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Abstract

Gaussian Cox processes are widely-used point process models that use a Gaussian
process to describe the Bayesian a priori uncertainty present in latent intensity
functions. In this paper, we propose a novel Bayesian inference scheme for Gaus-
sian Cox processes by exploiting a conceptually-intuitive path integral formula-
tion. The proposed scheme does not rely on domain discretization, scales linearly
with the number of observed events, has a lower complexity than the state-of-the-
art variational Bayesian schemes with respect to the number of inducing points,
and is applicable to a wide range of Gaussian Cox processes with various types of
link functions. Our scheme is especially beneficial under the multi-dimensional
input setting, where the number of inducing points tends to be large. We evaluate
our scheme on synthetic and real-world data, and show that it achieves comparable
predictive accuracy while being tens of times faster than reference methods.

1 Introduction

Gaussian Cox processes constitute a class of doubly-stochastic point process models in which a
flexible prior over a latent intensity function is established by a Gaussian process through a positive
link function under which point events are generated. Gaussian Cox processes are the gold stan-
dard in analyzing event data in a Bayesian manner, and have a wide ranging list of applications in
neuroscience [10], finance [5], and spatio-temporal analysis [30].

The observation process, i.e., the likelihood function of the Gaussian Cox process, depends on the
functional form of the latent intensity function over a compact domain, which makes Bayesian
inference challenging as it imposes the intractable computation of infinite-dimensional distribu-
tions. Many algorithms have been proposed to deal with this difficulty. They include Markov Chain
Monte Carlo (MCMC) sampling, domain discretization, and variational Bayesian (VB) approxima-
tion. MCMC approaches [2, 22] provide exact inferencing for a specific link function, but they have
excessive computation costs. Although domain discretization [10, 43] achieves sub-linear computa-
tional scaling with discretization size, it suffers from poor scaling with data size and the dimension
of the domain. To overcome these limitations, state-of-the-art algorithms employ sparse VB ap-
proximation with inducing points [3, 31]; they achieve improved scaling with the dimension of the
domain as well as computation cost that is linear to data size. However, the computation costs of VB
approaches scale at the rate of O(NL2+L3) where L and N are the number of inducing points and
data points, respectively, making them problematic in the multi-dimensional domain setting, where
L tends to be large. Also, VB approaches achieve good approximations by aggressively focusing on
the unique structures of individual kernel functions or link functions, and thus are not applicable to
a wide range of Gaussian Cox processes.

In this paper, we introduce a conceptually-intuitive path integral formulation of Gaussian processes,
by which we derive a novel inference scheme for tackling intractable Gaussian Cox processes. The
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formulation predicts that the maximum a posteriori (MAP) estimation of a latent intensity function
coincides with the problem of finding the most likely path that maximizes the functional posterior,
whose solution can be obtained by solving an explicit integral equation. The approximate predictive
covariance is also acquired by solving the corresponding integral equation. We propose an efficient
algorithm to solve the integral equations; it offers O(NL+ L2) computation scaling, that is, lower
complexity than the state-of-the-art variational Bayesian schemes with respect to the number of
inducing points, as well as linear computation scaling with data size. Furthermore, our inference
scheme via path integral holds for any kernel function and a wide range of link functions, and thus
provides a practical methodology against Gaussian Cox processes that conventional approaches have
yet to tackle successfully.

In Section 2, we introduce the path integral formulation of Gaussian processes, and construct a
new Bayesian inference scheme for Gaussian Cox processes. In Section 3, we provide a practical
methodology to perform inferencing. In Section 4, we outline related work. In Section 5, we perform
comparative evaluations against reference methods on synthetic and real-world data, and confirm
that our scheme achieves comparable predictive accuracy with substantial speed improvements over
state-of-the-art algorithms. Finally, Section 6 states our conclusions.

2 Path Integral Formulation

2.1 Gaussian Cox Process

We assume that a latent function on a compact space, T ⊂ RD, x(t) : T → R, is generated from a
Gaussian Process (GP), denoted by GP(x(t)|µ, k(t, t′)), and observations are generated from a pro-
cess under latent function x(t), where µ and k are the mean value and the kernel/covariance function
for x(t), respectively. Given data set D observed within T , we consider the problem of obtaining
the maximum a posteriori (MAP) estimator of x(t) that maximizes the posterior probability

p(x(t)|D) =
p(D|x(t)) GP(x(t)|µ, k)∫

Dx(t) p(D|x(t)) GP(x(t)|µ, k)
, (1)

where p(D|x(t)) is the likelihood function, and
∫

Dx(t) in the denominator represents the integral
over the function or the infinite-dimensional variable x(t).

The GP prior, GP(x(t)|µ, k), can be regarded as a normal distribution for an infinite-dimensional
variable (see Section 2.2), and thus if the likelihood function depends only on a set of latent functions
on finite N training points, p(D|x(t)) = p(D|{x(tn)}Nn=1), then MAP estimation for an infinite-
dimensional variable reduces to that for a finite N -dimensional variable by marginalizing out the
variables on the points other than {x(tn)}Nn=1; this inference is tractable and has been examined
extensively (e.g. GP regression, GP classification). Here, we focus on a more challenging situation
where the likelihood function includes a factor that depends on an integral of a latent function over
T as follows,

log p(D|x(t)) =
N∑

n=1

log λ(tn)−
∫
T
λ(t)dt, λ(t) = κ

(
x(t)

)
, (2)

where D = {tn}Nn=1 is the set of point events occurring in the observation region T , κ(x) : R →
R+ is a non-negative function called the link function, and λ(t) is the intensity function or the
instantaneous probability of events occurring at each point in T . The probabilistic model defined by
(1-2) is called the Gaussian Cox process.

Bayesian inference (1) on situation (2) is often referred as “doubly-intractable", because it requires
solving the integral of the stochastic function x(t) as well as computing the intractable posterior
probability of an infinite-dimensional variable. Below, we address the problem directly by introduc-
ing path integral, a mathematical tool familiar in the field of quantum physics, to treat probability
distributions of stochastic functions properly and intuitively.

2.2 Gaussian Process Prior via Path Integral

In order to derive an explicit description of GP prior, we first review a well-known formulation of
GP [7], and reconstruct its explicit form of probability density distribution by using a path integral
representation.

2



Consider a model defined in terms of a linear combination of M fixed basis functions, {ϕm(t)}Mm=1,
such that

x(t) = µ+

M∑
m=1

αmϕm(t) = µ+α⊤ϕ(t), t ∈ T , (3)

where α ≜ (α1, · · · , αM )⊤ is the M -dimensional weight vector, ϕ(t) ≜ (ϕ1(t), · · · , ϕM (t))⊤,
and µ is a mean parameter. If α is generated from an M -dimensional Gaussian with a diagonal
covariance matrix of the form

p(α) = N (α|0, c−1IM ), (4)
the joint probability distribution for any finite (even infinite) set of variables, x ≜ (x(t1), . . . ,
x(tJ))

⊤ for J ≤ ∞, follows the J-dimensional Gaussian given by

p(x)dx = N (x|µ1,K)dx, Kjj′ = k(tj , tj′) ≜ c−1ϕ(tj)
⊤ϕ(tj′), (5)

where k(t, t′) is a semi-definite kernel function, c is the precision parameter, 1 ≤ j, j′ ≤ J , and
1 ≜ (1, . . . , 1)⊤. Because (5) holds for arbitrary numbers of dimensions, J , it provides an implicit
representation of GP prior.

Next, based on the expression (5), we derive a more explicit representation of GP prior. For sim-
plicity of explanation, we assume that the domain T is one-dimensional, t = t and T = [0, T ],
and mean µ is zero. Let K be the integral operator corresponding to k(t, t′), and K∗ be the inverse
operator of K,

K(∗)x(t) ≜
∫
T
k(∗)(t, t′)x(t′)dt′, K∗k(t, s) =

∫
T
k∗(t, t′)k(t′, s)dt′ = δ(t− s), (6)

where δ(·) represents the Dirac delta function. Note that K∗ and k∗(t, t′) should be described by
a differential operator because relation (6) indicates that k(t, s) is the Green function [15] for the
operator K∗, but we do not go into detail here. Under the finite scenario (5) with [t0, tJ ] = [0, T ]
and J ≫ 1, the second equation in (6) can be approximated by K∗∆K = ∆−1, where ∆jj′ =
(tj − tj−1)δjj′ , K∗

jj′ = k∗(tj , tj′), and δjj′ is the Kronecker delta. Then we can write down the
J-dimensional Gaussian (5) by using K∗ as

p(x)dx =

√
|∆K∗∆|
(2π)J

exp
[
−1

2
(∆x)⊤K∗(∆x)

]
dx. (7)

By taking the limit of the division number J → ∞ (∆ → 0) for the finite-dimensional Gaus-
sian measure (7), we achieve the following path integral representation of GP prior over the latent
function x(t):

GP(x(t)|0, k)Dx ≜ lim
J→∞

p(x)

J∏
j=1

dx(tj)=

√
1

|K|
exp

[
−1

2

∫∫
T ×T
k∗(t, s)x(t)x(s)dtds

]
Dx, (8)

where |K| ≜ limJ→∞ |K∆|, Dx ≜ limJ→∞
∏J

j=1

√
(tj−tj−1)/(2π)dx(tj), and the following

path integral holds, ∫
exp

[
−1

2

∫∫
T ×T

k∗(t, s)x(t)x(s)dtds
]
Dx =

√
|K|. (9)

|K| represents the Fredholm determinant or functional determinant [19] of the integral operator K,
which is defined by the product of its eigenvalues. See the supplementary material (§1) for the
derivation. The expression for GP(x(t)|µ, k) is easily recovered by x(t) → x(t)− µ and t → t in
(8).

The path integral representation (8-9) has a clear advantage over the standard one (5) in that the
distribution of the latent function x(t) is written in terms of the explicit integral of x(t) over the
domain T , as with the likelihood function (2), which makes it possible to apply functional analyses,
calculus of variation, to the Bayesian estimation (1). To the best of our knowledge, this is the first
proposal of a path integral representation for GP prior in the machine learning community.

It should be noted that our derivation of the path integral representation is based on an intuitive view
reminiscent of Feynman’s path integral formulation of the quantum field theory [17], and thus is not
mathematically rigorous. In this paper, we confirm that our path integral expression is valid by using
experiments rather than taking a more mathematically rigorous approach; we discuss this briefly in
Section 4.
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2.3 Maximum A Posteriori Estimation

Using the representation (8) and the likelihood function (2), we can rewrite the posterior (1) as the
functional,

p(x(t)|D)Dx =
1

p(D)
exp

[
−S

(
x(t), x(t)

)]
Dx, (10)

where S
(
x(t), x(t)

)
is an action integral, defined by

S
(
x(t), x(t)

)
≜

∫
T

[
1

2
(x(t)−µ)x(t)+κ

(
x(t)

)
−

N∑
n=1

log κ
(
x(t)

)
δ(t−tn)

]
dt+

1

2
log |K|, (11)

and x(t) ≜
∫
T k∗(t, t′)(x(t′)−µ)dt′ = K∗(x − µ). (10) indicates that MAP estimation of x(t)

is equivalent to the problem of finding the most likely function or path x(t) that minimizes the
action integral. Thus we now apply calculus of variations to the action integral, where the functional
derivative of S(x

(
t), x(t)

)
on the MAP estimator x̂

(
t) is equal to zero: δS

δx̂(t)δx̂(t)+
δS

δx̂(t)δx̂(t) = 0.
This leads us to realize the following equation for deriving the MAP estimator x̂(t),

x̂(t) +

∫
T
k(t, t′)κ̇

(
x̂(t′)

)
dt′ = µ+

N∑
n=1

k(t, tn)
κ̇
(
x̂(tn)

)
κ
(
x̂(tn)

) , t ∈ T , (12)

where κ̇(x) ≜ dκ(x)/dx. See the supplementary material (§2) for the detailed derivations of (12).

2.4 Predictive Covariance

One of the advantages of GP models over non-Bayesian approaches is that they can provide predic-
tive distributions. We apply a Laplace approximation to GP models (10), and find the approximate
form of the predictive covariance.

We now know the mode of the posterior, x̂(t), and consider a Taylor expansion of functional action
potential S

(
x(t), x(t)

)
centered on the mode such that

S
(
x(t), x(t)

)
≃ S

(
x̂(t), x̂(t)

)
+

1

2

∫∫
T×T
σ∗(t, s)(x(t)−x̂(t))(x(s)−x̂(s))dtds, (13)

where σ∗(t, s) ≜ δ2S(x,x)
δx(t)δx(s)

∣∣
x=x̂

is the second derivative of S. The first term in the Taylor expansion
vanishes due to the stationary condition. The quadratic approximation of the action integral corre-
sponds to the approximation of the posterior process by a GP, and the predictive covariance or the
kernel function for the posterior GP, denoted by σ(t, s), can be obtained by the functional inversion
of σ∗(t, s) (see Equation (8)), which results in

σ(t, s) = h(t, s)− h(t)⊤(Z +H)−1h(s), (14)

where Znn′ ≜ δnn′
κ2(x)

κ̇2(x)−κ(x)κ̈(x)

∣∣
x=x̂(tn)

, κ̈(x) ≜ d2κ(x)
dx2 , Hnn′ ≜ h(tn, tn′), h(t) ≜

(h(t, t1),. . . ,h(t, tN ))⊤, and h(t, s) is defined by the following Fredholm integral equation of the
second kind [36],

h(t, s) +

∫
T
k(t, t′)κ̈

(
x̂(t′)

)
h(t′, s)dt′ = k(t, s). (15)

Note that Znn′ has an infinite value for k(x) = ex, which leads to the relation, σ(t, s) = h(t, s).
The full derivation of (14-15) is given in the supplementary material (§3).

2.5 Marginal Likelihood

Let Σ and H be the integral operators for σ(t, s) and h(t, s), respectively: Σ ≜∫
T ·σ(t, t′)dt′, H ≜

∫
T ·h(t, t′)dt′. Under Laplace approximation (13), we can obtain the

marginal likelihood or evidence of Gaussian Cox processes, p(D), by performing the following
path integral (9),

log p(D) = log

∫
exp

[
−S

(
x(t), x(t)

)]
Dx ≃ −S

(
x̂(t), x̂(t)

)
+

1

2
log |Σ |, (16)
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Table 1: Link functions κ(x) and their derivation.

κ(x) κ̇(x) κ̈(x) γ(κ̇) = κ̇/κ

quadratic x2 2x 2 4/κ̇
exponential exp(x) exp(x) exp(x) 1
softplus log(1+exp(x)) (1+exp(−x))−1 exp(−x)/(1−exp(−x))2 − log(1−κ̇)

where log |Σ | = log |H| − log |IN +Z−1H|, and

S
(
x̂(t), x̂(t)

)
=

1

2
log |K|+

N∑
n=1

[
1

2
(x̂(tn)−µ)

κ̇
(
x̂(tn)

)
κ
(
x̂(tn)

) − log κ
(
x̂(tn)

)]
+

∫
T
κ
(
x̂(t)

)
dt− 1

2

∫
T
(x̂(t)−µ)κ̇

(
x̂(t)

)
dt. (17)

The full derivation is given in the supplementary material (§4).

3 How to Solve Integral Equations

To obtain the MAP estimator x̂(t) and the predictive covariance σ(t, s), we need to solve the corre-
sponding integral equations. We provide efficient algorithms to solve them (also see Suppl. (§8)).

3.1 MAP Estimator

Equation (12) for the MAP estimator is a nonlinear integral equation of the second kind, sometimes
called the Hammerstein integral equation [23]. We can obtain an approximation solution of the
equation through the most widely used class of methods, projection methods [4], which approximate
the solution or its derivation by choosing an approximation from a given finite L-dimensional linear
subspace of functions, denoted by Z . We employ the collocation method [29], a variant of the
projection method:

κ̇
(
x̂(t)

)
≃

L∑
l=1

β̂lφl(t), {β̂l}Ll=1 = arg min
{βl}L

l=1

L∑
l=1

[r(pl)]
2,

r(t) ≜ κ̇

(∑
n

k(t, tn)γ
[∑

l

βlφl(tn)
]
−
∑
l

βl

∫
T
k(t, t′)φl(t

′)dt′ + µ

)
−

∑
l

βlφl(t),

(18)

where r(t) is the residual derived from (12), {φl}Ll=1 is a basis for Z , {pl∈T }Ll=1 are the collocation
points, and γ(κ̇) represents κ̇(x)/κ(x) being re-written as a function of κ̇(x) (see Table 1). As the
basis {φl}Ll=1, we adopt the eigenfunctions of the kernel operator K, which reduces the problematic
integral term in the residual into a tractable one as

∫
T k(t, t′)φl(t

′)dt′ = λlφl(t), where {λl}Ll=1 is
the set of the eigenvalues of K. The procedure for finding the eigenfunctions is provided at the end
of this section. For fair comparison with VB-based approaches of Gaussian Cox processes [3, 31],
we solve the minimization problem of the sum of the squared residuals by using a popular gradient
descent algorithm, Adam [27]. We can obtain the MAP estimator x̂(t) by substituting (18) into (12):
x̂(t) = µ+

∑
n k(t, tn)γ

(∑
l β̂lφl(tn)

)
−

∑
l λlβ̂lφl(t).

The sparsely located collocation points, {pl}Ll=1, reduce the computational complexity of MAP
estimation substantially, and play a similar role in the Bayesian inference scheme to that played by
the inducing points in the variational framework for sparse GP regression [44]. In this paper, we
adopt a regular grid over T as the collocation points in accordance with the VB-based references
[31, 3], but note that other location choices are possible. For simplicity of explanation, we hereafter
call {pl}Ll=1 inducing points.

It should be noted here that our approach (18) with the collocation method can be applied to cases
where γ(κ̇) = κ̇(x)/κ(x) is defined properly as a function of κ̇(x). Table 1 shows that γ(κ̇) can
be defined for popular link functions which include quadratic [18, 31], exponential [12, 30, 33], and
softplus [28] functions. But our approach is not applicable to link functions whose derivatives, κ̇(x),
are not monotonic with respect to x, such as sigmoidal link functions [2, 3, 22].
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3.2 Predictive Covariance

Given the MAP estimator x̂(t), the predictive covariance (14) can be obtained by solving the linear
integral equation (15) about h(t, s). We apply the Gelerkin method [4], a variant of the projection
method, to solve the equation, which results in

h(t, s) ≃
∑
l

ωlφl(t)φl(s), ωl =
λl

1 + λlΞl
, Ξl =

∫
T
κ̈
(
x̂(t)

)
φ2
l (t)dt. (19)

See the supplementary material (§5) for the detailed derivation. We estimate the integral in {Ξl}Ll=1

via the Monte Carlo method, but the quadratic link function (κ(x) = x2) is an exceptional case in
which the integration can be performed analytically, Ξl = 2, due to the orthogonal relation of the
eigenfunctions,

∫
T φl(t)φl′(t)dt = δll′ . It should be noted that (19) is the Mercer expansion [32]

of function h(t, s), where {ωl}Ll=1 is a set of its eigenvalues.

3.3 Marginal Likelihood

We can evaluate the marginal likelihood by substituting (18) into (16-17),

log p(D) =
∑
n

log κ
(
x̂(tn)

)
−
∫
T
κ
(
x̂(t)

)
dt− 1

2

∑
l

λlβ
2
l

+
1

2

∑
n

κ̇
(
x̂(tn)

)
κ
(
x̂(tn)

)[∑
l

λlβlφl(tn)− (x̂(tn)−µ)

]
− 1

2
log |IN+Z−1H| − 1

2
log

|K|
|H|

,

(20)

where the second term,
∫
T κ

(
x̂(t)

)
dt, is estimated by the Monte Carlo method. The last term

is associated with the functional determinant (see the supplementary material (§1)), which can be
calculated by the product of its eigenvalues as, log |K|

|H| =
∑L

l=1 log
λl

ωl
=

∑L
l=1 log(1+λlΞl), where

we approximate the kernel function in terms of the Mercer expansion up to the top L eigenvalues,
k(t, s) ≃

∑L
l=1 λlφl(t)φl(s).

3.4 Computational Complexity

The objective function to be minimized in MAP estimation is
∑L

l=1[r(pl)]
2, which needs the com-

putation of O(NL + L2) for each evaluation (see Eq. (18)): the computational complexities of
{γn≜γ

[∑
l βlφl(tn)

]
}Nn=1 and {

∑
n k(pl, tn)γn}Ll=1 are both O(NL), and {

∑
l λlβlφl(pl′)}Ll′=1

or {
∑

l βlφl(pl′)}Ll′=1 needs the computation of O(L2). When a gradient descent algorithm with
automatic differentiation [6] is employed, the computational complexity of the MAP estimation per
gradient descent step is equal to O(NL + L2), which is one-Lth the complexity of the VB-based
approaches [31, 3]. We adopt the algorithm in Section 5.

Furthermore, in view of the shape of the objective function, we can substantially improve the compu-
tational efficiency of the MAP estimation by using a mini-batch gradient descent (MGD) algorithm:
MGD reduces the computational complexity to O(NL), which is due to {γn}Nn=1. We verify the
effectiveness of MGD in the supplementary material (§10). Also, when {pl}l are located regu-
larly over T and k(t, t′) is separable across the dimensions, matrix Φ defined as Φll′ = φl(pl′)
has the Kronecker structure (see the the supplementary material (§7)), which can further reduce the
complexity to O(NL) under (batch) gradient descent. Note that the cost of the VB-based methods
[31, 3] become O(NL2) when the Kronecker structure of the gram matrix is exploited.

Once the MAP estimator or the set of coefficient {βl}Ll=1 is obtained, estimating the predictive co-
variance (14) needs the computation of O((N + L) · min(N2, L2) + NmcL), where Nmc is the
number of samples for the Monte Carlo method. The cost O(NmcL) comes from the computa-
tion of h(t, s) (19), and the rest is due to the matrix operation. Due to the fact that h(t, s) is a
degenerate kernel of rank L, the N ×N matrix H can be decomposed into a product of N ×L
matrix R, defined by Rnl =

√
ωlφl(tn), and its transpose as H = RR⊤; The matrix opera-

tion h(t)⊤(Z +RR⊤)−1h(s) costs O(LN2 + N3) in a direct manner, but O(L2N + L3) if the
Woodbury matrix identity is used. Because the predictive covariance computation is not part of
the iterative optimization in MAP estimation, its computation cost is negligible compared to that of
MAP estimation. Also, the selection of hyper-parameters can be performed based on the marginal
likelihood (20), which needs the computation of O((N + L) · min(N2, L2) +Nmc).
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3.5 Eigenfunctions of Kernel Operator

The pairs of eigenvalues and eigenfunctions, {λl, φl}∞l=1, for the kernel operator K are obtained
by solving a homogeneous Fredholm integral equation,

∫
T k(t, s)φl(s)ds = λlφl(t), where the

set of eigenvalues is at most countable [36]. Here we assume a multiplicative kernel, k(t, s) =∏D
d=1 k

(d)(t(d), s(d)), and a hyper-rectangular domain with interval T (d) = [0, T (d)] in each dimen-
sion d. The multidimensional integral equation can then be reduced to a set of unidimensional ones,
{
∫
T (d) k

(d)(t(d), s)φ
(d)
ld

(s)ds = λ
(d)
ld

φ
(d)
ld

(t(d))}d, via the separation of variables, which results in a

multiplicative form of solution, (λl, φl(t)) =
(∏

d λ
(d)
ld

,
∏

d φ
(d)
ld

(t(d))
)
, where (λ

(d)
ld

, φ
(d)
ld

) is the
ld-th solution of the integral equation in dimension d, and l = (l1, . . . , lD). Thus the computa-
tion complexity of solving the integral equation scales linearly with the number of dimensions, D.
We adopt the eigenfunctions with the top Ld eigenvalues in each dimension d as the basis for the
projection method, resulting in a set of L =

∏
d Ld basis functions.

The integral equation for each dimension d can rarely be solved analytically, but we can approximate
the solution by the Nyström method [35]: The integral term is approximated by a J-point numerical
integration such that

∑J
j=1 k(t, sj)φ̃l(sj)w = λ̃lφ̃l(t), where (λ̃l, φ̃l) is the approximation solution,

{sj}Jj=1 and w ≜
∫
T 1dt/J denote the nodes and the weight, respectively, and index d is omitted

for simplicity of explanation (e.g. k(d)(t(d), s(d)) → k(t, s)); the approximation solution is then
obtained by using the eigenvalues el and eigenvectors vl of the J×J matrix K̃, defined by K̃jj′ ≜
k(sj , sj′), as

λ̃l = elw, φ̃l(t) = k̃(t)⊤vl/(el
√
w), (21)

where k̃(t) ≜ (k(t, s1), . . . , k(t, sJ))
⊤. Under the Nyström method, the computational complexity

of finding the eigenfunctions is O(DJ3). We set J = 1000 in this paper, which is negligible
compared to the cost of the MAP estimation.

4 Related Work

Gaussian Cox Processes: Various algorithms have been proposed to deal with the “doubly-
intractable" difficulty of inferencing in Gaussian Cox processes (GCPs). The classical approach
is domain discretization [10, 12, 33, 38, 43]; it approximates the integral in the likelihood function
using a Riemann sum by assuming that the intensity function is constant over each grid. Although
domain discretization is applicable to general GCPs regardless of link/kernel function, it suffers
from poor scaling in terms of the data size and domain dimension, as well as being sensitive to dis-
cretization size. The MCMC approaches [2, 22] provide exact inferencing by exploiting the unique
structure of the sigmoidal link function, but they are not applicable to large-scale datasets because
it demands O(N3) computations. State-of-the-art algorithms employ the sparse VB approximation
with inducing points [3, 31], and achieve computation cost linear to the data size, O(NL2 + L3),
where L is the number of inducing points. However, the VB approaches remain problematic in a
multi-dimensional domain setting, where the number of inducing points tends to be large. Also,
they exploit the unique structures of individual link functions (i.e. quadratic [31] and sigmoidal [3])
to obtain feasible algorithms, which limits their application. An approach closely related to ours is
the sparse MAP-Laplace method developed by Donner and Opper [13]; it restricts the link function
to being sigmoidal and demands Monte Carlo integration to perform MAP estimation. By focusing
on the unique structure of quadratic link function and Matèrn kernel function, John and Hensman
proposed a MCMC-based method [24] that has the same complexity as our model. The merit of
[24] is that it allows for a non-Gaussian posterior over latent function to improve the approxima-
tion quality, while our method is beneficial in that it’s deterministic and applicable to various link
and kernel functions. Our focus is on a deterministic approach with the most standard Gaussian
kernel function, but it is an important next step to make a comparative analysis with the scalable
MCMC-based method. A summary of the related works about the complexity is provided in the
supplementary material (§9).

Under the quadratic link function, our MAP estimation (12) involves a representer theorem, and the
exact MAP estimator with the equivalent kernel [42] can be derived (see the supplementary material
(§6)). The same MAP estimator was derived by Flaxman et al. for the regularized maximum like-
lihood problem [18], while Walder and Bishop derived its predictive covariance through Mercer’s
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theorem [45]. Our scheme, with its path integral formulation, is a generalization of their works in
that our scheme holds (i) for general link functions and (ii) for non-zero mean parameter µ ̸= 0.

Path Integral Formulation: The path integral formulation of GCPs (10) is almost the same as
that of quantum mechanics (QM) as posited by Richard Feynman [17], except for the imaginary
factor in QM’s action potential. In QM, the MAP estimator equation equals the Euler-Lagrange
equation, and the Laplace approximation (13) for functional distribution corresponds to a kind of
semi-classical calculation of QM solutions. The connection between GCPs (or generally GP models)
and QM suggests that physics-inspired techniques developed in QM could be applied to Bayesian
inferencing in machine learning. In statistical physics, for example, Chang et al. have proposed to
apply a path integral approach to the Bayesian inference problem in membrane biophysics [9].

Our GP formulation (8) agrees with the probability function expressed by the Onsager-Machlup
functional (OMF) [8, 16] for linear stochastic differential equation (SDE), which indicates that the
inverse kernel function k∗(t, t′) could be described by using the linear differential operator, L =∑

n cn(d/dt)
n, of the corresponding SDE. This is consistent with the fact that the kernels in GPs are

strongly related to differential operators [37]. However, our approach differs from OMF in terms of
how they represent the MAP estimator: our estimator (12) is described by means of kernel function
k(t, t′), while the OMF approach obtains the estimator by maximizing the posterior described by L.
The advantage of the former is, as in the case of“ kernel trick”in the linear regression problem,
that it does not need to know the explicit form of L, which would otherwise require an infinite sum
of differentials for the closed form of k(t, t′). The benefit of the latter is that it is applicable to
nonlinear SDEs, which is out of scope for GP.

A possible approach to make our derivation of path integral formulation (8) clearer in measure-
theoretic terms is introducing the abstract Wiener measure [21], which is closely related to the
reproducing kernel Hilbert space [25] and can be used to define Gaussian measure in an infinite-
dimensional space. Alternatively, the Radon-Nikodym derivative is a promising tool for justifying
the path integral expression with the aid of the fertile stream of works by Andrew Stuart and co-
authors [11].

5 Experiments
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Figure 1: Results on three types of synthetic data. (A) The predictive performances and the CPU
times. Lower values are better. The error bars represent the standard deviations. (B) The estimated
intensity functions (L = 20). Solid lines and shaded areas represent MAP estimators and [0.15,
0.85] prediction intervals, respectively.

We examined the validity and the potential efficiency of our path integral formulation (PIF) by
evaluating it against deterministic and scalable VB-based inference approaches on synthetic and
open real-world data. We adopted the state-of-the-art structured variational inference of sig-
moidal GCP [3] (STVB), and the variational inference of GCP with quadratic link function [31]
(VBPP) as the references. For our proposal, we employed GCPs with exponential (PIFe), quadratic
(PIFq), and softplus (PIFs) link functions. This time we used a multiplicative Gaussian ker-
nel, k(t, s) =

∏
d e

−(θ(td−sd))
2

, where the hyper-parameter θ was optimized by maximizing the
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marginal likelihood (16) or the evidence lower bound [3, 31] through grid search. For fair compar-
ison, we performed estimations using Adam [27] with 5,000 iterations across all methods. Each of
the CPU times reported is the amount of time required to calculate the MAP, the predictive covari-
ance, and the marginal likelihood given a hyper-parameter, where computing the eigenfunctions is
included. A MacBook Pro with 4-core CPU (2.8 GHz) was used. For details, see the supplementary
material (§10).

5.1 Synthetic Data

In accordance with [2], we created 1D data sets generated from three types of intensity func-
tions: λ1(t) = 2 exp(−t/15) + exp(−[(t − 25)/10]2) for t ∈ [0, 50]; λ2(t) = 5 sin(t2) + 6
for t ∈ [0, 5]; λ3(t) is a piecewise linear function in Figure 1 for t ∈ [0, 100], each of which
has 20 trial sequences. For each trial, the intensity function was estimated by each of the meth-
ods, and the performance was evaluated based on the integrated ρ-quantile loss [41], defined as
IQLρ ≜

∫
T 2

(
λ(t)− λ̂(t)

)(
ρIλ(t)>λ̂(t) −

(
1−ρ

)
Iλ(t)≤λ̂(t)

)
dt, where I, λ̂(t), and λ(t) denote the

indicator, the predicted ρ-quantile of the intensity function, and the true one, respectively. Here, we
adopted IQL.5 (integrated absolute error) and IQL.85.

Figure 1A displays the predictive performances as functions of the number of inducing points L;
it shows that our approaches (PIF) matched the performances of the VB-based methods across the
three data sets. In particular, the comparison between PIFq and VBPP is informative because both
used the same kernel and link functions but relied on different approximations. VB-based approx-
imations are usually better at estimating posterior distributions than Laplace approximations, but
Figure 1A shows that our PIFq with Laplace approximation was comparable to VBPP under L ≳ 5
with regard to both IQL.85 and IQL.50, which demonstrates the practical utility for recovering the
posterior distribution as well as point estimation.

Figure 1A also plots the CPU times needed for estimation, showing that PIF can be performed
several times faster than the scalable VB-based methods. Figure 1A-B shows that when L is large,
the quadratic link function (PIFq, VBPP) is preferable for the highly-modulated scenario of λ2(t),
while the sigmoidal and softplus ones (STVB, PIFs) work better on λ1(t) and λ3(t). Link functions
should be carefully selected depending on the data, and thus it is an advantage of our PIF that it
supports scalable estimation algorithms for various link functions within the same scheme.

5.2 Real-world Data
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Figure 2: The estimated intensity functions, the predictive performances, and the CPU times on open
real-world data. Higher values of log likelihoods and lower values of CPU times are better. (A) 2D
neuronal data. (B) 3D spatio-temporal taxi data. The CPU times of STVB and VBPP exceeded 10
hours with L = 153, and the estimations were given up.

We examined the validity of our approach based on multi-dimensional real-world data sets. One is
a 2D neuronal data, where event locations correspond to the position of a mouse moving in an arena
with recorded cell firing [39, 40] (CC-BY); We adopted the training (Ntrain = 583) and the test (Ntest
= 29127) data as randomly assigned by [3]. The other is a spatio-temporal 3D taxi dataset in the city
of Porto [34], where the pick-up locations and times are considered as observations (no personally
identifiable information is included, CC-BY); We adopted the training (Ntrain = 1000) and the test
(Ntest = 3401) data used by [3]. We ran the models on the training data, and evaluated their predictive
performances based on the test log likelihood. Note that to eliminate the effect of data assignment
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bias, the evaluation multiplied estimated intensity by a factor, Ntest/Ntrain. We used a regular grid
over the multi-dimensional domain T as the inducing points.

Figure 2 displays the predictive and time performances as functions of L, and shows that our PIF-
based approaches achieved comparable predictive accuracy while being tens of times faster than the
VB-based methods. All the methods typically required a relatively large number of inducing points,
L, to achieve good performance, which suggests that our approaches are especially beneficial in
the multi-dimensional domain settings because they have lower complexity with L than the VB-
based alternatives. Stochastic optimization algorithms could further reduce the complexity, which
is demonstrated in the supplementary material (§10). Note here that the memory complexity of our
proposed method, O(NL+L2), is the same as that of the VB-based approaches. In the 3D taxi
dataset, PIFs output the intensity function with the smallest volatility among the compared methods
(see Figure 2B), which led to the poor performance. This implies that the softplus link function
might tend to underestimate the intensity function modulation given sparsely located data points,
which highlights the importance of appropriately selecting the link function. Also, to clarify that
our method is scalable to data size, we ran additional experiments on a larger (N ≃ 105) taxi
dataset, see the supplementary material (§10).

6 Discussions

Conclusions: We have proposed a novel path integral formulation of Gaussian Cox processes
(GCPs), by which we have derived a scalable inference scheme that holds for a wide range of
GCPs with various types of link functions. Based on synthetic and open real-world data, we con-
firmed that our scheme achieves comparable predictive accuracy while being substantially faster
than conventional alternatives.

Future work & limitations: We focused on investigating the practicality of our scheme, and our
derivation of the path integral representation is intuitive but not mathematically rigorous. Making our
derivation of path integral formulation clearer, especially in measure-theoretic terms, is an important
task for future work. Also, we adopted the collocation method to solve the MAP (integral) equation,
but exploiting other algorithms for solving integral equations, such as the Nyström method [35] and
the degenerate kernel method [26], might yield further improvements in computational efficiency.

We did not consider optimizing hyper-parameters with gradient descent algorithms in this paper, but
VB-based approaches allow for optimization with gradient methods, which are particularly benefi-
cial when the kernel function has several kinds of hyper-parameters. It is worth noting that our ap-
proach can also employ gradient methods: because the objective function, L(θ, β̂(θ))≡ log p(D|θ),
has an argmin, β̂(θ)≡{β̂l(θ)}Ll=1 (see Eqs. (18-20)), the hyper-parameter optimization in our ap-
proach belongs to the bi-level optimization, and the exact computation of the gradient of L(θ, β̂(θ))
can be executed [20]; Here we show only the result, dL(θ,β̂(θ))

dθ = ∂L
∂θ −

(
∇βL

)⊤(∇2
ββf

)−1( ∂
∂θ∇βf

)
,

where f(θ, β̂)≡
∑

l[r(pl)]
2. When automatic differentiation is employed, the complexity of com-

puting the gradient is equal to the sum of the complexity of the marginal likelihood and O(L3),
where O(L3) comes from matrix inversion. Here, we note that the gradient of the eigenfunctions and
eigenvalues obtained by the Nyström method with respect to the hyper-parameter can be evaluated
analytically. When a gradient descent algorithm is employed for hyper-parameter optimization, our
approach needs to alternate between the optimization in the L-dimensional space (MAP estimation)
and that in the dim(θ)-dimensional space, while VB-based approaches perform the optimization in
higher (L2 + dim(θ))-dimensional space. Although it is out-of-scope of this paper, a comparative
analysis between our approach and VB-based alternatives to investigate the practical utility is an
important next step in future work.

Broader impact: Our proposed scheme via the path integral representation can be applied to not
only GCPs, but also a wide range of Gaussian process models whose likelihood functions include
problematic integrals of latent functions. Gaussian process density models (GPDMs) [1, 14], for
example, come under such models, and our scheme would provide a new tangible inference algo-
rithm for GPDMs different from MCMC or VB-based algorithms. Although our scheme itself does
not contain any ethical problems nor negative societal impacts, applying GCPs for predicting fine
spatio-temporal patterns of people’s behaviors might harm their privacy in some cases, and thus
great care should be taken to protect personal information.
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