Under review as a conference paper at ICLR 2025

DEPLOYMENT EFFICIENT REWARD-FREE EXPLO-
RATION WITH LINEAR FUNCTION APPROXIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We study deployment efficient reward-free exploration with linear function ap-
proximation, where the goal is to explore a linear Markov Decision Process
(MDP) without revealing the reward function, while minimizing the number of
exploration policies used during the algorithm. We design a new reinforcement
learning (RL) algorithm whose sample complexity is polynomial in the feature di-
mension and horizon length, while achieving near-optimal deployment efficiency
for linear MDPs under the reward-free exploration setting. More specifically, our
algorithm explores a linear MDP in the reward-free manner, while using at most H
exploration policies during its execution where H is the horizon length. Compared
to previous algorithms with similar deployment efficiency guarantees, the sample
complexity of our algorithm does not depend on the reachability coefficient or the
explorability coefficient of the underlying MDP, which can be arbitrarily small for
certain MDPs. Our result addresses an open problem proposed in prior work. To
achieve such a result, we show how to truncate state-action pairs of the underlying
linear MDP in a data-dependent manner, and devise efficient offline policy evalu-
ation and offline policy optimization algorithms in the truncated linear MDP. We
further show how to implement reward-free exploration mechanisms in the linear
function approximation setting by carefully combines these offline RL algorithms
without sacrificing the deployment efficiency.

1 INTRODUCTION

In real-world reinforcement learning applications, deploying new policies usually comes at a cost.
For instance, in robotics applications (Kober et al.| [2013)), deploying new policies involves oper-
ations on the hardware level, which typically requires long waiting periods. As another example,
in medical applications (Almirall et al., |2012; |2014; |Lei et al.| 2012), it is unrealistic to deploy-
ment new policies frequently, since switching to a new policy typically requires a separate approval
process which usually involves domain experts and could therefore be costly. In recommendation
systems (Theocharous et al., [2015), the deployment of a new policy often takes weeks, as the new
recommendation strategy must pass internal tests to ensure safety and practicality before being de-
ployed, which again can be time-consuming. On the other hand, in all these scenarios, although
switching the policy based on instantaneous data (as required by typical RL algorithms) is infeasi-
ble, once a policy is deployed, it is possible run a large batch of experiments in parallel to collect
new data. Therefore, in such applications, the agent needs learning a good policy while minimizing
the number of policy deployments.

Empirically, the notion of deployment efficiency was first proposed by Matsushima et al.| (2020),
while formal definition of deployment complexity was recently defined by Huang et al.| (2022).
Intuitively, deployment complexity measures the total number of policy deployments of a RL algo-
rithm, while requiring the interval between policy switching, i.e., the number of trajectories collected
before switching to a new policy, is fixed in advance. Under the notion of deployment complexity,
a line of recent work designed provably efficient RL algorithms (Huang et al., [2022; Qiao et al.,
2022; |Qiao & Wang| [2022) in various settings. In particular, for the tabular setting where the state
space is assumed to be discrete and have small size, Qiao et al. (2022) designed a provably ef-
ficient RL algorithm with O(H) policy deployments. Huang et al.| (2022); Qiao & Wang| (2022)
studied the deployment complexity of RL with linear function approximation. In particular, in the
linear MDP (Yang & Wangl 2019; Jin et al.| 2023) setting, the sample complexity of the algorithms



Under review as a conference paper at ICLR 2025

by Huang et al.| (2022)); |Qiao & Wang| (2022)) is polynomial in the feature dimension d and the hori-
zon length H, while the deployment complexity is O(dH) or O(H). Moreover, it has been shown
in|Huang et al.|(2022)) that any RL algorithm for linear MDPs requires a deployment complexity of
Q(HY]

Although prior works mentioned above seem to give a complete answer to the deployment com-
plexity of RL for linear MDPs, it turns out that to achieve the nearly optimal O(H) deployment
complexity, existing algorithms either work in the tabular setting (Qiao et al.| 2022) and therefore
cannot handle cases where state space is enormous or continuous, or require additional reachability
assumption (Huang et al.| 2022) or explorability assumption (Qiao & Wang] 2022)) which, roughly
speaking, assumes that all directions of the feature space can be explored by some policy. Such
reachability assumption and explorability assumption could be quite restrictive and would signifi-
cantly limit the scope that the RL algorithms can be used. In these assumptions, it is usually assumed
that some type of “reachability coefficient” is lower bounded, and the sample complexity of existing
algorithms with O(H') deployment complexity all have polynomial dependency on the reciprocal
of the reachability coefficient. In the tabular setting, assuming the reachability coefficient is lower
bounded is equivalent to assuming all states in the state space can be reached by some policy with
lower bounded probability, and for a general linear MDP, such reachability coefficient could be ar-
bitrarily small in which case the sample complexity of existing algorithms with O(H) deployment
complexity would be infinite. In order to give a satisfying answer to the deployment complexity of
RL in linear MDPs, in this paper, we study the following question:

Is is possible to design RL algorithms for linear MDPs with nearly optimal deployment complexity
and polynomial sample complexity, without relying on any additional assumptions?

In fact, such a question was mentioned explicitly in prior work (Huang et al., 2022} |Qiao & Wang,
2022) and was left as an important direction for future investigation. In particular, it was conjec-
tured in [Huang et al[(2022) that to achieve O(H) deployment complexity, relying on additional
assumptions like reachability or explorability is unavoidable.

Our Contribution. In this paper, we resolve the question mentioned above by designing a new RL
algorithm for linear MDPs with H deployment complexity. Our new algorithm achieves polynomial
sample complexity for any linear MDP and does not rely on additional assumptions. In fact, our
new algorithm works for the reward-free exploration setting (Jin et al., [2020; [Wang et al., |2020a;
Chen et al.| 2022; 'Wagenmaker et al., 2022; Zhang et al., |2021b) and does not require access to the
reward distribution during its exploration phase, giving it additional favorable properties that could
be beneficial for practical use. The formal guarantee of our new algorithm is informally summarized
in the following theorem.

Theorem 1 (Informal version of Theorem [). For reward-free exploration in linear MDPs, there
exists an algorithm (Algorithm[l)) with deployment complexity H, such that with probability 1—9, the
algorithm returns a policy whose suboptimality is at most €, whose sample complexity is polynomial
ind, H, 1/e and log(1/0). Here, d is the feature dimension and H is the horizon length.

Combined with existing hardness result (Huang et al.| [2022)), our new result in Theorem E] gives a
complete answer to the deployment complexity of RL for linear MDPs, and shows that additional
assumptions like reachability or explorability conjectured to be unavoidable in previous work, are
in fact not necessary for achieving a nearly optimal deployment complexity.

The remaining part of this paper is organized as follows. Section[2)give an overview of related work.
Section[3]introduces necessary technical backgrounds and notations. Section[d]gives an overview of
our new technical ideas. Section [5]and Section [6]introduce the formal definition of our algorithms
together with an overview of its analysis. Most of the proofs are deferred to the supplementary
material.

"Throughout this paper, we use O and Q to suppress logarithmic factors.



Under review as a conference paper at ICLR 2025

2 RELATED WORK

There is a large and growing body of literature on the sample complexity of reinforcement learning.
We refer interested readers to the monograph by |Agarwal et al.| (2019) for a more thorough review,
and focus on most relevant work in this section.

Deployment Efficiency and Other Notions of Adaptivity. The notion of deployment efficiency
was first proposed in the empirical work by Matsushima et al.[(2020), while its formal definition was
first defined by |Huang et al.| (2022). Under this notion, Huang et al.[(2022); |Q1ao0 et al.| (2022)); Q1ao
& Wang|(2022)) designed provably efficient RL algorithms in various settings. As mentioned in the
introduction, in order to achieve a nearly optimal deployment complexity, existing algorithms either
work in the tabular setting, or rely on additional reachability assumption or explorability assumption
which we strive to avoid in this work. [Zhao et al|(2023) designed deployment efficient RL algo-
rithms for function classes with bounded eluder dimension. However, even for linear functions, the
deployment complexity of the algorithm by [Zhao et al.|(2023) is O(dH) is far from being optimal.

The notion of deployment efficiency is closely related to the low switching setting (Bai et al., 2019
Zhang et al.| 2020c; |Gao et al., 2021; [Kong et al., 2021} |Q1ao et al., 2022; Wang et al., 2021).
We refer readers to prior work (Huang et all 2022} |Qiao et al., [2022) for a detailed comparison
between these two different notions. Roughly speaking, in the low switching setting, the agent de-
cides whether to update the policy after collecting each trajectory. On the other hand, the notion
of deployment efficiency requires the interval between policy switching to be fixed, and therefore,
deployment efficient RL algorithms are easier to implement in practical scenarios. The low switch-
ing setting was also studied for other sequential decision-making problems including bandits prob-
lems (Abbasi-Yadkori et al., 2011} |Cesa-Bianchi et al.| 2013} |Simchi-Levi & Xu, [2019; Ruan et al.,
2021).

Reward-free Exploration. The notion of reward-free exploration was first proposed by [Jin et al.
(2020). In this setting, the agent first collects trajectories from an unknown environment without any
pre-specified reward function. After that, a specific reward function is given, and the goal is to use
samples collected during the exploration phase to output a near-optimal policy for the given reward
function. The sample complexity of reward-free exploration was studied and improved in a line of
work (Kaufmann et al.|, 2021;|Ménard et al.,2021; Zhang et al., | 2020b) A similar notion called task-
agnostic exploration was consider by |[Zhang et al.| (2020a). For linear MDPs, the first polynomial
sample complexity for reward-free exploration was obtained by [Wang et al.| (2020a). Later, the
sample complexity was improved by |Zanette et al.| (2020); Wagenmaker et al.| (2022)). Reward-free
exploration was also considered in other RL settings including linear mixture MDPs (Chen et al.,
2022;|Zhang et al.|[2021a) and RL with non-linear function approximation (Chen et al.||[2022).

Technical Comparison with Existing Algorithms. Finally, we compare our new algorithm with
existing algorithms with O(H) deployment complexity (Qiao et al., 2022; (Qiao & Wang, 2022)
from a technical point of view, and a more detailed overview of our new technical ingredients is
given in Section E} To achieve a nearly optimal O(H) deployment complexity in the tabular setting,
Qiao et al.| (2022)) applied absorbing MDP to ignore those “hard to visit” states. In this work, similar
ideas are used, though we work in the linear MDP setting which is much more complicated than
the tabular setting and therefore requires a more careful treatment. In order to design an algorithm
with O(H) deployment complexity in linear MDPs under the explorability assumption, Qiao &
Wang|(2022) showed how to solve a variant of G-optimal experiment design in an offline manner. In
this work, we also use offline policy optimization and offline policy evaluation to build exploration
policies in linear MDPs. However, the lack of the explorability assumption raises substantial more
technical challenges which necessitates more involved algorithms and analysis.

3 PRELIMINARIES

In this section, we introduce the basics of MDPs, the learning problem and our assumptions. We
use A(X) to denote the set of probability distributions over the set X, and [N] to denote the set
{1,2,..., N} for a positive integer N.



Under review as a conference paper at ICLR 2025

Episodic MDPs. A finite-horizon episodic MDP can be characterized by a tuple
(S, A, R, P,H,dip;), where S x A denotes the state-action space, R : S x A x [H] — A([0,1])
is the reward distribution (with mean r := E[R]), P : § x A x [H] — A(S) is the probability
transition kernel, H is the planning horizon and d;,,; € A(S) is the initial distribution.

Moreover, a policy m = {7, : S — A(A)}L, is a group of mappings from the state space S to the
distributions over .A. We say 7 is a deterministic policy if 7, (s) is a one-hot vector for all h and s.
For simplicity, we use 7, (s) to denote that action .

In each episode, the learner starts from an initial state s; ~ dj,;, and then proceeds by observing
current state sy, taking action aj, and transiting to sj1 according Py (- | |sp,apn) forh=1,... H.
Along the trajectory {sp,,as}fL, the learner collects reward ZhH:1 rp, where each rp, is drawn
according to Ry, (sp, ap) independently.

Fix a policy m, we define the )-function and the value function as below:

H

>

h'=h

Qh(s,a) :=E,

h'=h

H
(Sh,an) = (s,a)] and V' (s):=E, [Z T | sp = 3]

for any (s,a) € S x Aand h € [H]. The optimal Q-function and value function at step / can be
given as

Q1 (s,a) =maxQp(s,a) and Vi (s) =maxV)(s), V(s,a) €S x A h e [H].

By the Bellman optimality condition, it holds that V;*(s) = max, Q7 (s,a), Vs € S, and Qj (s, a) =
r(s,a) + Egpis,a) Vi (8], V(s,a) € S x A.

Linear Function Approximation. We assume that the transition kernel and the reward function
exist within a known low-dimensional subspace, a situation often referred to as a linear MDP.
Assumption 2 (Linear MDP Jin et al.| (2023)). Let {¢1(5,a)}(s,a)esx.A,ne[H] be a set of known

feature vectors such that max; o ||¢s qll2 < 1. For each h € [H|, let 0}, € R? and pj, € RS*4 be
respectively the reward kernel and transition kernel such that

(s, a) = (¢n(s, a),0n) V(s,a) €S x A,
Pu(- | s,a) = pon(s, a), V(s,a) € S X A,
10n]l2 < Vd,
ln vl < Vd, Vo € RS obeying ||v]|o0 < 1.

Under Assumption [2] both the reward function and the transition kernel are linear combinations of
a set of d-dimensional feature vectors. This allows for effective dimension reduction, provided that
d is much smaller than SA.

Reward-free Exploration. Now we introduce the framework of reward-free exploration. Reward-
free exploration comprises two phases: the sampling phase and the planning phase. In the sampling
phase, the learner collects a dataset D by interacting with the environment without reward informa-
tion, and in the planning phase, given any reward function {7, }5,¢[#) satisfying Assumption the
learner is asked to output an e-optimal policy with probability at least 1 — §, where € is a threshold
and ¢ is the failure probability.

Deployment-efficient Reward-free Exploration. We present the definition of deployment com-
plexity for reward-free exploration as follows.

Definition 3 (Huang et al.|(2022)). We say that an algorithm has a deployment complexity K in lin-
ear MDPs if the following holds: given an arbitrary linear MDP under Assumption[2] for arbitrary
eand 6 € (0,1), the algorithm will conduct K deployments and collect at most L trajectories in
each deployment, under the following constraints

(a) With probability 1 — 6, given any reward kernel {0p}neim) satisfying Assump-
tion the learner return an e-optimal policy m under this reward kernel, i.e,

E, {Zthl ¢Z(5h7ah)0h:| > max, E/ Zthl ¢Z(5h7ah)0h} —€

4



Under review as a conference paper at ICLR 2025

(b) The sample size L is polynomial, i.e., L = poly(d, H, %, log(%)). Moreover, L should be
fixed a priori and cannot change adaptively from deployment to deployment.

Notations. For a symmetric matrix A and a PSD matrix B, we write |4| < Biff B+ A = 0 and
B — A » 0. Let Range, ) (v) = [z < a] -a+1I[a <z <b] -2+ Iz > b]- b for two reals
a < b. For two PSD matrices A and B, define T(A, B) := AA where A = max{¢ <1: (A < B}.
Define 0),(v) = p;lv forv € RS and h € [H]. Denote 1; as the |S|-dimensional one-hot vector
with element 1 in the dimension of s. We use Pr[-] to denote the probability of an event.

4 TECHNICAL OVERVIEW

In this section, we give an overview of the technical challenges behind achieving Theorem [I} to-
gether our new ideas for tackling these challenges.

The Layer-by-layer Approach. Similar to existing algorithms with O(H) deployment complex-
ity (Huang et al.| [2022; [Qiao et al., 2022} |Qiao & Wang|, [2022)), our new algorithm is based on a
layer-by-layer approach. For each layer 1 < h < H, based on an offline dataset obtained during
previous iterations, our algorithm designs a exploration policy (a mixture of deterministic policies)
for layer h, collect an offline dataset using the exploration policy, and then proceed to the next
layer h + 1 inductively. Since we only use a single exploration policy for each layer, and there are
H layers, the deployment complexity of such an approach would consequently be H. Following
such an approach, datasets obtained for previous layers will be used for the purpose of policy op-
timization and policy evaluation for later layers, and therefore, the dataset should be able to cover
all directions in the feature space. Therefore, we must carefully design the exploration strategy, so
that for any direction that can be reached by some policy, our exploration strategy could also reach
that direction up to an appropriate competitive ratio. By repeatedly sample trajectories by following
the exploration strategy, we would get a dataset that would be sufficient for the purpose of policy
optimization and policy evaluation for later layers

Dealing with Infrequent Directions. The main technical issue associated with the approach men-
tioned above, is that there could directions that cannot be reached frequently by any policy. In such
a case, it is unrealistic to require that such a direction could be reached by the exploration policy.
Existing algorithms with O(H ) deployment complexity (Huang et al.l 2022; |Qiao & Wang, 2022)
avoids such an issue by assuming that any direction can be reached sufficiently frequently by some
policy, in which case designing an exploration policy that can reach directions in the feature space
is feasible. However, since we do not assume explorability or reachability of the underlying linear
MDP as in prior work (Huang et al.l [2022; |Qiao & Wang| |2022), we must handle such directions
carefully.

If one simply chooses to ignore such infrequent directions, the error accumulated for handling such
directions would in fact blow up exponentially, rendering the final sample complexity exponential
in the feature dimension d or the horizon length H. In fact, such an issue occurs even in the simpler
tabular setting. In the tabular setting, having some directions that cannot be reached is equivalent
to having some state-action pairs that cannot be reached by any policy, and in order to handle such
states, prior work on deployment efficient RL algorithms (Qiao et al., 2022)) applied absorbing MDP
to ignore those “hard to visit” states. More specifically, once the algorithm detects that some state
cannot be reached by any policy, that state would be directed to a dummy state in the absorbing
MDP. Since we only direct states that are hard to visit to dummy states, the error accumulated
during the whole process would be additive as we have more layers, which gives a polynomial
sample complexity. Indeed, this is a high-level approach of the algorithm in|Qiao et al.[(2022).

On the other hand, for the linear MDP setting without the reachability assumption, handling infre-
quent directions is much more complicated. In the tabular setting, designing exploration policies is
relatively simple since we can simply plan a policy for each individual state. On the other hand, for
the linear MDP setting, we need to build the exploration policy (which is a mixture of deterministic
policies) in an iterative manner. Given directions that can already be reached by the current explo-
ration policy, we need to set the reward function appropriately to encourage exploring directions that
cannot be reached currently. More concretely, suppose the A = E[¢¢ "] is the information matrix
induced by the current exploration policy, for each state-action pair (s, a) with feature ¢(s, a), the



Under review as a conference paper at ICLR 2025

reward function 7(s, a) would be set to ¢(s,a) " A~1¢(s, a). We then plan a new policy for the cur-
rent quadratic reward function, and test whether new policy can indeed reach some new direction,
both by utilizing the offline dataset. If the algorithm can no longer find any new direction that can
be reached, we then proceed to the next layer. It can be shown that the total number of directions
found during the whole process would be small, by using a standard potential function argument
based on the determinant of the information matrix. Note that in order to test whether new policy
can indeed reach some new direction, we need to estimate the information matrix A = E[¢¢ "] of
the new policy, again by utilizing the offline dataset.

Note that by assuming reachability or explorability of the feature space, we no longer need to build
the exploration policy iteratively since the whole feature space can be reached and therefore one
can resort to approaches based on optimal experiment design. Indeed, this is the main idea behind
previous work (Qiao & Wangl 2022). However, such an approach heavily relies on reachability or
explorability of the feature space, which is one of the main technical challenges we aim to tackle in
this paper.

Handling Bias Induced by Infrequent Directions. As mentioned earlier, we heavily rely on the
offline dataset obtained in previous layers for the purpose the offline policy optimization (planning
for the current quadratic reward function) and offline policy evaluations (for estimating the informa-
tion matrix). Moreover, since we do not assume reachability of the feature space, there are always
directions that cannot be reached by the exploration policy, and therefore, it is impossible for the of-
fline dataset to cover the whole feature space. Imperfect coverage of the offline dataset will introduce
additional error for the purpose policy optimization and policy evaluation due to the bias induced
by infrequent directions. Although the error accumulated during offline policy optimization can be
handle relatively easily, since a global argument based comparing the groundtruth MDP and the
MDP after ignoring infrequent directions would suffice, the error accumulated during offline policy
evaluation is much more severe since the estimated information matrices would be used for deciding
the next quadratic reward function. If not handled properly, the error will accumulate multiplica-
tively as we proceed to the next layer, rendering the final sample complexity exponential. Again,
we note that by assuming reachability or explorability of the feature space as in prior work (Qiao &
Wang] 2022), such an issue will not occur since the offline dataset is guaranteed to cover the whole
feature space.

To handle such an issue, our new idea is to make sure the error of offline policy evaluation for es-
timating information matrices is always multiplicative with respect to the information matrix to be
evaluated. More specifically, during the evaluation algorithm, if we encounter some state-action pair
with feature ¢ = ¢(s, a), we would add ¢¢ " to the evaluation result A only when ¢ " A~ ¢ is small,
to ensure a multiplicative estimation error. However, this will introduce another chicken-and-egg
situation: without knowing the groundtruth information matrix A, it is impossible to test whether
¢ A~ ¢ is small or not. To solve this issue, we use another iterative process to estimate the infor-
mation matrix. Initially, we set the information matrix to be the identity matrix. In each iteration, in
order to test whether ¢»" A~'¢ is small or not, we use information matrix A obtained during the pre-
vious iteration, adding up ¢¢ " for those ¢ that passed the test to form the new information matrix,
and proceed to the next iteration. We stop the whole iteration process if the two information matrices
obtained in two consecutive iterations are close enough (in a multiplicative sense). By using another
potential function argument based on the determinant of the information matrix, it can be shown
that the iterative process stops with small number of rounds. Such an idea is another major technical
contribution of the present work.

Handling Dependency Issues by Independent Copies. According to the discussion above, our
final algorithm involves two iterative processes, and since the results of different iterations all rely
on the same offline dataset, these results are subtly coupled with each other. Fortunately, such
dependency issues are relatively easy to handle, since we can simply make independent copies of
the offline dataset by repeatedly sampling trajectories by following exploration policy with fresh
randomness.

Our final algorithm is a careful combination of all ideas mentioned above.



Under review as a conference paper at ICLR 2025

5 ALGORITHMS

In this section, we introduce our algorithms. The parameter settings are postpone to Appendix [A]
due to space limitation.

Main algorithm: Sampling (Algorithm[I). In the main algorithm, the learner collects samples
layer by layer. In each deployment, the learner assumes that it has learned enough information about
previous layers, and focuses on learning the current layer. In the sub-problem of learning one layer,
Policy-Design is called to design the policy to explore current layer given previous samples,
and Policy-Execution is called to play this policy to collect samples.

In each call of Policy-Design, there are m optimization sub-problems (see line [6| Algorithm [2))
and m off-value-evaluation sub-problems (see line[T2] Algorithm[2)). As mentioned in Section ] we
collect multiple copies of datasets, and use a group of new datasets to solve each sub-problem. As
a result, the datasets are independent of the reward and policy in the sub-problem. More precisely,
we collect (2m? + 1) - H copies for each datasets to help solve the 2m H sub-problems, where each
dataset consists of N sample points. We refer readers to Algorithm [6] for more details about how to
collect samples.

Remark 1. In Algorithml(l] the first layer is a slightly different from other layers because of unknown
initial distribution, where the local optimal design (see Lemmal[J)) is used to reduce one deployment
(see the algorithm and analysis in Appendix|E)).

Policy-Design (Algorithm [2). We consider learning the h-th layer. Given datasets
in the first h — 1 layers, the learner first designs reward function with form r(s,a) <«
min {¢;, (s,a)A~ ¢(s,a), 1}, where A is the current information matrix. We hope to update A as

Anew — Ewold [¢h¢}-|1—] + Aolda (2)

where 7,14 is a near-optimal policy with respect to the reward ro1q = min{qbZA;lclith, 1}. By itera-
tively running this process, we can finally obtain some A such that max, E. [min{¢, A~ ¢y, 1}]
is small. As discussed in Section @ it might be improper to add Er_,, (¢, | to A directly due to
the infrequent directions. Therefore, we need to truncate the infrequent directions in the distribution

Told » and evaluate the truncated matrix with off-line dateset. Below we explain how to address this
problem by ALgorithm 3]

Matrix-Evaluation (Algorithm[3). In this algorithm, the input is a policy 7 and a group of
datasets. The target is to truncate the infrequent directions under 7, and evaluate the information
matrix after truncating the infrequent directions. To describe the high-level idea in the algorithm,
we assume D is an distribution over R? and consider to truncated the infrequent direction under
d. We assume that D is known to the learner. So one can immediately compute A = Ep[p¢ "]
and compute the infrequent directions ¢ such that ¢ A~'¢ is large. The next step is to re-scale
¢ with w(e) - ¢ such that w?¢ T A=1¢ is small. However, after truncation, the new information
matrix would be Ayew = Eppw?(¢)pp '] < A, which means that a frequent direction under A
might turn to be an infrequent direction under A,.,,. A straightforward idea is to repeat this process,
until A converges to some point. Let F(A) = Eg¢p [T(¢¢",c1A)] where ¢; is the threshold
for truncation. By iteratively running F(-), and noting that F'(-) is non-increasing and the set of
bounded PSD matrices is compact, the sequence {F(™)(A)},>; will converge to some A* and it
holds that F'(A*) = A*, which means no more truncation is needed after truncation w.r.t. A*. In
words, the infrequent directions no longer exists. One might be worried that 0 is also a fixed point
of F(-), so that the truncation is meaningless if A* = 0. Fortunately, by choose ¢; properly large,
we can show that Pry.p[¢ ' (A*)"1¢ > ¢1] = O(€), which means only a small portion of vectors
are truncated. When D is unknown, we could sample from D to estimate Ep[T(¢¢ ", A)] and
play the same iteration. Incorporating this idea with the arguments of linear regression, we devise
Algorithm [3|to truncate and evaluate the information matrix efficiently.

6 ANALYSIS

In this section, we present the formal version of the main theorem and sketch the proof.



Under review as a conference paper at ICLR 2025

Algorithm 1 Sampling

1: {D§, D} + Ini-Sampling;
cforh=2,...,Hdo B
{{m""}i21, A} < Policy-Design (b, {DL(5)}rein-1)jel2m? U {DG ()} jezm2) {Ar b rein-1y,)

W N

B

{DI}E_, « Policy-Execution(h, {m®"}m™ Ap);
end for 3
return: {D,}i(Zmz + 1)}h€[H] and {Ah}he[H]

AN

Algorithm 2 Policy-Design
Input: h, datasets {¢r.i(j), 57.i(4); Ari(F) Yieiv)rein—115erzm2), {$1.6(J) }ieiny.jerzm), block
matrix {A;}reip—1);
Initialization: A9 = (T;
for{=1,2,...,mdo
7 (s,a) « min{¢n(s,a) " (A1) 1gp(s,a), 1} for all (s, a);
rt(s,a) - 0 for 7 # h and all (s, a);
{rt, v} Opt(h,{¢ri(m? + €),5:(m* + ), Ari(m® + O}iev)remn—1p, {s1.4(m* +
Ot = {ritrem)s
Il Let Y; ;(a : b) denote the dataset {Y; ;(7) ?:afor a<bforY = ¢,5 \and s;;
D« {¢r:({=1)m—1:4m), 5. ;((L=1)m—1:m), \r;({=1)m—1:4m)}ic[n],refh—1]}

Do < {s1:(({ —1)m —1:m)}Y;
Il Feed independent sub-datasets to Matrix-Evaluation;
{AL AL} « Matrix — Evaluation(h, 7%, D, Dp);
Af — AT+ AY
end for 3
return: {7""}™  and Aj, < A"

Theorem 4. By running Algorithm(] the learner can collect a group of trajectories such that: with
probability 1 — 6, for any reward kernel {oh}he[ ) satisfying Assumption the learner can return
an e-optimal policy w. That is,

H H
Z(b;(sh’ah)eh] > max Eq lz ¢;(Sh7ah)9h] —e

h=1 h=1

Er

Moreover, Algorithm|l|consists of H deployments, where the number of episodes in each deployment
is O (dalgm )
€

Proof. We first count the number of deployments. There is one deployment in line |[I} For each
h =2,..., H, there is one deployment in line[d We then conclude that the number of deployments
is H. On the other hand, the number of trajectories in each deployment is O(H(2m + 1)N) =

O ( a2 1_5114 ) .
The proof is finished by the following lemma, which proves the optimality of the learned policy.
The proof is presented in Appendix [C.6|

Lemma 5. With probability 1 — &, for any reward kernel 0 € {0,}1_, satisfying Assump-
tion [2| Planning (9, {thm§h7i,Ah71}£1}he[H], {[\h}he[H]) returns an e-optimal policy, where
{Pn.is Snis )\h,i}i\i1}h€[H] and {[\h}he[H] is the output ofAlgorithm

2We use O(-) to omit logarithmic factors of (d, H, 1

' 5)-



Under review as a conference paper at ICLR 2025

Algorithm 3 Matrix-Evaluation

I: IHPUt: horizon A, pOhCy m, dataset {¢T,i(j)) gT,i (.7)7 AT,i (j)}TE[hfl],iE[N],jE[m] U

{51,i(4) ie[ny,jem)-

2. AT,

3: forg’ =1,2,...,mdo
4 Fy < T-M-Evaluation(A, {¢ri(4); 37,:(5), Ari()}rein-1liern) {51,:(5) Fiern)s
50 if Fy+ £I= A then
6
7
8

break and return {F’o + %I, A};

else .
: A+~ Fo;
9: endif
10: end for

11: Function : T-M-Evaluation (A, {¢r, 57, Ari}ren—1],ic[N]» 151,ibie[n])
12: Fy(s) < T(dn(s, () o) (s,7n(5)), f1h) for s € {81 Yi>1s

13: forr=h—-1,h—2,...,...,1do

14: X, + Zf\il A2 hr i), + 2L

15: for s € {5; 1 i}ic[n) do

16: ¢ — O (s,7m-(5));

17: if T A ¢ > 1 then

18: E.(s) « 0;

19: else .

20; Fo(s) ¢ ¢ X 0N A2 00 Brg (3r) + 22A + 2T
21: end if

22:  end for

23: end for

24: return : [ := % le )2 (s1.4) + 2xA + 2(T,

To prove Lemmal[3] a central lemma is introduced as follows, which states that the output dataset of
Algorithm [T]could efficiently cover all policies.

Lemma 6. Let {{n""}7 , A,} be the output of Policy-Design in Line EI in the h-th iteration.

With probability 1 — g — %,for any dataset ofAlgOrithmor the h-th layer {¢n i, 8n.is An.itic|N)
it holds that

i. maxy Pry (o) Andy > 1,0f A, <1,V7 € [h—1]] < &5 forall h € [H];

ii. S A2 10500 + 21 = LAy, forall h € [H;
iii. X ¢ Ay ons < fiforallh € [H]andi € [N].

The rest part of this section is devoted to sketching the proof of Lemmal|6] We will prove by induction
over the layer. We now assume the three conditions in Lemma [6] holds for the first & — 1 layers.

Truncated MDP. We define the truncated MDP M;,_; by redirection all ¢,(s,a) to a dumb
state if ¢, (s,a) " A= b, (s,a) > 1 for 7 € [h — 1]. More precisely, a trajectory {(s,,a, )},
under the original MDP M is mapped to {(s1,a1),...,(Sk,ax),2,...,2z} under My_q. Here
k < h — 1 is the smallest integer such that d)Z(sk,ak)A,;lcbk(sk,ak) > 1 and z is the dumb
state. If gka(sk, ak)f\,:lc/)k(sk, ai) < 1 for all k € [h — 1], the trajectory is invariant after the
truncation.

In the following analysis, we re-define E[-] and Pr[] to be respectively the expectation and proba-
bility under Mj,_.

Proof of Lemmal[6] The proof for the first layer is a slightly different due to unknown initial distri-
bution. We postpone the algorithm and proofs to Appendix



Under review as a conference paper at ICLR 2025

Below we sketch the proof for the h-th layer (b > 2). The missing lemmas and proofs are presented
in Appendix |C] We verify the three conditions as below.

Condition (i). By Lemma with probability 1 — %,
€

< SH2 3)

max E, [min{¢2]\;l¢h, 1}]
which implies that
Pr, [¢] A} 1] < 5.
max Pr [0 A" on > 1] < oo
The proof is finished by noting equation 4] under the truncated MDP Mj, _; is equivalent to (i).

4)

Condition (if). By Lemmall], with probability 1 — 12, it holds that
N
N |
; Ani®hidn + 2= oA

for all sub-datasets {¢n.i, 5n.i, Ani fiv g

Condition (iii). To verify the third condition, it suffices to note the definition that : X, ; =

f7“, 1} (See Algorithm H}

7 CONCLUSION

In this work, we design a new RL algorithm whose sample complexity is polynomial in the feature
dimension and horizon length, while achieving nearly optimal deployment complexity for linear
MDPs. Moreover, our algorithm works under the reward-free exploration setting, and does not
require any additional assumptions on the underlying MDP. In our new algorithm and analysis, we
propose new methods to truncate state-action pairs in a data-dependent manner, and design efficient
offline algorithms for evaluating information matrices. Given our new results, an interesting future
direction is to generalize our new techniques to other RL problems. For example, for function
classes with bounded eluder dimension (Wang et al.;, 2020bj; Kong et al., 2021;|Zhao et al.| [2023)) , it
would be interesting to design RL algorithm with nearly optimal O(H ) deployment complexity and
polynomial sample complexity without relying on any additional assumptions.

REFERENCES

Yasin Abbasi-Yadkori, David Pél, and Csaba Szepesvari. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24, 2011.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

Daniel Almirall, Scott N Compton, Meredith Gunlicks-Stoessel, Naihua Duan, and Susan A Mur-
phy. Designing a pilot sequential multiple assignment randomized trial for developing an adaptive
treatment strategy. Statistics in medicine, 31(17):1887-1902, 2012.

Daniel Almirall, Inbal Nahum-Shani, Nancy E Sherwood, and Susan A Murphy. Introduction to
smart designs for the development of adaptive interventions: with application to weight loss re-
search. Translational behavioral medicine, 4(3):260-274, 2014.

Yu Bai, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. Provably efficient g-learning with low
switching cost. Advances in Neural Information Processing Systems, 32, 2019.

10



Under review as a conference paper at ICLR 2025

Nicolo Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. Online learning with switching costs and other
adaptive adversaries. Advances in Neural Information Processing Systems, 26, 2013.

Jinglin Chen, Aditya Modi, Akshay Krishnamurthy, Nan Jiang, and Alekh Agarwal. On the sta-
tistical efficiency of reward-free exploration in non-linear rl. Advances in Neural Information
Processing Systems, 35:20960-20973, 2022.

Minbo Gao, Tianle Xie, Simon S Du, and Lin F Yang. A provably efficient algorithm for linear
markov decision process with low switching cost. arXiv preprint arXiv:2101.00494, 2021.

Jiawei Huang, Jinglin Chen, Li Zhao, Tao Qin, Nan Jiang, and Tie-Yan Liu. Towards deployment-
efficient reinforcement learning: Lower bound and optimality. arXiv preprint arXiv:2202.06450,
2022.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration
for reinforcement learning. In International Conference on Machine Learning, pp. 4870—4879.
PMLR, 2020.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. Mathematics of Operations Research, 48(3):1496—
1521, 2023.

Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent,
and Michal Valko. Adaptive reward-free exploration. In Algorithmic Learning Theory, pp. 865—
891. PMLR, 2021.

Jack Kiefer and Jacob Wolfowitz. The equivalence of two extremum problems. Canadian Journal
of Mathematics, 12:363-366, 1960.

Jens Kober, J] Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238-1274, 2013.

Dingwen Kong, Ruslan Salakhutdinov, Ruosong Wang, and Lin F Yang. Online sub-sampling for
reinforcement learning with general function approximation. arXiv preprint arXiv:2106.07203,
2021.

Huitan Lei, Inbal Nahum-Shani, Kevin Lynch, David Oslin, and Susan A Murphy. A” smart” design
for building individualized treatment sequences. Annual review of clinical psychology, 8(1):21—
48, 2012.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent,
and Michal Valko. Fast active learning for pure exploration in reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 7599-7608. PMLR, 2021.

Dan Qiao and Yu-Xiang Wang. Near-optimal deployment efficiency in reward-free reinforcement
learning with linear function approximation. arXiv preprint arXiv:2210.00701, 2022.

Dan Qiao, Ming Yin, Ming Min, and Yu-Xiang Wang. Sample-efficient reinforcement learning with
loglog (t) switching cost. In International Conference on Machine Learning, pp. 18031-18061.
PMLR, 2022.

Yufei Ruan, Jiaqi Yang, and Yuan Zhou. Linear bandits with limited adaptivity and learning distri-
butional optimal design. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pp. 74-87, 2021.

David Simchi-Levi and Yunzong Xu. Phase transitions and cyclic phenomena in bandits with switch-
ing constraints. Advances in Neural Information Processing Systems, 32, 2019.

Georgios Theocharous, Philip S Thomas, and Mohammad Ghavamzadeh. Ad recommendation sys-
tems for life-time value optimization. In Proceedings of the 24th international conference on
world wide web, pp. 1305-1310, 2015.

11



Under review as a conference paper at ICLR 2025

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational
mathematics, 12(4):389-434, 2012.

Andrew J Wagenmaker, Yifang Chen, Max Simchowitz, Simon Du, and Kevin Jamieson. Reward-
free 1l is no harder than reward-aware rl in linear markov decision processes. In International
Conference on Machine Learning, pp. 22430-22456. PMLR, 2022.

Ruosong Wang, Simon S Du, Lin Yang, and Russ R Salakhutdinov. On reward-free reinforcement
learning with linear function approximation. Advances in neural information processing systems,
33:17816-17826, 2020a.

Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general value
function approximation: Provably efficient approach via bounded eluder dimension. Advances in
Neural Information Processing Systems, 33:6123-6135, 2020b.

Tianhao Wang, Dongruo Zhou, and Quanquan Gu. Provably efficient reinforcement learning with
linear function approximation under adaptivity constraints. Advances in Neural Information Pro-
cessing Systems, 34:13524-13536, 2021.

Lin Yang and Mengdi Wang. Sample-optimal parametric g-learning using linearly additive features.
In International conference on machine learning, pp. 6995-7004. PMLR, 2019.

Andrea Zanette, Alessandro Lazaric, Mykel J Kochenderfer, and Emma Brunskill. Provably ef-
ficient reward-agnostic navigation with linear value iteration. Advances in Neural Information
Processing Systems, 33:11756-11766, 2020.

Weitong Zhang, Dongruo Zhou, and Quanquan Gu. Reward-free model-based reinforcement learn-
ing with linear function approximation. Advances in Neural Information Processing Systems, 34:
1582-1593, 2021a.

Xuezhou Zhang, Yuzhe Ma, and Adish Singla. Task-agnostic exploration in reinforcement learning.
Advances in Neural Information Processing Systems, 33:11734-11743, 2020a.

Zihan Zhang, Simon S Du, and Xiangyang Ji. Nearly minimax optimal reward-free reinforcement
learning. arXiv preprint arXiv:2010.05901, 2020b.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learningvia
reference-advantage decomposition. Advances in Neural Information Processing Systems, 33:
15198-15207, 2020c.

Zihan Zhang, Simon Du, and Xiangyang Ji. Near optimal reward-free reinforcement learning. In
International Conference on Machine Learning, pp. 12402-12412. PMLR, 2021b.

Heyang Zhao, Jiafan He, and Quanquan Gu. A nearly optimal and low-switching algorithm for
reinforcement learning with general function approximation. arXiv preprint arXiv:2311.15238,
2023.

A PARAMETER SETTINGS AND NOTATIONS

1 _ 1 __ 320dH? _ e® _ € 10

Assume d, > 40, € < 5. Setz ~ 100dH fi = 2=, C = oooomas: € = (10d2H2) ,
2 2 773 10°d° H" log( 42

z = 100000y = 320004 H- [y — - (5 ) Total number of samples H2(2m? + 1)N =

O (dg g 2 ) The number of trajectories in each deployment is O (d9 g 14)

We also present a table of notations as follows.

12



Under review as a conference paper at ICLR 2025

Table 1: Additional Notations.

Notation Comments

Pp(-|s,a) the transition probability for the triple (h, s, a)

rr(s,a) the reward expectation for the triple (%, s, a)

on(s,a) the d-dimensional feature vector for the triple (5, s, a)

h the probability transition kernel be such that P, (-], s,a) = udp(s, a)

0y, (v) the d-dimensional payoff vector defined as y;] v

T(-,-) the truncation function

N the number of datapoints in one dataset

{d+, 5., A} one datapoint from the 7-th layer, ¢ : the feature vector, s.: the next state, \: weight
{¢r.i, 57, A\ritY,  anindependent dataset from the 7-th layer

¢ the regularization parameter

& the discretization parameter

E1(p,v) the concentration event for feature ¢ and value v w.r.t. an independent dataset

&, f) the concentration event for feature ¢ and matrix value f w.r.t. an independent dataset

B TECHNICAL LEMMAS

Lemma 7 (General Equivalence Theorem in Kiefer & Wolfowitz| (1960)). For any bounded subset
X C R, there exists a distribution IC(X) supported on X, such that for any € > 0, it holds that

-1
max ' (I+Eyuclyy']) 2 <d. (5)

Furthermore, there exists a mapping ¢, which maps a context X to a distribution over X such that
max T (l+Eyonex)lyy ') 'z < 2d. (6)
x

In particular, when supp(X) has a finite size, 7¢(X) could be implemented within
poly (|supp(X)|,log(1/e)) time. ‘
Lemma 8. Assume 0 < k < 0.1. Let A° = (L. For eachi > 1, let D" be a distribution over R4
satisfying that
Egpi [Inin {Trace (qﬁgf)T(Aifl)*l) ,1}] >k @)
and
A= A+ Eyopi[po’].

Then we have that
nK

log(det(A™)) — log(det(A®)) > T (8)

foranyn > 1.

Proof. Fix i > 1. Note that equation[7]is equivalent to
Egopi [min{¢" (A1) "1¢,1}] > 2. )

Let W := Eypi [T(¢¢", A" )] < Eyopi [¢67]. By definition, it holds that W < A~! and
W + Ai=1 < 2A*=1 We then have that
log(det(A")) —log(det(A"™)) > log(det(A"" + W)) — log(det(A*™1))

= log (det(I + (Ai_l)_l/QW(Ai_l)_l/Q))
—log (det (T+ (A1) 2Eyup [T(00 T, A1)] (A1) 71/2))

iEmDi [Trace(T(gp", A1) (A1)~ 1]
> g (10)

The proof is completed by taking sum over ¢ from 1 to n.

v

13



Under review as a conference paper at ICLR 2025

B.1 CONCENTRATION INEQUALITIES

Lemma 9. Let X1, Xo, ..., X, be a group of zero-mean matrices such that —A < X; = A with
probability 1 for all i € [N]. Let wy,ws, ..., w, be a group of reals. With probability 1 — 4,

-2 Zw? log(2d/6)A — 2 max |w;|log(2d/§)A <

=1 %

w; X

-

1

=<2 Z w?log(2d/§)A + 2 max |w;| log(2d/d)A.

i=1
(I1)
Proof. Without loss of generality, we assume A = I. For 0 < ¢ < m, define
k k
FE;, = E | Trace (exp (t Z w; X; — 2t wal))] .
i=1 i=1

Then we have that

E[Ey|X1.5-1] <E

k—1
Trace (exp <1og (Elexp(twi Xp)| X1:6-1]) + ¢ Z w,»Xi> )]

i=1

k—1 k—1
E | Trace (exp (log(E[exp(twy X3 )| X1.5-1])) — 2t°wiT +t Z w; X; — 2t Z w?I)]
i=1 i=1
(12)
<E

k—1 k—1
Trace (t Z w; X; — 2t Z wfI)]
i=1 i=1
= Ej_1,
where the first inequality is by Lieb’s inequality (see Theorem 3.2, [Tropp| (2012)) and the second
inequality is by the fact that E[exp(twy X)] < exp(2t>w?)L. As a result, we learn that E[E,,] <
E[Ey] = d, which means that with probability 1 — §/2, the maximal eigenvalue of Zle w; X; 1s at

most 21/, w?log(2d/§) + 2 max; |w;|log(2d/§). Similar arguments work for the other side.
The proof is completed. O

C MISSING LEMMAS AND PROOFS

C.1 STATEMENT AND PROOF OF LEMMA [10]

m 4H A~
Lemma 10. Recall © = 15377 = 60 dl+(5) Define Fj(s) = Fu(s) =
T(pn(s, mn(8))d) (s,7n(s)), 1iA). For 7 = h — 1,h — 2,...,1, we define F.(s) =
Egn s (8) [FT+1(SI) . ]I[QbTA;lQS < 1” and Iy = ESlNdini [Fl(sl)]

Let Fy be the output of the subroutine T-M-Evaluation in Algorithm|3|with input A. we have
that

(1-3Hz)Fy < Fy < (1 +3Hz)Fy + 4HzA + 4HCL

Proof. Tt is obvious that F(s) is PSD for any proper 7 and s. Let §p; = 51, for 1 <i < N. We
prove by induction that

(1 =3(h—7)x)F-(s) < Fr(s) < (1+3(h —1)x)Fr(s) + 4(h — T)zA + 4(h —7)¢T  (13)

foranyl1 <7 <hands € {5._1,}i>1.

14



Under review as a conference paper at ICLR 2025

For 7 = h, we have that F.(s) = F,(s) for any s € S. Now we assume that equation |13/ holds
for 7 = ¢ > 2. Recall that X, = Zf\;l )\%,Md)z-l,iéﬁz,l,i + zI. By definition, we have that for
s €{8r—2,}ti>1

N
Froa(s) = der(s,me1(9) "X Ny ibe1iFu(S014) + 20A 4 2CT
=1
) Eo(s')| + Al 22 + 2T
S'~Py 1 s,y (s) v(s)| + l—l(s) +2zA +2¢
= Eonpysimy o ()] + A (5) + A, (5) + 204 + 2T
= Fra(s) + AW, (s) + AP (s) + 224 + 2T, (14)

where

N
AN (5) = oot (s, mom1 () XD Ny b1 iFu(5e-14) — Banr, ., [

=1

F@(s')}

N
= Ge-1(s,me-1(8) "X N 1o 1 Fe(Beo1a) — bo1(s,meo1(s) Tl Fu();
- (15)
AZL(S) =Bamr, o, 1 [Fels) = Fuls)] . (16)
By the induction assumption, we have that

0 < (1-3(h—0)2)Fy(s) < Fy(s) < (1+3(h—7)a)Fy(x)+4(h—7)zA+4(h—7)CT < 2A+4ACT.

By Lemma with probability 1 — W it holds that

AN (s) % 20A + (3ha + 1)¢T < 20A + 2(T; an
A (s) = =22\ — (3ha + 1)¢T = —2zA — 2(T. (18)

For the second term AEQ_)l (s), by the induction condition, we have that

AP (s) =2 3(h — 0)zEy [Fo(s))] + 4(h — O)zA + 4(h — £)(T

~Pp_1,5,m_1(s)

=3(h —0)xF,_1(s) +4(h — O)xA + 4(h — £)(T; (19)
A2 () = =3(h = 02w,y .., o [Fi(s)]
= —=3(h—0)xF;_1(s). (20)
Putting all together and noting that x < m, we learn that

Fri(s) — Fooa(s) = AW (s) + AP (s) + 22 + 2¢1
< 2zA 4+ 2CT+ (3(h — O)xFy—1(s) + 4(h — £)xA + 4(h — £)(T)
=3h—L+1DzxF_1(s) +4(h — L+ 1)zA+4(h — £+ 1)(CT; 21
Fri(s) — Fooq(s) = AW (s) + AP () + 224 + 2¢1
—2xA — (I —3(h — ) xFp_1(s) + 22A + 2¢1
—3(h— L+ 1)xF_1(s); (22)
The proof of equation [I3]is finished.

=
=

Note that
Foy — Fo = Fo — Esyndy [F1(51)] + Esy vy [F1(51) = Fi(s1)]

N
1 . . .
=~ D Fi(s16) = Baymdin [F1(51)] + Eoy s [Fi (51) — Fi(s1)] + 227 + 2L
=1

15



Under review as a conference paper at ICLR 2025

Using the induction condition, we have that

0= (1=3(H-1))Fy(s) = F1(s) < (14+3(H—1))Fy(s)+4(H—1)zA+4(H—1)CT < 2A+4H(T.

By Lemmal9] with probability 1 — 4,

F1(81,i) — gy, [Fi(51)] < 22A + 2(T;

==
M

1

N
1 . N
N E Fl(sl,i) — EslNdml. [Fl(sl)} >_' —2zA — 2(1

Egyndin; [F1(51) — Fi(s1)] 2 3(h — 1)xFy + 3(h — 1)aA + 3(h — 1)¢I

=3(h — 1)aEg, ~a,,,[F1(s1)] + 4(h — D)xzA + 4(h — 1)(T;
oy mdy [F1(51) = Fi(s1)] = =3(h = 1)aEy, wa,,,,[Fi (s1)]

= —3(h — 1)!1,‘F0

As a result, we obtain that

(1 —3ha)Fy < Fy < (1 + 3ha)Fy + 4haA + 4hCT.

The proof is finished.

C.2 STATEMENT AND PROOF OF LEMMA [T1]

Lemma 11. Fix f : S — RY such that 0 < f(s) < A,Vs € S for some PSD matrix A . Let
{@r.is 87,0y Ari Y| be a dataset from the T-th layer. Assume {¢, ;, §T i» Ari }IV, is independent of

f.Let X, = vazl /\E,iqu(é + zL. Then with probability 1 — 16mH2

mdlog (%

¢l f— ¢X12A 1070 f(57.:)| = 60 ~ ) A (23)

i=1

holds for any ¢ € R? such that ||¢||s < 1and ¢ A1 < 1.

Proof. By the induction assumption (i) and (iii), we have that X =3 A forl1 <7 <h-—1and

max; qST X 1y < f1. By Lemma. w1th probability 1 — we have that

16mH2 ’

¢ ul f—oT XS 1ZA i6rif (3r.)

i=1

(16\/¢TX_1¢dlogd )+ 8, fmax o] X 16,07 X7 16 dlog <C§I>+C>A

md log (‘i—?

)
< 60 A

16



Under review as a conference paper at ICLR 2025

C.3 STATEMENT AND PROOF OF LEMMA [12]

Lemma 12. Recall the definition of Aj, = A7 in Algorithm With probability 1 — it holds that

8H’

maxE, [min{(bZA}:l(bh’lH < maX{40dlog(3m/C) é 2d} o€

B
m 30T S s

Proof. Recall the definition of {Af}7,, {A ym o oand {AL}7 in Algonthm I Let y* =

max, E [mm {gf)h Ae ~Lon, 1}] Then 3 is non-increasing in ¢ because A is non-decreasing

in 0. Lety = y™ = max, By, » [min{¢} A, ¢s,1}]. By Lemma and Lemma |15 with
s

probability 1 — 25 -m =1—

H 8H>

E. . [mln {Trace (¢h¢h AZ D) ) 1}]
> Eqe [min{Trace(¢nd), (Af; D7) = Proe [0 (A7) 7 on > fu]

>E e [min{Trace(nghgb;(Affl)*l), 1}] - ﬁ
>y - B - fl(l—d3Hx)
>2y—B-— ﬁ
Case i: y — B — m > %. By Lemma [8| with the D, as the distribution of ¢ -
min {\/m, 1} under ¢ and k = Tyo < 0.1, we have that
log(det(AT)) — log(det(A%)) > %’ (24)

Recall the definition of {A }72, in Algorithm [2| Using Lemma we have that AZ < 3I and
thus log(det(Am)) < dlog(3m). On the other hand, we have that log(det(AO)) = dlog(C) which

means that 5 < dlog(3m/(). Therefore, we have that y <

Caseii: y — B — m < Y. Inthis case, we have thaty < 2B + f—d a7

C.4 STATEMENT AND PROOF OF LEMMA [13]

H2log(1/5 Hlog(1/§ mdlog(d‘H) 32mdm10g(iH)
Lemma 13. Ler B = 2,/ 21080/0) 4 o Og(/)+2H(32 Nz osler) ),

Let {V{, '} be the output of Opt with input reward as r*. With probability 1 — Sm—H

mng,r [T;L(Sh)] —E. [T}L(sh)] < B.

Proof. Assume w € RS satisfying ||w||oo < 1. Let ,(w) = u) w. By the induction condition (i),
we have that X, = LA, for € [h— 1].

17



Under review as a conference paper at ICLR 2025

By Lemma |14] and the induction condition (iii) that AZ ;¢ A~ A71¢,; < fi, with probability 1 —
16“;#]{2, we have that

¢T0-(w) — T X 1ZA i0ri - (610-(w) + €;)

\/¢TX Lo - dlog (dH>+4\/maX)\ ¢IiX;1¢T_’i.¢TX;1¢-dlog (i?)-i—(

mdlog (44) N 32mdy/fi log (44)
N N

for all ¢ such that ||¢||s < 1and ¢TA-1¢ < 1.

< 32

(25)

Let {v,(s)} and {v?(s)} denote respectively the value function under the policy 7 and the optimal
value function. Let vg = Eq, ~a,,;[v1(s1)] and v = max, Ex [r}(s5)]. Because ri(s,a) € [0,1]
for any proper (s, a, 7), we learn that v, (s),vx(s), v, v§ € [0,1]. Recall the definition of {V;(s)}
in Algorithm |5} We next prove by induction that V,(s) > v%(s) > wv.(s) for any s € S and
1 < 7 < h. For 7 = h, the inequality is trivial. Assume V,(s) > v,(s) forany ¢ < 7 < h. By
equation 25| with w = V;(+)

Qe-1(s,0) 2 Bonp, o [Vi(s)] 2 Bonp,_, o [07 (5)] (26)
when ¢ | (s,a)A; ' ¢r—1(s,a) < 1. Inthe case ¢, | (s,a)A; " do—1(s,a) > 1, we have that
Qe-1(s,0) =Bonp,_,, . [Ve(s)] =0 27

because Pyr_1 5,4 = 15.
Therefore, we have that

Vi-1(s) = Rangeg  (max Qe-1(s,) ) > Rangerg 1) (maxBop,_, . [v7(5)]) = vi_i(s):

By Bernstein’s inequality, with probability 1 — 16m T it holds that

N
1 H?log(1/5 Hlog(16m/6
VOZNZVl S14) +2 g(/)+2 &( /9)

N N 2> ESlNdini [Vl(sl)} > ESlNdini [UT (51)] = UE;'

To bound the gap max, E [r},(sn)] — Ei [r) (sn)], direct computation gives that
mTzraLxIE7T (71, (sn)] = Eni [, (sn)]
=5 —Eq [1],(sn)]
§ V()Z - 7rL [T.;L 1(5h)}
= Voi —Egymdi [Vi(s1)] + Eﬁ:l [VT(ST) - P_,_TST7GTV.,.+1(~)}

H2log(1/5) | Hlog(1/d) mdlog (%)  32mdy/filog (4F)
<
<9 N e ARy’ E 32 el -

(28)
H2log(1/6 Hlog(1/6 dlog (4)  32mdy/filog (&
o JHP1os(1/0) | Hlog(1/8) o (o [mdlos () | 32mdyTilog (4F)
N N N N
:B,
where equationis by plugging ¢, s_ 4. = ¢ and w = V41 (-) into equation
dlog (4)  32mdy/fi log (24
Vi(sy) =P, o Vepa() <232 m 0g<ea)+ mdy/fi log ()
ST, AT N N
O

18



Under review as a conference paper at ICLR 2025

C.5 STATEMENT AND PROOF OF LEMMA [14]

Lemma 14. Fix, v € RS such that |[v]|ee < 1and f : S — RY such that 0 < f(s) < A,Vs € S
for some A. Let {¢r;,5:i, Ar, Y| be a dataset zndependent of v and f from the T-th layer Let

X, = Zi:l T,Z¢Taz¢T,l + zI. With probability 1 — 16mH2, it holds that

N
6T0(w) — ¢TX 1S 6riv(Er)

i=1

H
< 8\/(/)TX dlog d +4\/max</> Xflqﬁr,i(bTX;l(b'leg(d*)‘f‘C

€

and

(29)

N
o f—pT X Z A2 brif (3ra)

H
(16\/¢TX ¢dlog )+ 8\/max¢ X;1¢T7i¢TX;1¢dlog(d—5) + c) A
€
for any ¢ such that ||¢||2 < 1.

Proof. Let ®(£) be an &-net of the d-dimensional unit ball w.r.t. Lo norm. Recall that £ =
(1og5gzz) - Then log(€) < 20log(dH /e). Let

51 (¢7 U)

.

Then Pr[£(#,v)] < 20 by Bernstein’s inequality. Assume Ugeqe)E1(#, v) holds. Then for any
# € RY, letting v be the nearest neighbor of ¢ in ®(&), it holds that

N
¢TOW) = X1 A2 oy 0(5r)

i=1

< 4y/67 X 6log(1/0) + 2, fmax 6] X: 16767 X 0 1og<1/5>} .

N
¢TO(w) — ¢ X1 (3
=1

<|o"0w) — v O(v)| +

N N
quX;l Z qzﬁnw(ém) — ¢TX;1 Z (bT,iU(gT,i)
=1 i=1

N
+ [ 0w) =T XY b iv(3r)
i=1

<&+ g + 4\/1/)TXT_1wlog(1/5) + 2\/max d)Iin_1¢rﬂ/fTXr_1?/1 -log(1/4)

g4¢¢TX;1¢log(1/6)+2¢max¢> X 6,107 X716 1og<1/5>+g+ﬁ+610g(1/5)

2
v

< 4y/67 X 6log(1/0) + 2, fmax 6] X: 167007 X 10+ log(1/6) + ¢

Noting that [®(£)| < (d/€)?, we have that Pr[Ugea ()] €1(¢,v) < 2(d/€)%6. By replacing & with

TemEae» With probability 1 — 20, it holds that
qu —1 Z QST z'U 57— 7
< 4\/¢TX;1¢(d + log )+ 2\/max oL, X1 0T X g (d+ 1og(£5) C.
(30)

19



Under review as a conference paper at ICLR 2025

for any ¢ such that ||¢[|2 < 1.
Define & (¢, f) to be the event where

¢Tul f—oT XS 1ZA i0rif (3r.4)] =

<4W )+ 2y /max o] Xrl¢r,¢¢TX71¢log((1;>> g

€2y
holds. We then show that Pr[&3(¢, f)] < 2.
oTulf—o" X, 1ZA i0rif(5ri) =" X X f— 0T X 1ZA i0rif (500)
i=1 i=1
—¢’TX7—1< Tﬂq—f Z/\Tzd)fz d’rzﬂrf"’e'rz))
i=1
N
== T XN e+ 0 X bap] f, (32)

where we define €, ; = Eyp, . . [f(s')] — f(57:) with (s, a) being the state-action pair such that
¢+ (s,a) = ¢- ;. Noting that —A= €r; = A with probability 1, we have that

N N
N OTXIN ey = 2, |log(d)6) - > (A2 ,67 X7 6ri) A+ 2max A2 10T X 16, | log(d/8)A
= =1

< 2/l0g(d/5)67 X7 'GA + 2max /6T X6 X2 91 X "6 A
(33)
holds with probability 1 — §. In a similar way, with probability 1 — d, we have
(34)

N
— Z O XINZ jprier < 2\/ log(d/8)¢T X 1A + 2max \/¢TX;1¢ A2l X A
=1 ¢
(35)

To bound the second term z¢ " X '] f in equation[32] we have
20" Xl ol < 20" X 2]l vll

<V [2¢T X2 Vd
<\ zd-¢TX: '
<\ /oTX: ' (36)

for any v € RS such that ||v]|o < 1. As aresult, we have ||z¢ " X1l ||; < /¢ T X7 '¢. Noting
that 0 < f(s) < Aforall s € S, we have that

—\OTXT A < 20T Xl f < /o T X7 1oA. (37)

By equation 32} equation[33] equation [33]and equation 37} we have that

N
Tl F =0 TX Y N2 00 f(5r)
=1

< 4\/ log(d/8)¢pT X1 pA + 2max \/¢TX;1¢ DEFCAND e (38)

20



Under review as a conference paper at ICLR 2025

The proof is finished. Assume Uyep(e)E2(9, f) holds. Fix ¢ and let ¢) be the nearest neighbor of ¢
in ®(&). We then have that

N
STl f—dTXD  brif ()

=1

N N
= (¢"ulf—¢Tulf) + <¢TX:1 D brif(Gra) — T XY ¢T,if(s;,i>>
=1 i=1

N
+ (zﬂe(v) -y X! quf,if(@,i)) . (39

i=1
We then bound the three terms in equation |39| separately. For the first term, we have that |(¢ —

)Tl v < €vd for any v € RS such that |[v]|o, < 1. As a result, we have that ||z, (¢ — ¥)||; <
£v/d, which implies that

—&VdA 2Tl f =Tl f VA (40)

For the second term, we have that

N
Ty < " N¢
¢ X ! § (b‘r,iv(s‘r, X7 ! E o7, (8| < — >

i=1

for any v € RS such that |[v||l.e < 1. Using similar arguments, we learn that
_1N 1N
“¢TXT ! Zi:l ¢'r,i - ¢TXT ! Zq',=1 d)'r,i S @ and

VNG X LS ) = T XS 66 VAN

i=1 =1

By Usca(e)€2(9, f), we could bound the third term as

= 4\/ log(d/8)yT X 1A + 2 max \/¢TX;1¢A37i¢I)iX;1¢T,iA.
(42)

N
TOW) = XY rif(5ra)
=1

Putting equation 40} equation 1] and equation 42| together, we learn that

N
STl f =X brif ()

i=1

= (5\/& + ‘/‘ZNS + 4\/log(d/5)wTX:1¢ + 2max \/WX:%AE,MLX:lst,i) A

2z
< <4\/ log(d/8)¢T X7 ¢ + 2 max ¢ OTXTION 0] X o+ c) A. (43)

< (m 4 YANE | L2080 4 fog(af5)7 X7 0 + 2ma WTX:%AE,MLX:%) A

The proof is finished by replacing ¢ with W\Né)l'

C.6 PROOF OF LEMMA[3

Let © be an gjz-net of Bo(v/d)H. Without loss of generality, we can take © to be the dH-
dimensional grid with distance Let Projg(+) be the projection function to © by projecting

€
8dH *

21



Under review as a conference paper at ICLR 2025

each dimension to the grid. It is obvious that if § = {0}, },cx satisfies that [|0,||2 < d for each h,
IProje 4 (8)]2 < 2d.

It suffices to show that for any kernel {6}, },c[) € ©, the output policy is %e-optimal. Assume the
conditions in Lemma@holds. Let M be the final truncated MDP M . Then we have that

€ €

T+
nr17zraLXPr7T [Hh € [H]|, ¢, Andp > 1} <H- SI2 < 3H-

As a result, for any 7 and reward function r such that ||r||,, < 1, we have that |EW[ZhH:1 ry] —
H €
E‘n’,M[Zh:l ]| < 3"

Fix reward kernel 0 = {05 }nc;m) € ©. We continue the analysis by assuming the ground MDP
is M. Let 7 be the returned policy and 7* be the optimal policy. Let {Viio(s), @5, 4(s,a)} and
{ViTe(s), Q7 4(s,a)} be respectively the optimal value function and the value function of 7. In par-
ticular, we use V", (V") to denote the value of the optimal policy (7). Let {V}, 0(s), Qn,0(s,a)} be
the value of {V},(s), Qn(s,a)} in Algorithm[dwith input kernel as 6. Let Vo g = Es, ~q,,, [V1,6(51)]-
When 6 is clear from the context, we omit # in the subscript.

‘We then have that

Vo =Vg =g =Vo)+ (Vo - W) (44)

We then prove by induction that V;'(s) — Vi(s) < (H — h) - g5 forall s € S and h € [H].
The inequality is trivial for h = H. Now we assume it is correct for all h > ¢. Let X, =
ZZN:1 A2 -] ; + zLfor 7 € [H]. Recall that ®(¢) is an &-net of the d-dimensional unit ball. Fix
¢ € ®(€) with ||¢]|2 < 1and V € RS with ||V o < H. By Bernstein’s inequality, with probability

b .
L = sa78(ey7e) it holds that

N
o' X, Z A7 iOniV(3ni) — ¢ pl V

i=1

< 4\/¢TXTl¢log (W) + 2max \/¢TX{1¢ AR 0 X onilog (W)

.le -1©
S\/u;mlog(w@(gn | |>+\/Wlog<4ff|¢<§>ll)_

With a union bound over ¢ € ®(), we learn that, with probability 1 —

_6
1H[e]’

ImdHlog (&) [128m dH
< € AT XL P
<32 + I oTX, o dHlog(as)

mdH log (‘i—?) n 32mdH log (%)
N N

N
0T X SN ioniV (i) — 0Tl V
=1

€
16H

<

for any ¢ such that [|¢||> < 1and ¢ " A,¢ < 1. Note that Vj,1.1,¢(-) is determined by 6 = {6}, } (]
and the sub-datasets after the h-th layer (non-inclusive). With a union bound over § € ©, we learn
that: with probability 1 — g,

€

N
o X! Z /\%71¢h,ivh+l,9(§h,i) — ¢ g Viy1| < T6H

i=1

(45)

22



Under review as a conference paper at ICLR 2025

for any ¢ such that ||¢||» < 1,¢" Ap¢ < 1 and § € ©. Then we have that
Vizi(s) = Via(s)

= Q7 1(s,mp1(s)) = Via(s)

< Qi_1(s,mp_1(8) — Qe—1(s,m_1(s))

—

N
. _ 3 €
< PéT—1,s,7r;71(s)(Vz -V + Pé—il,s,ﬂ'zil(s)w - fbeT—Ls,w;lezi Z Ao16e-1,iVe(5e) + 7
i=1
(46)
* €
< Petl,s,wzil(s)(‘/f - ‘/l) + 87H
< e(H — h)'
- 8H

As aresult, we learn that Vj" — 1V < §. For the second term (Vy — V) in equation using similar
arguments, we have that

H
Vo— Vo =Ex Z Qn(sh,an) — oy O — P}Ish,ath+1(Sh)
h=1
€
<H -—
- 8H
€
<< 47
<3 47)

Putting all together, with probability 1 — g, we have that Vo*,e — VoTe < i < % forall € ©. As a
result, 7 is at least a %e-optimal policy under the original M DP M. The proof is completed.

C.7 STATEMENT AND PROOF OF LEMMA [T3]

Lemma 15. By running Algorithm[3} we have the following claims: (1) The iteration in line[3|ends
in 10dlog (27:” + 1) rounds; (2) Let Aeng be the final value of A. Then it holds that

d

Prﬂ I:(ZS;(Aend)_l(zsh > fl] < m

Proof. Fix . Let FU(A) be the value of F} computed with truncation matrix as A in line in
Algorithm Let Fy(A) == E, [T(dnoy ., f1A)].

Number of iterations. Let A; be the value of A after the i-th iteration. Suppose there are m
iterations. For 1 < i < m, we have that A; = Fy(A;_1) satisfies that

(1 —3Hz)Fy(Ai1) = Ay = (14 3Hz)Fo(Ai_1) + 3HaA; 1 + 3HCT < (1+6Hz)A; 1 + 3HCL
(48)

By the update rule, we learn that

S CU# A,

A+ =
1+2x

LetA; = A; + %I for ¢ > 0. Then we learn that

23



Under review as a conference paper at ICLR 2025

As a result, the maximal eigenvalue of A; 11/ 2[\2»]&;_11/ % is at most (1 + 6Hx), while the minimal

eigenvalue of /v\:l/ 2[\2']\:1/ 2 is at most % Then we have that

log(det(A;)) — log(det(A;_1)) + dlog(1 + 6Hx) — log(2) < —%. (49)

By noting that dlog(¢/2z) < log(det(A;)) and log(det(Ag)) < dlog(1 + ¢/2z), we learn that
m < 10dlog (%w n 1) < fo. Let Aong = Arm.

Truncation probability. Note that Aeng = (1 — 3Hz)Fy(Aena) and Fy(Aena) =
Ex [T(¢noy . fiena)]. We then have that

d
E, |T T T Fihend)Aena) N < ————.
[Trace (T(¢n oy » f1lhena)(Aena) ™ ")] < 30
On the other hand, by noting that
d
Pr‘n’ [¢}T(Acnd)7l¢h > fl] : fl < Eﬂ' [Trace (T(d)hd);aflend)(Acnd)il)} < —
(1-3Hz)
we have
d
P T i Aen -t < ———.
v [0 (Mena) ™ dn > f1] < 70— 3Hz)
O]
C.8 STATEMENT AND PROOF OF LEMMA [16]
Lemma 16. Recall that z = %. Let Dy, = {bn.i,8n.j, Ani )l be the one dataset in in
Linel?] Algorithm@ With probability 1 — W, it holds that

N N
N2 o bl A
; h’z¢h7 QS}MJFZ =8m "

Proof. Let X} and Y} be respectively the final value of A and F} in the i-th call of Algorithm 3)in
the h-th round. It then holds that

) ) ) 1 .
(1+3H2)Epin [T(ondy, /1X1)] + 3HzX) + 3HCI + %I =Y+ %1 = 5 X,
and
(1+3Hz)E in [T(dndy , f1X1)] + 3Hz(2Y} + %I) +3HCI + %I =Y+ %1.
Because A, = 1 X}
N N m ,
E Z/\/%L,iﬁbh,i(ﬁ;,i] = o 4 Ejn [T(éhfb;,ﬁXi)]
i=1 Jj=1
- ﬂi; (1—6Hx)Yj+£I—6H<I— S
—2m = 1+3Hzx h " o 2x
N &K(/1, 1
- “A —(6H+ — I
~2m ]2_2(2 h <6 +2x><)
N (1. 1

24



Under review as a conference paper at ICLR 2025

Also noting that )\h,@h,i(b;i <h A}, with probability 1, using Lemma@ we have that, with proba-
bility 1 — 15277,

N 1 N

> X bnidh = S lz )‘%,i¢h,i¢}1—,i] — fihy log(16mH?/5)

i=1 i=1

N i N(TH+5;)
4m

Y
|
=
|

(I

Y
;
:

61V

D MISSING ALGORITHMS
In this section, we present the missing algorithms.

Planning (Algorithm[d). This algorithm is used to compute the optimal policy given a group
of datasets. The planning method is based on classical linear regression.

opt (Algorithm [5). This algorithm is used to compute the near-optimal policy given a fixed re-
ward function. The planning method is based on classical linear regression.

Policy-Execution (Algorithm [5). This algorithm is used to collect multiple copies of the
datasets. The efficiency of the collected dataset is explained in Lemma [16]

Algorithm4 Planning

Input: reward kernel {6}, } ¢, dataset { ¢y i, 5, )\h,i}ﬁvzl}hew] and block matrix {Ah}he[H];

{0} e < Proj. ({0n}neim);s
Vis1(s) < Oforall s € S;
forh=H,H—1,...,1do
for (s,a) € S x A;do
¢ < ¢h,(saa)

—1 -
Qn(s,a) + ¢ 0n+¢" (Zilil N iOnidn; + ZI) 21‘1\; A7 i Vi1 (Bn.i), oTA o< 1;
0, else;
Qn(s,a) < Range(o 1(Qn (s, a));
end for
for s € S do
Vi(s) <= max, Qn(s,a);
7h(8) < argmax, Qn(s,a);
end for
end for
return: 7 < {7 }ne(H)-

E MISSING ALGORITHM AND PROOFS FOR THE FIRST LAYER

In this section, we propose the algorithm Ini-Sampling to collect the samples for the first layer.
Below we prove that, by running Ini-Sampling, the three conditions in Lemma [§] holds for the
first layer.

25



Under review as a conference paper at ICLR 2025

Algorithm 5 Opt

Input: horizon h, reward function 7, dataset {¢r ;, 5., Ari f1<ii<r<h—1 U {s1,:}1;

Vi (8) ¢ max, m1(s,a),Vs € {Sh_1:}i>1;
forr=h—-1,h—2,...,1do

X7 ZZV:1 A2 et + 2L

for s € {57_171‘}1‘21, a € Ado

I 32md~/f1 log(%)

& < o (s,a);
= md 1 ’il
Qr(s,a) + {¢TX71 2121 OriVet1(Sry1,4) + 32 018\3]( )
0,
end for

for s € {57—,177;}1'21 do
VT(S) = Range[o,l] (maxa QT(S7 a));
7 (8) = argmax, Q- (s,a);
end for
end for
Vo % qu\;1 Vi(s1.4) +2 H? 101%(1/5) I 2H10%1/5);
return: {Vp, 7}

N

;¢ TATTe <1
else

(52)

Algorithm 6 Policy-Execution

1: Input h, {7"}™ Ay,

2: 7 + uniform({w"}m );

3: forr=1,2,...,H do

4: forz=1,2,...,2m> +1do

5 forj=1,2,...,Ndo

6: Run 7 to observe the feature ¢y, ; and the next state 5y, ;;

1

: i < mi — 1
7 )\h,,j min ‘b;,jAh, 1¢h,j )
8: end for
o: Dy (2) ¢ {dn,js3n,5: A} jrs
10:  end for ,
1: - Dp « {Dj(2)}2m
12: end for

13: return : Dy, < {DF}L .

26



Under review as a conference paper at ICLR 2025

Algorithm 7 Ini-Sampling

1: Inmitialization: Ag < I, K < 20dlog(1/v), n + 1600d B fo « 10004,
2: for{=1,2,..., K do

3 F + 0;

4. fori=1,2,...,ndo

5 Play the local optimal design policy 7¢(-), observe the feature ¢; ¢;
6 F  F +T(¢ied] y, f2he-1)

7:  end for

8 if £ 4+0l= 1A, then

9: Ay < F + 2noT and break;
10:  else
11: A¢ + F/n;
12 endif
13: end for

14: forh=1,2,..., H do
15: fori=1,2,...,2m+ 1do

16: forj=1,2,...,Ndo
17: Play the local optimal design policy 7q(-), observe initial state s} (), feature ¢} ; (i)
and the next state 57 ; (i) = s4 ;(i);
. ho( , A
18: At (i) ¢ min \/w?,( AL, }
19: end for
20: Dh( ) {Slj(l)}ﬁv 1
21: Dy (i) < {7 (1), 37 ;(0), AT (D0
22:  end for

23 Dy« {Dyi)}m
24: Dy {D@)IH
25: end for

26: return: {D}, DI}

Lemma 17. Recall the definition of A+ in Algorithml?] With probability 1 — 5 H, for any sub-dataset
of Algorithm or the h-th layer {¢p i, 31,i, An,i }ic[n), it holds that

maXPr7T [qﬁl Ay > 1] < 8H2’

N .
E A id1id); + 21 = —Ay;
— 8m

A b1 Ardrs < 1,Vi € [N].
Proof. The third inequality follows by definition of Ay ;. It suffices to prove the first two inequalities.

The first condition. Define F(A) = Esds amm(s) [T(0101 , f2A)].  Then F(A) is non-
increasing in A. Fix A. Let {qﬁl *_, be the feature vectors by running 7¢(-) for n rounds. By

Lemma@ with probability 1 — 5577 H 7

F(A,n) = Z (6id7 , f2A) = nF(A) — 4y/nlog(HKd/5)A = nF(A) — W"dA. (53)

In a similar way, with probability 1 — ﬁ,

F(A,n) < nF(A) + MA (54)

27



Under review as a conference paper at ICLR 2025

Recall the definition of {A/} >0 in Algorithm Assume the break condition in 1ine|§|is not triggered

in the first 7 rounds. By equation and equation with probability 1 — 32%, foralll1 </ <7,

1
Ag + vl # 51\@—1;

1 1
Ay X F(Ap_ — A1 2 (1 + —)A_q;
¢ 2 F(Ay 1)+10d -1 = ( +10d) 015
1
A= F(Ap—1) — —Ap_1.
0= F(A-) Tog M1 (55)
Let A, = Ay + 201 It then follows that
- 1-
A # §A5—1
- 1 -
A (1 + —)Ap_q;
YA ( + ].Od) £—1,
Ay = 201
As a result, we have that
- ~ 1
log(det(A¢)) —log(6(A¢-1)) < —log(2) + dlog(1 + =) < —0.1, (56)
which implies that
dlog(v) < log(det(A,)) < —0.17 (57)
and 7 < 10dlog(1/v). Therefore, the break condition in line[9] will be triggered within K rounds.
Now we verify the first inequality. By definition, there exists some ¢ such that W + ol =
%Az,l and A; = F(Ag,l, n) + 2nvl, which means that
1 - 1
F(Ao- — A1 = F(A_ = =Aypq — vl
(Ae 1)+10d -1 2= F(Ay 1,71)/71_2 -1 =V
As a result, we learn that
1 1
F(A,— I>|-—— A
(Ag—1) +v _(2 10d> -1
and
F(Ae_1,n) 1 1 1
_— I=F(Ae_ —— N1 =z —— | Aps. 58
- +ol = F(Ag-1) +v Tl =g 5 ) e (58)

Continuing the computation we have that
max Prody,, v [01 AT 61 = 1] < Procdy,m [Trace (Bgury(s) [0 JATT) > 1/d]

< dPrygymg [01 AT o1 > 1/d]

~ -1
F(Ae—
S dPrsNdini77TG ¢1T <(e'n/17’nl) + 2UI> ¢1 2 n/d

< APty m |01 A7 01 > 2] (59)
Continuing the computation, we have that
_ n 3d n _
APy [ ST A72101 2 50| € = By ng [ Trace (T (6107, 50801 ) - (F(Ae-1) ™)
3d _
= Egmdyme [Trace (T (o101, f2alho—1) - (F(Ae—1)) )]
d2
=3 (60)
n
Here the second inequality is by the fact that 55 = f>. Therefore, we have that
TXx -1 3d2 €
max Procg,. .« [0 AT 1 > 1] < — < S
™ n

28



Under review as a conference paper at ICLR 2025

The second condition. Recall that A, = F(A,_y,n) + 2nol < n(1+ 62)F (A1) + 2nvl and

A = 3Ag 1. Let {1 G181y AL, J}] ; be a sub-dataset collected following line to line 21| in
Algorithm[7] Then we have that

E [)\1,j¢1,j¢1,j] = Esmdini me [T(¢1¢1Ta FiAD)] = By g [T(¢>1¢1Ta falhe—1)] = F(Ag—q).

(61)
Using Lemma@, with probability 1 — W’ it holds that
N
> A 6101 = NF(Ae—1) — (4y/Nlog(dHm/5) + 2log(dHm/6)) - frAs
j=1
= NF(Ay—1) — 61/ Nlog(dHm/d) f1 - (2nF(A¢—1) + 2nvl)
= EF(Ag,l) —12+/Nlog(dHm/) f1 - 2nvl
N |
= %Al — (124/Nlog(dHm/d) f1 - 2n + 4N)vl
N .
= —A; — 2L
= 8m :
The proof is completed.
O

29



	Introduction
	Related Work
	Preliminaries
	Technical Overview
	Algorithms
	Analysis
	Conclusion
	Parameter Settings and Notations
	Technical Lemmas
	Concentration Inequalities

	Missing Lemmas and Proofs
	Statement and Proof of Lemma 10
	Statement and Proof of Lemma 11
	Statement and Proof of Lemma 12
	Statement and Proof of Lemma 13
	Statement and Proof of Lemma 14
	Proof of Lemma 5
	Statement and Proof of Lemma 15
	Statement and Proof of Lemma 16

	Missing Algorithms
	Missing Algorithm and Proofs for the First Layer

