework where the student model learns
from the softened outputs (soft labels) of a pre-trained teacher model. This approach is intended to
enhance generalization and obscure membership information by transferring knowledge in a manner
that reduces overfitting to the training data.

L1 Regularization. We incorporated an L1 regularization term into the loss function during training.
By penalizing the absolute values of the model weights, L1 regularization encourages sparsity in
the parameters, which can mitigate overfitting and, consequently, reduce the leakage of membership
information.

Differential Privacy (DP-SGD). We implemented the Differentially Private Stochastic Gradient
Descent (DP-SGD) algorithm (Abadi et al., 2016), setting the privacy budget to ¢ = 1. DP-SGD
introduces carefully calibrated noise to the gradients during training, providing formal privacy
guarantees that limit the influence of any individual training sample on the model parameters.

The datasets used in these experiments were partitioned as per Section G.6. Specifically, the training
set S comprised 25,000 images from CIFAR-10, while the non-training set S,o, consisted of 5,000
images disjoint from S7. The input test dataset Sy was a size of 1,000 for the main experiments,
with samples drawn either from the training set (for test power assessments) or the testing set (for
type I error evaluations). Our experimental procedure adhered to Algorithm 1, with the evaluation
phase repeated 100 times to obtain reliable assessments. The rejection rates were calculated based on
the proportion of times the null hypothesis H, was rejected across these repetitions.

As shown in Figure 8, The HR-MMD test consistently demonstrated superior performance compared
to traditional two-sample tests across all defense mechanisms. Under knowledge distillation and L1
regularization, our method maintained high test power, effectively detecting the presence of training
members in the input dataset Sy . Notably, even under the stringent privacy guarantees of DP-SGD
with ¢ = 1, our HR-MMD test achieved significant detection rates, indicating robustness against
differential privacy defenses. These findings validate the HR-MMD test as a robust and reliable
method for membership inference in adversarial settings where models employ advanced defense
strategies. The ability to effectively detect membership information underlines the practical relevance
of our method in privacy risk assessments and reinforces its standing as a state-of-the-art benchmark
in this domain.

K DISCUSSION OF EXTENSIVE MIXUP MEMBERSHIP SCENARIOS

We further extended our experimental framework to investigate mixed membership scenarios, re-
flecting real-world situations where the input test data Sy contains varying proportions of training
members and non-members. This exploration aims to assess the sensitivity and reliability of our
HR-MMD test in detecting membership information under more complex and challenging conditions.

The experimental setup remains consistent with Section G.7. We constructed input datasets Sy of
size 1,000, comprising different mixup ratios r € {40%, 50%, 60%, 70%, 80%, 90%} of training
members from S and non-members from Syo,. The partitioning into training and testing subsets for
both Sx and Sy, as well as the selection of S, and S, followed the procedures outlined previously.
The true positive rate (TPR) is defined as the proportion of datasets correctly identified as containing
training members, and the false positive rate (FPR) is the proportion of datasets incorrectly identified
as containing training members when they do not. We evaluated our HR-MMD test and traditional
set-based MIAs under the membership inference defense strategy L1 regularization discussed in
Section J.
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Figure 8: Evaluations under membership inference defenses. As shown, the HR-MMD test consistently
demonstrated superior performance compared to traditional two-sample tests across all defense mechanisms.
Under knowledge distillation and L1 regularization, our method maintained high test power, effectively detecting
the presence of training members in the input dataset Sy . Notably, even under the stringent privacy guarantees
of DP-SGD with € = 1, our HR-MMD test achieved significant detection rates, indicating robustness against
differential privacy defenses. The experiments were conducted on CIFAR-10 using ResNet-18.

Experimental results in Figure 9 show that our HR-MMD test significantly outperforms prior set-
based MIAs. The HR-MMD test consistently exhibited strong performance across all mixup ratios
and the defense mechanism. With a varying proportion of training members, our method maintained
best TPR at the same F'PR = 10%, effectively detecting the presence of training data within Sy.
This sensitivity demonstrates the capability of the HR-MMD test to discern subtle shifts in data
distributions resulting from the inclusion of training members. Under the implemented defenses, our
method’s performance remained robust. The application of defense mechanisms did not significantly
impair the HR-MMD test’s ability to detect membership information, highlighting its resilience in
adversarial settings.

In contrast, traditional set-based MIAs struggled notably in these scenarios. Their true positive rates
decreased markedly as the mixup ratio decreased or when defenses were applied. This limitation
underscores the challenges traditional MIAs face in handling mixed membership data and the necessity
for more sophisticated approaches like the HR-MMD test. This disparity highlights the advantage of
our approach, which leverages high-level representations and a learned deep kernel to capture subtle
distributional differences that persist despite the application of defenses.

The comprehensive evaluations conducted in these mixed membership scenarios reinforce the reli-
ability and practical applicability of our HR-MMD test. Its consistent performance across varying
proportions of training members and in the presence of advanced defense mechanisms underscores
its utility for privacy-sensitive applications. The HR-MMD test’s robustness affirms its suitability
for real-world deployment, where data may not be cleanly partitioned and defense strategies are
commonly employed.
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Figure 9: Evaluations on extensive mixup membership scenarios The true positive rate (TPR) is defined as the
proportion of datasets correctly identified as containing training members, and the false positive rate (FPR) is the
proportion of datasets incorrectly identified as containing training members when they do not. We evaluated our
HR-MMD test and traditional set-based MIAs under the membership inference defense strategy L1 regularization
discussed in Section J. As shown, the HR-MMD test consistently exhibited strong performance across all mixup
ratios and the defense mechanism. With a varying proportion of training members, our method maintained best
TPR at the same F'PR = 10%, effectively detecting the presence of training data within Sy . The experiments
were conducted on CIFAR-10 using ResNet-18.

L. DISCUSSION ON THE APPLICATION FOR FRACTION ESTIMATION TASK

In this section, we explore the application of our HR-MMD test to the task of estimating the fraction
of training members within a given input test dataset Sy-. This task extends beyond traditional binary
membership inference, requiring precise statistical modeling to determine the proportion of members
present in the dataset.

When the model has been trained using membership inference defenses, the HR-MMD test exhibits
rejection rates that vary with different membership fractions f. In such cases, we can estimate the
fraction directly by mapping the observed rejection rates to the corresponding membership fractions.
This mapping is derived from a calibration curve based on validation data, allowing for accurate
fraction estimation. However, in scenarios where the model is trained without membership inference
defenses, the HR-MMD test tends to be highly sensitive, achieving a 100% rejection rate even at
low membership fractions. In these cases, the rejection rate does not provide granular information
correlated with f, necessitating an alternative approach for fraction estimation.
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Our alternative methodology involves the following steps: I. Random Subset Sampling: We randomly
sample multiple subsets from the input dataset Sy. II. HR-MMD Testing on Subsets: For each
subset, we perform the HR-MMD test to detect the presence of training members. III. Collection of
Non-Rejected Subsets: Among the subsets where the test does not detect any members (i.e., the null
hypothesis is not rejected), we collect all the elements and take their union. This union represents the
portion of Sy estimated to consist of non-members.

We then estimate the fraction of non-members as:

A Number of unique elements in the union of non-rejected subsets
f non-members — N y

where N is the total number of samples in Sy . Accordingly, the estimated fraction of members is:

f =1- fnon-members-

This methodology allows us to estimate the fraction of training members even when the test’s
sensitivity prevents a direct correlation between rejection rates and membership fractions. By
focusing on subsets where no members are detected, we can infer the proportion of the dataset likely
to be non-members, thus providing an estimation of the membership fraction.

The ability of the HR-MMD test to estimate membership fractions showcases its versatility and
advanced applicability in privacy risk assessments. By extending beyond binary inference to quantify
the extent of membership within a dataset, our method offers a more nuanced understanding of
potential privacy breaches. This is particularly valuable in scenarios where knowing the proportion
of compromised data is crucial for assessing the severity of a breach and formulating appropriate
responses.

M DISCUSSION ON HANDLING OUT-OF-DISTRIBUTION DATA

In practical applications, datasets often contain out-of-distribution (OOD) samples that deviate
from the data distribution on which a model was trained. The presence of such OOD samples
poses significant challenges for membership inference methods, potentially leading to inaccurate
assessments or false conclusions. To enhance the robustness of our HR-MMD test in these scenarios,
we propose an extended approach capable of effectively managing OOD data.

Our method involves a two-step process designed to first detect and then mitigate the influence
of OOD samples within the input test data Sy . Initially, we employ a traditional two-sample test
between Sy and the non-training data Sy, to identify any significant deviations from the expected
data distribution. This preliminary detection is crucial for ensuring that subsequent membership
inference analyses are not compromised by the presence of OOD samples.

Upon detection of OOD samples, we proceed to isolate in-distribution subsets from Sy. This can be
achieved by selecting subsets of Sy that are statistically similar to S;,,, according to the two-sample
test, thereby filtering out the OOD samples. By focusing on these in-distribution subsets, we can
apply the HR-MMD test more effectively to assess the presence of training members without the
confounding effects of OOD data.

This two-step approach ensures that the influence of OOD samples does not compromise the accuracy
of the membership inference. By first detecting and then isolating in-distribution data, our method
maintains reliable detection capabilities even when OOD samples constitute a significant portion of
Sy . This enhances the applicability of the HR-MMD test in real-world scenarios, where datasets
may not be clean or fully representative of the training distribution.

Effectively managing OOD scenarios reinforces the utility of the HR-MMD test as a robust tool for
privacy risk assessment. By addressing the complexities inherent in real-world data, our method
provides a more comprehensive and reliable evaluation of membership inference risks, ensuring that
privacy assessments remain accurate and meaningful even in the presence of diverse data conditions.
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Figure 10: Test power vs. type I error comparison between our HR-MMD test and other baselines. As
seen in subfigure (a,c,e,g,i), all methods achieve an ideal type I error around the significance level of 0.05. In
subfigure (b,d,f,h,j), only our HR-MMD test (referred to as CS-MMD here) can achieve an ideal test power of 1.
The experiments of subfigure (a-h) are conducted on ResNet-18. The experiments of subfigure (i) and (j) are
conducted on a 4-layer MLP model.
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2212 Figure 12: The test power of the HR-MMD test and baselines on different dataset sizes. As shown in the
oin subfigures, only our HR-MMD test (referred to as CS-MMD here) achieves a test power greater than the

significance level (o = 0.05). The experiments were conducted on CIFAR-10 using ResNet-18.
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Figure 13: The test power of the HR-MMD test and baselines on different dataset sizes. As shown in the
subfigures, only our HR-MMD tests (referred to as HR1-MMD, HR2-MMD, CS-MMD, L-MMD, E-MMD
and LI-MMD here) achieves a test power greater than the significance level (o = 0.05). The experiments were

conducted on CIFAR-10 using ResNet-18.
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Figure 14: The test power of the HR-MMD test and baselines on different mixture proportions of members. As
shown in the subfigures, only our HR-MMD test (referred to as CS-MMD here) achieves a test power greater
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than the significance level (o« = 0.05). The experiments were conducted on CIFAR-10 using ResNet-18.
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Figure 15: The test power of the HR-MMD test and baselines on different mixture proportions of members.
As shown in the subfigures, only our HR-MMD tests (referred to as HR1-MMD, HR2-MMD, CS-MMD,
L-MMD, E-MMD and LI-MMD here) achieves a test power greater than the significance level (aw = 0.05). The
experiments were conducted on CIFAR-10 using ResNet-18.
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Figure 16: Test power vs. type I error comparison between our HR-MMD test and other baselines. As seen in
subfigure (a,c,e,g,i), all methods achieve an ideal type I error around the significance level of 0.05. In subfigure
(b,d,f,h,j), only our HR-MMD test (referred to as CS-MMD here) can achieve an ideal test power of 1. The
experiments of subfigure (a-h) are conducted on WRN-34. The experiments of subfigure (i) and (j) are conducted
on a 2-layer LSTM model.
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Figure 17: Test power vs. type I error comparison between our HR-MMD test and other baselines. As seen in
2477 subfigure (a,c,e,g), all methods achieve an ideal type I error around the significance level of 0.05. In subfigure
2478 (b,d,f,h), only our HR-MMD tests (referred to as HR1-MMD, HR2-MMD, CS-MMD, L-MMD, E-MMD and
2479 LI-MMD here) can achieve an ideal test power of 1. The experiments are conducted on WRN-34.
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