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ABSTRACT

We study deployment efficient reward-free exploration with linear function ap-
proximation, where the goal is to explore a linear Markov Decision Process
(MDP) without revealing the reward function, while minimizing the number of
exploration policies used during the algorithm. We design a new reinforcement
learning (RL) algorithm whose sample complexity is polynomial in the feature di-
mension and horizon length, while achieving near-optimal deployment efficiency
for linear MDPs under the reward-free exploration setting. More specifically, our
algorithm explores a linear MDP in the reward-free manner, while using at mostH
exploration policies during its execution whereH is the horizon length. Compared
to previous algorithms with similar deployment efficiency guarantees, the sample
complexity of our algorithm does not depend on the reachability coefficient or the
explorability coefficient of the underlying MDP, which can be arbitrarily small for
certain MDPs. Our result addresses an open problem proposed in prior work. To
achieve such a result, we show how to truncate state-action pairs of the underlying
linear MDP in a data-dependent manner, and devise efficient offline policy evalu-
ation and offline policy optimization algorithms in the truncated linear MDP. We
further show how to implement reward-free exploration mechanisms in the linear
function approximation setting by carefully combines these offline RL algorithms
without sacrificing the deployment efficiency.

1 INTRODUCTION

In real-world reinforcement learning applications, deploying new policies usually comes at a cost.
For instance, in robotics applications (Kober et al., 2013), deploying new policies involves oper-
ations on the hardware level, which typically requires long waiting periods. As another example,
in medical applications (Almirall et al., 2012; 2014; Lei et al., 2012), it is unrealistic to deploy-
ment new policies frequently, since switching to a new policy typically requires a separate approval
process which usually involves domain experts and could therefore be costly. In recommendation
systems (Theocharous et al., 2015), the deployment of a new policy often takes weeks, as the new
recommendation strategy must pass internal tests to ensure safety and practicality before being de-
ployed, which again can be time-consuming. On the other hand, in all these scenarios, although
switching the policy based on instantaneous data (as required by typical RL algorithms) is infeasi-
ble, once a policy is deployed, it is possible run a large batch of experiments in parallel to collect
new data. Therefore, in such applications, the agent needs learning a good policy while minimizing
the number of policy deployments.

Empirically, the notion of deployment efficiency was first proposed by Matsushima et al. (2020),
while formal definition of deployment complexity was recently defined by Huang et al. (2022).
Intuitively, deployment complexity measures the total number of policy deployments of a RL algo-
rithm, while requiring the interval between policy switching, i.e., the number of trajectories collected
before switching to a new policy, is fixed in advance. Under the notion of deployment complexity,
a line of recent work designed provably efficient RL algorithms (Huang et al., 2022; Qiao et al.,
2022; Qiao & Wang, 2022) in various settings. In particular, for the tabular setting where the state
space is assumed to be discrete and have small size, Qiao et al. (2022) designed a provably ef-
ficient RL algorithm with O(H) policy deployments. Huang et al. (2022); Qiao & Wang (2022)
studied the deployment complexity of RL with linear function approximation. In particular, in the
linear MDP (Yang & Wang, 2019; Jin et al., 2023) setting, the sample complexity of the algorithms
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by Huang et al. (2022); Qiao & Wang (2022) is polynomial in the feature dimension d and the hori-
zon length H , while the deployment complexity is O(dH) or O(H). Moreover, it has been shown
in Huang et al. (2022) that any RL algorithm for linear MDPs requires a deployment complexity of
Ω̃(H)1.

Although prior works mentioned above seem to give a complete answer to the deployment com-
plexity of RL for linear MDPs, it turns out that to achieve the nearly optimal O(H) deployment
complexity, existing algorithms either work in the tabular setting (Qiao et al., 2022) and therefore
cannot handle cases where state space is enormous or continuous, or require additional reachability
assumption (Huang et al., 2022) or explorability assumption (Qiao & Wang, 2022) which, roughly
speaking, assumes that all directions of the feature space can be explored by some policy. Such
reachability assumption and explorability assumption could be quite restrictive and would signifi-
cantly limit the scope that the RL algorithms can be used. In these assumptions, it is usually assumed
that some type of “reachability coefficient” is lower bounded, and the sample complexity of existing
algorithms with O(H) deployment complexity all have polynomial dependency on the reciprocal
of the reachability coefficient. In the tabular setting, assuming the reachability coefficient is lower
bounded is equivalent to assuming all states in the state space can be reached by some policy with
lower bounded probability, and for a general linear MDP, such reachability coefficient could be ar-
bitrarily small in which case the sample complexity of existing algorithms with O(H) deployment
complexity would be infinite. In order to give a satisfying answer to the deployment complexity of
RL in linear MDPs, in this paper, we study the following question:

Is is possible to design RL algorithms for linear MDPs with nearly optimal deployment complexity
and polynomial sample complexity, without relying on any additional assumptions?

In fact, such a question was mentioned explicitly in prior work (Huang et al., 2022; Qiao & Wang,
2022) and was left as an important direction for future investigation. In particular, it was conjec-
tured in Huang et al. (2022) that to achieve O(H) deployment complexity, relying on additional
assumptions like reachability or explorability is unavoidable.

Our Contribution. In this paper, we resolve the question mentioned above by designing a new RL
algorithm for linear MDPs withH deployment complexity. Our new algorithm achieves polynomial
sample complexity for any linear MDP and does not rely on additional assumptions. In fact, our
new algorithm works for the reward-free exploration setting (Jin et al., 2020; Wang et al., 2020a;
Chen et al., 2022; Wagenmaker et al., 2022; Zhang et al., 2021b) and does not require access to the
reward distribution during its exploration phase, giving it additional favorable properties that could
be beneficial for practical use. The formal guarantee of our new algorithm is informally summarized
in the following theorem.

Theorem 1 (Informal version of Theorem 4). For reward-free exploration in linear MDPs, there
exists an algorithm (Algorithm 1) with deployment complexityH , such that with probability 1−δ, the
algorithm returns a policy whose suboptimality is at most ϵ, whose sample complexity is polynomial
in d, H , 1/ϵ and log(1/δ). Here, d is the feature dimension and H is the horizon length.

Combined with existing hardness result (Huang et al., 2022), our new result in Theorem 1 gives a
complete answer to the deployment complexity of RL for linear MDPs, and shows that additional
assumptions like reachability or explorability conjectured to be unavoidable in previous work, are
in fact not necessary for achieving a nearly optimal deployment complexity.

The remaining part of this paper is organized as follows. Section 2 give an overview of related work.
Section 3 introduces necessary technical backgrounds and notations. Section 4 gives an overview of
our new technical ideas. Section 5 and Section 6 introduce the formal definition of our algorithms
together with an overview of its analysis. Most of the proofs are deferred to the supplementary
material.

1Throughout this paper, we use Õ and Ω̃ to suppress logarithmic factors.
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2 RELATED WORK

There is a large and growing body of literature on the sample complexity of reinforcement learning.
We refer interested readers to the monograph by Agarwal et al. (2019) for a more thorough review,
and focus on most relevant work in this section.

Deployment Efficiency and Other Notions of Adaptivity. The notion of deployment efficiency
was first proposed in the empirical work by Matsushima et al. (2020), while its formal definition was
first defined by Huang et al. (2022). Under this notion, Huang et al. (2022); Qiao et al. (2022); Qiao
& Wang (2022) designed provably efficient RL algorithms in various settings. As mentioned in the
introduction, in order to achieve a nearly optimal deployment complexity, existing algorithms either
work in the tabular setting, or rely on additional reachability assumption or explorability assumption
which we strive to avoid in this work. Zhao et al. (2023) designed deployment efficient RL algo-
rithms for function classes with bounded eluder dimension. However, even for linear functions, the
deployment complexity of the algorithm by Zhao et al. (2023) is Õ(dH) is far from being optimal.

The notion of deployment efficiency is closely related to the low switching setting (Bai et al., 2019;
Zhang et al., 2020c; Gao et al., 2021; Kong et al., 2021; Qiao et al., 2022; Wang et al., 2021).
We refer readers to prior work (Huang et al., 2022; Qiao et al., 2022) for a detailed comparison
between these two different notions. Roughly speaking, in the low switching setting, the agent de-
cides whether to update the policy after collecting each trajectory. On the other hand, the notion
of deployment efficiency requires the interval between policy switching to be fixed, and therefore,
deployment efficient RL algorithms are easier to implement in practical scenarios. The low switch-
ing setting was also studied for other sequential decision-making problems including bandits prob-
lems (Abbasi-Yadkori et al., 2011; Cesa-Bianchi et al., 2013; Simchi-Levi & Xu, 2019; Ruan et al.,
2021).

Reward-free Exploration. The notion of reward-free exploration was first proposed by Jin et al.
(2020). In this setting, the agent first collects trajectories from an unknown environment without any
pre-specified reward function. After that, a specific reward function is given, and the goal is to use
samples collected during the exploration phase to output a near-optimal policy for the given reward
function. The sample complexity of reward-free exploration was studied and improved in a line of
work (Kaufmann et al., 2021; Ménard et al., 2021; Zhang et al., 2020b) A similar notion called task-
agnostic exploration was consider by Zhang et al. (2020a). For linear MDPs, the first polynomial
sample complexity for reward-free exploration was obtained by Wang et al. (2020a). Later, the
sample complexity was improved by Zanette et al. (2020); Wagenmaker et al. (2022). Reward-free
exploration was also considered in other RL settings including linear mixture MDPs (Chen et al.,
2022; Zhang et al., 2021a) and RL with non-linear function approximation (Chen et al., 2022).

Technical Comparison with Existing Algorithms. Finally, we compare our new algorithm with
existing algorithms with O(H) deployment complexity (Qiao et al., 2022; Qiao & Wang, 2022)
from a technical point of view, and a more detailed overview of our new technical ingredients is
given in Section 4. To achieve a nearly optimal O(H) deployment complexity in the tabular setting,
Qiao et al. (2022) applied absorbing MDP to ignore those “hard to visit” states. In this work, similar
ideas are used, though we work in the linear MDP setting which is much more complicated than
the tabular setting and therefore requires a more careful treatment. In order to design an algorithm
with O(H) deployment complexity in linear MDPs under the explorability assumption, Qiao &
Wang (2022) showed how to solve a variant of G-optimal experiment design in an offline manner. In
this work, we also use offline policy optimization and offline policy evaluation to build exploration
policies in linear MDPs. However, the lack of the explorability assumption raises substantial more
technical challenges which necessitates more involved algorithms and analysis.

3 PRELIMINARIES

In this section, we introduce the basics of MDPs, the learning problem and our assumptions. We
use ∆(X) to denote the set of probability distributions over the set X , and [N ] to denote the set
{1, 2, . . . , N} for a positive integer N .
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Episodic MDPs. A finite-horizon episodic MDP can be characterized by a tuple
(S,A, R, P,H, dini), where S × A denotes the state-action space, R : S × A × [H] → ∆([0, 1])
is the reward distribution (with mean r := E[R]), P : S × A × [H] → ∆(S) is the probability
transition kernel, H is the planning horizon and dini ∈ ∆(S) is the initial distribution.

Moreover, a policy π = {πh : S → ∆(A)}Hh=1 is a group of mappings from the state space S to the
distributions over A. We say π is a deterministic policy if πh(s) is a one-hot vector for all h and s.
For simplicity, we use πh(s) to denote that action .

In each episode, the learner starts from an initial state s1 ∼ dini, and then proceeds by observing
current state sh, taking action ah and transiting to sh+1 according Ph(· | |sh, ah) for h = 1, . . . ,H .
Along the trajectory {sh, ah}Hh=1, the learner collects reward

∑H
h=1 rh where each rh is drawn

according to Rh(sh, ah) independently.

Fix a policy π, we define the Q-function and the value function as below:

Qπ
h(s, a) := Eπ

[
H∑

h′=h

rh′

∣∣∣ (sh, ah) = (s, a)

]
and V π

h (s) := Eπ

[
H∑

h′=h

rh′

∣∣∣ sh = s

]
for any (s, a) ∈ S × A and h ∈ [H]. The optimal Q-function and value function at step h can be
given as

Q∗
h(s, a) = max

π
Qπ

h(s, a) and V ∗
h (s) = max

π
V π
h (s), ∀(s, a) ∈ S ×A, h ∈ [H].

By the Bellman optimality condition, it holds that V ∗
h (s) = maxaQ

∗
h(s, a), ∀s ∈ S, andQ∗

h(s, a) =
r(s, a) + Es′∼P (·|s,a)[V

∗
h+1(s

′)], ∀(s, a) ∈ S ×A.

Linear Function Approximation. We assume that the transition kernel and the reward function
exist within a known low-dimensional subspace, a situation often referred to as a linear MDP.
Assumption 2 (Linear MDP Jin et al. (2023)). Let {ϕh(s, a)}(s,a)∈S×A,h∈[H] be a set of known
feature vectors such that maxs,a ∥ϕs,a∥2 ≤ 1. For each h ∈ [H], let θh ∈ Rd and µh ∈ RS×d be
respectively the reward kernel and transition kernel such that

rh(s, a) =
〈
ϕh(s, a), θh

〉
∀(s, a) ∈ S ×A,

Ph(· | s, a) = µϕh(s, a), ∀(s, a) ∈ S ×A,

∥θh∥2 ≤
√
d,

∥µ⊤
h v∥2 ≤

√
d, ∀v ∈ RS obeying ∥v∥∞ ≤ 1.

Under Assumption 2, both the reward function and the transition kernel are linear combinations of
a set of d-dimensional feature vectors. This allows for effective dimension reduction, provided that
d is much smaller than SA.

Reward-free Exploration. Now we introduce the framework of reward-free exploration. Reward-
free exploration comprises two phases: the sampling phase and the planning phase. In the sampling
phase, the learner collects a dataset D by interacting with the environment without reward informa-
tion, and in the planning phase, given any reward function {rh}h∈[H] satisfying Assumption 2, the
learner is asked to output an ϵ-optimal policy with probability at least 1 − δ, where ϵ is a threshold
and δ is the failure probability.

Deployment-efficient Reward-free Exploration. We present the definition of deployment com-
plexity for reward-free exploration as follows.
Definition 3 (Huang et al. (2022)). We say that an algorithm has a deployment complexity K in lin-
ear MDPs if the following holds: given an arbitrary linear MDP under Assumption 2, for arbitrary
ϵ and δ ∈ (0, 1) , the algorithm will conduct K deployments and collect at most L trajectories in
each deployment, under the following constraints

(a) With probability 1 − δ, given any reward kernel {θh}h∈[H] satisfying Assump-
tion 2, the learner return an ϵ-optimal policy π under this reward kernel, i.e,
Eπ

[∑H
h=1 ϕ

⊤
h (sh, ah)θh

]
≥ maxπ′ Eπ′

[∑H
h=1 ϕ

⊤
h (sh, ah)θh

]
− ϵ;
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(b) The sample size L is polynomial, i.e., L = poly(d,H, 1ϵ , log(
1
δ )). Moreover, L should be

fixed a priori and cannot change adaptively from deployment to deployment.

Notations. For a symmetric matrix A and a PSD matrix B, we write |A| ⪯ B iff B + A ⪰ 0 and
B − A ⪰ 0. Let Range[a,b](x) = I[x ≤ a] · a + I[a < x < b] · x + I[x ≥ b] · b for two reals
a ≤ b. For two PSD matrices A and B, define T(A,B) := λA where λ = max{ζ ≤ 1 : ζA ⪯ B}.
Define θh(v) = µ⊤

h v for v ∈ RS and h ∈ [H]. Denote 1∫ as the |S|-dimensional one-hot vector
with element 1 in the dimension of s. We use Pr[·] to denote the probability of an event.

4 TECHNICAL OVERVIEW

In this section, we give an overview of the technical challenges behind achieving Theorem 1, to-
gether our new ideas for tackling these challenges.

The Layer-by-layer Approach. Similar to existing algorithms with O(H) deployment complex-
ity (Huang et al., 2022; Qiao et al., 2022; Qiao & Wang, 2022), our new algorithm is based on a
layer-by-layer approach. For each layer 1 ≤ h ≤ H , based on an offline dataset obtained during
previous iterations, our algorithm designs a exploration policy (a mixture of deterministic policies)
for layer h, collect an offline dataset using the exploration policy, and then proceed to the next
layer h + 1 inductively. Since we only use a single exploration policy for each layer, and there are
H layers, the deployment complexity of such an approach would consequently be H . Following
such an approach, datasets obtained for previous layers will be used for the purpose of policy op-
timization and policy evaluation for later layers, and therefore, the dataset should be able to cover
all directions in the feature space. Therefore, we must carefully design the exploration strategy, so
that for any direction that can be reached by some policy, our exploration strategy could also reach
that direction up to an appropriate competitive ratio. By repeatedly sample trajectories by following
the exploration strategy, we would get a dataset that would be sufficient for the purpose of policy
optimization and policy evaluation for later layers

Dealing with Infrequent Directions. The main technical issue associated with the approach men-
tioned above, is that there could directions that cannot be reached frequently by any policy. In such
a case, it is unrealistic to require that such a direction could be reached by the exploration policy.
Existing algorithms with O(H) deployment complexity (Huang et al., 2022; Qiao & Wang, 2022)
avoids such an issue by assuming that any direction can be reached sufficiently frequently by some
policy, in which case designing an exploration policy that can reach directions in the feature space
is feasible. However, since we do not assume explorability or reachability of the underlying linear
MDP as in prior work (Huang et al., 2022; Qiao & Wang, 2022), we must handle such directions
carefully.

If one simply chooses to ignore such infrequent directions, the error accumulated for handling such
directions would in fact blow up exponentially, rendering the final sample complexity exponential
in the feature dimension d or the horizon length H . In fact, such an issue occurs even in the simpler
tabular setting. In the tabular setting, having some directions that cannot be reached is equivalent
to having some state-action pairs that cannot be reached by any policy, and in order to handle such
states, prior work on deployment efficient RL algorithms (Qiao et al., 2022) applied absorbing MDP
to ignore those “hard to visit” states. More specifically, once the algorithm detects that some state
cannot be reached by any policy, that state would be directed to a dummy state in the absorbing
MDP. Since we only direct states that are hard to visit to dummy states, the error accumulated
during the whole process would be additive as we have more layers, which gives a polynomial
sample complexity. Indeed, this is a high-level approach of the algorithm in Qiao et al. (2022).

On the other hand, for the linear MDP setting without the reachability assumption, handling infre-
quent directions is much more complicated. In the tabular setting, designing exploration policies is
relatively simple since we can simply plan a policy for each individual state. On the other hand, for
the linear MDP setting, we need to build the exploration policy (which is a mixture of deterministic
policies) in an iterative manner. Given directions that can already be reached by the current explo-
ration policy, we need to set the reward function appropriately to encourage exploring directions that
cannot be reached currently. More concretely, suppose the Λ = E[ϕϕ⊤] is the information matrix
induced by the current exploration policy, for each state-action pair (s, a) with feature ϕ(s, a), the
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reward function r(s, a) would be set to ϕ(s, a)⊤Λ−1ϕ(s, a). We then plan a new policy for the cur-
rent quadratic reward function, and test whether new policy can indeed reach some new direction,
both by utilizing the offline dataset. If the algorithm can no longer find any new direction that can
be reached, we then proceed to the next layer. It can be shown that the total number of directions
found during the whole process would be small, by using a standard potential function argument
based on the determinant of the information matrix. Note that in order to test whether new policy
can indeed reach some new direction, we need to estimate the information matrix Λ = E[ϕϕ⊤] of
the new policy, again by utilizing the offline dataset.

Note that by assuming reachability or explorability of the feature space, we no longer need to build
the exploration policy iteratively since the whole feature space can be reached and therefore one
can resort to approaches based on optimal experiment design. Indeed, this is the main idea behind
previous work (Qiao & Wang, 2022). However, such an approach heavily relies on reachability or
explorability of the feature space, which is one of the main technical challenges we aim to tackle in
this paper.

Handling Bias Induced by Infrequent Directions. As mentioned earlier, we heavily rely on the
offline dataset obtained in previous layers for the purpose the offline policy optimization (planning
for the current quadratic reward function) and offline policy evaluations (for estimating the informa-
tion matrix). Moreover, since we do not assume reachability of the feature space, there are always
directions that cannot be reached by the exploration policy, and therefore, it is impossible for the of-
fline dataset to cover the whole feature space. Imperfect coverage of the offline dataset will introduce
additional error for the purpose policy optimization and policy evaluation due to the bias induced
by infrequent directions. Although the error accumulated during offline policy optimization can be
handle relatively easily, since a global argument based comparing the groundtruth MDP and the
MDP after ignoring infrequent directions would suffice, the error accumulated during offline policy
evaluation is much more severe since the estimated information matrices would be used for deciding
the next quadratic reward function. If not handled properly, the error will accumulate multiplica-
tively as we proceed to the next layer, rendering the final sample complexity exponential. Again,
we note that by assuming reachability or explorability of the feature space as in prior work (Qiao &
Wang, 2022), such an issue will not occur since the offline dataset is guaranteed to cover the whole
feature space.

To handle such an issue, our new idea is to make sure the error of offline policy evaluation for es-
timating information matrices is always multiplicative with respect to the information matrix to be
evaluated. More specifically, during the evaluation algorithm, if we encounter some state-action pair
with feature ϕ = ϕ(s, a), we would add ϕϕ⊤ to the evaluation result Λ only when ϕ⊤Λ−1ϕ is small,
to ensure a multiplicative estimation error. However, this will introduce another chicken-and-egg
situation: without knowing the groundtruth information matrix Λ, it is impossible to test whether
ϕ⊤Λ−1ϕ is small or not. To solve this issue, we use another iterative process to estimate the infor-
mation matrix. Initially, we set the information matrix to be the identity matrix. In each iteration, in
order to test whether ϕ⊤Λ−1ϕ is small or not, we use information matrix Λ obtained during the pre-
vious iteration, adding up ϕϕ⊤ for those ϕ that passed the test to form the new information matrix,
and proceed to the next iteration. We stop the whole iteration process if the two information matrices
obtained in two consecutive iterations are close enough (in a multiplicative sense). By using another
potential function argument based on the determinant of the information matrix, it can be shown
that the iterative process stops with small number of rounds. Such an idea is another major technical
contribution of the present work.

Handling Dependency Issues by Independent Copies. According to the discussion above, our
final algorithm involves two iterative processes, and since the results of different iterations all rely
on the same offline dataset, these results are subtly coupled with each other. Fortunately, such
dependency issues are relatively easy to handle, since we can simply make independent copies of
the offline dataset by repeatedly sampling trajectories by following exploration policy with fresh
randomness.

Our final algorithm is a careful combination of all ideas mentioned above.
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5 ALGORITHMS

In this section, we introduce our algorithms. The parameter settings are postpone to Appendix A
due to space limitation.

Main algorithm: Sampling (Algorithm 1). In the main algorithm, the learner collects samples
layer by layer. In each deployment, the learner assumes that it has learned enough information about
previous layers, and focuses on learning the current layer. In the sub-problem of learning one layer,
Policy-Design is called to design the policy to explore current layer given previous samples,
and Policy-Execution is called to play this policy to collect samples.

In each call of Policy-Design, there are m optimization sub-problems (see line 6 Algorithm 2)
and m off-value-evaluation sub-problems (see line 12 Algorithm 2). As mentioned in Section 4, we
collect multiple copies of datasets, and use a group of new datasets to solve each sub-problem. As
a result, the datasets are independent of the reward and policy in the sub-problem. More precisely,
we collect (2m2 +1) ·H copies for each datasets to help solve the 2mH sub-problems, where each
dataset consists of N sample points. We refer readers to Algorithm 6 for more details about how to
collect samples.
Remark 1. In Algorithm 1, the first layer is a slightly different from other layers because of unknown
initial distribution, where the local optimal design (see Lemma 7) is used to reduce one deployment
(see the algorithm and analysis in Appendix E).

Policy-Design (Algorithm 2). We consider learning the h-th layer. Given datasets
in the first h − 1 layers, the learner first designs reward function with form rh(s, a) ←
min

{
ϕ⊤h (s, a)Λ

−1ϕh(s, a), 1
}

, where Λ is the current information matrix. We hope to update Λ as

Λnew ← Eπold

[
ϕhϕ

⊤
h

]
+ Λold, (2)

where πold is a near-optimal policy with respect to the reward rold = min{ϕ⊤hΛ
−1
oldϕh, 1}. By itera-

tively running this process, we can finally obtain some Λ such that maxπ Eπ

[
min{ϕ⊤hΛ−1ϕh, 1}

]
is small. As discussed in Section 4, it might be improper to add Eπold

[
ϕhϕ

⊤
h

]
to Λ directly due to

the infrequent directions. Therefore, we need to truncate the infrequent directions in the distribution
πold , and evaluate the truncated matrix with off-line dateset. Below we explain how to address this
problem by ALgorithm 3.

Matrix-Evaluation (Algorithm 3). In this algorithm, the input is a policy π and a group of
datasets. The target is to truncate the infrequent directions under π, and evaluate the information
matrix after truncating the infrequent directions. To describe the high-level idea in the algorithm,
we assume D is an distribution over Rd and consider to truncated the infrequent direction under
d. We assume that D is known to the learner. So one can immediately compute Λ = ED[ϕϕ⊤]
and compute the infrequent directions ϕ such that ϕ⊤Λ−1ϕ is large. The next step is to re-scale
ϕ with w(ϕ) · ϕ such that w2ϕ⊤Λ−1ϕ is small. However, after truncation, the new information
matrix would be Λnew = Eϕ∼D[w2(ϕ)ϕϕ⊤] ⪯ Λ, which means that a frequent direction under Λ
might turn to be an infrequent direction under Λnew. A straightforward idea is to repeat this process,
until Λ converges to some point. Let F (Λ) = Eϕ∼D

[
T(ϕϕ⊤, c1Λ)

]
where c1 is the threshold

for truncation. By iteratively running F (·), and noting that F (·) is non-increasing and the set of
bounded PSD matrices is compact, the sequence {F (n)(Λ)}n≥1 will converge to some Λ∗ and it
holds that F (Λ∗) = Λ∗, which means no more truncation is needed after truncation w.r.t. Λ∗. In
words, the infrequent directions no longer exists. One might be worried that 0 is also a fixed point
of F (·), so that the truncation is meaningless if Λ∗ = 0. Fortunately, by choose c1 properly large,
we can show that Prϕ∼D[ϕ⊤(Λ∗)−1ϕ ≥ c1] = O(ϵ), which means only a small portion of vectors
are truncated. When D is unknown, we could sample from D to estimate ED[T(ϕϕ⊤,Λ)] and
play the same iteration. Incorporating this idea with the arguments of linear regression, we devise
Algorithm 3 to truncate and evaluate the information matrix efficiently.

6 ANALYSIS

In this section, we present the formal version of the main theorem and sketch the proof.
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Algorithm 1 Sampling
1: {Dh

0 ,Dh
1}Hh=1 ← Ini-Sampling;

2: for h = 2, . . . ,H do
3:

{
{πi,h}mi=1, Λ̌h

}
← Policy-Design

(
h, {Dh

τ (j)}τ∈[h−1],j∈[2m2] ∪ {Dh
0 (j)}j∈[2m2], {Λ̌τ}τ∈[h−1],

)
4: {Dτ

h}Hτ=1 ← Policy-Execution(h, {πi,h}mi=1, Λ̌h);
5: end for
6: return: {Dh

h(2m
2 + 1)}h∈[H] and {Λ̌h}h∈[H]

Algorithm 2 Policy-Design
Input: h, datasets {ϕτ,i(j), s̃τ,i(j), λτ,i(j)}i∈[N ],τ∈[h−1],j∈[2m2], {s1,i(j)}i∈[N ],j∈[2m], block
matrix {Λ̌τ}τ∈[h−1];
Initialization: Λ0

h = ζI;
for ℓ = 1, 2, . . . ,m do
rℓh(s, a)← min{ϕh(s, a)⊤(Λℓ−1

h )−1ϕh(s, a), 1} for all (s, a);
rℓτ (s, a)← 0 for τ ̸= h and all (s, a);
{πℓ, vℓh} ← Opt(h, {ϕτ,i(m2 + ℓ), s̃τ,i(m

2 + ℓ), λτ,i(m
2 + ℓ)}i∈[N ],τ∈[h−1], {s1,i(m2 +

ℓ)}Ni=1, r
ℓ := {rℓτ}τ∈[H]);

// Let Yτ,i(a : b) denote the dataset {Yτ,i(j)}bj=a for a ≤ b for Y = ϕ, s̃, λ and s1;
Ď ← {ϕτ,i((ℓ−1)m−1 : ℓm), s̃τ,i((ℓ−1)m−1 : ℓm), λτ,i((ℓ−1)m−1 : ℓm)}i∈[N ],τ∈[h−1];

Ď0 ← {s1,i((ℓ− 1)m− 1 : ℓm)}Ni=1;
// Feed independent sub-datasets to Matrix-Evaluation ;
{Λ̄ℓ

h, Λ̌
ℓ
h} ← Matrix− Evaluation(h, πℓ, Ď, Ď0);

Λℓ
h ← Λℓ−1

h + Λ̄ℓ
h;

end for
return: {πi,h}mi=1 and Λ̌h ← Λm

h .

Theorem 4. By running Algorithm 1, the learner can collect a group of trajectories such that: with
probability 1− δ, for any reward kernel {θh}h∈[H] satisfying Assumption 2, the learner can return
an ϵ-optimal policy π. That is,

Eπ

[
H∑

h=1

ϕ⊤h (sh, ah)θh

]
≥ max

π′
Eπ′

[
H∑

h=1

ϕ⊤h (sh, ah)θh

]
− ϵ.

Moreover, Algorithm 1 consists ofH deployments, where the number of episodes in each deployment
is Õ

(
d9H14

ϵ5

)
2.

Proof. We first count the number of deployments. There is one deployment in line 1. For each
h = 2, . . . ,H , there is one deployment in line 4. We then conclude that the number of deployments
is H . On the other hand, the number of trajectories in each deployment is O(H(2m + 1)N) =

Õ
(

d9H14

ϵ5

)
.

The proof is finished by the following lemma, which proves the optimality of the learned policy.
The proof is presented in Appendix C.6

Lemma 5. With probability 1 − δ, for any reward kernel θ ∈ {θh}Hh=1 satisfying Assump-
tion 2, Planning

(
θ, {ϕh,i, s̃h,i, λh,i}Ni=1}h∈[H], {Λ̌h}h∈[H]

)
returns an ϵ-optimal policy, where

{ϕh,i, s̃h,i, λh,i}Ni=1}h∈[H] and {Λ̌h}h∈[H] is the output of Algorithm 1.

2We use Õ(·) to omit logarithmic factors of (d,H, 1
ϵ
, 1
δ
).
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Algorithm 3 Matrix-Evaluation
1: Input: horizon h, policy π, dataset {ϕτ,i(j), s̃τ,i(j), λτ,i(j)}τ∈[h−1],i∈[N ],j∈[m] ∪
{s1,i(j)}i∈[N ],j∈[m].

2: Λ← I;
3: for j = 1, 2, . . . ,m do
4: F̂0 ← T-M-Evaluation(Λ, {ϕτ,i(j), s̃τ,i(j), λτ,i(j)}τ∈[h−1],i∈[N ], {s1,i(j)}i∈[N ]);
5: if F̂0 +

ζ
2xI ⪰

1
2Λ then

6: break and return
{
F̂0 +

ζ
2xI,Λ

}
;

7: else
8: Λ← F̂0;
9: end if

10: end for
11: Function : T-M-Evaluation (Λ, {ϕτ,i, s̃τ,i, λτ,i}τ∈[h−1],i∈[N ], {s1,i}i∈[N ])
12: F̂h(s)← T(ϕh(s, πh(s))ϕ

⊤
h (s, πh(s)), f1Λ) for s ∈ {s̃h−1,i}i≥1;

13: for τ = h− 1, h− 2, ..., . . . , 1 do
14: Xτ ←

∑N
i=1 λ

2
τ,iϕτ,iϕ

⊤
τ,i + zI;

15: for s ∈ {s̃τ−1,i}i∈[N ] do
16: ϕ← ϕτ (s, πτ (s));
17: if ϕ⊤Λ̌τϕ ≥ 1 then
18: F̂τ (s)← 0;
19: else
20: F̂τ (s)← ϕ⊤X−1

τ

∑N
i=1 λ

2
τ,iϕτ,iF̂τ+1(s̃τ,i) + 2xΛ + 2ζI;

21: end if
22: end for
23: end for
24: return : F̂0 := 1

N

∑N
i=1 F̂1(s1,i) + 2xΛ + 2ζI;

To prove Lemma 5, a central lemma is introduced as follows, which states that the output dataset of
Algorithm 1 could efficiently cover all policies.

Lemma 6. Let {{πi,h}mi=1, Λ̌h} be the output of Policy-Design in Line 3 in the h-th iteration.
With probability 1− δ

2−
δ

2H , for any dataset of Algorithm 1 for the h-th layer {ϕh,i, s̃h,i, λh,i}i∈[N ],
it holds that

i. maxπ Prπ
[
ϕ⊤h Λ̌hϕh > 1, ϕ⊤τ Λ̌τϕτ ≤ 1,∀τ ∈ [h− 1]

]
≤ ϵ

8H2 for all h ∈ [H];

ii.
∑N

i=1 λ
2
τ,iϕτ,iϕ

⊤
τ,i + zI ⪰ N

8m Λ̌h for all h ∈ [H];

iii. λ2h,iϕ
⊤
h,iΛ̌

−1
h ϕh,i ≤ f1 for all h ∈ [H] and i ∈ [N ].

The rest part of this section is devoted to sketching the proof of Lemma 6. We will prove by induction
over the layer. We now assume the three conditions in Lemma 6 holds for the first h− 1 layers.

Truncated MDP. We define the truncated MDP Mh−1 by redirection all ϕτ (s, a) to a dumb
state if ϕτ (s, a)⊤Λ̌−1

τ ϕτ (s, a) > 1 for τ ∈ [h − 1]. More precisely, a trajectory {(sτ , aτ )}Hτ=1
under the original MDP M is mapped to {(s1, a1), . . . , (sk, ak), z, . . . , z} under Mh−1. Here
k ≤ h − 1 is the smallest integer such that ϕ⊤k (sk, ak)Λ̌

−1
k ϕk(sk, ak) > 1 and z is the dumb

state. If ϕ⊤k (sk, ak)Λ̌
−1
k ϕk(sk, ak) ≤ 1 for all k ∈ [h − 1], the trajectory is invariant after the

truncation.

In the following analysis, we re-define E[·] and Pr[·] to be respectively the expectation and proba-
bility under Mh−1.

Proof of Lemma 6. The proof for the first layer is a slightly different due to unknown initial distri-
bution. We postpone the algorithm and proofs to Appendix E.
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Below we sketch the proof for the h-th layer (h ≥ 2). The missing lemmas and proofs are presented
in Appendix C. We verify the three conditions as below.

Condition (i). By Lemma 12, with probability 1− δ
8H ,

max
π

Eπ

[
min{ϕ⊤h Λ̌−1

h ϕh, 1}
]
≤ ϵ

8H2
, (3)

which implies that

max
π

Prπ
[
ϕ⊤h Λ̌

−1
h ϕh > 1

]
≤ ϵ

8H2
. (4)

The proof is finished by noting equation 4 under the truncated MDP Mh−1 is equivalent to (i).

Condition (ii). By Lemma 16 , with probability 1− δ
16H , it holds that

N∑
i=1

λ2h,iϕh,iϕ
⊤
h,i + zI ⪰ N

8m
Λ̌h

for all sub-datasets {ϕh,i, s̃h,i, λh,i}Ni=1.

Condition (iii). To verify the third condition, it suffices to note the definition that : λh,j =

min

{√
f1

ϕ⊤
h,iΛ̌

−1
h ϕh,j

, 1

}
(See Algorithm 6).

7 CONCLUSION

In this work, we design a new RL algorithm whose sample complexity is polynomial in the feature
dimension and horizon length, while achieving nearly optimal deployment complexity for linear
MDPs. Moreover, our algorithm works under the reward-free exploration setting, and does not
require any additional assumptions on the underlying MDP. In our new algorithm and analysis, we
propose new methods to truncate state-action pairs in a data-dependent manner, and design efficient
offline algorithms for evaluating information matrices. Given our new results, an interesting future
direction is to generalize our new techniques to other RL problems. For example, for function
classes with bounded eluder dimension (Wang et al., 2020b; Kong et al., 2021; Zhao et al., 2023) , it
would be interesting to design RL algorithm with nearly optimal O(H) deployment complexity and
polynomial sample complexity without relying on any additional assumptions.
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A PARAMETER SETTINGS AND NOTATIONS

Assume d,H ≥ 40, ϵ ≤ 1
40 . Set x = 1

100dH , f1 = 320dH2

ϵ , ζ = ϵ5

10000d5H15 , ξ =
(

ϵ
10d2H2

)10
,

z = 100000ϵ2

d2H5 , m = 32000d2H3

ϵ , N =
109d5H7 log( dH

ϵδ )
ϵ3 . Total number of samples H2(2m2 + 1)N =

Õ
(

d9H15

ϵ5

)
. The number of trajectories in each deployment is Õ

(
d9H14

ϵ5

)
.

We also present a table of notations as follows.
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Table 1: Additional Notations.
Notation Comments
Ph(·|s, a) the transition probability for the triple (h, s, a)
rh(s, a) the reward expectation for the triple (h, s, a)
ϕh(s, a) the d-dimensional feature vector for the triple (h, s, a)
µh the probability transition kernel be such that Ph(·|, s, a) = µϕh(s, a)
θh(v) the d-dimensional payoff vector defined as µ⊤

h v
T(·, ·) the truncation function
N the number of datapoints in one dataset
{ϕτ , s̃τ , λ} one datapoint from the τ -th layer, ϕτ : the feature vector, s̃τ : the next state, λ: weight
{ϕτ,i, s̃τ,i, λτ,i}Ni=1 an independent dataset from the τ -th layer
ζ the regularization parameter
ξ the discretization parameter
E1(ϕ, v) the concentration event for feature ϕ and value v w.r.t. an independent dataset
E2(ϕ, f) the concentration event for feature ϕ and matrix value f w.r.t. an independent dataset

B TECHNICAL LEMMAS

Lemma 7 (General Equivalence Theorem in Kiefer & Wolfowitz (1960)). For any bounded subset
X ⊂ Rd, there exists a distribution K(X) supported on X , such that for any ϵ > 0, it holds that

max
x∈X

x⊤
(
ϵI+ Ey∼K(X)[yy

⊤]
)−1

x ≤ d. (5)

Furthermore, there exists a mapping πG, which maps a context X to a distribution over X such that

max
x∈X

x⊤(ϵI+ Ey∼πG(X)[yy
⊤])−1x ≤ 2d. (6)

In particular, when supp(X) has a finite size, πG(X) could be implemented within
poly(|supp(X)|, log(1/ϵ)) time.
Lemma 8. Assume 0 ≤ κ ≤ 0.1. Let Λ0 = ζI. For each i ≥ 1, let Di be a distribution over Rd

satisfying that

Eϕ∼Di

[
min

{
Trace

(
ϕϕ⊤(Λi−1)−1

)
, 1
}]
≥ κ (7)

and
Λi ⪰ Λi−1 + Eϕ∼Di [ϕϕ⊤].

Then we have that

log(det(Λn))− log(det(Λ0)) ≥ nκ

4
(8)

for any n ≥ 1.

Proof. Fix i ≥ 1. Note that equation 7 is equivalent to

Eϕ∼Di

[
min{ϕ⊤(Λi−1)−1ϕ, 1}

]
≥ z. (9)

Let W := Eϕ∼Di

[
T(ϕϕ⊤,Λi−1)

]
⪯ Eϕ∼Di

[
ϕϕ⊤

]
. By definition, it holds that W ⪯ Λi−1 and

W + Λi−1 ⪯ 2Λi−1. We then have that
log(det(Λi))− log(det(Λi−1)) ≥ log(det(Λi−1 +W ))− log(det(Λi−1))

= log
(
det(I+ (Λi−1)−1/2W (Λi−1)−1/2)

)
= log

(
det
(
I+ (Λi−1)−1/2Eϕ∼D

[
T(ϕϕ⊤,Λi−1)

]
(Λi−1)−1/2

))
≥ 1

4
Eϕ∼Di

[
Trace(T(ϕϕ⊤,Λi−1)(Λi−1)−1)

]
≥ κ

4
. (10)

The proof is completed by taking sum over i from 1 to n.
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B.1 CONCENTRATION INEQUALITIES

Lemma 9. Let X1, X2, ..., Xn be a group of zero-mean matrices such that −Λ ⪯ Xi ⪯ Λ with
probability 1 for all i ∈ [N ]. Let w1, w2, ..., wn be a group of reals. With probability 1− δ,

−2

√√√√ n∑
i=1

w2
i log(2d/δ)Λ− 2max

i
|wi| log(2d/δ)Λ ⪯

n∑
i=1

wiXi

⪯ 2

√√√√ n∑
i=1

w2
i log(2d/δ)Λ + 2max

i
|wi| log(2d/δ)Λ.

(11)

Proof. Without loss of generality, we assume Λ = I. For 0 ≤ t ≤ 1
maxi |wi| , define

Ek = E

[
Trace

(
exp

(
t

k∑
i=1

wiXi − 2t2
k∑

i=1

w2
i I

))]
.

Then we have that

E [Ek|X1:k−1] ≤ E

[
Trace

(
exp

(
log (E[exp(twkXk)|X1:k−1]) + t

k−1∑
i=1

wiXi

))]

E

[
Trace

(
exp (log(E[exp(twkXk)|X1:k−1]))− 2t2w2

kI+ t

k−1∑
i=1

wiXi − 2t2
k−1∑
i=1

w2
i I

)]
(12)

≤ E

[
Trace

(
t

k−1∑
i=1

wiXi − 2t2
k−1∑
i=1

w2
i I

)]
= Ek−1,

where the first inequality is by Lieb’s inequality (see Theorem 3.2, Tropp (2012)) and the second
inequality is by the fact that E[exp(twkXk)] ⪯ exp(2t2w2

k)I. As a result, we learn that E[En] ≤
E[E0] = d, which means that with probability 1− δ/2, the maximal eigenvalue of

∑k
i=1 wiXi is at

most 2
√∑n

i=1 w
2
i log(2d/δ) + 2maxi |wi| log(2d/δ). Similar arguments work for the other side.

The proof is completed.

C MISSING LEMMAS AND PROOFS

C.1 STATEMENT AND PROOF OF LEMMA 10

Lemma 10. Recall x = 1
100Hd ≥ 60

√
md log( dH

ϵδ )
N . Define Fh(s) := F̂h(s) =

T(ϕh(s, πh(s))ϕ
⊤
h (s, πh(s)), f1Λ). For τ = h − 1, h − 2, . . . , 1, we define Fτ (s) =

Es′∼Pτ,s,πτ (s)
[Fτ+1(s

′) · I[ϕ⊤Λ̌−1
τ ϕ ≤ 1]] and F0 = Es1∼dini

[F1(s1)].

Let F̂0 be the output of the subroutine T-M-Evaluation in Algorithm 3 with input Λ. we have
that

(1− 3Hx)F0 ⪯ F̂0 ⪯ (1 + 3Hx)F0 + 4HxΛ + 4HζI.

Proof. It is obvious that Fτ (s) is PSD for any proper τ and s. Let s̃0,i = s1,i for 1 ≤ i ≤ N . We
prove by induction that

(1− 3(h− τ)x)Fτ (s) ⪯ F̂τ (s) ⪯ (1 + 3(h− τ)x)Fτ (s) + 4(h− τ)xΛ + 4(h− τ)ζI (13)

for any 1 ≤ τ ≤ h and s ∈ {s̃τ−1,i}i≥1.

14
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For τ = h, we have that F̂τ (s) = Fτ (s) for any s ∈ S. Now we assume that equation 13 holds
for τ = ℓ ≥ 2. Recall that Xτ =

∑N
i=1 λ

2
ℓ−1,iϕℓ−1,iϕ

⊤
ℓ−1,i + zI. By definition, we have that for

s ∈ {s̃ℓ−2,i}i≥1

F̂ℓ−1(s) = ϕℓ−1(s, πℓ−1(s))
⊤X−1

τ

N∑
i=1

λ2ℓ−1,iϕℓ−1,iF̂ℓ(s̃ℓ−1,i) + 2xΛ + 2ζI

= Es′∼Pℓ−1,s,πℓ−1(s)

[
F̂ℓ(s

′)
]
+∆

(1)
ℓ−1(s) + 2xΛ + 2ζI

= Es′∼Pℓ−1,s,πℓ−1(s)
[Fℓ(s)] + ∆

(1)
ℓ−1(s) + ∆

(2)
ℓ−1(s) + 2xΛ + 2ζI

= Fℓ−1(s) + ∆
(1)
ℓ−1(s) + ∆

(2)
ℓ−1(s) + 2xΛ + 2ζI, (14)

where

∆
(1)
ℓ−1(s) = ϕℓ−1(s, πℓ−1(s))

⊤X−1
τ

N∑
i=1

λ2ℓ−1,iϕℓ−1,iF̂ℓ(s̃ℓ−1,i)− Es′∼Pℓ−1,sπℓ−1(s)

[
F̂ℓ(s

′)
]

= ϕℓ−1(s, πℓ−1(s))
⊤X−1

τ

N∑
i=1

λ2ℓ−1,iϕℓ−1,iF̂ℓ(s̃ℓ−1,i)− ϕℓ−1(s, πℓ−1(s))
⊤µ⊤

ℓ−1F̂ℓ(·);

(15)

∆
(2)
ℓ−1(s) = Es′∼Pℓ−1,s,πℓ−1(s)

[
F̂ℓ(s)− Fℓ(s)

]
. (16)

By the induction assumption, we have that

0 ⪯ (1−3(h−ℓ)x)Fℓ(s) ⪯ F̂ℓ(s) ⪯ (1+3(h−τ)x)Fℓ(x)+4(h−τ)xΛ+4(h−τ)ζI ⪯ 2Λ+4hζI.

By Lemma 11, with probability 1− δ
16mH2 it holds that

∆
(1)
ℓ−1(s) ⪯ 2xΛ + (3hx+ 1)ζI ⪯ 2xΛ + 2ζI; (17)

∆
(1)
ℓ−1(s) ⪰ −2xΛ− (3hx+ 1)ζI ⪰ −2xΛ− 2ζI. (18)

For the second term ∆
(2)
ℓ−1(s), by the induction condition, we have that

∆
(2)
ℓ−1(s) ⪯ 3(h− ℓ)xEs′∼Pℓ−1,s,πℓ−1(s)

[Fℓ(s
′)] + 4(h− ℓ)xΛ + 4(h− ℓ)ζI

= 3(h− ℓ)xFℓ−1(s) + 4(h− ℓ)xΛ + 4(h− ℓ)ζI; (19)

∆
(2)
ℓ−1(s) ⪰ −3(h− ℓ)xEs′∼Pℓ−1,s,πℓ−1(s)

[Fℓ(s
′)]

= −3(h− ℓ)xFℓ−1(s). (20)

Putting all together and noting that x ≤ 1
100dH , we learn that

F̂ℓ−1(s)− Fℓ−1(s) = ∆
(1)
ℓ−1(s) + ∆

(2)
ℓ−1(s) + 2xΛ + 2ζI

⪯ 2xΛ + 2ζI+ (3(h− ℓ)xFℓ−1(s) + 4(h− ℓ)xΛ + 4(h− ℓ)ζI)
⪯ 3(h− ℓ+ 1)xFℓ−1(s) + 4(h− ℓ+ 1)xΛ + 4(h− ℓ+ 1)ζI; (21)

F̂ℓ−1(s)− Fℓ−1(s) = ∆
(1)
ℓ−1(s) + ∆

(2)
ℓ−1(s) + 2xΛ + 2ζI

⪰ −xΛ− ζI− 3(h− ℓ)xFℓ−1(s) + 2xΛ + 2ζI

⪰ −3(h− ℓ+ 1)xFℓ−1(s); (22)
The proof of equation 13 is finished.

Note that
F̂0 − F0 = F̂0 − Es1∼dini

[F̂1(s1)] + Es1∼dini
[F̂1(s1)− F1(s1)]

=
1

N

N∑
i=1

F̂1(s1,i)− Es1∼dini
[F̂1(s1)] + Es1∼dini

[F̂1(s1)− F1(s1)] + 2xΛ + 2ζI.

15
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Using the induction condition, we have that

0 ⪯ (1−3(H−1))F1(s) ⪯ F̂1(s) ⪯ (1+3(H−1)x)F1(s)+4(H−1)xΛ+4(H−1)ζI ⪯ 2Λ+4HζI.

By Lemma 9, with probability 1− δ,

1

N

N∑
i=1

F̂1(s1,i)− Es1∼dini [F̂1(s1)] ⪯ 2xΛ + 2ζI;

1

N

N∑
i=1

F̂1(s1,i)− Es1∼dini [F̂1(s1)] ⪰ −2xΛ− 2ζI.

Based on equation 13, we have that

Es1∼dini
[F̂1(s1)− F1(s1)] ⪯ 3(h− 1)xF0 + 3(h− 1)xΛ + 3(h− 1)ζI

= 3(h− 1)xEs1∼dini [F1(s1)] + 4(h− 1)xΛ + 4(h− 1)ζI;

Es1∼dini
[F̂1(s1)− F1(s1)] ⪰ −3(h− 1)xEs1∼dini

[F1(s1)]

= −3(h− 1)xF0.

As a result, we obtain that

(1− 3hx)F0 ⪯ F̂0 ⪯ (1 + 3hx)F0 + 4hxΛ + 4hζI.

The proof is finished.

C.2 STATEMENT AND PROOF OF LEMMA 11

Lemma 11. Fix f : S → Rd2

such that 0 ⪯ f(s) ⪯ Λ,∀s ∈ S for some PSD matrix Λ . Let
{ϕτ,i, s̃τ,i, λτ,i}Ni=1 be a dataset from the τ -th layer. Assume {ϕτ,i, s̃τ,i, λτ,i}Ni=1 is independent of
f . Let Xτ =

∑N
i=1 λ

2
τ,iϕτ,iϕ

⊤
τ,i + zI. Then with probability 1− δ

16mH2∣∣∣∣∣ϕ⊤µ⊤
τ f − ϕ⊤X−1

τ

N∑
i=1

λ2τ,iϕτ,if(s̃τ,i)

∣∣∣∣∣ ⪯ 60

√
md log

(
dH
ϵδ

)
N

· Λ (23)

holds for any ϕ ∈ R2 such that ∥ϕ∥2 ≤ 1 and ϕ⊤Λ̌−1
τ ϕ ≤ 1.

Proof. By the induction assumption (i) and (iii), we have that Xτ ⪰ N
8m Λ̌τ for 1 ≤ τ ≤ h− 1 and

maxi ϕ
⊤
τ,iX

−1
τ ϕ ≤ f1. By Lemma 14, with probability 1− δ

16mH2 , we have that∣∣∣∣∣ϕ⊤µ⊤
τ f − ϕ⊤X−1

τ

N∑
i=1

λ2τ,iϕτ,if(s̃τ,i)

∣∣∣∣∣
⪯

(
16

√
ϕ⊤X−1

τ ϕd log(
dH

ϵδ
) + 8

√
max

i
ϕ⊤τ,iX

−1
τ ϕτ,iϕ⊤X

−1
τ ϕ · d log

(
dH

ϵδ

)
+ ζ

)
Λ

⪯ 60

√
md log

(
dH
ϵδ

)
N

· Λ.

16
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C.3 STATEMENT AND PROOF OF LEMMA 12

Lemma 12. Recall the definition of Λ̌h = Λm
h in Algorithm 1. With probability 1− δ

8H , it holds that

max
π

Eπ

[
min{ϕ⊤h Λ̌−1

h ϕh, 1}
]
≤ max

{
40d log(3m/ζ)

m
,
4

3
B +

2d

f1

}
≤ ϵ

8H2
.

Proof. Recall the definition of {Λℓ
h}mℓ=1, {Λ̄ℓ

h}mℓ=1 and {Λ̌ℓ
h}mℓ=1 in Algorithm 2. Let yℓ =

maxπ Eπ

[
min

{
ϕ⊤h (Λ

ℓ
h)

−1ϕh, 1
}]

. Then yℓ is non-increasing in ℓ because Λℓ
h is non-decreasing

in ℓ. Let y = ym = maxπ EMh,π

[
min{ϕ⊤h Λ̌

−1
h ϕh, 1}

]
. By Lemma 13 and Lemma 15, with

probability 1− δ
8mH ·m = 1− δ

8H ,

Eπℓ

[
min

{
Trace

(
ϕhϕ

⊤
h (Λ

ℓ−1
h )−1

)
, 1
}]

≥ Eπℓ

[
min{Trace(ϕhϕ⊤h (Λℓ−1

h )−1), 1}
]
− Prπℓ

[
ϕ⊤h (Λ̌

ℓ−1
h )−1ϕh > f1

]
≥ Eπℓ

[
min{Trace(ϕhϕ⊤h (Λℓ−1

h )−1), 1}
]
− d

f1(1− 3Hx)

≥ yℓ−1 −B − d

f1(1− 3Hx)

≥ y −B − d

f1(1− 3Hx)
.

Case i: y − B − d
f1(1−3Hx) ≥

y
4 . By Lemma 8 with the Dℓ as the distribution of ϕh ·

min

{√
f1

ϕ⊤
h (Λℓ−1

h )−1ϕh
, 1

}
under πℓ and κ = y

10 ≤ 0.1, we have that

log(det(Λm
h ))− log(det(Λ0

h)) ≥
my

40
. (24)

Recall the definition of {Λ̄ℓ
h}mℓ=1 in Algorithm 2. Using Lemma 10, we have that Λ̄ℓ

h ⪯ 3I and
thus log(det(Λm

h )) ≤ d log(3m). On the other hand, we have that log(det(Λ0
h)) = d log(ζ), which

means that my
40 ≤ d log(3m/ζ). Therefore, we have that y ≤ 40d log(3m/ζ)

m ≤ ϵ
8H2 .

Case ii: y −B − d
f1(1−3Hx) <

y
4 . In this case, we have that y ≤ 4

3B + 2d
f1
≤ ϵ

8H2 .

C.4 STATEMENT AND PROOF OF LEMMA 13

Lemma 13. Let B = 2
√

H2 log(1/δ)
N + 2H log(1/δ)

N + 2H

(
32

√
md log( dH

ϵδ )
N +

32md
√
f1 log( dH

ϵδ )
N

)
.

Let {V i
0 , π

i} be the output of Opt with input reward as ri. With probability 1− δ
8mH

max
π

Eπ

[
rih(sh)

]
− Eπi

[
rih(sh)

]
≤ B.

Proof. Assume w ∈ RS satisfying ∥w∥∞ ≤ 1. Let θτ (w) = µ⊤
τ w. By the induction condition (i),

we have that Xτ ⪰ N
8m Λ̌τ for τ ∈ [h− 1].

17
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By Lemma 14 and the induction condition (iii) that λ2τ,iϕ
⊤
τ,iΛ̌

−1
τ ϕτ,i ≤ f1, with probability 1 −

δ
16mH2 , we have that∣∣∣∣∣ϕ⊤θτ (w)− ϕ⊤X−1

τ

N∑
i=1

λ2τ,iϕτ,i ·
(
ϕ⊤τ,iθτ (w) + ϵi

)∣∣∣∣∣
≤ 8

√
ϕ⊤X−1

τ ϕ · d log
(
dH

ϵδ

)
+ 4
√
max

i
λ2τ,iϕ

⊤
τ,iX

−1
τ ϕτ,i · ϕ⊤X−1

τ ϕ · d log
(
dH

ϵδ

)
+ ζ

≤ 32

√
md log

(
dH
ϵδ

)
N

+
32md

√
f1 log

(
dH
ϵδ

)
N

(25)

for all ϕ such that ∥ϕ∥2 ≤ 1 and ϕ⊤Λ̌−1
τ ϕ ≤ 1.

Let {vτ (s)} and {v∗τ (s)} denote respectively the value function under the policy πi and the optimal
value function. Let v0 = Es1∼dini

[v1(s1)] and v∗0 = maxπ Eπ

[
rih(sh)

]
. Because riτ (s, a) ∈ [0, 1]

for any proper (s, a, τ), we learn that vτ (s), v∗τ (s), v0, v
∗
0 ∈ [0, 1]. Recall the definition of {Vτ (s)}

in Algorithm 5. We next prove by induction that Vτ (s) ≥ v∗τ (s) ≥ vτ (s) for any s ∈ S and
1 ≤ τ ≤ h. For τ = h, the inequality is trivial. Assume Vτ (s) ≥ vτ (s) for any ℓ ≤ τ ≤ h. By
equation 25 with w = Vℓ(·)

Qℓ−1(s, a) ≥ Es′∼Pℓ−1,s,a
[Vℓ(s

′)] ≥ Es′∼Pℓ−1,s,a
[v∗ℓ (s

′)] (26)

when ϕ⊤ℓ−1(s, a)Λ̌
−1
ℓ−1ϕℓ−1(s, a) ≤ 1. In the case ϕ⊤ℓ−1(s, a)Λ̌

−1
ℓ−1ϕℓ−1(s, a) > 1, we have that

Qℓ−1(s, a) = Es′∼Pℓ−1,s,a
[Vℓ(s

′)] = 0 (27)
because Pℓ−1,s,a = 1z.

Therefore, we have that

Vℓ−1(s) = Range[0,1]

(
max

a
Qℓ−1(s, a)

)
≥ Range[0,1]

(
max

a
Es′∼Pℓ−1,s,a

[v∗ℓ (s
′)]
)
= v∗ℓ−1(s).

By Bernstein’s inequality, with probability 1− δ
16mH , it holds that

V0 =
1

N

N∑
i=1

V1(s1,i) + 2

√
H2 log(1/δ)

N
+ 2

H log(16m/δ)

N
≥ Es1∼dini

[V1(s1)] ≥ Es1∼dini
[v∗1(s1)] = v∗0 .

To bound the gap maxπ Eπ

[
rih(sh)

]
− Eπi

[
rih(sh)

]
, direct computation gives that

max
π

Eπ

[
rih(sh)

]
− Eπi

[
rih(sh)

]
= v∗0 − Eπi

[
rih(sh)

]
≤ V i

0 − Eπi

[
ri−1
h (sh)

]
= V i

0 − Es1∼dini
[V1(s1)] + Eh

τ=1

[
Vτ (sτ )− P⊤

τ,sτ ,aτ
Vτ+1(·)

]
≤ 2

√
H2 log(1/δ)

N
+ 2

H log(1/δ)

N
+ 2

h∑
τ=1

32

√
md log

(
dH
ϵδ

)
N

+
32md

√
f1 log

(
dH
ϵδ

)
N


(28)

= 2

√
H2 log(1/δ)

N
+ 2

H log(1/δ)

N
+ 2H

32

√
md log

(
dH
ϵδ

)
N

+
32md

√
f1 log

(
dH
ϵδ

)
N


= B,

where equation 28 is by plugging ϕτ,sτ ,aτ = ϕ and w = Vτ+1(·) into equation 25:

Vτ (sτ )− P⊤
τ,sτ ,aτ

Vτ+1(·) ≤ 2

32

√
md log

(
dH
ϵδ

)
N

+
32md

√
f1 log

(
dH
ϵδ

)
N

 .

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.5 STATEMENT AND PROOF OF LEMMA 14

Lemma 14. Fix , v ∈ RS such that ∥v∥∞ ≤ 1 and f : S → Rd2

such that 0 ⪯ f(s) ⪯ Λ,∀s ∈ S
for some Λ. Let {ϕτ,i, s̃τ,i, λτ,i}Ni=1 be a dataset independent of v and f from the τ -th layer. Let
Xτ =

∑N
i=1 λ

2
τ,iϕτ,iϕ

⊤
τ,i + zI. With probability 1− δ

16mH2 , it holds that∣∣∣∣∣ϕ⊤θ(v)− ϕ⊤X−1
τ

N∑
i=1

ϕτ,iv(s̃τ,i)

∣∣∣∣∣
≤ 8

√
ϕ⊤X−1

τ ϕ(d log(
dH

ϵδ
) + 4

√
max

i
ϕ⊤τ,iX

−1
τ ϕτ,iϕ⊤X

−1
τ ϕ · d log(dH

ϵδ
) + ζ.

and

(29)∣∣∣∣∣ϕ⊤µ⊤f − ϕ⊤X−1
τ

N∑
i=1

λ2τ,iϕτ,if(s̃τ,i)

∣∣∣∣∣
⪯

(
16

√
ϕ⊤X−1

τ ϕd log(
dH

ϵδ
) + 8

√
max

i
ϕ⊤τ,iX

−1
τ ϕτ,iϕ⊤X

−1
τ ϕd log(

dH

ϵδ
) + ζ

)
Λ.

for any ϕ such that ∥ϕ∥2 ≤ 1.

Proof. Let Φ(ξ) be an ξ-net of the d-dimensional unit ball w.r.t. L2 norm. Recall that ξ =(
ϵ

10d2H2

)10
. Then log(ξ) ≤ 20 log(dH/ϵ). Let

E1(ϕ, v)

:=

{∣∣∣∣∣ϕ⊤θ(v)− ϕ⊤X−1
τ

N∑
i=1

λ2τ,iϕτ,iv(s̃τ,i)

∣∣∣∣∣ ≤ 4

√
ϕ⊤X−1

τ ϕ log(1/δ) + 2
√
max

i
ϕ⊤τ,iX

−1
τ ϕτ,iϕ⊤X

−1
τ ϕ · log(1/δ)

}
.

Then Pr[E(ϕ, v)] ≤ 2δ by Bernstein’s inequality. Assume ∪ϕ∈Φ(ξ)E1(ϕ, v) holds. Then for any
ϕ ∈ Rd, letting ψ be the nearest neighbor of ϕ in Φ(ξ), it holds that∣∣∣∣∣ϕ⊤θ(v)− ϕ⊤X−1

τ

N∑
i=1

ϕτ,iv(s̃τ,i)

∣∣∣∣∣
≤
∣∣ϕ⊤θ(v)− ψ⊤θ(v)

∣∣+ ∣∣∣∣∣ϕ⊤X−1
τ

N∑
i=1

ϕτ,iv(s̃τ,i)− ψ⊤X−1
τ

N∑
i=1

ϕτ,iv(s̃τ,i)

∣∣∣∣∣+
∣∣∣∣∣ψ⊤θ(v)− ψ⊤X−1

τ

N∑
i=1

ϕτ,iv(s̃τ,i)

∣∣∣∣∣
≤ ξ + Nξ

z
+ 4

√
ψ⊤X−1

τ ψ log(1/δ) + 2
√
max

i
ϕ⊤τ,iX

−1
τ ϕτ,iψ⊤X−1

τ ψ · log(1/δ)

≤ 4

√
ϕ⊤X−1

τ ϕ log(1/δ) + 2
√
max

i
ϕ⊤τ,iX

−1
τ ϕτ,iϕ⊤X

−1
τ ϕ · log(1/δ) + ξ +

Nξ

z
+ 6 log(1/δ)

2ξ

z
√
z

≤ 4

√
ϕ⊤X−1

τ ϕ log(1/δ) + 2
√
max

i
ϕ⊤τ,iX

−1
τ ϕτ,iϕ⊤X

−1
τ ϕ · log(1/δ) + ζ.

Noting that |Φ(ξ)| ≤ (d/ξ)d, we have that Pr[∪ϕ∈Φ(ξ)]E1(ϕ, v) ≤ 2(d/ξ)dδ. By replacing δ with
δ

16mH|Φ(ξ)| , with probability 1− 2δ, it holds that∣∣∣∣∣ϕ⊤θ(v)− ϕ⊤X−1
τ

N∑
i=1

ϕτ,iv(s̃τ,i)

∣∣∣∣∣
≤ 4

√
ϕ⊤X−1

τ ϕ(d+ log(
d

ξδ
) + 2

√
max

i
ϕ⊤τ,iX

−1
τ ϕτ,iϕ⊤X

−1
τ ϕ · (d+ log(

d

ξδ
) + ζ.

(30)
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for any ϕ such that ∥ϕ∥2 ≤ 1.

Define E2(ϕ, f) to be the event where∣∣∣∣∣ϕ⊤µ⊤
τ f − ϕ⊤X−1

τ

N∑
i=1

λ2τ,iϕτ,if(s̃τ,i)

∣∣∣∣∣ ⪯
(
4

√
ϕ⊤X−1

τ ϕ log(
1

δ
) + 2

√
max

i
ϕ⊤τ,iX

−1
τ ϕτ,iϕ⊤X

−1
τ ϕ log(

1

δ
)

)
Λ

(31)

holds. We then show that Pr[E2(ϕ, f)] ≤ 2δ.

ϕ⊤µ⊤
τ f − ϕ⊤X−1

τ

N∑
i=1

λ2τ,iϕτ,if(s̃τ,i) = ϕ⊤X−1
τ Xτµ

⊤
τ f − ϕ⊤X−1

τ

N∑
i=1

λ2τ,iϕτ,if(s̃τ,i)

= ϕ⊤X−1
τ

(
Xτµ

⊤
τ f −

N∑
i=1

λ2τ,iϕτ,i
(
ϕτ,iµ

⊤
τ f + ϵτ,i

))

= −
N∑
i=1

ϕ⊤X−1
τ λ2τ,iϕτ,iϵτ,i + ϕ⊤X−1

τ zµ⊤
τ f, (32)

where we define ϵτ,i = Es′∼Pτ,s,a
[f(s′)] − f(s̃τ,i) with (s, a) being the state-action pair such that

ϕτ (s, a) = ϕτ,i. Noting that −Λ ⪯ ϵτ,i ⪯ Λ with probability 1, we have that

N∑
i=1

ϕ⊤X−1
τ λ2τ,iϕτ,iϵτ,i ⪯ 2

√√√√log(d/δ) ·
N∑
i=1

(
λ2τ,iϕ

⊤X−1
τ ϕτ,i

)2
Λ + 2max

i

∣∣λ2τ,iϕ⊤X−1
τ ϕτ,i

∣∣ log(d/δ)Λ
⪯ 2

√
log(d/δ)ϕ⊤X−1

τ ϕΛ + 2max
i

√
ϕ⊤X−1

τ ϕ · λ2τ,iϕ⊤τ,iX
−1
τ ϕτ,iΛ

(33)
holds with probability 1− δ. In a similar way, with probability 1− δ, we have

(34)

−
N∑
i=1

ϕ⊤X−1
τ λ2τ,iϕτ,iϵτ,i ⪯ 2

√
log(d/δ)ϕ⊤X−1

τ ϕΛ + 2max
i

√
ϕ⊤X−1

τ ϕ · λ2τ,iϕ⊤τ,iX
−1
τ ϕτ,iΛ.

(35)

To bound the second term zϕ⊤X−1
τ µ⊤

τ f in equation 32, we have

|zϕ⊤X−1
τ µ⊤

τ v| ≤ z∥ϕ⊤X−1
τ ∥2∥µ⊤

τ v∥2

≤
√
z

√
zϕ⊤X−2

τ ϕ ·
√
d

≤
√
zd · ϕ⊤X−1

τ ϕ

≤
√
ϕ⊤X−1

τ ϕ (36)

for any v ∈ RS such that ∥v∥∞ ≤ 1. As a result, we have ∥zϕ⊤X−1
τ µ⊤

τ ∥1 ≤
√
ϕ⊤X−1

τ ϕ. Noting
that 0 ⪯ f(s) ⪯ Λ for all s ∈ S, we have that

−
√
ϕ⊤X−1

τ ϕΛ ⪯ zϕ⊤X−1
τ µ⊤

τ f ⪯
√
ϕ⊤X−1

τ ϕΛ. (37)

By equation 32, equation 33, equation 35 and equation 37, we have that

∣∣∣∣∣ϕ⊤µ⊤
τ f − ϕ⊤X−1

τ

N∑
i=1

λ2τ,iϕτ,if(s̃τ,i)

∣∣∣∣∣
⪯ 4

√
log(d/δ)ϕ⊤X−1

τ ϕΛ + 2max
i

√
ϕ⊤X−1

τ ϕ · λ2τ,iϕ⊤τ,iX
−1
τ ϕτ,iΛ (38)
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The proof is finished. Assume ∪ϕ∈Φ(ξ)E2(ϕ, f) holds. Fix ϕ and let ψ be the nearest neighbor of ϕ
in Φ(ξ). We then have that

ϕ⊤µ⊤
τ f − ϕ⊤X−1

τ

N∑
i=1

ϕτ,if(s̃τ,i)

=
(
ϕ⊤µ⊤

τ f − ψ⊤µ⊤
τ f
)
+

(
ϕ⊤X−1

τ

N∑
i=1

ϕτ,if(s̃τ,i)− ψ⊤X−1
τ

N∑
i=1

ϕτ,if(s̃τ,i)

)

+

(
ψ⊤θ(v)− ψ⊤X−1

τ

N∑
i=1

ϕτ,if(s̃τ,i)

)
. (39)

We then bound the three terms in equation 39 separately. For the first term, we have that |(ϕ −
ψ)⊤µ⊤

τ v| ≤ ξ
√
d for any v ∈ RS such that ∥v∥∞ ≤ 1. As a result, we have that ∥µτ (ϕ − ψ)∥1 ≤

ξ
√
d, which implies that

−ξ
√
dΛ ⪯ ϕ⊤µ⊤

τ f − ψ⊤µ⊤
τ f ⪯ ξ

√
dΛ. (40)

For the second term, we have that∣∣∣∣∣ϕ⊤X−1
τ

N∑
i=1

ϕτ,iv(s̃τ,i)− ψ⊤X−1
τ

N∑
i=1

ϕτ,iv(s̃τ,i)

∣∣∣∣∣ ≤ Nξ

z

for any v ∈ RS such that ∥v∥∞ ≤ 1. Using similar arguments, we learn that∥∥∥ϕ⊤X−1
τ

∑N
i=1 ϕτ,i − ψ⊤X−1

τ

∑N
i=1 ϕτ,i

∥∥∥
1
≤

√
dNξ
z and

−
√
dNξ

z
Λ ⪯ ϕ⊤X−1

τ

N∑
i=1

ϕτ,if(s̃τ,i)− ψ⊤X−1
τ

N∑
i=1

ϕτ,if(s̃τ,i) ⪯
√
dNξ

z
Λ. (41)

By ∪ϕ∈Φ(ξ)E2(ϕ, f), we could bound the third term as∣∣∣∣∣ψ⊤θ(v)− ψ⊤X−1
τ

N∑
i=1

ϕτ,if(s̃τ,i)

∣∣∣∣∣ ⪯ 4

√
log(d/δ)ψ⊤X−1

τ ψΛ + 2max
i

√
ψ⊤X−1

τ ψλ2τ,iϕ
⊤
τ,iX

−1
τ ϕτ,iΛ.

(42)

Putting equation 40, equation 41 and equation 42 together, we learn that∣∣∣∣∣ϕ⊤µ⊤
τ f − ϕ⊤X−1

τ

N∑
i=1

ϕτ,if(s̃τ,i)

∣∣∣∣∣
⪯

(
ξ
√
d+

√
dNξ

z
+ 4

√
log(d/δ)ψ⊤X−1

τ ψ + 2max
i

√
ψ⊤X−1

τ ψλ2τ,iϕ
⊤
τ,iX

−1
τ ϕτ,i

)
Λ

≤

(
ξ
√
d+

√
dNξ

z
+

12 log(d/δ)ξ

z
√
z

+ 4

√
log(d/δ)ϕ⊤X−1

τ ϕ+ 2max
i

√
ϕ⊤X−1

τ ϕλ2τ,iϕ
⊤
τ,iX

−1
τ ϕτ,i

)
Λ

≤
(
4

√
log(d/δ)ϕ⊤X−1

τ ϕ+ 2max
i

√
ϕ⊤X−1

τ ϕλ2τ,iϕ
⊤
τ,iX

−1
τ ϕτ,i + ζ

)
Λ. (43)

The proof is finished by replacing δ with δ
16mH|Φ(ξ)| .

C.6 PROOF OF LEMMA 5

Let Θ be an ϵ
8dH -net of B2(

√
d)H . Without loss of generality, we can take Θ to be the dH-

dimensional grid with distance ϵ
8dH . Let ProjΘ(·) be the projection function to Θ by projecting
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each dimension to the grid. It is obvious that if θ = {θh}h∈[H] satisfies that ∥θh∥2 ≤ d for each h,
∥ProjΘ,h(θ)∥2 ≤ 2d.

It suffices to show that for any kernel {θh}h∈[H] ∈ Θ, the output policy is 3
4ϵ-optimal. Assume the

conditions in Lemma 6 holds. Let M̌ be the final truncated MDP MH . Then we have that

max
π

Prπ
[
∃h ∈ [H], ϕ⊤h Λ̌hϕh > 1

]
≤ H · ϵ

8H2
≤ ϵ

8H
.

As a result, for any π and reward function r such that ∥r∥∞ ≤ 1, we have that |Eπ[
∑H

h=1 rh] −
Eπ,M̌ [

∑H
h=1 rh]| ≤

ϵ
8 .

Fix reward kernel θ = {θh}h∈[H] ∈ Θ. We continue the analysis by assuming the ground MDP
is M̌ . Let π be the returned policy and π∗ be the optimal policy. Let {V ∗

h,θ(s), Q
∗
h,θ(s, a)} and

{V π
h,θ(s), Q

π
h,θ(s, a)} be respectively the optimal value function and the value function of π. In par-

ticular, we use V ∗
0,θ (V π

θ ) to denote the value of the optimal policy (π). Let {Vh,θ(s), Qh,θ(s, a)} be
the value of {Vh(s), Qh(s, a)} in Algorithm 4 with input kernel as θ. Let V0,θ = Es1∼dini

[V1,θ(s1)].
When θ is clear from the context, we omit θ in the subscript.

We then have that

V ∗
0 − V π

0 = (V ∗
0 − V0) + (V0 − V π

0 ) . (44)

We then prove by induction that V ∗
h (s) − Vh(s) ≤ (H − h) · ϵ

8H for all s ∈ S and h ∈ [H].
The inequality is trivial for h = H . Now we assume it is correct for all h ≥ ℓ. Let Xτ =∑N

i=1 λ
2
τ,iϕτ,iϕ

⊤
τ,i + zI for τ ∈ [H]. Recall that Φ(ξ) is an ξ-net of the d-dimensional unit ball. Fix

ϕ ∈ Φ(ξ) with ∥ϕ∥2 ≤ 1 and V ∈ RS with ∥V ∥∞ ≤ H . By Bernstein’s inequality, with probability
1− δ

4H|Φ(ξ)|·|Θ| , it holds that∣∣∣∣∣ϕ⊤X−1
h

N∑
i=1

λ2h,iϕh,iV (s̃h,i)− ϕ⊤µ⊤
τ V

∣∣∣∣∣
≤ 4

√
ϕ⊤X−1

τ ϕ log

(
4H|Φ(ξ)| · |Θ|

δ

)
+ 2max

i

√
ϕ⊤X−1

h ϕ · λ2h,iϕ⊤h,iX
−1
h ϕh,i log

(
4H|Φ(ξ)| · |Θ|

δ

)

≤

√
128m

N
log

(
4H|Φ(ξ)| · |Θ|

δ

)
+

√
32m

N
· ϕ⊤X−1

h ϕ log

(
4H|Φ(ξ)| · |Θ|

δ

)
.

With a union bound over ϕ ∈ Φ(ξ), we learn that, with probability 1− δ
4H|Θ| ,∣∣∣∣∣ϕ⊤X−1

h

N∑
i=1

λ2h,iϕh,iV (s̃h,i)− ϕ⊤µ⊤
h V

∣∣∣∣∣ ≤ 32

√
mdH log

(
dH
ϵδ

)
N

+

√
128m

N
· ϕ⊤X−1

h ϕ · dH log

(
dH

ϵδ

)

≤ 32

√
mdH log

(
dH
ϵδ

)
N

+
32mdH log

(
dH
ϵδ

)
N

≤ ϵ

16H

for any ϕ such that ∥ϕ∥2 ≤ 1 and ϕ⊤Λ̌hϕ ≤ 1. Note that Vh+1,θ(·) is determined by θ = {θh}h∈[H]

and the sub-datasets after the h-th layer (non-inclusive). With a union bound over θ ∈ Θ, we learn
that: with probability 1− δ

4 ,∣∣∣∣∣ϕ⊤X−1
h

N∑
i=1

λ2h,iϕh,iVh+1,θ(s̃h,i)− ϕ⊤µ⊤
h Vh+1,θ

∣∣∣∣∣ ≤ ϵ

16H
(45)
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for any ϕ such that ∥ϕ∥2 ≤ 1, ϕ⊤Λ̌hϕ ≤ 1 and θ ∈ Θ. Then we have that

V ∗
ℓ−1(s)− Vℓ−1(s)

= Q∗
ℓ−1(s, π

∗
ℓ−1(s))− Vℓ−1(s)

≤ Q∗
ℓ−1(s, π

∗
ℓ−1(s))−Qℓ−1(s, π

∗
ℓ−1(s))

≤ P⊤
ℓ−1,s,π∗

ℓ−1(s)
(V ∗

ℓ − Vℓ) + P⊤
ℓ−1,s,π∗

ℓ−1(s)
Vℓ − ϕ⊤ℓ−1,s,π∗

ℓ−1
X−1

ℓ−1

N∑
i=1

λ2ℓ−1ϕℓ−1,iVℓ(s̃ℓ,i) +
ϵ

16H

(46)

≤ P⊤
ℓ−1,s,π∗

ℓ−1(s)
(V ∗

ℓ − Vℓ) +
ϵ

8H

≤ ϵ(H − h)
8H

.

As a result, we learn that V ∗
0 −V0 ≤ ϵ

8 . For the second term (V0−V π
0 ) in equation 44, using similar

arguments, we have that

V0 − V π
0 = Eπ

[
H∑

h=1

Qh(sh, ah)− ϕ⊤h θh − P⊤
h,sh,ah

Vh+1(sh)

]
≤ H · ϵ

8H

≤ ϵ

8
. (47)

Putting all together, with probability 1− δ
2 , we have that V ∗

0,θ − V π
0,θ ≤ ϵ

4 ≤
5ϵ
8 for all θ ∈ Θ. As a

result, π is at least a 3
4ϵ-optimal policy under the original MDP M . The proof is completed.

C.7 STATEMENT AND PROOF OF LEMMA 15

Lemma 15. By running Algorithm 3, we have the following claims: (1) The iteration in line 3 ends
in 10d log

(
2x
v + 1

)
rounds; (2) Let Λend be the final value of Λ. Then it holds that

Prπ
[
ϕ⊤h (Λend)

−1ϕh > f1
]
≤ d

f1(1− 3Hx)
.

Proof. Fix π. Let F̂0(Λ) be the value of F̂0 computed with truncation matrix as Λ in line 12-24 in
Algorithm 3. Let F0(Λ) := Eπ

[
T(ϕhϕ

⊤
h , f1Λ)

]
.

Number of iterations. Let Λi be the value of Λ after the i-th iteration. Suppose there are m
iterations. For 1 ≤ i ≤ m, we have that Λi = F̂0(Λi−1) satisfies that

(1− 3Hx)F0(Λi−1) ⪯ Λi ⪯ (1 + 3Hx)F0(Λi−1) + 3HxΛi−1 + 3HζI ⪯ (1 + 6Hx)Λi−1 + 3HζI.
(48)

By the update rule, we learn that

Λi ⪯ (1 + 6Hx)Λi−1 + 3HζI;

Λi +
ζ

2x
ζI ̸⪰ 1

2
Λi−1,

Let Λ̌i = Λi +
ζ
2xI for i ≥ 0. Then we learn that

Λ̌i ⪯ (1 + 6Hx)Λ̌i−1, Λ̌i ̸⪰
1

2
Λ̌i−1, Λ̌i ⪰

ζ

2x
I.
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As a result, the maximal eigenvalue of Λ̌−1/2
i−1 Λ̌iΛ̌

−1/2
i−1 is at most (1 + 6Hx), while the minimal

eigenvalue of Λ̌−1/2
i−1 Λ̌iΛ̌

−1/2
i−1 is at most 1

2 . Then we have that

log(det(Λ̌i))− log(det(Λ̌i−1)) + d log(1 + 6Hx)− log(2) ≤ − 1

10
. (49)

By noting that d log(ζ/2x) ≤ log(det(Λ̌i)) and log(det(Λ̌0)) ≤ d log(1 + ζ/2x), we learn that
m ≤ 10d log

(
2x
ζ + 1

)
≤ f8. Let Λend = Λm.

Truncation probability. Note that Λend ⪰ (1 − 3Hx)F0(Λend) and F0(Λend) =
Eπ

[
T(ϕhϕ

⊤
h , f1Λend)

]
. We then have that

Eπ

[
Trace

(
T(ϕhϕ

⊤
h , f1Λend)(Λend)

−1
)]
≤ d

(1− 3Hx)
.

On the other hand, by noting that

Prπ
[
ϕ⊤h (Λend)

−1ϕh > f1
]
· f1 ≤ Eπ

[
Trace

(
T(ϕhϕ

⊤
h , f1Λend)(Λend)

−1
)]
≤ d

(1− 3Hx)
,

we have

Prπ
[
ϕ⊤h (Λend)

−1ϕh > f1
]
≤ d

f1(1− 3Hx)
.

C.8 STATEMENT AND PROOF OF LEMMA 16

Lemma 16. Recall that z = 100000ϵ2

d2H5 . Let Dh = {ϕh,i, s̃h,j , λh,i}Ni=1 be the one dataset in in
Line 9, Algorithm 6. With probability 1− δ

16m2H2 , it holds that

N∑
i=1

λ2h,iϕh,iϕ
⊤
h,i + zI ⪰ N

8m
· Λ̌h.

Proof. Let Xi
h and Y i

h be respectively the final value of Λ and F̂0 in the i-th call of Algorithm 3 in
the h-th round. It then holds that

(1 + 3Hx)Eπi,h

[
T(ϕhϕ

⊤
h , f1X

i
h)
]
+ 3HxXi

h + 3HζI+
ζ

2x
I ⪰ Y i

h +
ζ

2x
I ⪰ 1

2
Xi

h

and

(1 + 3Hx)Eπi,h

[
T(ϕhϕ

⊤
h , f1X

i
h)
]
+ 3Hx(2Y i

h +
ζ

x
I) + 3HζI+

ζ

2x
I ⪰ Y i

h +
ζ

2x
I.

Because Λ̌h ⪰ 1
2X

i
h

E

[
N∑
i=1

λ2h,iϕh,iϕ
⊤
h,i

]
⪰ N

2m

m∑
j=1

Eπj,h

[
T(ϕhϕ

⊤
h , f1X

j
h)
]

⪰ N

2m
·

m∑
j=1

1

1 + 3Hx
·
(
(1− 6Hx)Y j

h +
ζ

2x
I− 6HζI− ζ

2x
I

)

⪰ N

2m
·

m∑
j=1

(
1

2
Λ̄j
h −

(
6H +

1

2x

)
ζI

)

=
N

2m
·
(
1

2
Λ̌h −

(
6H +

1

2x

)
ζI− ζI

)
. (50)
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Also noting that λh,iϕh,iϕ⊤h,i ⪯ f1Λ̌h with probability 1, using Lemma 9, we have that, with proba-
bility 1− δ

16mH2 ,

N∑
i=1

λ2h,iϕh,iϕ
⊤
h,i ⪰

1

2
E

[
N∑
i=1

λ2h,iϕh,iϕ
⊤
h,i

]
− f1Λ̌h log(16mH

2/δ)

⪰ N

8m
Λ̌h −

N
(
7H + 1

2x

)
4m

ζI

⪰ N

8m
Λ̌h − zI (51)

D MISSING ALGORITHMS

In this section, we present the missing algorithms.

Planning (Algorithm 4). This algorithm is used to compute the optimal policy given a group
of datasets. The planning method is based on classical linear regression.

Opt (Algorithm 5). This algorithm is used to compute the near-optimal policy given a fixed re-
ward function. The planning method is based on classical linear regression.

Policy-Execution (Algorithm 5). This algorithm is used to collect multiple copies of the
datasets. The efficiency of the collected dataset is explained in Lemma 16.

Algorithm 4 Planning
Input: reward kernel {θh}h∈[H], dataset {ϕh,i, s̃h,i, λh,i}Ni=1}h∈[H] and block matrix {Λ̌h}h∈[H];

{θh}h∈[H] ← Proj×({θh}h∈[H]);
VH+1(s)← 0 for all s ∈ S;
for h = H,H − 1, . . . , 1 do

for (s, a) ∈ S ×A; do
ϕ← ϕh(s, a)

Qh(s, a)←

{
ϕ⊤θh + ϕ⊤

(∑N
i=1 λ

2
h,iϕh,iϕ

⊤
h,i + zI

)−1∑N
i=1 λ

2
h,iϕh,iVh+1(s̃h,i), ϕ⊤Λ̌−1

h ϕ ≤ 1;

0, else;
Qh(s, a)← Range[0,H](Qh(s, a));

end for
for s ∈ S do
Vh(s)← maxaQh(s, a);
πh(s)← argmaxaQh(s, a);

end for
end for
return: π ← {πh}h∈[H].

E MISSING ALGORITHM AND PROOFS FOR THE FIRST LAYER

In this section, we propose the algorithm Ini-Sampling to collect the samples for the first layer.
Below we prove that, by running Ini-Sampling, the three conditions in Lemma 6 holds for the
first layer.
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Algorithm 5 Opt
Input: horizon h, reward function r, dataset {ϕτ,i, s̃τ,i, λτ,i}1≤i,1≤τ≤h−1 ∪ {s1,i}Ni=1;
Vh(s)← maxa rh(s, a),∀s ∈ {s̃h−1,i}i≥1;
for τ = h− 1, h− 2, . . . , 1 do
Xτ ←

∑N
i=1 λ

2
τ,iϕτ,iϕ

⊤
τ,i + zI;

for s ∈ {s̃τ−1,i}i≥1, a ∈ A do

ϕ← ϕτ (s, a);

Qτ (s, a)←

{
ϕ⊤X−1

τ

∑
i≥1 ϕτ,iVτ+1(s̃τ+1,i) + 32

√
md log( dH

ϵδ )
N +

32md
√
f1 log( dH

ϵδ )
N , ϕ⊤Λ̌−1

τ ϕ ≤ 1;

0, else
(52)

end for
for s ∈ {s̃τ−1,i}i≥1 do
Vτ (s) = Range[0,1] (maxaQτ (s, a));
πτ (s) = argmaxaQτ (s, a);

end for
end for
V0 ← 1

N

∑N
i=1 V1(s1,i) + 2

√
H2 log(1/δ)

N + 2H log(1/δ)
N ;

return: {V0, π}

Algorithm 6 Policy-Execution
1: Input h, {πi,h}mi=1, Λ̌h :
2: π ← uniform({πi,h}mi=1);
3: for τ = 1, 2, . . . ,H do
4: for z = 1, 2, . . . , 2m2 + 1 do
5: for j = 1, 2, . . . , N do
6: Run π to observe the feature ϕh,j and the next state s̃h,j ;

7: λh,j ← min

{√
f1

ϕ⊤
h,jΛ̌

−1
h ϕh,j

, 1

}
;

8: end for
9: Dτ

h(z)← {ϕh,j , s̃h,j , λh,j}Nj=1;
10: end for
11: Dτ

h ← {Dτ
h(z)}

2m2+1
z=1

12: end for
13: return : Dh ← {Dτ

h}Hτ=1.
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Algorithm 7 Ini-Sampling

1: Initialization: Λ0 ← I, K ← 20d log(1/υ), n← 1600d2H
ϵ , f2 ← 1600dH

3ϵ ;
2: for ℓ = 1, 2, . . . ,K do
3: F ← 0;
4: for i = 1, 2, . . . , n do
5: Play the local optimal design policy πG(·), observe the feature ϕi,ℓ;
6: F ← F + T(ϕi,ℓϕ

⊤
i,ℓ, f2Λℓ−1)

7: end for
8: if F

n + υI ⪰ 1
2Λℓ−1 then

9: Λ̌1 ← F + 2nυI and break;
10: else
11: Λℓ ← F/n;
12: end if
13: end for
14: for h = 1, 2, . . . ,H do
15: for i = 1, 2, . . . , 2m+ 1 do
16: for j = 1, 2, . . . , N do
17: Play the local optimal design policy πG(·), observe initial state sh1,j(i), feature ϕh1,j(i)

and the next state s̃h1,j(i) = sh2,j(i);

18: λh1,j(i)← min

{√
f1

(ϕh
1,j(i))

⊤Λ̌−1
1 (ϕh

1,j(i))
, 1

}
19: end for
20: Dh

0 (i)← {sh1,j(i)}Nj=1

21: Dh
1 (i)← {ϕh1,j(i), s̃h1,j(i), λh1,j(i)}Nj=1;

22: end for
23: Dh

0 ← {Dh
0 (i)}2m+1

i=1 ;
24: Dh

1 ← {Dh
1 (i)}2m+1

i=1
25: end for
26: return: {Dh

0 ,Dh
1}Hh=1;

Lemma 17. Recall the definition of Λ̌1 in Algorithm 7. With probability 1− δ
2H , for any sub-dataset

of Algorithm 1 for the h-th layer {ϕh,i, s̃h,i, λh,i}i∈[N ], it holds that

max
π

Prπ
[
ϕ⊤1 Λ̌1ϕ1 > 1

]
≤ ϵ

8H2
;

N∑
i=1

λ21,iϕ1,iϕ
⊤
1,i + zI ⪰ N

8m
Λ̌1;

λ21,iϕ
⊤
1,iΛ̌1ϕ1,i ≤ 1,∀i ∈ [N ].

Proof. The third inequality follows by definition of λ1,i. It suffices to prove the first two inequalities.

The first condition. Define F (Λ) = Es∼dini,a∼πG(s)

[
T(ϕ1ϕ

⊤
1 , f2Λ)

]
. Then F (Λ) is non-

increasing in Λ. Fix Λ. Let {ϕi}ni=1 be the feature vectors by running πG(·) for n rounds. By
Lemma 9, with probability 1− δ

32HK ,

F̂ (Λ, n) :=

n∑
i=1

T
(
ϕiϕ

⊤
i , f2Λ

)
⪰ nF (Λ)− 4

√
n log(HKd/δ)Λ ⪰ nF (Λ)− n

10d
Λ. (53)

In a similar way, with probability 1− δ
32HK ,

F̂ (Λ, n) ⪯ nF (Λ) + n

10d
Λ. (54)
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Recall the definition of {Λℓ}ℓ≥0 in Algorithm 7. Assume the break condition in line 9 is not triggered
in the first τ rounds. By equation 53 and equation 54, with probability 1− δ

32H , for all 1 ≤ ℓ ≤ τ ,

Λℓ + υI ̸⪰ 1

2
Λℓ−1;

Λℓ ⪯ F (Λℓ−1) +
1

10d
Λℓ−1 ⪯ (1 +

1

10d
)Λℓ−1;

Λℓ ⪰ F (Λℓ−1)−
1

10d
Λℓ−1. (55)

Let Λ̃ℓ = Λℓ + 2υI. It then follows that

Λ̃ℓ ̸⪰
1

2
Λ̃ℓ−1

Λ̃ℓ ⪯ (1 +
1

10d
)Λ̃ℓ−1;

Λ̃ℓ ⪰ 2υI.

As a result, we have that

log(det(Λ̃ℓ))− log(δ(Λ̃ℓ−1)) ≤ − log(2) + d log(1 +
1

10d
) ≤ −0.1, (56)

which implies that

d log(υ) ≤ log(det(Λ̃τ )) ≤ −0.1τ (57)
and τ ≤ 10d log(1/υ). Therefore, the break condition in line 9 will be triggered within K rounds.

Now we verify the first inequality. By definition, there exists some ℓ such that F̂ (Λℓ−1,n)
n + υI ⪰

1
2Λℓ−1 and Λ̌1 = F̂ (Λℓ−1, n) + 2nυI, which means that

F (Λℓ−1) +
1

10d
Λℓ−1 ⪰ F̂ (Λℓ−1, n)/n ⪰

1

2
Λℓ−1 − υI.

As a result, we learn that

F (Λℓ−1) + υI ≥
(
1

2
− 1

10d

)
Λℓ−1

and
F̂ (Λℓ−1, n)

n
+ υI ⪰ F (Λℓ−1) + υ − 1

10d
Λℓ−1 ⪰

(
1

2
− 1

5d

)
Λℓ−1. (58)

Continuing the computation we have that

max
π

Prs∼dini,π

[
ϕ⊤1 Λ̌

−1
1 ϕ1 ≥ 1

]
≤ Prs∼dini,πG

[
Trace

(
Eϕ∼πG(s)[ϕϕ

⊤]Λ̌−1
1

)
≥ 1/d

]
≤ dPrs∼dini,πG

[
ϕ⊤1 Λ̌

−1
1 ϕ1 ≥ 1/d

]
≤ dPrs∼dini,πG

ϕ⊤1
(
F̂ (Λℓ−1, n)

n
+ 2υI

)−1

ϕ1 ≥ n/d


≤ dPrs∼dini,πG

[
ϕ⊤1 Λ

−1
ℓ−1ϕ1 ≥

n

3d

]
. (59)

Continuing the computation, we have that

dPrs∼dini,πG

[
ϕ⊤1 Λ

−1
ℓ−1ϕ1 ≥

n

3d

]
≤ 3d

n
· Es∼dini,πG

[
Trace

(
T
(
ϕ1ϕ

⊤
1 ,

n

3d
Λℓ−1

)
· (F (Λℓ−1))

−1
)]

=
3d

n
· Es∼dini,πG

[
Trace

(
T
(
ϕ1ϕ

⊤
1 , f2Λℓ−1

)
· (F (Λℓ−1))

−1
)]

=
3d2

n
. (60)

Here the second inequality is by the fact that n
3d = f2. Therefore, we have that

max
π

Prs∼dini,π

[
ϕ⊤1 Λ̌

−1
1 ϕ1 ≥ 1

]
≤ 3d2

n
≤ ϵ

8H
.
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The second condition. Recall that Λ̌1 = F̂ (Λℓ−1, n) + 2nυI ⪯ n(1 + 1
10d )F (Λℓ−1) + 2nυI and

Λ̌1 ⪰ n
3Λℓ−1. Let {ϕ1,j , s̃1,j , λ1,j}Nj=1 be a sub-dataset collected following line 16 to line 21 in

Algorithm 7. Then we have that

E
[
λ21,jϕ1,jϕ

⊤
1,j

]
= Es∼dini,πG

[
T(ϕ1ϕ

⊤
1 , f1Λ̌1)

]
⪰ Es∼dini,πG

[
T(ϕ1ϕ

⊤
1 , f2Λℓ−1)

]
= F (Λℓ−1).

(61)

Using Lemma 9, with probability 1− δ
16m2H2 , it holds that

N∑
j=1

λ21,jϕ1,jϕ
⊤
1,j ⪰ NF (Λℓ−1)− (4

√
N log(dHm/δ) + 2 log(dHm/δ)) · f1Λ̌1

⪰ NF (Λℓ−1)− 6
√
N log(dHm/δ)f1 · (2nF (Λℓ−1) + 2nυI)

⪰ N

2
F (Λℓ−1)− 12

√
N log(dHm/δ)f1 · 2nυI

⪰ N

4n
Λ̌1 − (12

√
N log(dHm/δ)f1 · 2n+ 4N)υI

⪰ N

8m
Λ̌1 − zI.

The proof is completed.
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