AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM
for Automated Circuit Topology Generation

Prashanth Vijayaraghavan“' Luyao Shi”' Ehsan Degan! Vandana Mukherjee' Xin Zhang?

Abstract

Analog circuit topology synthesis is integral to
Electronic Design Automation (EDA), enabling
the automated creation of circuit structures tai-
lored to specific design requirements. However,
the vast design search space and strict constraint
adherence make efficient synthesis challenging.
Leveraging the versatility of Large Language
Models (LLMs), we propose AUTOCIRCUIT-RL,
a novel reinforcement learning (RL)-based frame-
work for automated analog circuit synthesis. The
framework operates in two phases: instruction
tuning, where an LLM learns to generate circuit
topologies from structured prompts encoding de-
sign constraints, and RL refinement, which fur-
ther improves the instruction-tuned model using
reward models that evaluate validity, efficiency,
and output voltage. The refined model is then
used directly to generate topologies that satisfy
the design constraints. Empirical results show
that AUTOCIRCUIT-RL generates ~12% more
valid circuits and improves efficiency by ~14%
compared to the best baselines, while reducing du-
plicate generation rates by ~38%. It achieves over
60% success in synthesizing valid circuits with
limited training data, demonstrating strong gen-
eralization. These findings highlight the frame-
work’s effectiveness in scaling to complex circuits
while maintaining efficiency and constraint ad-
herence, marking a significant advancement in
Al-driven circuit design.

“Equal contribution 'IBM Almaden Research Center, San
Jose, CA 95120, USA 2IBM Thomas J. Watson Research
Center, Yorktown Heights, NY 10598.
Prashanth Vijayaraghavan <prashanthv@ibm.com>, Luyao Shi
<luyao.shi@ibm.com>, Xin zhang <xzhang@us.ibm.com>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Correspondence to:

Instruction/Prompt: Generate a
5-component circuit as a graph with inductor: inductor-0; n-type MOSFETs:
FET-A-0 and FET-A-1;and p-type MOSFET: FET-B-0 and FET-B-1 representing
different nodes: ['inductor-o', 'FET-A-1', 'FET-A-0', 'FET-B-0','FET-B-1']

with Vout less than 1.5V when VIN equals 2V

{ ¢ AUTOCIRCUIT-RL]
! The FET-B-0-drain port is connected to FET-B-O-drain, FET-A-0-drain and :
[[FET-B-0,'9", "

inductor-0-left. The FET-B-0-source port is connected to IN.

1, K’ g
[FET-A-0,) E
[inductor-

1,
[FET-B-1, 'OUT', '61, T “The FET-A-1- i T. The FET-A-1- is
FETAt OUT, Bl T drain port s connecied io OUT. The source portis |
" connected to inductor-0-right, FET-B-1-source and FET-A-1-sour

Netlist
IN f;& 9 /IAO\ 6 AEE>FOUT
AN &4)_ A4 N A
o L] @
/ _/ L

~ ~—
Node 0: GND Duty Cycle: 0.36 1

Node 9: joint node of F-B-0-drain, F-A-0-drain and I-0-left
Efficiency: 0.8
Vout: 0.45V

Incident Encoding

A our

Node 6: joint node of I-0-right, F-B-1-source and F-A-1-source

%5 NGSpice Simulator

Figure 1. Given a prompt with design constraints, the goal is to gen-
erate a circuit topology and duty cycle satisfying those constraints.
Component constraints (blue) are mandatory, while efficiency (or-
ange) and voltage (purple) constraints are optional. In the output,
blue circles denote components (“F” for FET, “I” for inductor),
and yellow circles denote connection nodes.

1. Introduction

Al and machine learning have been applied to various circuit
design tasks, including parameter optimization (Wang et al.,
2020) and physical design (Hakhamaneshi et al., 2019),
which focus on circuit optimization with a fixed circuit
topology. Analog circuit topology synthesis (Bengio et al.,
2013) is a fundamental aspect of EDA, where the configura-
tion and interconnection of components directly influence
circuit functionality and performance. Despite years of
EDA advancements, automation of analog circuit topology
synthesis has remained underexplored until recently.

The key challenge in circuit topology synthesis stems from
the exponential growth of the design space with the num-
ber of components, making high-quality designs rare and

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

hard to discover. This sparsity makes it difficult to satisfy
specific performance and design constraints. Manual topol-
ogy design remains time-consuming and requires significant
expertise, while brute-force or random search methods are
computationally infeasible due to the vastness of the space.

Existing Al methods fall into two categories: (a) Al-based
search-based algorithms, including rule-based systems,
heuristics, genetic algorithms (McConaghy et al., 2011),
and tree-based search (Fan et al., 2021; Zhao & Zhang,
2020). While partially effective, these methods struggle
with scalability, efficiency, and adaptability to evolving de-
sign requirements. They often require numerous queries
and long runtimes to find circuits that meet targets. For
example, Fan (Fan et al., 2021) uses tree sampling for au-
tomated topology design but faces scalability and practical
challenges when handling diverse performance needs, re-
quiring over 400 simulation queries per design. Similarly,
other search-based methods (Zhao & Zhang, 2020) demand
extensive simulations for new specifications. (b) Gener-
ative Al-based frameworks, including graph-based and
LLM-based generative methods. Graph generative models
use VAESs to produce netlists as undirected (Simonovsky &
Komodakis, 2018) or directed graphs (Dong et al., 2023;
Zhang et al., 2019), but lack precise control over compo-
nent count, efficiency, or power conversion ratio. Recently,
LLMs have been applied to automated circuit topology syn-
thesis (Vijayaraghavan et al., 2024; Chang et al., 2024; Lai
et al., 2025), leveraging their pattern learning and design
generation abilities. Unlike search-based methods, LLMs
produce circuits from a single prompt after training, en-
abling faster generation.

However, most LLM approaches are limited in scale and
flexibility. CircuitSynth (Vijayaraghavan et al., 2024) and
similar works (Chang et al., 2024) target small circuits (up to
six components). AnalogCoder (Lai et al., 2025) generates
PySpice code via prompt engineering but depends on a fixed
synthesis library and lacks iterative refinement, limiting ex-
ploration of novel or complex topologies, particularly for
power converter circuits requiring high efficiency and spe-
cific output voltage constraints. This limitation makes it less
extensible for optimizing circuit performance or handling
diverse design constraints. Artisan (Chen et al., 2024) is an-
other recent effort focusing on operational amplifier design
using domain-specific LLMs. While valuable, it is highly
specialized and does not generalize to other circuit families
such as power converters. LAMAGIC (Chang et al., 2024)
fine-tunes LLMs for netlist generation but omits iterative or
performance-driven optimization, restricting adaptability to
multi-objective constraints. Auto-SPICE (Bhandari et al.,
2024) automates large-scale SPICE netlist generation from
textbook schematics (e.g., Masala-CHAI) but focuses on
data creation rather than optimization or refinement. Re-
cent advances like AnalogXpert (Zhang et al., 2024) and

Atelier (Shen et al., 2024) incorporate domain knowledge,
subcircuit libraries, Chain-of-Thought prompting, and agent-
based coordination. Nonetheless, these methods lack rein-
forcement learning for iterative, performance-driven refine-
ment, focusing instead on structured generation and error
correction. Our work advances beyond prior efforts by
synthesizing more complex circuits while optimizing both
topology and performance metrics.

In this work, we present AUTOCIRCUIT-RL (AC-RL), a
reinforcement learning (RL)-based framework that refines
LLM-generated circuit topologies to optimize design objec-
tives. Our method employs two training phases: instruction
tuning to generate diverse topologies from prompts, fol-
lowed by RL-refinement using Al-based reward models
that estimate validity, efficiency, and output voltage. This
enables scaling, generalization, and multi-objective opti-
mization with minimal manual effort. RL-refinement occurs
only during training, not at inference. Empirical results
show a ~12% improvement in validity and ~14% gain in
efficiency over the best-performing LLM baselines, with
few-shot generalization beyond 6 components and support
for circuits with up to 10 components. Key contributions
include:

LLM with RL Refinement: We propose AUTOCIRCUIT-
RL, a novel RL framework for analog circuit synthesis that
targets constraint-driven design.

Superior Performance Evaluation: Our framework’s eval-
uations on 4 and 5-component analog circuits demonstrate
superior performance in generating circuits that meet design
constraints more effectively than other baseline approaches.
Scalability and Generalizability: Using few-shot fine-
tuning, our framework generalizes to 6-10 components even
with limited data, highlighting its scalability and adaptabil-
ity in practical design scenarios.

2. Problem Statement and Dataset

Given an input instruction, our goal is to produce a netlist
with components and their connections. Each entry in the
netlist corresponds to a node in an undirected graph G, with
edges indicating the connections between these nodes as in
the netlist. For the choices of encoding the netlist textually,
we adopt the “Incident” encoding strategy, recognized for
its effectiveness in various graph-related tasks (Fatemi et al.,
2024). The center part of Figure 1 illustrates an example
of how a netlist is encoded. This research investigates dif-
ferent model variations that refine Language Models (LMs)
to generate the circuit topology netlist. We compare two
representation approaches: generating the netlist as lists or
employing the text representation with the incident encod-
ing method. Through empirical evaluation, our objective is
to evaluate the efficacy of these LM variations in accurately
and efficiently synthesizing circuit topologies from natural

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

language instructions.

We generated a dataset of switching power converter topolo-
gies with 4-10 components (Figure 2(a)). Using Random
Search (RS) (Fan et al., 2021), we generated numerous
unique netlists. Multiple netlists can represent the same
topology by changing component order or node indices, so
we report unique designs. The design space for 4- and 5-
component circuits is small, allowing near-exhaustive explo-
ration; for 6+ components, exhaustive search is impractical.
Therefore, we collected 10,000 unique netlists for each com-
ponent count from 6 to 10. Each netlist was simulated at 5
duty cycles: 0.1, 0.3, 0.5, 0.7, and 0.9, yielding 5 times the
number of unique netlists as total samples (Figure 2(a)). We
used NGSpice (Nenzi & Vogt, 2011) to identify valid cir-
cuits and collect output voltage and efficiency values. The
circuit includes five external signal ports: Vin, Vout, GND,
N-type gate signal, and P-type gate signal (renamed as ‘IN’,
‘OUT’, ‘0’, ‘GATEN’, and ‘GATEP’, respectively). Devices
considered are capacitors, inductors, n-type MOSFET (FET-
A), and p-type MOSFET (FET-B). Capacitors and inductors
have two ports, while MOSFETSs have four (drain, gate,
source, body). To simplify the design space and accelerate
RS generation, FET-A connects gate/body to GATEN/0, and
FET-B to GATEP/IN. Devices are numbered, with shared
ports using one index (Figure 1). Capacitors (10uF), induc-
tors (10uH), and MOSFETs use fixed parameters; switching
frequency is 200 kHz, input voltage 2V.

For training, we randomly sample approximately 100,000
unique netlists (for 4- and 5-component circuits), each with
varying efficiency and output voltage values. The data is cat-
egorized into four groups: (a) Group 1 with low efficiency
(efficiency < 0.05), (b) Group 2 with moderate efficiency
(efficiency between 0.05 and 0.7), (c) Group 3 with high
efficiency but minimal output voltage difference from input,
and (d) Group 4 with optimal Vout and efficiency. An ex-
ample for 4-component circuits is shown in Figure 2(b). We
apply a weighted sampling strategy in each batch, priori-
tizing Group 4 (weight 0.4) and giving the lowest priority
to Group 1 (weight 0.1). This ensures that batches are en-
riched with data from Group 4, improving model learning
on the most desirable conditions. Instruction prompts are
constructed in three categories based on design constraints:
(a) Component constraint (only the list of components), (b)
Efficiency constraint (components with expected efficiency),
and (c) Output Voltage constraint (components with input
voltage and expected output voltage).

3. Proposed Approach

Our proposed framework, AUTOCIRCUIT-RL, is depicted
in Figure 2(c). It consists of two primary phases: instruction
tuning and RL refinement. In the instruction tuning phase,
we fine-tune a large language model (LLM) using super-

vised learning techniques. This phase focuses on training
the model to comprehend instruction prompts that specify
the component pool and design constraints, facilitating the
efficient generation of valid circuit topologies. To further
optimize the circuit topology generation process and ensure
compliance with all design constraints, we incorporate rein-
forcement learning with Al feedback (RLAIF) (Bai et al.,
2022; Lee et al., 2023). The RL refinement phase enhances
circuit topology generation by integrating feedback from
constraint-specific AI models in three steps: reward model-
ing, RL training, and iterative adaptation.

3.1. Instruction Tuning

The instruction tuning phase can be considered as a stan-
dard supervised finetuning (SFT) step, where instruction
prompts specifying the component pool and design con-
straints are provided as input to the model, and the corre-
sponding circuit topology generations are produced as out-
put. We represent the pairs of instruction-circuit topologies
as D = {(X;,Y;)}L,, where X; denotes the instruction
prompt and Y; represents the valid circuit topology netlist
using the incident encoding method concatenated with the
corresponding duty cycle. This phase involves training an
autoregressive language model py parameterized by 6 to
minimize the negative log-likelihood of the desired circuit
topology represented using the incident encoding method.
Formally,

Lsrr = —E(x,y)~D lz log 7o (ye| X, y<t)| (1)
T

where 7y represents the LLM policy and y.; denotes all
tokens before the ' token in the circuit topology Y. This
objective aims to ensure that the model learns to compre-
hend the instruction and generate the circuit topology in the
incident encoding method. However, the generated circuit
topology may not satisfy all the design constraints related to
components, efficiency, validity, and expected output volt-
age. To meet such constraints, we utilize Reinforcement
Learning with Al Feedback (RLAIF), which learns to re-
fine the circuit topology generation process by maximizing
rewards associated with specific constraints of interest.

3.2. RL-Refinement with AI Feedback

The RL-refinement phase aims to enhance the circuit
topology generation process by leveraging feedback from
constraint-specific AI models. It consists of 3 main steps:

3.2.1. REWARD MODELING

In this step, our reward model evaluates the appropriate-
ness of a generated circuit topology based on the instruction
prompt. Canonical reinforcement learning with Al feed-

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

(a) # of #Unique # Unique # Total # Valid (c)
Comp. Designs Netlists Samples Samples
4 5,031 100,000 500,000 292,871
5 104,893 1,000,000 5,000,000 2,858,400 afit:;:‘:gs“
6~10 9,938~10,000 10,000 50,000 27,581~28,275 Circuit Topology
.......... >» Pl et
10 ' . [] [’ Pl a
. Weight U t
(b) H . - v v eight Updates
o Reward
0.8 . So .
. . N
_ N ~ :; RLAIF Model 7(X,Y)
. L=
> 06 * K N 1 Circuit Validity
s . I 1 RL Algorithm:
g . s ! Circuit Circuit Efficiency PPO Trainer
o4 . Prompt : Topology
' Output Voltage
1
0.2 ® groupl '
® group2 Lm ===)
® _group3 Reference Model F - - - = = = = » KL Regularization
004 ® groupa Probabilities

-0.5 0.0 0.5 10 15 2.0 25 3.0
Vout

Figure 2. ((a) Statistics of our Circuit dataset. b) Vout-Efficiency graph of 4-component circuits in the training data. (c) [llustration of the
AUTOCIRCUIT-RL framework. Dashed lines depict probability flow, while the dotted line represents iterative adaptation post RLAIF
tuning. A prompt guides topology generation, then rewards are calculated with KL-divergence to a reference model to preserve the
original distribution. PPO updates model parameters using rewards, and iterative adaptation further improves the model.

back (RLAIF) trains a reward model using labeled prefer-
ences in the form of triples (X,Y,,Y,), representing the
input prompt, preferred topology, and non-preferred topol-
ogy, respectively. Recent research suggests that directly
using reward scores yields better performance than the tra-
ditional RLAIF approach. To achieve this, we employ a
reward function that evaluates how well the generated cir-
cuit topology adheres to different design constraints, such
as circuit validity, efficiency, and expected output voltage.
To implement this, we train different estimators (fy¢ for
all clf € {valid, eff, vout}) to assess circuit validity, effi-
ciency, and expected output voltage, and assign correspond-
ing scores Sqf. These scores are then used to compute a
reward in the range [—1,1]. The estimators are built us-
ing dedicated classification or regression models (fci¢), with
RoBERTa as the underlying model architecture. Each model
is trained on synthetic datasets tailored specifically for each
constraint type. The details are as follows:

Circuit Validity Estimator A binary classifier fiaq is
trained on a dataset D comprising valid and invalid circuits,
constructed from the aggregated dataset (explained in the
Section 2), to determine the validity of circuit topologies.
This RoBERTa-based classifier achieves a 92% F} score for
binary classification of circuit validity.

Circuit Efficiency Estimator: A regression model fog
estimates circuit efficiency using a subset of the dataset D
with prompts specifying efficiency requirements. The model
achieves an 83% macro F score by categorizing predicted
efficiency scores into predefined categories.

Output Voltage Estimator: A regression model f,o,4 pre-

dicts output voltage based on input parameters, achieving a
low MSE loss of 8¢~2 on the development set.

Using the remaining data in D and the trained estimators,
we define a reward function (X, Y") that assigns a reward
to an LLM-generated circuit topology Y as follows:

—1, if syaa < 0.6
r(X,Y) =<1, if S OF Syout Meets constraints (2)

Seff, Otherwise

Invalid topologies receive a negative reward. Valid topolo-
gies meeting output voltage or efficiency constraints get a
reward of 1; otherwise, the efficiency estimate is used as the
reward to maximize efficiency.

3.2.2. RL TUNING

To enhance the LLM for generating circuit topologies that
better meet the constraints, we employ a reward function
r(X, f/) and Proximal Policy Optimization (PPO) (Schul-
man et al., 2017). The base model for this refinement is
the LLM fine-tuned with the instruction tuning technique
discussed in Section 3.1, following the common practice
in Reinforcement Learning with Human Feedback (RLHF)
(Ouyang et al., 2022). Standard PPO training procedures are
then applied to optimize the base model using the following
reward objective function:

£RL = T(X, Y) — nKL(FRLAIF(Y‘X)||7T9()A/|X)) (3)

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

Here, KL represents the Kullback-Leibler divergence, and n
is a hyperparameter controlling the penalty for divergence.
This penalty helps prevent the model from getting trapped in
local optima or straying too far from the original distribution
of the supervised instruction-tuned model.

3.2.3. ITERATIVE ADAPTATION (IA)

Additionally, we explore the concept of iterative adaptation
as a means to refine the circuit topology generation process
further. Leveraging the circuits generated in the previous
steps, we aim to enhance the overall synthesis task by it-
eratively adapting the model based on the sampled valid
and highly efficient synthesized circuit topologies. Utiliz-
ing the nucleus sampling approach, we specifically target
circuit topologies with an efficiency score (s.g) exceed-
ing 0.7. This criterion ensures that the selected circuits
not only satisfy validity constraints but also exhibit high
operational efficiency. To initiate the iterative adaptation
process, we synthesize a dataset comprising 10,000 such
samples. Starting from the RL-tuned model described in
Section 3.2.2, we iteratively refine the model using Equa-
tion 3, incorporating insights from high-quality topologies
into the RL-refined model from the previous iteration. Upon
completion, the final model is used directly for inference,
with no further tuning. In our experiments, we evaluate this
iterative adaptation’s effectiveness to enhance the circuit
topology generation process.

4. Experiments and Results

In this study, we utilized the following Language Mod-
els (LMs) for generating circuit topologies: GPT-Neo-
2.7 (Black et al., 2021), StableLM-3B-4E1T, Llama-3-8b
(Grattafiori et al., 2024), and MPT-7b (Team et al., 2023).
More details on the baseline models and implementation are
provided in the Appendix A, and B.

4.1. Baselines

Our primary focus is on leveraging LLM-based genera-
tive methods for circuit design synthesis and benchmarking
their potential. We compare different LLM-based meth-
ods as baselines and include GraphVAE (Simonovsky &
Komodakis, 2018), a non-LLM baseline, to highlight the
superiority of our method in both efficiency and perfor-
mance. While recent LLM-based frameworks like Analog-
Coder (Lai et al., 2025) and Artisan (Chen et al., 2024)
provide valuable contributions, their methodologies and ap-
plication domains differ from ours. AnalogCoder employs a
training-free prompt strategy with a fixed synthesis library,
focusing on general analog circuits, and does not specifically
address power converters, which require nuanced handling
of constraints such as efficiency and output voltage. Artisan
is tailored for operational amplifier design using a domain-

specific LLM. In contrast, AUTOCIRCUIT-RL is currently
trained using power converter designs and combines in-
struction tuning with RL refinement to handle diverse user
prompts and optimization goals. Although these prior works
are not directly applicable to our constraint-driven setting,
future adaptations could make comparisons more feasible.

Given these considerations, we evaluate AUTOCIRCUIT-
RL against the following baselines: Zero-Shot Genera-
tion: Prompts with component pools and design constraints
are directly fed into large language models (LLMs) like
Llama-2 (13b) and Flan-UL2 (20b) without fine-tuning,
aiming to generate circuit topologies; In-Context Learn-
ing (ICL): This approach uses circuit generation demon-
strations, combining input prompts with component pools,
design constraints, and corresponding output circuits within
the prompts. It leverages the in-context learning ability of
LLM:s such as Llama-2 (13b) and Flan-UL2 (20b), explor-
ing different numbers of examples (j € {5,10,20}) and
experimenting with incident encoding and netlist structures;
Prompt Tuning: This method fine-tunes LLMs like Llama-
2 (13b) and Flan-UL2 (20b) for circuit topology generation
using a Prompt-tuned Model (Lester et al., 2021), which
learns task-specific soft prompts while keeping model pa-
rameters unchanged. We test with 100 trainable soft prompt
tokens (p100); Vanilla Fine-Tuning: Standard fine-tuning
is conducted on the LMs listed above. The primary objective
is to minimize the negative log-likelihood for generating
circuit topologies; Gumbel-Max Fine-Tuning: Drawing
ideas from a prior study (Vijayaraghavan et al., 2024), we
integrate multiple objectives optimizing for circuit validity
and efficiency using the Gumbel-Max trick. This approach
refines models fine-tuned using Llama-3 (8b) and MPT-7b
architectures, allowing for more efficient circuit generation
while maintaining structural validity constraints; GRAPH-
VAE: This method models circuit netlists as undirected
graphs and uses a variational autoencoder (VAE) to gen-
erate graphs from continuous embeddings (Simonovsky &
Komodakis, 2018). We did not implement DAG-based meth-
ods(Dong et al., 2023; Zhang et al., 2019), because a notice-
able subset of circuits in our datasets are not DAGs. For cir-
cuits with 6-10 components, the generation process is con-
ditioned on a SentenceBERT-encoded label vector (Reimers,
2019) derived from the input prompt, enabling controlled
and guided sampling during inference; AUTOCIRCUIT-RL:
We introduce AUTOCIRCUIT-RL, a comprehensive frame-
work designed to enhance the circuit topology generation
process using RL and iterative adaptation.

4.2. Metrics

In our evaluation setup, we report different metrics based
on sampling 500 unique circuit topologies from each of
the trained models. (a) Circuit Validity Score represents
the fraction of unique circuit topologies estimated as valid,

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

Table 1. Evaluation results for all methods on 4-component (4C) and 5-component (5C) circuits. Circuit validity and efficiency are
measured using both classifier (column 2 and 4) and simulator (column 3 and 5). The DGR p and success rate o for different categories of
constraints: component (C), efficiency (C+E), output voltage (C+V) and overall (O) are also reported.

Models

| E(featia(®) | B(f$una @) | E(fer (@) | E(fs.x(#) [DGRp]|

Success Rate o (%)

Prompt Tuning

4C 5C 4C 5C 4C 5C 4C 5C C C+E C+V O
Llama-2-13b,,,, |54.60 50.20 | 54.50 53.40 | 53.60 43.62 | 52.45 4797 | 539 |80.94 33.89 34.02 43.35
Flan-UL2-20bg,,, | 57.40 51.60 | 57.35 56.00 | 56.20 44.50 | 56.08 49.64 | 4.76 | 84.09 36.54 34.67 45.30
Vanilla & Gumbel-based Multi-Objective Fine Tuning
GPT-Neort 60.50 57.80 | 60.60 57.78 | 57.90 54.70 | 56.73 5449 | 298 |89.52 40.28 37.62 49.06
StableLMpT 59.42 58.10 | 60.20 59.00 | 58.20 55.0 | 59.51 53.27| 2.67 |89.04 39.76 37.96 48.89
Llama-3gT 66.78 63.50 | 66.80 63.80| 62.8 613 | 61.15 6297 | 2.10 |95.76 68.04 58.06 69.79
MPT-7brr 64.96 61.65| 65.00 60.50| 60.50 59.2 | 60.23 62.23 | 2.26 |9532 67.85 5828 69.52
Gumbelrjama—3 67.60 65.75|67.32 64.19 | 67.15 6438 | 63.87 63.15| 2.19 |96.04 69.56 60.36 71.27
Gumbelypr—7 | 67.16 63.50 | 66.42 63.48 | 66.30 64.42 | 63.19 63.64 | 232 | 9580 6830 60.22 70.68
AUTOCIRCUIT-RL (our approach)
AC-RLLlama—3 7511 73.46 | 7448 73.96 | 74.20 73.60 | 71.65 7222 | 1.29 |99.08 80.90 71.30 80.69
w/o IA 71.08 68.32| 72.78 68.96 | 71.60 69.70 | 69.50 68.68 | 1.46 |98.26 76.75 70.10 78.39
AcC-RLmpT—71 7420 72.65| 7432 7234 | 73.40 7270 |72.08 7194 | 1.34 |99.05 79.85 71.64 80.41
w/o 1A 70.88 69.56 | 71.06 69.23 | 70.10 69.50 | 67.37 69.08 | 1.53 |98.03 76.52 68.50 77.61

denoted as E(f.¢(y)). Here, clf € {valid, Syaia} refers
to the validity estimated by the classifier or the simula-
tor, respectively. We consider a circuit valid if its validity
score from the classifier exceeds 0.6; (b) Circuit Efficiency
Score refers to average efficiency of the generated circuits
using our efficiency regressor or the NGSpice simulator,
denoted as E(fex(y)) and E(fs,,(9)). respectively. The
NGSpice simulator evaluates the validity and efficiency of
a given netlist by verifying its electrical characteristics and
performance metrics through detailed circuit simulations.
It evaluates parameters such as voltage levels, timing, and
power consumption of the circuit topology with certain duty
cycles under given conditions; (c) Duplicate Generation
Rate (DGR), denoted by p, indicates the number of circuit
topologies required to be sampled from the model to obtain
a unique circuit topology design. Formally, p is calculated
as the number of topologies generated divided by the num-
ber of unique topologies (500 in our case); and (d) Success
Rate computes the percentage of valid circuit topologies
that successfully meet certain design constraints for each
category of prompts (as in Section 2): Component constraint
(O), Efficiency constraint (C+E), Output Voltage constraint
(C+V) and overall success rate (O). Figure 1 presents a
sample success scenario with efficiency constraint.

4.3. RL Convergence Analysis

We evaluate the learning dynamics of the proposed
AUTOCIRCUIT-RL framework by analyzing the conver-
gence behavior of two key metrics during RL refinement:

(a) circuit efficiency and (b) success ratio, defined as the
proportion of generated circuits satisfying functional and
design constraints. Figure 3 illustrates these convergence
curves for circuits composed of 4 and 5 components, trained
using the Llama-3 backbone over ~ 25, 000 training steps
with a batch size of 16. The training exhibits several char-
acteristic phases. In the initial phase, both efficiency and
success ratio increase gradually with noticeable oscillations,
reflecting the model’s early adaptation to reward signals.
This is followed by a phase of rapid improvement, where
the RL agent learns effective circuit design strategies. In-
termediate fluctuations arise as the model explores diverse
topologies while balancing validity, constraint satisfaction,
and efficiency. Eventually, the curves stabilize and plateau,
indicating convergence to a policy that consistently gener-
ates valid, high-quality circuit topologies. These results
show AUTOCIRCUIT-RL steadily improves design capabili-
ties and sustains robust performance as circuit complexity
grows, with only minor efficiency degradation observed
from 4- to S-component circuits.

4.4. Results Overview

The evaluation results, summarized in Table 1, show that
AUTOCIRCUIT-RL outperforms all baselines across vari-
ous metrics for circuit topology synthesis. Notably, smaller
language models tuned with our method outperform larger
prompt tuning-based models, generating unique designs
faster with a higher success rate in meeting design con-
straints. Our LLM-based approach is efficient, requiring

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

RL Convergence Curve: Efficiency (4C vs 5C)

80- —— Efficiency - 4C NN
Efficiency - 5C
70-
60 -
s
40 -
"
0./

Efficiency (%)

RL Convergence Curve: Success Ratio

—— Success Ratio - o(y)

Success Ratio (%)

C" 5600 10600 15600 20600 25600
Training Steps

Figure 3. RL convergence curves for AUTOCIRCUIT-RL with
Llama-3 over ~25,000 training steps. Top: Efficiency for 4-
and 5-component circuits; Bottom: Success ratio of valid and
constraint-satisfying topologies.

~ 2.7 seconds per design generation once trained (refer
Section D for runtime analysis). In contrast, traditional
search-based algorithms (Fan et al., 2021) are computation-
ally expensive and time-consuming, often taking hundreds
of seconds to converge on a target design.

Usability of Zero-Shot and ICL. Methods We observe a
notable disparity in performance between zero-shot gener-
ation techniques and fine-tuned methodologies. Zero-shot
generation struggles to produce valid netlist-like structures
essential for subsequent classification or simulation tasks.
Despite using in-context learning (ICL), where the model
is exposed to sample prompts and corresponding circuit
generations, the improvement in generating comprehensive
netlist-like structures is minimal. Additionally, increasing
the number of in-context examples j yielded diminishing
returns. As a result, these incomplete structures cannot be
used for accurate metric computation, so we exclude the
zero-shot and ICL results in Table 1.

4.5. Error Analysis

We conduct a qualitative error analysis of the
AUTOCIRCUIT-RL framework by evaluating the model-
generated circuits through post-hoc SPICE simulations.
The analysis focuses on two primary failure modes:
validity errors, where circuits fail to simulate due to
structural violations such as incorrect node assignments or
connectivity issues, and efficiency constraint errors, where
the generated circuits do not meet the efficiency thresholds
specified in the generation prompts. This systematic
evaluation enables the identification of recurring failure
patterns and provides insight into the model’s behavior near
constraint boundaries, highlighting specific areas where the

model lacks fine-grained control.

Our analysis reveals that validity failures predominantly
arise from minor inconsistencies in node assignments rather
than fundamental topological errors, and such failures can
typically be resolved with minimal structural modifications.
Regarding efficiency constraint errors, most of the circuits
that fail to meet the specified thresholds do so by a rela-
tively small margin, suggesting that the model generally
approximates the desired performance metrics. These de-
viations often reflect inherent trade-offs with other design
parameters such as output voltage and duty cycle. A limited
number of outlier cases exhibit larger deviations from the
efficiency targets, typically caused by complex interactions
between circuit components. Collectively, these findings
indicate that while the model internalizes key principles
of both structural integrity and performance-aware design,
there remains scope for further improvements in constraint
calibration and optimization. Detailed examples and further
discussion can be found in Appendix C.

4.6. Effectiveness of AUTOCIRCUIT-RL

Impact of Prompt Tuning Experiments with prompt tuning
of Flan-UL2/Llama-2 models (approximately 20b param-
eters) with a restricted dataset, facilitated the production
of netlist-like structures. This represents a substantial en-
hancement compared to the performance of the same mod-
els under zero-shot or in-context learning (ICL) conditions.
Nevertheless, these fine-tuned models lag behind smaller
language models (such as GPT-Neo/StableLM) fine-tuned
using our method in terms of both efficiency and validity
of the generated circuits. Additionally, our models demon-
strate a higher success rate in meeting constraints compared
to the larger prompt-tuned language models. Despite the ad-
vantages of fine-tuning these larger models, we emphasize
that fine-tuned models with lower capacity can still achieve
effective performance relative to larger prompt tuning-based
models for circuit topology synthesis.

Comparison with Vanilla Fine-tuning When contrasting
our methodology, which entails iterative refinement via re-
inforcement learning, with the basic fine-tuning of different
architectures, we note a significant enhancement in the effec-
tiveness of our approach. Our methodology, which entails it-
erative refinement via reinforcement learning, demonstrates
a significant improvement in effectiveness compared to ba-
sic fine-tuning of GPT-Neo and StableLM architectures.
This improvement is evident in generating valid circuits that
meet design constraints, underscoring the efficacy of our
approach in synthesizing valid topologies and accelerating
the discovery of unique designs.

Effect of Using Gumbel-Max Trick for Multi-Objective
Optimization Building on a prior study (Vijayaraghavan
et al., 2024), we optimize circuit validity and efficiency

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

Validity Scores (%)
8 &
Efficiency Scores (%)

300 400 500 600 700 800 900 1000
k
AC-RL (6€) &~ ACRL(70) 4 AC-RL(8C) 4 AC-RL(9C)
ptTuning (6C) %~ PromptTuning (7€)~ Prompt-Tuning (8C) 4~
GraphVAE (6C) - GraphVAE (7€) i~ GraphVAE (8)

300 400 500 600 700 800 900 1000

—¥- AC-RL (10C)
ptTuning (9C) —¥~ PromptTuning (10C)
4~ GraphVAE (9C) ¥~ GraphVAE (10C)

Figure 4. Few-shot fine-tuning results for 6-10 components, with
models tuned using k-examples of varying circuit topologies.

Table 2. Overall success rate of GRAPHVAE, Prompt Tuning and
AUTOCIRCUIT-RL for 6-10 component circuits with & = 1000.

Models 6C 7C 8C 9C 10C
GRAPHVAE 21.5 206 16.1 159 128
PrROMPT TUNING 39.7 363 359 332 321
AcC-RL 655 638 632 604 58.5

using the Gumbel-Max trick, yielding notable gains over
standard fine-tuned models. However, its performance still
lags behind AUTOCIRCUIT-RL by ~ 9% in circuit validity
and efficiency. A key limitation of the Gumbel-Max trick
is its inability to adaptively optimize multiple objectives.
Unlike reinforcement learning (RL), which refines strate-
gies through iterative Al feedback, Gumbel-based methods
don’t adjust based on prior evaluations and lack a mech-
anism to balance competing objectives, often leading to
suboptimal designs. In contrast, our RL approach navigates
these trade-offs effectively, explores a broader design space,
and avoids premature convergence, demonstrating superior
performance in circuit validity and efficiency.

Effect of Iterative Adaptation To assess the significance of
the iterative adaptation strategy for our task, we conducted
an experiment where we sampled circuit topology genera-
tions from a model trained using reward models but without
incorporating the iterative adaptation strategy. Our results
reveal that the iterative refinement enabled by iterative adap-
tation substantially improves the overall model performance
across various metrics. Notably, the lack of an iterative
adaptation strategy leads to a more pronounced decline in
performance, particularly notable in the circuit efficiency
score, where we observed a ~ 8% decrease.

4.7. Adherence to Design Constraints

This section examines how different models meet three key
design constraints for 4- and 5-component circuits. We eval-
uate success rate (o) for component usage (C), efficiency
(C+E), and output voltage (C+V), using a 20-40-40 prompt
split per constraint. AUTOCIRCUIT-RL excels across con-
straints, demonstrating RL’s effectiveness in circuit topology

synthesis.

Component Pool Adherence (C) Ensuring adherence to
the component pool constraint is pivotal for practical appli-
cability, achievable with minimal tuning. Generally, models
fine-tuned or optimized with reward models exhibit superior
adherence to the specified component pool. For instance,
prompt tuning-based models, even with minimal tuning,
achieve moderate success rates, with o values ranging from
~ 81% to ~ 84%. Remarkably, models trained using our
complete AUTOCIRCUIT-RL approach showcase the high-
est success rates, with o values surpassing ~ 98%.

Em=1 @m=3 Em=5

80

6C 7C 8C 9C 10C

of Components

SuccessRate@m
- N w » u o
s 8 8 38 & 8

Figure 5. Plot of SuccessRate@m of Ac-RL form € {1,3,5}.

Efficiency (E) & Output Voltage (V) Adherence Meeting
efficiency and expected output voltage constraints is chal-
lenging in comparison to the component pool constraint, par-
ticularly when expected values are specified in the prompts.
However, models optimized with reward models show no-
table improvements in meeting constraints. Particularly,
models trained using AUTOCIRCUIT-RL exhibit superior
performance in satisfying efficiency and expected output
voltage requirements compared to their counterparts.

4.8. Generalization to Complex Scenarios

To assess the generalization capability of our framework, we
evaluated it on circuits with 6-10 components. Following
the procedure in Section 2, we constructed a limited dataset
and applied few-shot fine-tuning with &k = {250, 500, 1000}
examples. The base model for fine-tuning was the AC-RL
model previously trained on 4- and 5-component circuits
(see Table 1). We adopted a sampling strategy similar to
that used for 4/5-component circuits, as shown in Figure
2(b). We compared our top-performing AUTOCIRCUIT-RL
(Llama-3) approach against GRAPHVAE and prompt-tuned
Flan-ul-20b, focusing on circuit validity and efficiency, mea-
sured by the NGSpice simulator. As shown in Figure 4,
AUTOCIRCUIT-RL showed consistent improvements with
increasing k, achieving validity and efficiency scores near-
ing 50% with fewer than 500 examples. Table 2 summarizes
the success rates for all methods with & = 1000, highlight-
ing the superior performance of AUTOCIRCUIT-RL. The
higher success rate underscores the effectiveness of reward

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

models in optimizing efficiency and validity. These findings
show AUTOCIRCUIT-RL’s potential to scale to higher com-
ponent circuits using minimal fine-tuning, though address-
ing more complex design constraints for different circuit
types remains a future research area.

Analysis of Success Rates & Sampling Strategies Com-
paring success rates in Tables 1 and 2, we observe a per-
formance decline in AC-RL as circuit complexity increases.
However, this drop is due to differences in training and evalu-
ation setups, as the model was extensively trained on 4C and
5C circuits, whereas 6C and beyond used a few-shot setup
with only 1,000 samples. Despite this, the model achieves
>60% success with minimal training data, demonstrating
good generalization. As shown in Figure 4, increasing train-
ing data improves performance, reinforcing the model’s
ability to learn from limited data. We also analyzed Suc-
cessRate@m, where multiple generations per prompt ()
increase the likelihood of success. As seen in Figure 5, Suc-
cessRate@3 and SuccessRate @5 consistently outperform
SuccessRate@ 1, showing that additional sampling improves
results. The average generation times for m = 3 and m = 5
are ~ 7 and ~ 9 seconds, respectively, achieving higher suc-
cess rates with minimal added computation and remaining
significantly faster than traditional Al-based search methods,
which require hundreds of seconds.

5. Discussion

Our results demonstrate the effectiveness of proposed AcC-
RL in advancing circuit topology synthesis by iteratively
refining circuit generation using reinforcement learning. Its
key advantages are as follows:

RL for Improved Validity and Efficiency Unlike tradi-
tional methods, AC-RL adapts circuit generation using re-
ward feedback. This iterative process yields higher validity
and efficiency, outperforming zero-shot and ICL baselines.
Its ability to optimize multiple objectives while adhering to
constraints highlights its robustness.

Accelerated Discovery of Novel Circuits AC-RL reduces
duplicate generation rates (DGR) by ~ 38% compared to
fine-tuning methods, enabling faster convergence to unique
and effective circuit topologies. This accelerates design
space exploration while minimizing redundant computa-
tions, making it highly effective for circuit automation.
Enhanced Constraint Adherence With up to 80% success
rates in constraint adherence, AC-RL efficiently balances
efficiency and output voltage while ensuring feasibility. Un-
like heuristic-based methods that require extensive com-
putational resources, its reward-driven approach adapts to
complex constraints with significantly better performance.
Scalability with Limited Training Data AC-RL achieves
over >60% success rates generating valid circuits with only
~ 1,000 training examples, demonstrating strong gener-

alization. This ability to perform well with limited data
distinguishes it from conventional methods relying on ex-
tensive labeled datasets.

Generalization to Increasing Circuit Complexity AC-RL
scales effectively to circuits with 6-10 components, out-
performing baselines like GRAPHVAE and prompt-tuned
FLAN-UL-20B. While complexity increases, reducing suc-
cess rates, more training data significantly enhances perfor-
mance. Additionally, SuccessRate @m analysis shows that
generating multiple circuits per prompt improves conver-
gence with minimal added computation.

Extending AC-RL to diverse circuit architectures and inte-
grating RL with advanced sampling could further optimize
high-dimensional design spaces. Addressing constraints
like power consumption and component parameter estima-
tion via adaptive reward modeling remains a promising
avenue. Overall, AUTOCIRCUIT-RL offers a transforma-
tive approach to circuit topology synthesis, excelling in
efficiency, constraint adherence, and generalization with
minimal data. Further enhancements could solidify its role
as a cornerstone in Al-driven electronic design automation.

6. Conclusion

In this work, we introduced AUTOCIRCUIT-RL (AC-RL), a
framework for automating analog circuit topology synthesis
via a two-phase training process. The first phase employs
instruction tuning, where an LLLM generates initial topolo-
gies from structured prompts encoding design constraints
like component pools and target efficiency or output voltage,
ensuring basic feasibility. The second phase, RL refine-
ment, updates the model using Al-based reward feedback to
improve validity, efficiency, and output voltage. This refine-
ment is applied only during training to improve generation
quality, enabling faster inference. Empirical results show
that AC-RL outperforms prior methods, generating ~ 12%
more valid circuits and improving efficiency by ~ 14% for
4- and 5-component circuits. It demonstrates strong gen-
eralization, achieving near 50% validity and efficiency for
larger circuits with minimal training data. Additionally, it
reduces duplicate generation by ~ 38% compared to other
baselines and, with only 1,000 training examples, generates
designs where >60% meet the specified constraints. AC-
RL’s reward-driven optimization adapts to evolving design
constraints, setting a new benchmark for Al-driven design
automation. Our findings aim to accelerate the develop-
ment of efficient, adaptable methodologies in analog circuit
automation, enabling faster, reliable synthesis for circuit
topologies with reduced training data needs. Future work
will extend AC-RL to support more complex designs, incor-
porate advanced sampling, and refine power models, further
advancing electronic design automation.

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

Impact Statement

The proposed AUTOCIRCUIT-RL framework significantly
advances the field of analog circuit topology synthesis by in-
tegrating large language models (LLMs) with reinforcement
learning (RL) for constrained topology generation. Our ap-
proach addresses key challenges in circuit synthesis, such
as scalability, efficiency, and adaptability to diverse design
specifications, which are critical in modern electronic de-
sign automation (EDA). By overcoming the limitations of
traditional search-based and generative methods, our frame-
work enables efficient circuit generation while reducing the
number of simulation queries. This not only enhances the
practicality of Al-driven circuit design but also provides a
scalable solution capable of generalizing to circuits with 6
to 10 components using few-shot fine-tuning. Our results
demonstrate superior performance in generating circuits
that meet design constraints more effectively than existing
approaches, paving the way for future research in topology-
aware Al design methods.

Beyond technical improvements, our work has broader so-
cietal and ethical implications. By automating complex as-
pects of circuit design, AUTOCIRCUIT-RL reduces reliance
on extensive human expertise, potentially lowering the bar-
rier to entry for new designers and expanding accessibility
to hardware design in low-resource environments. This de-
mocratization of circuit synthesis could foster innovation
and accelerate technological advancements across indus-
tries. However, it is crucial to ensure that Al-driven design
tools remain transparent and do not introduce unintended
biases in circuit topology selection, which could lead to
over-reliance on specific architectures. Additionally, given
the increasing energy demands of Al-driven automation,
future work should consider optimizing the computational
efficiency of training and inference phases to minimize en-
vironmental impact. By addressing these aspects, our work
contributes to responsible Al adoption in EDA, ensuring
that automation enhances creativity and inclusivity in circuit
design rather than reinforcing existing barriers.

References

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-
non, C., et al. Constitutional ai: Harmlessness from ai
feedback. arXiv preprint arXiv:2212.08073, 2022.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Bhandari, J., Bhat, V., He, Y., Garg, S., Rahmani, H., and
Karri, R. Auto-spice: Leveraging 1lms for dataset creation

10

via automated spice netlist extraction from analog circuit
diagrams. arXiv preprint arXiv:2411.14299, 2024.

Black, S., Leo, G., Wang, P., Leahy, C., and Biderman, S.
GPT-Neo: Large Scale Autoregressive Language Model-
ing with Mesh-Tensorflow, March 2021. URL https:
//doi.org/10.5281/zenodo.5297715.

Chang, C.-C., Shen, Y., Fan, S., Li, J., Zhang, S., Cao, N.,
Chen, Y., and Zhang, X. Lamagic: Language-model-
based topology generation for analog integrated circuits.

In the 41st International Conference on Machine Learn-
ing (ICML), pp. 1-8, 2024.

Chen, Z., Huang, J., Liu, Y., Yang, F., Shang, L., Zhou, D.,
and Zeng, X. Artisan: Automated operational amplifier
design via domain-specific large language model. In
Proceedings of the 61st ACM/IEEE Design Automation
Conference, pp. 1-6, 2024.

Dong, Z., Cao, W., Zhang, M., Tao, D., Chen, Y., and Zhang,
X. Cktgnn: Circuit graph neural network for electronic
design automation. In International Conference on Learn-
ing Representations (ICLR), pp. 1-20, 2023.

Fan, S., Cao, N., Zhang, S., Li, J., Guo, X., and Zhang, X.
From specification to topology: Automatic power con-
verter design via reinforcement learning. In IEEE/ACM

International Conference On Computer Aided Design
(ICCAD), pp. 1-9, 2021.

Fatemi, B., Halcrow, J., and Perozzi, B. Talk like a graph:
Encoding graphs for large language models. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=IuXR1CCrSi.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Hakhamaneshi, K., Werblun, N., Abbeel, P., and Stojanovic,
V. Bagnet: Berkeley analog generator with layout opti-
mizer boosted with deep neural networks. In IEEE/ACM
International Conference on Computer-Aided Design (IC-
CAD), pp. 1-8, 2019.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144,2016.

Lai, Y., Lee, S., Chen, G., Poddar, S., Hu, M., Pan, D. Z.,
and Luo, P. Analogcoder: Analog circuit design via
training-free code generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 379-
387, 2025.

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://openreview.net/forum?id=IuXR1CCrSi
https://openreview.net/forum?id=IuXR1CCrSi

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

Lee, H., Phatale, S., Mansoor, H., Lu, K., Mesnard, T.,
Bishop, C., Carbune, V., and Rastogi, A. Rlaif: Scal-
ing reinforcement learning from human feedback with ai
feedback. arXiv preprint arXiv:2309.00267, 2023.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

McConaghy, T., Palmers, P., Steyaert, M., and Gielen, G.
Trustworthy Genetic Programming-Based Synthesis of
Analog Circuit Topologies Using Hierarchical Domain-
Specific Building Blocks. IEEE Transactions on Evolu-
tionary Computation, 15(4):557-570, 2011. ISSN 1941-
0026.

Nenzi, P. and Vogt, H. Ngspice users manual version 23.
Experiments/ ngspice23-manual. pdf, 2011.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730-27744, 2022.

Reimers, N. Sentence-bert: Sentence embeddings using
siamese bert-networks. arXiv preprint arXiv:1908.10084,
2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shen, J., Chen, Z., Zhuang, J., Huang, J., Yang, F., Shang,
L., Bi, Z., Yan, C., Zhou, D., and Zeng, X. Atelier: An
automated analog circuit design framework via multiple
large language model-based agents. Authorea Preprints,
2024.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In Artificial Neural Networks and Machine Learning—
ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part 1 27, pp. 412-422. Springer, 2018.

Team, M. N. et al. Introducing mpt-7b: A new standard for
open-source, commercially usable llms, 2023.

Vijayaraghavan, P., Shi, L., Degan, E., and Zhang, X. Cir-
cuitsynth: Leveraging large language models for circuit
topology synthesis. In 2024 I[EEE LLM Aided Design
Workshop (LAD), pp. 1-6. IEEE, 2024.

11

Wang, H., Wang, K., Yang, J., Shen, L., Sun, N, Lee, H.,
and Han, S. Gen-rl circuit designer: Transferable transis-
tor sizing with graph neural networks and reinforcement
learning. In ACM/IEEE Design Automation Conference
(DAC), pp. 1-6, 2020.

Zhang, H., Sun, S., Lin, Y., Wang, R., and Bian, J. Analogx-
pert: Automating analog topology synthesis by incorpo-
rating circuit design expertise into large language models.
arXiv preprint arXiv:2412.19824, 2024.

Zhang, M., Jiang, S., Cui, Z., Garnett, R., and Chen, Y. D-
vae: A variational autoencoder for directed acyclic graphs.
Advances in neural information processing systems, 32,
2019.

Zhao, Z. and Zhang, L. An Automated Topology Synthesis
Framework for Analog Integrated Circuits. /[EEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems, 39(12):4325-4337, 2020. ISSN 1937-4151.

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

A. Appendix: Baseline Model Details

We compare AUTOCIRCUIT-RL against various baseline models, including both LLM-based and non-LLM approaches, to
assess its efficiency and performance in circuit topology synthesis.

* GPT-Neo-2.7 (Black et al., 2021) !: A 2.7B parameter transformer-based model developed by EleutherAl, following
GPT-3’s architecture. It was trained on 420B tokens over 400,000 steps using masked autoregressive modeling with
cross-entropy loss.

* StableLM-3B-4E1T 2: A 3B parameter decoder-only model pre-trained on 1T tokens over 4 epochs from diverse
English and code datasets. Referred to as StableLM in our work.

+ Llama-3-8B 3: An 8B parameter model from the Meta Llama 3 family, incorporating supervised fine-tuning (SFT) and
reinforcement learning with human feedback (RLHF) to enhance alignment with human preferences.

* MPT-7B *: A 7B parameter decoder-style transformer trained on 1T tokens of English text and code. It employs a
modified transformer architecture optimized by MosaicML for efficient training and inference.

e CIRCUITSYNTH-GUMBEL: A variant of (Vijayaraghavan et al., 2024) incorporating:

1. Training a circuit validity and efficiency classifier to estimate the probability of a generated circuit being valid.
2. Fine-tuning an LLM to generate circuit topologies.

3. Refining outputs using the classifier while enforcing circuit validity and efficiency constraints.

The training objective combines standard negative log-likelihood loss (L L s) with circuit validity and efficiency loss.
Since LLMs operate in discrete spaces, we employ Gumbel-softmax (Jang et al., 2016) for continuous relaxation,
enabling gradient-based optimization.

GraphVAE (Simonovsky & Komodakis, 2018): A non-LLM baseline for circuit generation. The encoder consists
of two graph convolutional layers (32 and 64 channels) with identity connections, batch normalization, and ReLU
activation, followed by a fully connected (FC) layer producing a 256-dimensional latent representation. The decoder
has three FC layers (256, 512, 1024 channels) with batch normalization and ReLU, followed by a parallel triplet of FC
layers to output graph tensors. Training was performed for 50-75 epochs using Adam (learning rate le=3, 8; = 0.5).
A sentence transformer (Reimers, 2019) processes natural language prompts, followed by an FC layer to align its
representation with the encoder output size.

Prompt Type Prompt Sample Circuit

[‘FET-A-2’, °5°, ‘0’],
[‘FET-B-0’, *5’, ‘OUT’],
[‘FET-A-1’, 0°, ‘IN’],
[‘FET-A-0", *5°, ‘OUT’]]

Generate a 4-component circuit with n-type MOSFETs: FET-A-0, FET-A-1 and FET-A-2;
Component Constraint and p-type MOSFET: FET-B-0; representing different nodes:
[‘FET-A-2’,'FET-B-0’,'FET-A-1", ‘FET-A-0"]

Generate a 4-component circuit with capacitors: capacitor-0 and capacitor-1; n-type [[‘capacitor-1°, ‘IN’, ‘10°],
Output Voltage Constraint MOSFET: FET-A-0; and p-type MOSFET: FET-B-0 representing different nodes: [‘FET-A-0’, ‘OUT’, ‘IN’],

[‘capacitor-17,‘FET-A-0", ‘capacitor-0’, ‘FET-B-0’] with Vout less than 1.5V when Vin [‘capacitor-0’, ‘IN’, ‘0’],

equals 2V [‘FET-B-0’, ‘OUT’, ‘10°]]

[[‘inductor-0’, ‘6, ‘OUT’],
[‘FET-A-0", ‘OUT’, ‘6’],
[‘FET-B-0’, ‘IN’, ‘6°],
[‘capacitor-0’, ‘OUT’, ‘0’]]

Generate a 4-component circuit with inductor: inductor-0; n-type MOSFET: FET-A-0;
Efficiency Constraint p-type MOSFET: FET-B-0; and capacitor: capacitor-0; representing different nodes:
[‘inductor-0,‘FET-A-0",'FET-B-0’, ‘capacitor-0’] with efficiency greater than 0.6

Table 3. Sample prompts of each prompt type and their corresponding sample circuit topologies.

'nttps://huggingface.co/EleutherAl/gpt-neo—-2.7B
https://huggingface.co/stabilityai/stablelm-3b-4elt
*https://huggingface.co/meta-1lama/Meta-Llama-3-8B
4https ://huggingface.co/mosaicml/mpt-"7b

12

https://huggingface.co/EleutherAI/gpt-neo-2.7B
https://huggingface.co/stabilityai/stablelm-3b-4e1t
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/mosaicml/mpt-7b

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

B. Appendix: Implementation Details

We provide the implementation details of our experiments conducted with the official PyTorch v2.2.0 release binary package,
compiled with CUDA 11.8, utilizing NVIDIA V100 GPUs with 32 GB of memory.

* Two-Phase Training: This setup applies to both instruction tuning and RL-refinement phases. We plot the training data
on a Vout-Efficiency graph (an example for 5-component circuits is shown in Figure 6) and categorize the data into
four main groups: (a) Group 1 with low efficiency (efficiency lower than 0.05), (b) Group 2 with moderate efficiency
(efficiency between 0.05 and 0.7), (c) Group 3 with high efficiency but the output voltage shows minimal difference
from input voltage, and (d) Group 4 with optimal Vout and efficiency. To optimize the training process, we apply
a weighted sampling strategy in each batch, giving the highest priority to Group 4, which represents the optimal
conditions, and the lowest priority to Group 1, which has the least efficiency. The sampling weights are allocated as
follows: 0.1 for Group 1, 0.25 for Group 2, 0.25 for Group 3, and 0.4 for Group 4. This approach ensures that batches
are enriched with data from Group 4, allowing the model to better learn from the most critical and desirable conditions.

Training is conducted over 4-6 epochs using shuffled data from the training split, with model checkpoints saved based
on the best performance on the validation split. To manage memory efficiently, we employ gradient checkpointing.
We use the AdamW optimizer (Loshchilov & Hutter, 2017), setting beta parameters to 0.9 and 0.95, and an epsilon
value of 1.0e-8. The learning rate is set to 0.95e-5, and the seed is fixed at 42 to ensure reproducibility. During training,
we assess performance by evaluating a subset of 100 sample generations, using consistent evaluation settings. If the
performance in the current epoch exceeds that of the previous one, we save the checkpoint.

E=0.5V+0.01

1.0 1

0.8

Efficiency
(=]
o

o
IS
L

0.2 1 group 1
group 2
group 3

Figure 6. Vout-Efficiency graph of 5-component circuits in the training data.

* Iterative Adaptation: The iterative adaptation, explained in Section 3.2.3, is performed over 3-5 iterations depending
on the base model used. Each iteration involves 2—4 epochs of RL refinement and uses a dataset of 10,000 high-quality
circuit samples obtained via nucleus sampling. This process improves performance progressively with each stage. The
final adapted model is directly used for inference without further tuning.

* Inference: We assess all models by generating 1,000 unique sample circuit topologies from each, using a combination
of nucleus sampling and top-k sampling techniques. These generated topologies are then analyzed using validity,
efficiency, and output voltage estimators to identify the designs that are both valid and efficient, meeting the specified
design criteria.

C. Error Analysis

C.1. Validity Errors

We begin our error analysis by examining one common failure mode encountered in generated circuit topologies: validity
errors, as identified by SPICE simulation. A netlist is considered invalid if it violates essential electrical constraints such as
correct node referencing, grounding, or connectivity, which causes simulation failures.

13

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

Despite the strong overall performance of our model, a small subset of generated netlists exhibit such validity issues. These
typically stem from improper or inconsistent node assignments rather than errors in component selection or overall topology.
A representative example of an invalid netlist generated by the model is:

["FET-B-1’, 'IN’, '6'1,
['FET-A-0’, ’0’, ’"IN’],
['FET-B-0’, 'OUT’, '7'],
[/ inductor-0’, '6’, "7"1]

This netlist fails validation primarily due to ambiguous or incorrect node labeling, which disrupts the circuit’s connectivity
and prevents successful simulation. However, with minimal adjustments, specifically refining the node assignments to
properly reference outputs and grounds, the netlist can be made valid:

["FET-B-1’, '"IN’, '6'],
["FET-A-0", '0’, ’"IN'],
['FET-B-0’, ’'oUT’, ’'0'7],
["inductor-0', ’'6’, 'OUT']]

This minor correction preserves the original component arrangement and topology while resolving the node reference
ambiguities, enabling successful simulation. This pattern indicates that the model effectively learns appropriate component
placements and connectivity patterns but occasionally struggles with precise node labeling. These validity errors are
therefore close to valid designs and could be mitigated with improved node management during generation.

C.2. Efficiency Constraint Errors

In addition to validity, our generated circuits are evaluated against performance constraints such as minimum required
efficiency, as specified in the generation prompt. These constraints are verified post-hoc using SPICE simulation. While the
majority of the model outputs achieve or closely approximate the requested efficiency thresholds, a few circuits fall short.
Consider the following example, where the prompt required an efficiency greater than 0.7:

[["inductor-0", "IN’', ’'6'],
['FET-B-0’, 'OUT’, ’6'],

[capacitor-0", 70’, 'OUT’],
['FET-A-0’, ’'OUT’, ’"IN’]]

This topology, under a generated duty cycle of 0.1, achieved a simulated efficiency of 0.625, missing the constraint by a
relatively small margin. The component usage and connectivity suggest that the model has captured many of the structural
features that contribute to efficiency, although precise performance can depend on subtle circuit-level interactions. Such
cases demonstrate that the model generates solutions near the constraint boundary and could be improved further with
targeted refinement.

However, there also exist a few outlier cases where the efficiency gap is more pronounced, such as outputs scoring well
below the target (for example, less than 0.3 when the required efficiency was greater than 0.7). These larger discrepancies are
typically associated with difficult trade-offs between duty cycle, output voltage, and interactions among other components.
In these cases, the model may prioritize satisfying voltage or topological structure over efficiency, reflecting the inherent
challenge of simultaneously satisfying multiple constraints. Nevertheless, the proximity of many failing cases to the desired
efficiency threshold, along with the model’s ability to produce performance-aware topologies, supports the conclusion that
these errors arise from nuanced constraint balancing rather than fundamental model shortcomings.

D. Runtime Complexity Analysis

A key strength of AUTOCIRCUIT-RL lies in its computational efficiency, particularly when compared with traditional
search-based topology synthesis methods. These traditional methods, such as genetic algorithms and tree-based search (Fan
et al., 2021; Zhao & Zhang, 2020), often rely on hundreds of SPICE simulations per design iteration. As a result, they
typically require several minutes (hundreds of seconds) to produce a single valid circuit design, especially when adapting to
new specifications or exploring diverse topologies.

14

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

In contrast, our method significantly reduces synthesis time by leveraging a two-phase RL approach. The LLM quickly
generates initial candidate topologies, while the RL-based refinement performs iterative optimization using a learned reward
model that captures circuit validity, efficiency, and output voltage. On average, AUTOCIRCUIT-RL generates a complete
and optimized circuit in approximately 2—-3.5 seconds using two NVIDIA V100 GPUs, offering over 50x improvement in
design time over traditional approaches.

To assess how the choice of language model affects runtime, we evaluated AUTOCIRCUIT-RL with two LLMs: MPT-7B
and LLaMA-3 8B. As expected, model size influences generation latency. The MPT-7B variant achieves faster runtimes
(2.4-3.5 seconds for 4-10 component circuits), whereas the LLaMA-3 8B variant incurs slightly higher runtimes (2.8-5
seconds), reflecting the increased computational overhead of the larger model. Despite this, both configurations maintain
runtimes well below traditional baselines, making them viable for real-time or interactive design applications.

Runtime Complexity: AUTOCIRCUIT-RL using MPT-7B vs. LlamA-3 8B

AUTOCIRCUIT-RL (MPT-78B)
40. —8 AUTOCIRCUIT-RL (Llama-3 8B)

Runtime per Circuit (seconds)

4 5 6 7 8 9 10
Number of Components

Figure 7. Runtime Complexity of AUTOCIRCUIT-RL Using MPT-7B vs. LLaMA-3 8B. The runtime per circuit increases with the number
of components but remains significantly faster than traditional search-based methods. MPT-7B offers lower latency due to its smaller
model size, while LLaMA-3 8B provides marginally higher runtimes due to increased model capacity.

These results demonstrate that AUTOCIRCUIT-RL achieves an effective balance between computational cost and output
quality, offering a scalable and practical alternative to traditional methods in analog circuit synthesis.

15

