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ABSTRACT

The rapid progress of Large Language Models (LLMs) has made them capable of
performing astonishingly well on various tasks, including document completion
and question answering. The unregulated use of these models, however, can
potentially lead to malicious consequences such as plagiarism, generating fake
news, spamming, etc. Therefore, reliable detection of AI-generated text can be
critical to ensure the responsible use of LLMs. Recent works attempt to tackle
this problem either using certain model signatures present in the generated text
outputs or by applying watermarking techniques that imprint specific patterns onto
them. In this paper, we show that these detectors are not reliable in practical
scenarios. In particular, we develop a recursive paraphrasing attack to apply on
AI text, which can break a whole range of detectors, including the ones using
the watermarking schemes as well as neural network-based detectors, zero-shot
classifiers, and retrieval-based detectors. Our experiments include passages around
300 tokens in length, showing the sensitivity of the detectors even in the case of
relatively long passages. We also observe that our recursive paraphrasing only
degrades text quality slightly, measured via perplexity scores and MTurk human
study. Additionally, we show that even LLMs protected by watermarking schemes
can be vulnerable against spoofing attacks aimed to mislead detectors to classify
human-written text as AI-generated, potentially causing reputational damages to
the developers. In particular, we show that an adversary can infer hidden AI text
signatures of the LLM outputs without having white-box access to the detection
method. Finally, we provide a theoretical connection between the AUROC of the
best possible detector and the Total Variation distance between human and AI text
distributions that can be used to study the fundamental hardness of the reliable
detection problem for advanced language models.

1 INTRODUCTION

Artificial Intelligence (AI) has made tremendous advances in recent years, from generative models in
computer vision (Rombach et al., 2022; Saharia et al., 2022) to generative models in natural language
processing (NLP) (Brown et al., 2020; Zhang et al., 2022; Raffel et al., 2019). Large Language
Models (LLMs) can now generate texts of supreme quality with the potential in many applications.
For example, the recent model of ChatGPT (OpenAI, 2022) can generate human-like texts for various
tasks such as writing codes for computer programs, lyrics for songs, completing documents, and
question answering; its applications are endless. The trend in NLP shows that these LLMs will
even get better with time. However, this comes with a significant challenge in terms of authenticity
and regulations. AI tools have the potential to be misused by users for unethical purposes such as
plagiarism, generating fake news, spamming, generating fake product reviews, and manipulating
web content for social engineering in ways that can have negative impacts on society (Adelani et al.,
2020; Weiss, 2019). Some news articles rewritten by AI have led to many fundamental errors in them
(Christian, 2023). Hence, there is a need to ensure the responsible use of these generative AI tools. In
order to aid this, a lot of recent research focuses on detecting AI-generated texts.

Several detection works study this problem as a binary classification problem (OpenAI, 2019; Jawahar
et al., 2020; Mitchell et al., 2023; Bakhtin et al., 2019; Fagni et al., 2020) and use neural network-
based detectors. For example, OpenAI fine-tunes RoBERTa-based (Liu et al., 2019) GPT-2 detector
models to distinguish between non-AI generated and GPT-2 generated texts (OpenAI, 2019). This
requires such a detector to be fine-tuned with supervision on each new LLM for reliable detection.
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Figure 1: An illustration of vulnerabilities of existing AI-text detectors. We consider both
watermarking-based and non-watermarking-based detectors and show that they are not reliable
in practical scenarios. Colored arrow paths show the potential pipelines for adversaries to avoid detec-
tion. In red: an attacker can use a paraphraser to remove the LLM signatures from an AI-generated
text to avoid detection. In blue: an adversary can query the watermarked LLM multiple times to learn
its watermarking scheme. This information can be used to spoof the watermark detector.

Another stream of work focuses on zero-shot AI text detection without any additional training
overhead (Solaiman et al., 2019; Ippolito et al., 2019; Gehrmann et al., 2019). These works evaluate
the expected per-token log probability of texts and perform thresholding to detect AI-generated texts.
Mitchell et al. (2023) observe that AI-generated passages tend to lie in negative curvature of log
probability of texts. They propose DetectGPT, a zero-shot LLM text detection method, to leverage
this observation. Since these approaches rely on a neural network for their detection, they can be
vulnerable to adversarial and poisoning attacks (Goodfellow et al., 2014; Sadasivan et al., 2023;
Kumar et al., 2022; Wang et al., 2022). Another line of work aims to watermark AI-generated texts
to ease their detection (Atallah et al., 2001; Wilson et al., 2014; Kirchenbauer et al., 2023a; Zhao
et al., 2023). Watermarking eases the detection of LLM output text by imprinting specific patterns on
them. Soft watermarking proposed in Kirchenbauer et al. (2023a) partitions tokens into “green” and
“red” lists, as they define, to help create these patterns. A watermarked LLM samples a token, with
high probability, from the green list determined by a pseudo-random generator seeded by its prefix
token. The watermarking detector would classify a passage with a large number of tokens from the
green list as AI-generated. These watermarks are often imperceptible to humans. Krishna et al. (2023)
introduces an information retrieval-based detector by storing the outputs of the LLM in a database.
For a candidate passage, their algorithm searches this database for semantically similar matches for
detection. However, storing user-LLM conversations might cause serious privacy concerns.

In this paper, through several experiments, we show that these state-of-the-art AI-text detectors
are unreliable in practical scenarios (Wolff, 2020; Aaronson, 2022; Liang et al., 2023; Pu et al.,
2023; Wang et al., 2023). In §2, we have developed a recursive paraphrasing attack that use
neural network-based paraphrasing to recursively paraphrase the source LLM’s output text. Our
experiments show that this automated paraphrasing attack can drastically reduce the accuracy of
various detectors, including those using soft watermarking (Kirchenbauer et al., 2023a), to increase
type-II error (detecting AI text as human text). For instance, our recursive paraphrasing attack
on watermarked texts, even over relatively long passages of 300 tokens in length, can drop
the detection rate (true positive rate at 1% false positive rate or TPR@1%FPR) from 99.3%
to 4.0% with only degradation of 1.5 in perplexity score. We note that Kirchenbauer et al.
(2023a) considers a relatively weak paraphrasing attack in their experiments where they perform span
replacement by replacing random tokens (in-place) using an LLM. Our experiments, however, show
the vulnerability of the watermarking scheme against stronger paraphrasing attacks that we use.

We also observe that the quality of the paraphrased passages degrades, but only slightly, compared
to the original ones. We quantify this both via perplexity score evaluation as well as via MTurk
human evaluation study. In particular, our human evaluation study shows that 70% of the recursive
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paraphrased passages are rated high quality in terms of content preservation, and 89% of them are
rated high quality in terms of grammar or text quality.

After paraphrasing, the area under the receiver operating characteristic (AUROC) curves of zero-shot
detectors (Mitchell et al., 2023) drops from 96.5% to 25.2%. We also observe that the performance
of neural network-based trained detectors (OpenAI, 2019) deteriorates significantly after our para-
phrasing attack. For instance, the TPR@1%FPR of the RoBERTa-Large-Detector from OpenAI
drops from 100% to 60% after paraphrasing. In addition, we show that the retrieval-based detector by
Krishna et al. (2023) designed to evade paraphrase attacks is vulnerable to our recursive paraphrasing.
In fact, the accuracy of their detector falls from 100% to 25% with our recursive paraphrase attack.

Moreover, we show the possibility of spoofing attacks on various AI text detectors in §3. In this
setting, an attacker generates a non-AI text that is detected to be AI-generated, thus increasing type-I
error (falsely detecting human text as AI text). An adversary can potentially launch spoofing attacks
to produce derogatory texts that are detected to be AI-generated to affect the reputation of the target
LLM’s developers. In particular, we show that an adversary can infer hidden AI text signatures
without having white-box access to the detection method. For example, though the pseudo-random
generator used for generating watermarked text is private, we develop an attack that adaptively queries
the target LLM multiple times to learn its watermarking scheme. An adversarial human can then use
this information to compose texts that are detected to be watermarked. Figure 1 shows an illustration
of some of the vulnerabilities of the existing AI-text detectors.

Finally, in §4, we present a theoretical result regarding the hardness of AI-text detection. Our
main result in Theorem 1 states that the AUROC of the best possible detector differentiating two
distributions H (e.g., human text) and M (e.g., AI-generated text) reduces as the total variation
distance TV(M,H) between them decreases. Note that this result is true for any two arbitrary
distributions H and M. For example, H could be the text distribution for a person or group and M
could be the output text distribution of a general LLM or an LLM trained by an adversary to mimic
the text of a particular set of people. Essentially, adversaries can train LLMs to mimic human text as
they get more sophisticated, potentially reducing the TV distance between human and AI text, leading
to an increasingly more difficult detection problem according to our Theorem 1. Although estimating
the exact TV between text distributions from a finite set of samples is a challenging problem, we
provide some empirical evidence, over simulated data or via TV estimations, showing that more
advanced LLMs can potentially lead to smaller TV distances. Thus, our Theorem 1 would indicate
an increasingly more difficult reliable detection problem in such cases.

Identifying AI-generated text is a critical problem to avoid its misuse by users for unethical purposes
such as plagiarism, generating fake news, and spamming. However, deploying vulnerable detectors
may not be the right solution to tackle this issue since it can cause its own damages, such as falsely
accusing a human of plagiarism. Our results highlight the sensitivities of a wide range of detectors
to both evasion and spoofing attacks and indicate the difficulty of developing reliable detectors in
practical scenarios — to maintain reliable detection performance, LLMs would have to trade off
their performance. We hope that these findings can help the ethical and dependable utilization of
AI-generated text.

In summary, we make the following contributions in this work.

• Our work is the first to comprehensively analyze the performance of four different classes
of detectors, including watermarking-based, neural network-based, zero-shot, and retrieval-
based detectors, and reveal their reliability issues (in §2). In particular, the recursive
paraphrasing attack that we develop is the first method that can break watermarking
(Kirchenbauer et al., 2023a) and retrieval-based (Krishna et al., 2023) detectors with only a
small degradation in text quality.

• Our work is the first to show that existing detectors are vulnerable against spoofing attacks
where an adversarial human aims to write a (potentially derogatory) passage falsely detected
as AI-generated without having a white-box access to the detection methods (in §3). For
instance, we show that an adversary can infer the watermarking signatures by probing the
watermarked LLM and analyzing the statistics of the generated tokens.

• Our work is the first to establish a theoretical connection between the AUROC of the best
possible detector and the TV distance between human and AI-text distributions that can be
used to study the hardness of the reliable text detection problem (in §4).
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(a) Watermarked text with mean token length 300 (b) Watermarked text with varying token lengths

Figure 2: ROC plots for soft watermarking with recursive paraphrasing attacks. AUROC,
TPR@1%FPR, and perplexity scores measured using OPT-13B are given in the legend. (a) Even for
300 tokens long watermarked passages, recursive paraphrasing is effective. As paraphrasing rounds
proceed, detection rates degrade significantly with a slight trade-off in text quality. (b) Attacking
watermarked passages become easier as their length reduces.

ppi i=1 i=2 i=3 i=4 i=5 All ppi

Content
preservation

Avg. rating 4.0± 0.8 4.1± 0.8 3.9± 0.9 4.2± 0.9 3.7± 1.1 4.0± 0.9

Ratings 5&4 70.2% 77.2% 63.2% 80.0% 61.4% 70.4%

Grammar or
text quality

Avg. rating 4.28± 0.67 4.12± 0.50 4.12± 0.53 4.11± 0.64 4.07± 0.53 4.14± 0.58

Ratings 5&4 87.72% 92.98% 91.23% 84.21% 89.47% 89.12%

Table 1: Summary of the MTurk human evaluation study on content preservation and grammar or
text quality of the recursive paraphrases that we use for our attacks. Ratings are on a Likert scale of 1
to 5. See Appendix B.1 for details.

2 EVADING AI-DETECTORS USING PARAPHRASING ATTACKS

2.1 PARAPHRASER MODELS AND TEXT DATASET

We use the “document” features of the XSum dataset (Narayan et al., 2018) containing long news
articles for our experiments. We use two different neural network-based paraphrases – DIPPER
with 11B parameters (Krishna et al., 2023), and T5-based paraphraser (Damodaran, 2021) with
222M parameters. Suppose a passage S = (s1, s2, ..., sn) where si is the ith sentence. DIPPER
paraphrases S to be S′ = fdipper(S) in one-shot while the light-weight T5-based paraphraser would
output S′ = (ft5(s1), ft5(s2), ..., ft5(sn)) where they can only paraphrase sentence-by-sentence.
DIPPER also has the ability to input a context prompt text C to generate higher-quality paraphrasing
S′ = fdipper(S,C). We can also vary two different hyperparameters of DIPPER to generate a diverse
number of paraphrases for a single input passage.

Figure 3: Recursive paraphrasing

We use DIPPER for recursive paraphrasing attacks since it
provides high-quality paraphrasing (Krishna et al., 2023). Let
an LLM L generate AI text output S = L(C) for an input
prompt C. DIPPER can be used to generate a paraphrase pp1
= fdipper(S,C). This paraphrasing can be performed in re-
cursion (see Figure 3). That is, ppi = fdipper(pp(i-1), C).
In the next section, we show that recursive paraphrasing is ef-
fective in removing watermarks from AI text when compared
to a single round of paraphrasing. Moreover, by quantifying
text quality with perplexity measured using OPT-13B as well
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as performing a human study, we show that our recursive paraphrasing method only degrades the text
quality slightly.

2.2 PARAPHRASING ATTACKS ON WATERMARKED AI TEXT

In this section, we evaluate our recursive paraphrasing attacks on the soft watermarking scheme
proposed in Kirchenbauer et al. (2023a). Soft watermarking encourages LLMs to output token
s(t) at time-step t that belongs to a “green list”. The green list for s(t) is created using a private
pseudo-random generator that is seeded with the prior token s(t−1). A watermarked output from the
LLM is designed to have tokens that are majorly selected from the green list. Hence, a watermark
detector with the pseudo-random generator checks the number of green tokens in a candidate passage
to detect whether it is watermarked or not. Here, we target a watermarked OPT-1.3B (Zhang et al.,
2022) with 1.3B parameters for our experiments.

Dataset. We perform our experiments on 2000 text passages that are around 300 tokens in length
(1000 passages per human and AI text classes). We pick 1000 long news articles from the XSum
“document” feature. For each article, the first 300 tokens are input to the target OPT-1.3B to generate
1000 watermarked AI text passages that are each 300 tokens in length. The second 300 tokens from
the 1000 news articles in the dataset are treated as baseline human text. We note that our considered
dataset has more and longer passages compared to the experiments in Kirchenbauer et al. (2023a).

Detection results after paraphrasing attack. After a single round of paraphrasing (pp1),
TPR@1%FPR of watermark detector only degrades from 99.3% to 78.6%. Similarly, another
weaker paraphrasing attack discussed in Kirchenbauer et al. (2023a) is not effective in removing
watermarks. They perform “span replacement” by replacing random tokens (in-place) using a lan-
guage model. However, we show that our stronger recursive paraphrasing attack can effectively
evade watermark detectors with only a slight degradation in text quality. As shown in Figure 2a, the
recursive paraphrase attack further degrades the detection rate of the detector to 9.7% after 5 rounds
of paraphrasing (pp5). Best of ppi in the figure refers to the method where, for each passage,
we select the paraphrase out of all the ppi’s that has the worst detector score. For Best of ppi,
the detection rate reduces drastically from 99.8% to 4.0% with only a trade-off of 1.5 in the
perplexity score. Figure 2b shows that the watermarking detector becomes weaker as the length of
the watermarked text reduces. Note that for watermarked texts that are 50 or 100 tokens long, the
detection performance after the recursive paraphrasing attack is similar to that of a random detector.
We provide examples of paraphrased text that we use for our attacks in Appendix B.2.

Quality of the paraphrased passages. In order to reliably study the quality of the paraphrases we
use in our experiments, we perform two human evaluations using MTurk. A summary of the study
is provided in Table 1. We investigate the content preservation and text quality or grammar of the
recursive paraphrases with respect to the watermarked texts (see Tables 4 and 5 in Appendix B.1 for
more details). In terms of content preservation, 70% of the paraphrases were rated high quality
and 23% somewhat equivalent. In terms of text quality or grammar, 89% of the paraphrases
were rated high quality. On a Likert scale of 1 to 5, the paraphrases that we use received an average
rating of 4.14±0.58 for text quality or grammar and 4.0±0.9 for content preservation. These results
confirm that watermarking can be effectively attacked using recursive paraphrasing with only a slight
degradation in text quality. See Appendix B.1 for more details on the human study.

2.3 PARAPHRASING ATTACKS ON NON-WATERMARKED AI TEXT

Neural network-based trained detectors such as RoBERTa-Large-Detector from OpenAI (OpenAI,
2019) are trained or fine-tuned for binary classification with datasets containing human and AI-
generated texts. Zero-shot classifiers leverage specific statistical properties of the source LLM outputs
for their detection. Retrieval-based methods search for a candidate passage in a database that stores
the LLM outputs. Here, we perform experiments on these non-watermarking detectors to show they
are vulnerable to our paraphrasing attack.

Trained and Zero-shot detectors. We use a pre-trained GPT-2 Medium model (Radford et al., 2019)
with 355M parameters as the target LLM to evaluate our attack on 1000 long passages from the
XSum dataset (Narayan et al., 2018). We use the T5-based paraphrasing model (Damodaran, 2021)
with 222M parameters to rephrase the 1000 output texts generated using the target GPT-2 Medium
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Figure 4: ROC curves for various trained and zero-shot detectors. Left: Without attack. Middle:
After paraphrasing attack using T5-based paraphraser. The performance of zero-shot detectors drops
significantly. Right: Here, we assume we can query the detector ten times for the paraphrasing
attack. We generate ten paraphrasings for each passage and query multiple times to evade detection.
Notice how all detectors have low TPR@1%FPR. In the plot legend – perturbation refers to the
zero-shot methods in Mitchell et al. (2023); threshold refers to the zero-shot methods in Solaiman
et al. (2019); Gehrmann et al. (2019); Ippolito et al. (2019); roberta refers to OpenAI’s trained
detectors (OpenAI, 2019). The TPR@1%FPR scores of different detectors before the attack, after the
attack, and after the attack with multiple queries, respectively, are provided in the plot legend.

model. Figure 4 shows the effectiveness of the paraphrasing attack over these detectors. The AUROC
scores of DetectGPT (Mitchell et al., 2023) drop from 96.5% (before the attack) to 59.8% (after
the attack). Note that AUROC of 50% corresponds to a random detector. The rest of the zero-shot
detectors (Solaiman et al., 2019; Gehrmann et al., 2019; Ippolito et al., 2019) also perform poorly
after our attack. Though the performance of the trained neural network-based detectors (OpenAI,
2019) is better than that of zero-shot detectors, they are also not reliable. For example,TPR@1%FPR
of OpenAI’s RoBERTa-Large-Detector drops from 100% to around 92% after our attack.

In another setting, we assume the attacker may have multiple access to the detector. That is, the
attacker can query the detector with an input AI text passage, and the detector would reveal the
detection score to the attacker. For this scenario, we generate ten different paraphrases for an input
passage and query the detector for the detection scores. For each AI text passage, we then select the
paraphrase with the worst detection score for evaluating the ROC curves. As shown in Figure 4, with
multiple queries to the detector, an adversary can paraphrase more efficiently to bring down
TPR@1%FPR of the RoBERTa-Large-Detector from 100% to 80%.

Figure 5: Recursive paraphrasing breaks the retrieval-
based detector (Krishna et al., 2023) with only slight
degradation in text quality. ppi refers to i recursion(s)
of paraphrasing. Numbers next to markers denote the
perplexity scores of the paraphraser output.

Retrieval-based detectors. Detector in Kr-
ishna et al. (2023) is designed to be robust
against paraphrase attacks. However, we
show that they can suffer from the recur-
sive paraphrase attacks that we develop us-
ing DIPPER. We use 2000 passages (1000
generated by OPT-1.3B and 1000 human
passages) from the XSum dataset. AI out-
puts are stored in the AI database by the
detector. As shown in Figure 5, this de-
tector detects almost all of the AI outputs
even after a round of paraphrasing. How-
ever, the detection accuracy drops to 60%
after five rounds of recursive paraphras-
ing. As marked in the plot, the perplexity
score of the paraphrased text only degrades
by 1.7 at a detection accuracy of below 60%.
Moreover, retrieval-based detectors are con-
cerning since they might lead to serious pri-
vacy issues from storing users’ LLM con-
versations.
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3 SPOOFING ATTACKS ON GENERATIVE AI-TEXT MODELS

An AI language detector without a low type-I error can cause harm as it might wrongly accuse a
human of plagiarizing using an LLM. Moreover, an attacker (adversarial human) can generate a
non-AI text to be detected as AI-generated. This is called the spoofing attack. An adversary can
potentially launch spoofing attacks to produce derogatory texts to damage the reputation of the target
LLM’s developers. In this section, as a proof-of-concept, we show that current text detectors can
be spoofed to detect texts composed by adversarial humans as AI-generated. More details on the
spoofing experiments are presented in Appendix D.

Figure 6: ROC curve of a soft watermarking-
based detector (Kirchenbauer et al., 2023a)
after our spoofing attack.

Soft watermarking. As discussed in §2, soft water-
marked LLMs (Kirchenbauer et al., 2023a) generate
tokens from the “green list” that are determined by
a pseudo-random generator seeded by the prefix to-
ken. Though the pseudo-random generator is private,
an attacker can estimate the green lists by observing
multiple token pairs in the watermarked texts from the
target LLM. An adversarial human can then leverage
the estimated green lists to compose texts by them-
selves that are detected to be watermarked. In our
experiments, we estimate the green lists for 181 most
commonly used words in the English vocabulary. We
query the target watermarked OPT-1.3B model one
million times to observe the token pair distributions
within this smaller vocabulary subset we select. Based on the frequency of tokens that follow a prefix
token in the observed generative outputs, we estimate green lists for each of the 181 common words.
We build a tool that helps adversarial humans create watermarked sentences by providing them with
the proxy green list we learn. We observe that the soft watermarking scheme can be spoofed to
degrade its detection AUROC from 99.8% to 1.3% (see Figure 6).

Retrieval-based detectors. Krishna et al. (2023) use a database to store LLM outputs to detect
AI-text by retrieval. We find in our experiments (see Figure 12) that an adversary can spoof this
detector 100% of the time, even if the detector maintains a private database. Suppose an
adversary, say a teacher, has access to a human written document S, say a student’s essay. The
adversary can prompt the target LLM to paraphrase S to get S′. This results in the LLM, by design,
storing its output S′ in its private database for detection purposes. Now, the detector would classify
the original human text S as AI-generated since a semantically similar copy S′ is present in its
database. In this manner, a teacher can purposefully allege an innocent student to have plagiarised
using the retrieval-based detector.

Zero-shot and neural network-based detectors. In this setting, a malicious adversary could write a
short text in a collaborative work, which may lead to the entire text being classified as AI-generated.
To simulate this, we prepend a human-written text marked as AI-generated by the detector to all
the other human-generated text for spoofing. In other words, from 200 long passages in the XSum
dataset, we pick the human text with the worst detection score for each detector considered in §2.3.
We then prepend this text to all the other human texts, ensuring that the length of the prepended
text does not exceed the length of the original text. Our experiments show that the AUROC of all
these detectors drops after spoofing (see plots in Appendix D). After this naïve spoofing attack, the
TPR@1%FPR of most of these detectors drop significantly.

4 HARDNESS OF RELIABLE AI TEXT DETECTION

In this section, we formally upper bound the AUROC of an arbitrary detector in terms of the TV
between the distributions for M (e.g., AI text) and H (e.g., human text) over the set of all possible
text sequences Ω. We note that this result holds for any two arbitrary distributions H and M. For
example, H could be the text distribution for a person or group, while M could be the output text
distribution of a general LLM or an LLM trained by an adversary to mimic the text of a particular set
of people.
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We use TV(M,H) to denote the TV between these two distributions and model a detector as a
function D : Ω → R that maps every sequence in Ω to a real number. Sequences are classified
into AI-generated or human-generated by applying a threshold γ on this number. By adjusting the
parameter γ, we can tune the sensitivity of the detector to AI and human-generated texts to obtain an
ROC curve.
Theorem 1. The area under the ROC of any detector D is bounded as

AUROC(D) ≤ 1

2
+ TV(M,H)− TV(M,H)2

2
.

The proof is deferred to Appendix C.1. Figure 7 shows how the above bound grows as a function of
the TV distance. This theorem states that as the TV distance between AI and human text distributions
reduces, the AUROC of the best possible detector decreases. Based on our theory, an adversary can
use advanced LLMs to mimic human text to reduce the TV distance between human and AI text
distributions to evade text detection systems.

Figure 7: Comparing the performance, in
terms of AUROC, of the best possible detector
to that of the baseline performance correspond-
ing to a random classifier.

For a detector to have a good performance (say, AU-
ROC > 0.9), the distributions of human and AI-
generated texts must be very different from each
other (TV > 0.5 based on the figure). As M gets
more similar to H (say, TV < 0.2), the performance
of even the best-possible detector becomes unreli-
able (AUROC < 0.7). For some applications, say
AI-text plagiarism, reliable detection should have
a low false positive rate (say, < 0.01) and a high
true positive rate (say, > 0.9). Based on our theory,
this cannot be achieved even when the overlap be-
tween the distributions is relatively low, say 11% (or
TV = 0.9 − 0.01 = 0.89, based on equation 1 in
Appendix C.1).

Note that, for a watermarked model, the above bound can be close to one as the TV between the
watermarked distribution and human-generated distribution can be high. Corollary 1 in Appendix C.2
discusses how paraphrasing attacks can be effective in evading watermarks using Theorem 1. In
Appendix C.3, we also present a tightness analysis of the bound in Theorem 1, where we show that
for any distribution H there exists M and a detector D for which the bound holds with equality. We
also discuss general trade-offs between true positive and false positive rates of detection in Corollaries
2 and 3 in Appendix C.2. Theorem 2 in Appendix C.4 extends Theorem 1 to bound the AUROC of
the best possible detector by a function of the TV distance between LLM outputs generated using
pseudorandomness and human text distributions.

In studying the hardness of the detection problem, we consider the following assumption that for
a given human-text distribution H, more advanced LLMs mimicking H can lead to smaller TV.
Thus, using Theorem 1, the detection problem becomes increasingly more difficult. This is the core
argument of our hardness result on AI text detection. Although the underlying assumption seems to
be intuitive given the capabilities of LLMs such as GPT-4 (OpenAI, 2023), a precise analysis of this
assumption is quite difficult because estimating the true TV of the text distributions from a finite set
of samples is extremely challenging. Nevertheless, we provide some empirical evidence supporting
this assumption using two sets of experiments. In all the experiments, we consistently observe that
the TV distance estimates between human and AI text distributions reduce as language models get
more advanced, indicating the increasing difficulty associated with AI text detection.

(i) Using synthetic text data. We perform experiments on a toy synthetic text dataset where the exact
TV distance can be calculated. We use the Markov assumption to generate the synthetic text data
with sequence length 3 using a randomly generated token transition matrix for varying vocabulary
sizes. We use single-layer LSTMs of different hidden unit sizes to train on a dataset of size 20,000
sampled from this synthetic data distribution using a default AdamW optimizer (Loshchilov & Hutter,
2017). We compute the learned token transition matrix for the LSTM output distribution using the
softmax logit values of the trained model. Using transition matrices of both distributions, we compute
the exact TV. Figure 8 shows that the exact TV distances between the learned and true synthetic
distributions reduce as the LSTM model size increases.
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Figure 8: Increasing model size reduces the exact TV
between the true synthetic data distribution and the
learned distribution in all settings. Error bars report
standard deviations after 5 independent trials.

Figure 9: Estimated TV distances of GPT-2
output datasets from the WebText dataset us-
ing meta-token sequences of varying lengths.
TV decreases with model size for each length.

(ii) Using projection. For discrete distributions, the TV distance can be computed as 1/2 of the
sum of the point-wise differences between their probability density functions (PDFs). While this is
mathematically simple since texts can be considered as token sequences with bounded length, it is not
practical to compute true TV distances directly through estimating PDFs due to the size of the sample
space, which is approximately the size of the token set to the power of sequence length. To tackle
this issue, we split the original token set into five roughly equal partitions and assign a meta-token to
each partition. Given a sequence of tokens from the original set, we construct a new sequence by
replacing each token with the corresponding meta-token. We estimate the PDFs of the sequences
of meta-tokens created using texts from the WebText and GPT-2 output datasets. Since the set of
meta-tokens is significantly smaller than the original token set, estimating PDFs becomes much more
tractable. We then use these PDFs to estimate the total variation distances of the output distributions
of different GPT-2 models (GPT-2-Small, GPT-2-Medium, GPT-2-Large, and GPT-2-XL) from the
WebText dataset. Figure 9 plots these TV estimates for different sequence lengths, averaged over
30 runs of the experiment. We observe that the TV distance consistently decreases with increasing
model size for all sequence lengths.

These experiments provide empirical evidence that more advanced LLMs can lead to smaller TV
distances. Thus, based on Theorem 1, reliable AI text detection would become increasingly difficult.

5 CONCLUSION

In this paper, we analyze the performance of four different classes of detectors including watermarking-
based, neural-net based, zero-shot based and retrieval-based detectors and show their reliability issues.
In particular, we develop a strong attack called recursive paraphrasing that can break recently
proposed watermarking and retrieval-based detectors. Using perplexity score computation as well as
conducting various MTurk human study, we observe that our recursive paraphrasing only degrades
text quality slightly. We also show that adversaries can spoof these detectors to increase their type-I
errors. Spoofing attacks can lead to the generation of derogatory passages detected as AI-generated
that might affect the reputation of the LLM detector developers. Finally, we establish a theoretical
connection between the AUROC of the best possible detector to the TV distance between human
and AI-text distributions that can be used to study the fundamental hardness of the reliable detection
problem for more advanced LLMs.

A detector should ideally be helpful in reliably flagging AI-generated texts to prevent the misuse of
LLMs. However, the cost of misidentification by a detector can be huge. If the false positive rate of
the detector is not low enough, humans (e.g., students) could be falsely accused of AI plagiarism.
Moreover, a disparaging passage falsely detected to be AI-generated could affect the reputation of the
LLM’s developers. As a result, the practical applications of AI-text detectors can become unreliable
and invalid. Security methods need not be foolproof. However, we need to make sure that it is not an
easy task for an attacker to break these security defenses. Thus, analyzing the risks of using current
and future detectors can be vital to avoid creating a false sense of security.
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A EXPERIMENTS WITH MORE DATASETS AND MODELS

In this section, we consider multiple datasets (XSum (Narayan et al., 2018), PubMedQA (Jin et al.,
2019), and Kafkai (Pu et al., 2023)) and target LLMs (OPT-1.3B (Zhang et al., 2022) and GPT-2-
Medium (Radford et al., 2019)) for analyzing our attacks.

Datasets. As discussed in the § 2.1, we use 2000 text passages (1000 passages each for human and
AI-generated text classes) of ∼300 tokens in length from the XSum dataset for analyzing our attacks.
For the rest of the datasets, we use 1000 text passages (500 passages each for human and AI-generated
text classes) of ∼200 tokens in length. XSum contains long news articles in its “document” feature.
To evaluate the robustness of our attacks to distribution shifts, we include more datasets. We use
PubMedQA, which is a medical text dataset. Kafkai dataset (Pu et al., 2023) contains real and fake
articles (generated using privately fine-tuned OpenAI models) from 10 different domains, such as
cybersecurity, SEO, and marketing. It is generated using Kafkai text generation service (Kafkai,
2020).

A.1 WATERMARK-BASED DETECTORS

In this section, we analyze the soft watermarking scheme in Kirchenbauer et al. (2023a). We use
the powerful DIPPER paraphraser from Krishna et al. (2023) with 11B parameters for our recursive
paraphrasing attack on the watermarking detector. On average, five rounds of our recursive paraphrase
attack take around 36 seconds per text passage, 300 tokens in length. OPT-13B is used to measure the
perplexity scores for all the settings. As shown in Table 1 and Appendix B.1, we perform a human
study over the XSum dataset to evaluate the semantic drifts in our recursive paraphrasing framework.
The MTurk human evaluation reveals that 70% of our recursive paraphrases maintain high-quality
content preservation, and 89% of our recursive paraphrases have high-quality text or grammar.

Figure 10 shows the performance of the soft watermarking detector in multiple settings. In all the
settings, the detection performance drops as rounds of recursive paraphrasing proceed with a slight
degradation in perplexity scores. After two rounds of paraphrasing (pp2), the detection performance
(TPR@1%FPR) in all the settings drops below 50%. Best of ppi, which selects the paraphrase
with the worst detection score, significantly degrades the detection performance to below 10% in all
the settings with only slight degradation of 1.5, 0.5, 2.0, and 2.7 in perplexity measures.
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(a) XSum with OPT-1.3B (b) XSum with GPT-2-Medium

(c) PubMedQA with OPT-1.3B (d) Kafkai with OPT-1.3B

Figure 10: ROC plots for soft watermarking (Kirchenbauer et al., 2023a) with our recursive para-
phrasing attacks. AUROC, TPR@1%FPR, and perplexity scores measured using OPT-13B are given
in the legend. Detection performance on the XSum dataset using two different LLMs — OPT-1.3B
and GPT-2-Medium — are evaluated in (a) and (b), respectively. (c) and (d), respectively, show the
performance of the detector on two datasets — PubMedQA and Kafkai — with distribution shifts
using OPT-1.3B. In all the settings, we observe that the detection performance of the watermarking-
based detector reduces drastically with only a slight degradation in perplexity measures.

A.2 ZERO-SHOT AND TRAINED DETECTORS

In this section, we analyze the zero-shot and trained detectors in prior literature (Mitchell et al.,
2023; Solaiman et al., 2019; Gehrmann et al., 2019; Ippolito et al., 2019; OpenAI, 2019). We use
the T5-based paraphraser (Damodaran, 2021), Parrot, to paraphrase the AI-generated text and use
OPT-13B to measure the perplexity scores for all the settings. We perform our experiments on the
XSum (Narayan et al., 2018), PubMedQA (Jin et al., 2019), and Kafkai (Kafkai, 2020) datasets with
GPT-2-Medium and OPT-1.3B as the target generative models. In Figure 11 (ROC curves) and Tables
2 (TPR@1%FPR values) and 3 (AUROC scores), we present our results. 1d, 1z, 10d, and 10z in
Tables 2 and 3 refer to different variants of the DetectGPT (Mitchell et al., 2023).

Figure 11 shows the performance of various zero-shot and trained detectors in multiple settings.
The performance of these detectors drops significantly when the AI-generated text is paraphrased,
and when given 5 queries to the detector, an adversary can fool most detectors effectively. Some
detectors like OpenAI’s RoBERTa-based models are more resilient on datasets like XSum, but are
not reliable on other datasets like Kafkai. The perplexity scores of the GPT-2 generated text before
any paraphrasing were 15.58 for XSum, 12.80 for PubMedQA, 19.11 for Kafkai, while the perplexity
of OPT-1.3B generated text was 9.31. After paraphrasing, the perplexity scores are 20.06, 16.45,
20.01, and 13.96, respectively.
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DetectGPT Threshold by RoBERTa
1 d 1 z 10 d 10 z Likeli-

hood
Rank Log

Rank
Entropy Base Large

OPT-1.3B on XSum
No attack 0.079 0.079 0.083 0.125 0.237 0.382 0.288 0.017 0.694 0.956
pp attack 0.014 0.014 0.018 0.006 0.006 0.006 0.006 0.326 0.025 0.479
5 pp attack 0.0 0.0 0.005 0.0 0.004 0.001 0.002 0.202 0.003 0.244

GPT-2 on PubMedQA
No attack 0.05 0.05 0.598 0.481 0.085 0.379 0.144 0.029 0.748 0.902
pp attack 0.052 0.052 0.19 0.054 0.015 0.042 0.017 0.202 0.181 0.606
5 pp attack 0.0 0.0 0.031 0.002 0.008 0.01 0.012 0.135 0.088 0.452

GPT-2 on Kafkai
No attack 0.077 0.077 0.669 0.625 0.088 0.352 0.085 0.0 0.048 0.006
pp attack 0.056 0.056 0.125 0.081 0.004 0.021 0.004 0.002 0.01 0.0
5 pp attack 0.0 0.0 0.023 0.006 0.002 0.004 0.002 0.0 0.0 0.0

GPT-2 on XSum
No attack 0.169 0.169 0.599 0.326 0.114 0.444 0.186 0.026 0.881 1.0
pp attack 0.038 0.038 0.084 0.015 0.003 0.005 0.003 0.411 0.105 0.925
10 pp attack 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.058 0.02 0.792

Table 2: TPR@1%FPR for trained and zero-shot detectors in different settings. For all attacks, we
use the T5-based paraphraser. Here, “pp attack” refers to the paraphrasing attack where the AI output
is paraphrased by the T5-based model. “i pp attack” refers to the setting where the attacker has
black-box access to the detector. Here, the paraphraser generates “i” paraphrases for every passage,
and the attacker selects the passage that has the worst detection score after “i” queries to the detector.

DetectGPT Threshold by RoBERTa
1 d 1 z 10 d 10 z Likeli-

-hood
Rank Log

Rank
Entropy Base Large

OPT-1.3B on XSum
No attack 0.769 0.769 0.9 0.859 0.918 0.844 0.943 0.482 0.974 0.998
pp attack 0.487 0.487 0.453 0.41 0.241 0.387 0.282 0.868 0.562 0.945
5 pp attack 0.162 0.162 0.244 0.182 0.153 0.216 0.181 0.821 0.316 0.9

GPT-2 on PubMedQA
No attack 0.816 0.816 0.973 0.955 0.804 0.796 0.892 0.615 0.982 0.998
pp attack 0.671 0.671 0.796 0.743 0.4 0.497 0.494 0.798 0.823 0.98
5 pp attack 0.33 0.33 0.601 0.541 0.327 0.314 0.409 0.752 0.712 0.967

GPT-2 on Kafkai
No attack 0.814 0.814 0.976 0.971 0.865 0.86 0.89 0.394 0.817 0.86
pp attack 0.661 0.661 0.757 0.742 0.497 0.719 0.515 0.651 0.486 0.629
5 pp attack 0.353 0.353 0.532 0.513 0.412 0.627 0.426 0.576 0.358 0.53

GPT-2 on XSum
No attack 0.837 0.837 0.976 0.949 0.879 0.868 0.93 0.617 0.993 1.0
pp attack 0.566 0.566 0.587 0.524 0.171 0.277 0.23 0.916 0.726 0.995
10 pp attack 0.115 0.115 0.202 0.177 0.075 0.104 0.108 0.744 0.464 0.983

Table 3: AUROC for trained and zero-shot detectors in different settings. Here, “pp attack” refers
to the paraphrasing attack where the AI output is paraphrased by the T5-based model. “i pp attack”
refers to the setting where the attacker has black-box access to the detector. Here, the paraphraser
generates “i” paraphrases for every passage, and the attacker selects the passage that has the worst
detection score after “i” queries to the detector.
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(a) Kafkai with GPT-2

(b) PubMedQA with GPT-2

(c) XSum with GPT-2

(d) XSum with OPT-1.3B

Figure 11: ROC curves for performance of various zero-shot and trained detectors for different models
and datasets (Left) before attack, (Middle) after paraphrasing attack, (Right) applying paraphrasing
attack with multiple queries to detector.

A.3 RETRIEVAL-BASED DETECTORS

In this section, we analyze the retrieval-based detector proposed in Krishna et al. (2023). We show
that our recursive paraphrasing attack is effective in breaking their detector. We use the 11B parameter
DIPPER paraphraser (Krishna et al., 2023) for our attack. OPT-13B is used to measure the perplexity
scores in all the settings.
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(a) XSum with OPT-1.3B (b) XSum with GPT-2-Medium

(c) PubMedQA with OPT-1.3B (d) Kafkai with OPT-1.3B

Figure 12: ROC plots for soft watermarking (Kirchenbauer et al., 2023a) with our recursive para-
phrasing attacks. AUROC, TPR@1%FPR, and perplexity scores measured using OPT-13B are given
in the legend. Detection performance on the XSum dataset using two different LLMs — OPT-1.3B
and GPT-2-Medium — are evaluated in (a) and (b), respectively. (c) and (d), respectively, show the
performance of the detector on two datasets — PubMedQA and Kafkai — with distribution shifts
using OPT-1.3B. In all the settings, we observe that the detection performance of the watermarking-
based detector reduces drastically with only a slight degradation in perplexity measures.

Figure 12 shows the performance of the retrieval-based detector in multiple settings. In all the
settings, the detection accuracy drops as rounds of recursive paraphrasing proceed with only a slight
degradation in perplexity scores. We observe that the detector works well after a single round
of paraphrasing (pp1). However, after five rounds of paraphrasing, Best of ppi reduces the
detector’s accuracy to close to 50% with only a slight degradation in perplexity scores. We also find
that we can easily spoof the retrieval-based detector as discussed in §3 to deteriorate the detector’s
performance to 0%. Note that retrieval-based detectors are concerning since they might lead to
serious privacy issues from storing users’ LLM conversations.

B MORE DETAILS ON AI PARAPHRASERS

B.1 HUMAN EVALUATION STUDY ON DIPPER PARAPHRASES

Apart from measuring the perplexity scores of the paraphrases using OPT-13B, we perform two
human evaluation studies to investigate the quality of the paraphrases we use for the paraphrasing
attack. We pick 20 random watermarked passages and their corresponding five rounds of recursive
paraphrases (pp1 to pp5) for human evaluation. Each paraphrase is evaluated by 3 unique MTurk
workers. One of the twenty watermarked passages generated by the target LLM was non-English, and
hence eliminated from the human evaluation. Therefore, our study includes a total of 95 recursive
paraphrases. We use the same setup as Krishna et al. (2023) for our human study. As shown in
Figure 13, users are given a source text with some highlighted portion. The non-highlighted portion
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of the source text is input into the target OPT-1.3B model that generates watermarked text which
is highlighted for the user’s reference. DIPPER paraphrases of the highlighted text are provided
as the paraphrasing. The user is supposed to evaluate the quality of the paraphrases with respect
to the highlighted watermarked text. They are supposed to rate it on a Likert scale of 1 to 5. See
Table 4 for the evaluation summary on content preservation of DIPPER paraphrasers based on the
user study. Table 5 shows the summary of the evaluation of text quality/grammar of the paraphrases.
For the content preservation study, we use the following Likert scale: 5 – preserves the meaning
of the source but differs in words and/or structure. 4 – preserves most information in the source
but differs in some minor factual details. 3 – reserves some information in the source but differs
in certain significant ways. 2 – topically related to the source but most information in the source
is not preserved. 1 – not topically related. For the text quality or grammar quality study, we use
the following Likert scale: 5 – the paraphrase has excellent grammar/quality with respect to the
highlighted source. 4 – the paraphrase is clear and correct with minor grammatical errors. 3 – the
paraphrase has few grammatical errors, but remains clear and comparable to highlighted source text.
2 – the paraphrase has significant number of grammatical errors, but remains understandable. 1 – the
paraphrase is inferior to the highlighted source text with a lot of grammatical errors, may be difficult
to comprehend.

Based on the evaluations, 70% of the paraphrases are rated high quality in terms of content preser-
vation, and 89% of the paraphrases are rated to have high-quality text/grammar. Hence, our human
study indicates that watermarking detectors can be evaded using recursive paraphrases with only a
slight degradation in text quality.

ppi Average
rating

Sum of
5 & 4 (%)

5 - Approx.
equivalent (%)

4 - nearly
equivalent (%)

3 - Somewhat
equivalent (%)

2 - Topically
related (%)

1 - Topically
unrelated (%)

i=1 4.0 ± 0.8 70.2 29.8 40.4 29.8 0.0 0.0

i=2 4.1 ± 0.8 77.2 33.3 43.9 19.3 3.5 0.0

i=3 3.9 ± 0.9 63.2 33.3 29.8 33.3 3.5 0.0

i=4 4.2 ± 0.9 80.0 49.1 30.9 14.5 5.5 0.0

i=5 3.7 ± 1.1 61.4 29.8 31.6 21.1 17.5 0.0

All ppi 4.0 ± 0.9 70.4 35.1 35.3 23.6 6.0 0.0

Table 4: Human evaluation of recursive paraphrases using MTurk for content preservation. ppi
represents the ith round of recursive paraphrasing.

ppi Average
rating

Sum of
5 & 4 (%)

5 - Excellent
(%)

4 - Good
(%)

3 - Fair
(%)

2 - Adequate
(%)

1 - Poor
(%)

i=1 4.28± 0.67 87.72 40.35 47.37 12.28 0.00 0.00

i=2 4.12 ± 0.50 92.98 19.30 73.68 7.02 0.00 0.00

i=3 4.12 ± 0.53 91.23 21.05 70.18 8.77 0.00 0.00

i=4 4.11 ±0.64 84.21 26.32 57.89 15.79 0.00 0.00

i=5 4.07 ± 0.53 89.47 17.54 71.93 10.53 0.00 0.00

All ppi 4.14 ± 0.58 89.12 24.91 64.21 10.88 0.0 0.0

Table 5: Human evaluation of recursive paraphrases using MTurk for text quality/grammar. ppi
represents the ith round of recursive paraphrasing.
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Figure 13: MTurk user interface for human evaluation of paraphrases.

18



Under review as a conference paper at ICLR 2024

B.2 EXAMPLE PARAPHRASES

Description Text

Input

The draw was conducted by former Premier League referee Mark Clattenburg, who had been involved in the draw for the
first match of the season. He is employed by Premier League broadcast partner Channel 5 as a television match official. The
draw for the first round was conducted on live television at 10.30pm Thai time, with the match to be shown on Thailand’s
Channel 5 as part of the BBC’s coverage of the tournament. The fourth round was drawn on live television at 10pm Thai time,
with matches to be shown on Thailand’s Channel 5 as part of the BBC’s coverage of the tournament. The draw for the fifth
round was conducted on live television at 10.25pm Thai time, with matches to be shown on Thailand’s Channel 5 as part of
the BBC’s coverage of the tournament. The sixth round was drawn on live television at 10.15pm Thai time, with matches to
be shown on Thailand’s Channel 5 as part of the BBC’s coverage of the tournament. The seventh round was drawn on live
television at 10.15pm Thai time, with matches to be shown on Thailand’s Channel 5 as part of the BBC’s coverage of the
tournament. The draw for the eighth round was conducted on live television at 10.15pm Thai time, with matches to be shown
on Thailand’s Channel 5 as part of the BBC’s coverage of the tournament. The draw for the ninth round was conducted on live
television at 10.15pm Thai time, with matches to be

Paraphrase

Mark Clattenburg, a former Premier League referee, who officiated at the opening game of the season, was in charge of the
draw. He is now employed by the FA’s broadcast partner, Channel 5, as a television match official. The draw for the first round
was made on live TV at 10.30pm local time, with Channel 5 in Thailand broadcasting the event as part of the BBC’s coverage
of the tournament. The fourth round was drawn live on Thai TV at 10pm local time, with matches to be screened on Channel
5 in Thailand as part of the BBC’s coverage of the competition. The draw for the fifth round took place live on Thai TV at
10.25pm local time, with Channel 5 in Thailand to broadcast the ties as part of the BBC’s coverage. The sixth round was drawn
live on Thai TV at 10.15pm. Channel 5 in Thailand to show matches as part of BBC’s coverage. The draw for the eighth round
was made live on Thai TV at 10.15pm. Channel 5 in Thailand to show matches as part of BBC’s coverage of the competition.

Input

"We had to cancel his operation and put off on him, he was supposed to have it on Christmas Eve." He said Josh and his family
had been in touch with some people from the US and Australia who are in Belfast right now. He is one of the first people
from the US to come to Belfast to meet and speak with Josh, and the rest of the family will visit from the US in the next few
days. "Josh has become a worldwide man’s man, and it has been incredible to see how everybody has taken to him. He’s an
ambassador for Irish people and for Ireland, and the people are really behind him. He’s a great ambassador for Ireland and for
his country and it has been really good." Josh was taken to Queen’s University Hospital for surgery and they discovered and
cut down his appendix, which had been causing him pain for more than a year. The surgery took place on January 11. He is
still on painkillers, and the family are encouraging people to keep praying for his recovery. The hashtag #prayforjosh and the
post and the message he messages are now being shared widely through social media by people from the US and Australia.
The most recent tweets from his father’s account are about his recovery in Belfast. He is also being accompanied by a "pray
warriors" team and the hashtag #prayforjosh is now being used by other campaigners to urge people to send support to Josh.
The church is also asking people to help

Paraphrase

"His operation was cancelled and put back - it was due to be on Christmas Eve." He said that the family and friends of Josh
have been in touch with people from the United States and Australia who are currently in Belfast. He himself was one of the
first to arrive in the city to meet and talk to the teenager, and more of the family will arrive in a few days. "Josh has become a
’global’ man and it’s been amazing to see how people have taken to him. He’s a real Irishman and an ambassador for Ireland
and it’s been really good for him." He said that on January 11th, when he was taken to Queen’s University Hospital in Belfast
for the operation, a large primary cancer and five smaller growths were removed. He is still recovering and the family ask
people to keep praying for his recovery. The post with the hashtag #prayforjosh and the messages it contains have now been
shared all over social media by people in the US and Australia. The last few posts on his father’s Twitter account are about his
recovery in Belfast. He has also been surrounded by a team of prayer warriors and the campaign has now widened, with people
using the tag #prayforjosh to urge others to show their support for him. The church is also calling on people to help in other
ways.

Input

I’ve enjoyed my time with the team." Wales, who won 11 medals in total in Brazil, failed to make the podium at three
consecutive Games from 1996 to 2008 before Doull stepped into the team and helped to end the long wait for a Welsh team
pursuit gold. The Welsh team were in fine form on Saturday as they captured their 11th medal, equalling the record of 14 won
in 1972. The Welsh team’s run to gold this year was well-documented. Geraint Thomas, the 2008 and 2012 Olympic champion,
set an Olympic record of 31 minutes 59.4 seconds to help Great Britain to gold. Born in Cardiff but living in Aberystwyth,
Anthony Iwan Thomas was selected as one of the two Welsh track riders for Rio and earned a silver medal in the men’s road
race, which he won in August. "It’s a dream come true to come back and win Olympic gold here," said Thomas. "To do it in
this stadium, it’s just surreal. I can’t explain it. Let me get home and I’ll be really grateful to everyone." He missed the 2012
Games through injury but returned to gold-winning form in 2016 when he won his third consecutive world championship in
the men’s road race, finishing second in Rio. "It’s a real honour to be on the podium today," added the 35-year-old. "There’s a
lot of times when you think ’this is it’ and you think

Paraphrase

I’ve loved every minute with the team. " Wales, who won 11 medals in Brazil, had not finished on the podium at three
consecutive Olympic games from 1996 to 2008 before Doull helped end the country’s long wait for a team pursuit gold medal.
The nation’s 11th medal on the last day equalled the record of 14 set in 1972. So many stories of success for the Welsh riders
in Rio have already been written. Born in Cardiff but now based in the Ceredigion resort of Aberystwyth, the son of Geraint
Thomas won silver in the men’s road race. Thomas said: "It’s just a dream come true to come back and win gold here and
it’s even more special to do it in this stadium. " If I get home I’ll thank everybody. " The 38-year-old had to miss the 2012
Olympic games with injury but was back to winning ways in 2016 when he retained his world title and finished second in Rio.
"There’s so many times when you think, ’This is the day’ and it never comes."

Table 6: Examples of paraphrased passage from the XSum dataset. The paraphrasing is performed
using DIPPER (Krishna et al., 2023).
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Description Text

Input

The force has said it has no intention of changing policy or use of force, and will continue to use the weapons as part of its
role policing the public. A spokesman for Scotland Yard said: "Officers in Scotland will continue to have a range of weapons
on-hand, including tasers, pepper spray and a handgun and they will be used in accordance with Taser International guidelines.
"We also have well established policies governing the use of these weapons and the use of force, and the use of force is judged
to be proportionate when appropriate." The move was welcomed by a leading rights campaign group. John O’Donnell, the
head of the High Court, said Tasers should have been compulsory in Scotland in 2015 following the death of a journalist in
custody in Newcastle and the deaths of two more while in police custody. He said: "The use of these weapons by police in
Scotland has been widely condemned and the High Court ruled they should be used to protect the public." A spokesman for
the Department for Transport said: "No police force should decide for itself what constitutes necessary force and the use of
these weapons by police in Scotland has been widely condemned. "The use of these weapons by officers must be subject to
strict rules which safeguard the public and the officers’ rights." The London police said they "do not comment on intelligence
matters".?

Paraphrase

The Met said it had no plans to change its policy on the use of force and said the Tasers would be used "when it is appropriate
and proportionate". A spokesman said: "Officers in Scotland will continue to carry a range of weapons including Tasers,
pepper spray and handguns. "We have well-established policies on the use of these weapons and the use of force in general and
we will continue to ensure these are followed." It was welcomed by the Scottish Human Rights Commission. The high court
judge, Lord O’Donnell, said in February that the use of Tasers by police in Scotland should have been compulsory in the wake
of the death of a journalist in police custody in Newcastle, and the subsequent deaths of two more people in police custody. He
said: "The use of these weapons by police in Scotland has been widely condemned and the high court has ruled they must be
used to protect the public." The Department for Transport said police should not be able to decide for themselves when it was
appropriate to use force. "The use of these weapons by officers must be subject to strict rules which protect the public and
officers’ rights." The Met said it did not comment on intelligence matters. Would you like to book an appointment with the
British Transport Police?

Input

"He gets on with me. I have no doubt about his motives." The move is also an enormous gamble but Koukash, a self-made
millionaire who made his fortune as a real estate mogul in Dubai, is determined to make sure the gamble pays off. He is willing,
he says, to let the man who guided Salford to seven Grand Final appearances head a great project. "He has an incredible track
record of creating people and businesses," said Noble. "He has done it in Qatar, in Dubai, in America, here." He is also one of
the game’s most ruthless businessmen. Koukash, who moved to the UK from Sudan with his parents as a boy and has spent the
past 30 years building his empire of clubs and businesses, has seen the game of rugby league decline dramatically over the past
10 years. He claims that the game has never been more popular than it is today. He is also a fervent supporter of the game
and this makes his interest in rugby league even more compelling. Salford have been in dire straits and Koukash, who has
ploughed much of his own money in the club, has promised to help them become one of the great clubs of the game. The club
has all the right qualities and Koukash wants to make sure it happens. He has spent the past two weeks scouting for players to
recruit and has already seen the arrival of two promising youngsters. The Reds need players to make them competitive

Paraphrase

He added: "I know him. I have no doubt about his intentions." It’s a huge gamble for the self-made millionaire who has made
his money in property in Dubai. He is happy to entrust the man who took Salford to seven Challenge Cup finals with his great
plan. " He’s got an incredible record of turning around people and businesses," Noble said. "He’s done it in Qatar, in Dubai, in
America, here." He’s also one of the most ruthless businessmen in the game. Having arrived in Britain as a boy from Sudan
with his parents, he’s spent the past 30 years building an empire of clubs and businesses. He’s also seen the game decline in
popularity over the past decade, but insists it’s now more popular than ever. He is a huge supporter of the game and that’s why
he’s interested in the sport. Salford have been in crisis and he’s promised to help them become one of the great clubs. The club
has all the attributes and Koukash is determined to make it happen. He has spent the past fortnight looking at players and has
already recruited two. He has to make the Reds a more competitive side and has already brought in a couple of players who
have impressed.

Input

She said he would not stop attacking and asked for help. She said she wanted "peace" but "not death". Henderson-McCarroll,
of St Nicholas Drive, Newry, admitted manslaughter while in charge of a dangerous drug. She said her actions were a "blip
in my mind" as a result of a "bad decision" to take drugs. Justice Treacy said he would not impose a custodial sentence
on Henderson-McCarroll, but instead sentenced her to three years’ imprisonment. The judge said he would not impose the
maximum sentence for manslaughter given the circumstances, but felt he would not impose the minimum of two and a half
years. He told Henderson-McCarroll: "He (Mr Girvan) would not be in his right mind if he would not have let his guard down.
If there was one thing the jury should have heard - it was that your actions were a blip in my mind. You didn’t intend to kill
him. You were acting in self-defence. You poked him and your actions were a blip and a bit of a lapse in judgment." The
judge said the maximum sentence for manslaughter given Henderson’s previous convictions would have amounted to between
five and seven years. The judge said it was "not an uncommon crime" to kill someone in self-defence. He said sentencing
Henderson was an "ugly case of drug-induced madness." He added: "He (Mr Girvan) must have suffered terribly."

Paraphrase

She said he had not stopped attacking her and she called for help. She said she wanted "peace" but not death. Henderson-
McCarroll, of St Nicholas Drive in Newry, admitted manslaughter while under the influence of a sedative. She said her actions
were the result of a "mistake" after taking drugs. Mr Justice Treacy said he would not grant a suspended sentence, but instead
would sentence her to three years in prison. He said he would not impose the maximum sentence for manslaughter, in the
circumstances, but did not feel he should impose the minimum term of two and a half years. He said to the defendant: "You
could not in your right mind have left your guard down, you did not intend to kill him. If there was one thing the jury ought
to have heard, it was that your actions were a momentary lapse of reason. You acted in self defence, you poked him with a
knife, your actions were momentary and a lapse of reason." The judge said that given the defendant’s previous record the
maximum sentence for manslaughter, with a minimum term of a year, would have been five to seven years. He said it was not
an uncommon crime for someone to kill in self defence. " But in this case, it was an ugly case of drug induced madness. " He
added: "Mr Girvan must have suffered horribly."

Table 7: Examples of paraphrased passage from the XSum dataset. The paraphrasing is performed
using DIPPER (Krishna et al., 2023).
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Description Text

Input

In the year 2014-2015, Prison Link Cymru made 1,099 referrals, and said some
offenders waited up to a year before finding suitable accommodation. Staff from
the charitable organization say that the investment in housing would be cheaper
than having to re-lock homeless offenders. The Welsh government said that more
people than ever are getting help to deal with their housing problems. Changes to
the Welsh Housing Act in 2015 removed priority rights for ex-offenders. Prison
Link Cymru, which helps people to find accommodation after they have been
released, said that women generally had a good time, as they had to deal with
children and other problems.

pp1

In the year 2014-2015, Prison Link Cymru made 1,099 referrals, and said some
offenders waited up to a year before finding suitable accommodation. Staff from
the charitable organization say that the investment in housing would be cheaper
than having to re-lock homeless offenders. The Welsh government said that more
people than ever are getting help to deal with their housing problems. Changes to
the Welsh Housing Act in 2015 removed priority rights for ex-offenders. Prison
Link Cymru, which helps people to find accommodation after they have been
released, said that women generally had a good time, as they had to deal with
children and other problems.

pp2

In 2015-16, Prison Link Cymru had 1,099 referrals and said some offenders were
living rough for up to a year before finding suitable accommodation. Workers
at the charity claim investment in housing would be cheaper than locking up
homeless repeat offenders. The Welsh Government said more people than ever
before were getting help to address housing problems. Prison Link Cymru,
which helps people find accommodation after they have left prison, said things
were generally good for women because issues such as children or domestic
violence were often the main reasons they returned to prison.

pp3

In fact, it was one of the main reasons why they came back to prison. In the year
2015-16, Prison Link Cymru made 1,099 referrals and said that offenders had
lived for up to a year before finding suitable accommodation. The workers at
the charitable organization say that the investment in housing would be cheaper
than re-locking homeless offenders. The government of Wales says that more
people than ever are being helped to deal with their housing problems. Prison
Link Cymru, which helps people to find accommodation after being released,
says that women are generally in a good position, as children and other problems
are often the main reason why they are returned to prison.

pp4

In the year to the end of March, Prison Link Cymru had 1,099 referrals and
said offenders had been living rough for up to a year before finding suitable
accommodation. Workers at the charity say investment in housing would be
cheaper than re-imprisoning homeless repeat offenders. The Welsh Government
says more people than ever before are getting help to address their housing
problems. Prison Link Cymru, which helps people find accommodation after
they have been released from prison, said generally things were good for women
because issues such as children and other problems were often the main reasons
they returned to prison.

pp5

The government of Wales says that more people than ever before are being helped
to deal with their housing problems. In the year 2015-16, Prison Link Cymru
referred 1,099 people and said that homeless people had lived up to a year before
finding suitable accommodation. The workers at the charitable organization say
that the investment in housing would be cheaper than imprisoning homeless
offenders again. Prison Link Cymru, which helps people find accommodation
after being released, says that women are generally well, because children and
other problems are often the main reason why they return to prison.

Table 8: Example of a recursively paraphrased passage from the XSum dataset. The paraphrasing is
performed using DIPPER (Krishna et al., 2023). ppi refers to the output after i rounds of recursive
paraphrasing.
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C PROOFS AND COROLLARIES

C.1 PROOF OF THEOREM 1

Theorem 1. The area under the ROC of any detector D is bounded as

AUROC(D) ≤ 1

2
+ TV(M,H)− TV(M,H)2

2
.

Proof. The ROC is a plot between the true positive rate (TPR) and the false positive rate (FPR),
which are defined as follows:

TPRγ = Ps∼M[D(s) ≥ γ]

and FPRγ = Ps∼H[D(s) ≥ γ],

where γ is some classifier parameter. We can bound the difference between the TPRγ and the FPRγ

by the total variation between M and H:

|TPRγ − FPRγ | = |Ps∼M[D(s) ≥ γ]− Ps∼H[D(s) ≥ γ]| ≤ TV(M,H) (1)
TPRγ ≤ FPRγ + TV(M,H). (2)

Since the TPRγ is also bounded by 1 we have:

TPRγ ≤ min(FPRγ + TV(M,H), 1). (3)

Denoting FPRγ , TPRγ , and TV(M,H) with x, y, and tv for brevity, we bound the AUROC as
follows:

AUROC(D) =

∫ 1

0

y dx ≤
∫ 1

0

min(x+ tv, 1)dx

=

∫ 1−tv

0

(x+ tv)dx+

∫ 1

1−tv

dx

=

∣∣∣∣x2

2
+ tvx

∣∣∣∣1−tv

0

+ |x|11−tv

=
(1− tv)2

2
+ tv(1− tv) + tv

=
1

2
+

tv2

2
− tv + tv − tv2 + tv

=
1

2
+ tv − tv2

2
.

C.2 GENERAL TRADE-OFFS FOR DETECTION

Paraphrasing to Evade Detection. Although our analysis considers general distributions, it can
also be applied to specific scenarios, such as particular writing styles or sentence paraphrasing, by
defining M and H appropriately. For example, M can be the outputs from an LLM trained to mimic
a particular set of people, or H can be the text distribution of a specific person. Similarly, Corollary 1
shows that if a paraphraser’s goal is to lower the TV between paraphrased AI text and human text,
then detection gets harder.

Set M = RM(s) and H = RH(s) to be the distribution of sequences with similar meanings to s
produced by the paraphraser and humans, respectively.
Corollary 1. The area under the ROC of the detector D is bounded as

AUROC(D) ≤ 1

2
+ TV(RM(s),RH(s))− TV(RM(s),RH(s))2

2
.

Another way to understand the limitations of AI-generated text detectors is directly through the
characterization of the trade-offs between true positive rates and false positive rates. Adapting
inequality 2, we have the following corollaries:
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Corollary 2. For any watermarking scheme W ,

Pr
sw∼RM(s)

[sw is watermarked using W ] ≤ Pr
sw∼RH(s)

[sw is watermarked using W ]

+ TV(RM(s),RH(s)),

where RM(s) and RH(s) are the distributions of rephrased sequences for s produced by the
paraphrasing model and humans, respectively.

Humans may have different writing styles. Corollary 2 indicates that if a rephrasing model resembles
certain human text distribution H (i.e. TV(RM(s),RH(s)) is small), then either certain people’s writ-
ing will be detected falsely as watermarked (i.e. Prsw∼RH(s)[sw is watermarked using W ] is high)
or the paraphrasing model can remove the watermark (i.e. Prsw∼RM(s)[sw is watermarked using W ]
is low).
Corollary 3. For any AI-text detector D,

Pr
s∼M

[s is detected as AI-text by D] ≤ Pr
s∼H

[s is detected as AI-text by D] + TV(M,H),

where M and H denote text distributions by the model and by humans, respectively.

Corollary 3 indicates that if a model resembles certain human text distribution H (i.e. TV(M,H)
is small), then either certain people’s writing will be detected falsely as AI-generated (i.e.
Prs∼H[s is detected as AI-text by D] is high) or the AI-generated text will not be detected reliably
(i.e. Prs∼M[s is detected as AI-text by D] is low).

A recent work (Chakraborty et al., 2023) shows a trade-off on the detection problem with respect to
the availability of the number of data samples for detection. They show a TV upper bound for the
detector’s AUROC using an information theoretic approach. However, the underlying assumption
of their result is that several independent samples are available to the detector from either human
or text distribution, which might not be a practical assumption since sentences in a document are
often correlated with each other. Also, a large number of data samples need not be available for
pragmatic scenarios. For example, it may not be practical for a text detector to ask a student to write
multiple essays for an assignment or to assume that a Twitter bot would publish longer tweets that
are completely written by the AI without any human intervention.

C.3 TIGHTNESS ANALYSIS FOR THEOREM 1

In this section, we show that the bound in Theorem 1 is tight. For a given distribution of human-
generated text sequences H, we construct an AI-text distribution M and a detector D such that the
bound holds with equality. Define sublevel sets of the probability density function of the distribution
of human-generated text pdfH over the set of all sequences Ω as follows:

ΩH(c) = {s ∈ Ω | pdfH(s) ≤ c}

where c ∈ R. Assume that, ΩH(0) is not empty. Now, consider a distribution M, with density
function pdfM, which has the following properties:

1. The probability of a sequence drawn from M falling in ΩH(0) is TV(M,H), i.e.,
Ps∼M[s ∈ ΩH(0)] = TV(M,H).

2. pdfM(s) = pdfH(s) for all s ∈ Ω(τ) − Ω(0) where τ > 0 such that Ps∼H[s ∈ Ω(τ)] =
1− TV(M,H).

3. pdfM(s) = 0 for all s ∈ Ω− Ω(τ).

Define a hypothetical detector D that maps each sequence in Ω to the negative of the probability
density function of H, i.e., D(s) = −pdfH(s). Using the definitions of TPRγ and FPRγ , we have:

TPRγ = Ps∼M[D(s) ≥ γ]

= Ps∼M[−pdfH(s) ≥ γ]

= Ps∼M[pdfH(s) ≤ −γ]

= Ps∼M[s ∈ ΩH(−γ)]
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Similarly,
FPRγ = Ps∼H[s ∈ ΩH(−γ)].

For γ ∈ [−τ, 0],

TPRγ = Ps∼M[s ∈ ΩH(−γ)]

= Ps∼M[s ∈ ΩH(0)] + Ps∼M[s ∈ ΩH(−γ)− ΩH(0)]

= TV(M,H) + Ps∼M[s ∈ ΩH(−γ)− ΩH(0)] (using property 1)
= TV(M,H) + Ps∼H[s ∈ ΩH(−γ)− ΩH(0)] (using property 2)
= TV(M,H) + Ps∼H[s ∈ ΩH(−γ)]− Ps∼H[s ∈ ΩH(0)] (ΩH(0) ⊆ ΩH(−γ))
= TV(M,H) + FPRγ . (Ps∼H[s ∈ ΩH(0)] = 0)

For γ ∈ [−∞,−τ ], TPRγ = 1, by property 3. Also, as γ goes from 0 to −∞, FPRγ goes from 0 to
1. Therefore, TPRγ = min(FPRγ + TV(M,H), 1) which is similar to Equation 3. Calculating the
AUROC in a similar fashion as in the previous section, we get the following:

AUROC(D) =
1

2
+ TV(M,H)− TV(M,H)2

2
.

C.4 PSEUDORANDOMNESS IN LLMS

Most machine learning models, including LLMs, use pseudorandom number generators in one form
or another to produce their outputs. For example, an LLM may use a pseudorandom number generator
to sample the next token in the output sequence. In discussing our hardness result, Kirchenbauer
et al. (2023b) in a more recent work argue that this pseudorandomness makes the AI-generated
text distribution very different from the human-generated text distribution. This is because the
pseudorandom AI-generated distribution is a collection of Dirac delta function distributions, and a
human is exorbitantly unlikely to produce a sample corresponding to any of the delta functions. In our
framework, this means that the TV between the human and pseudorandom AI-generated distributions
is almost one, making the bound in Theorem 1 vacuous.

We argue that although the true TV between the human and pseudorandom AI-generated distributions
is high and there exists (in theory) a detector function that can separate the distributions almost
perfectly, this function may not be efficiently computable. Any polynomial-time computable detector
can only achieve a negligible advantage from the use of pseudorandomness instead of true randomness.
If we had knowledge of the seed used for the pseudorandom number generator, we would be able to
predict the pseudorandom samples. However, an individual seeking to evade detection could simply
randomize this seed making it computationally infeasible to predict the samples.

We modify the bound in Theorem 1 to include a negligible correction term ϵ to account for the use of
pseudorandomness. We prove that the performance of a polynomial-time computable detector D on
a pseudorandom version of the AI-generated distribution M̂ is bounded by the total variation for the
truly random distribution M (resulting from the LLM using true randomness) as follows:

AUROC(D) ≤ 1

2
+ TV(M,H)− TV(M,H)2

2
+ ϵ.

The term ϵ represents the gap between the probabilities assigned by M and M̂ to any polynomial-time
computable {0, 1}-function f , i.e.,∣∣Ps∈M[f(s) = 1]− P

s∈M̂[f(s) = 1]
∣∣ ≤ ϵ. (4)

This term is orders of magnitude smaller than any of the terms in the bound and can be safely ignored.
For example, commonly used pseudorandom generators1 can achieve an ϵ that is bounded by a
negligible function 1/bt of the number of bits b used in the seed of the generator for a positive integer
t2 (Blum et al., 1982; Blum & Micali, 1984). From a computational point of view, the TV for the
pseudorandom distribution is almost the same as the truly random AI-generated distribution. Thus,

1Cryptographic PRNGs:
https://en.wikipedia.org/wiki/Pseudorandom_number_generator

2Negligible function: https://en.wikipedia.org/wiki/Negligible_function
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our framework provides a reasonable approximation for real-world LLMs, and the hardness result
holds even in the presence of pseudorandomness.

Computational Total Variation Distance. Just as the total variation distance TV between two
probability distributions is defined as the difference in probabilities assigned by the two distributions
to any {0, 1}-function, we define a computational version of this distance TVc for polynomial-time
computable functions:

TVc(A,B) = max
f∈P

∣∣Ps∼A[f(s) = 1]− Ps∼B [f(s) = 1]
∣∣,

where P represents the set of polynomial-time computable {0, 1}-functions. P could also be defined
as the set of all polynomial-size circuits which could be more appropriate for deep neural network-
based detectors. The function f could be thought of as the indicator function for the detection
parameter being above a certain threshold, i.e., D(s) ≥ γ as in the proof of Theorem 1. The
following lemma holds for the performance of a polynomial-time detector D:

Lemma 1. The area under the ROC of any polynomial-time computable detector D is bounded as

AUROC(D) ≤ 1

2
+ TVc(M̂,H)− TVc(M̂,H)2

2
.

This lemma can be proved in the same way as Theorem 1 by replacing the truly random AI-
generated distribution M with its pseudorandom version M̂ and the true total variation TV with its
computaional variant TVc.

Next, we relate the computational total variation TVc between H and the pseudorandom distribution
M̂ with the total variation TV between H and the truly random distribution M.

Lemma 2. For human distribution H, truly random AI-generated distribution M and its pseudoran-
dom version M̂,

TVc(M̂,H) ≤ TV(M,H) + ϵ.

Proof.

TVc(M̂,H) = max
f∈P

∣∣Ps∼H[f(s) = 1]− P
s∼M̂[f(s) = 1]

∣∣ (from definition of TVc)

= max
f∈P

∣∣Ps∼H[f(s) = 1]− Ps∼M[f(s) = 1]

+ Ps∼M[f(s) = 1]− P
s∼M̂[f(s) = 1]

∣∣ (+/-ing Ps∼M[f(s) = 1])

≤ max
f∈P

∣∣Ps∼H[f(s) = 1]− Ps∼M[f(s) = 1]
∣∣

+
∣∣Ps∼M[f(s) = 1]− P

s∼M̂[f(s) = 1]
∣∣ (using |a+ b| ≤ |a|+ |b|)

≤ TV(M,H) + ϵ. (from definition of TV and bound 4)

We now use this to prove the modified version of our computational hardness result.

Theorem 2 (Computational Hardness Result). The AUROC of any polynomial-time computable
detector D for H and the pseudorandom distribution M̂ is bounded using the TV for the truly
random distribution M as

AUROC(D) ≤ 1

2
+ TV(M,H)− TV(M,H)2

2
+ ϵ.
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(a) Varying vocabulary size (b) Varying sequence length

Figure 14: TV distances between synthetic toy data distributions and LSTM model generation
distributions. TV distances are computed for multiple settings, varying the vocabulary size and
sequence length of the training dataset and varying the size of the LSTM network used for training.

Proof.

AUROC(D) ≤ 1

2
+ TVc(M̂,H)− TVc(M̂,H)2

2
(from Lemma 1)

≤ 1

2
+ TV(M,H) + ϵ− (TV(M,H) + ϵ)2

2
(from Lemma 2 and since 1

2 + x− x2

2 is increasing in [0, 1])

=
1

2
+ TV(M,H) + ϵ− TV(M,H)2 + ϵ2 + 2ϵTV(M,H)

2

≤ 1

2
+ TV(M,H)− TV(M,H)2

2
+ ϵ. (dropping negative terms containing ϵ)

C.5 ESTIMATING TV DISTANCE

In §4, we show experiments supporting the assumption that more advanced LLMs lead to smaller TV
distance between human and machine text distributions. We present two experimental settings — (i)
Using synthetic text data and (ii) Using projection. In Figure 14, we show the TV distances computed
with varying vocabulary sizes and sequence lengths. In all the experiments, we consistently find that
the TV distances reduce as the network size increases.

D MORE DETAILS ON SPOOFING

D.1 SOFT WATERMARK DETECTOR

In Kirchenbauer et al. (2023a), they watermark LLM outputs by asserting the model to output tokens
with some specific pattern that can be easily detected with meager error rates. Soft watermarked
texts are majorly composed of green list tokens. If an adversary can learn the green lists for the
soft watermarking scheme, they can use this information to generate human-written texts that are
detected to be watermarked. Our experiments show that the soft watermarking scheme can be spoofed
efficiently. Though the soft watermarking detector can detect the presence of a watermark very
accurately, it cannot be certain if this pattern is actually generated by a human or an LLM. An
adversarial human can compose derogatory watermarked texts in this fashion that are detected to be
watermarked, which might cause reputational damage to the developers of the watermarked LLM.
Therefore, it is important to study spoofing attacks to avoid such scenarios.
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Figure 15: Inferred green list score for the token “the”. The plot shows the top 50 words from our set
of common words that are likely to be in the green list. The word “first” occurred ∼ 25% of the time
as suffix to “the”.

In watermarking, the prefix word s(t−1) determines the green list for selecting the word s(t). The
attacker’s objective is to compute a proxy of green lists for the N most commonly used words in
the vocabulary. We use a small value of N = 181 for our experiments. The attacker queries the
watermarked OPT-1.3B Zhang et al. (2022) 106 times to observe pair-wise token occurrences in
its output to estimate green list score for the N tokens. We find that inputting nonsense sentences
composed of the N common words encourages the LLM to output text mostly composed of these
words. This makes the querying more efficient. A token with a high green list score for a prefix
s(t) might be in its green list (see Figure 15). We build a tool that helps adversarial humans create
watermarked sentences by providing them with proxy green list. In this manner, we can spoof
watermarking models easily. See Table 9 for example sentences created by an adversarial human.
Figure 6 shows that the performance of watermark-based detectors degrades significantly in the
presence of paraphrasing and spoofing attacks, showing that they are not reliable.

Human text % tokens in
green list z-score Detector output

the first thing you do will be the best thing you do. this is
the reason why you do the first thing very well. if most
of us did the first thing so well this world would be a
lot better place. and it is a very well known fact. people
from every place know this fact. time will prove this
point to the all of us. as you get more money you will
also get this fact like other people do. all of us should
do the first thing very well. hence the first thing you do
will be the best thing you do.

42.6 4.36 Watermarked

Table 9: Proof-of-concept human-generated texts flagged as watermarked by the soft watermarking
scheme. A sentence composed by an adversarial human contains 42.6% tokens from the green
list. The z-test threshold for watermark detection is 4, the same as the default hyperparameter in
Kirchenbauer et al. (2023a).

D.2 ZERO-SHOT AND TRAINED DETECTORS

We report the false positive rate fixed at a true positive rate of 90% and the true positive rate at a
false positive rate of 1% in Table 10. The ROC curves before and after spoofing the detectors are
provided in Figure 16. Our experiments demonstrate that most of these detection methods show a
significant increase in false positive rates at a fixed true positive rate of 90% after spoofing. After this
naïve spoofing attack, the true positive rate at a false positive rate of 1% and AUROC scores of these
detectors drop significantly.
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Figure 16: ROC curves before (left) and after (right) spoofing attack (§ 3). Most detectors exhibit
quality degradation after our spoofing attack.

Detection Methods T@F F@T

Entropy threshold (Gehrmann et al., 2019) 0.025 (0.045) 0.995 (0.845)
Likelihood threshold (Solaiman et al., 2019) 0.050 (0.075) 0.995 (0.310)

Logrank threshold 0.165 (0.155) 0.690 (0.190)
Rank threshold (Gehrmann et al., 2019) 0.530 (0.335) 0.655 (0.590)

Roberta (base) OpenAI detector (OpenAI, 2019) 0.900 (0.765) 0.010 (0.035)
Roberta (large) OpenAI detector (OpenAI, 2019) 0.985 (0.990) 0.000 (0.000)

DetectGPT (Mitchell et al., 2023) 0.055 (0.240) 0.555 (0.145)

Table 10: True positive rates at 1% false positive rate (T@F) and false positive rates at 90% true
positive rate (F@T) after (before the attack in parentheses) the spoofing attack described in §3.
Bolded numbers show successful attacks where T@F decreases, or F@T increases after spoofing.
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