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Abstract001

Understanding Theory of Mind is essential002
for building socially intelligent multimodal003
agents capable of perceiving and interpreting004
human behavior. We introduce MOMENTS005
(Multimodal Mental States), a comprehensive006
benchmark designed to assess the ToM capa-007
bilities of multimodal large language models008
(LLMs) through realistic, narrative-rich scenar-009
ios presented in short films. MOMENTS in-010
cludes over 2,344 multiple-choice questions011
spanning seven distinct ToM categories. The012
benchmark features long video context win-013
dows and realistic social interactions that pro-014
vide deeper insight into characters’ mental015
states. While the visual modality generally016
enhances model performance, current systems017
still struggle to integrate it effectively, under-018
scoring the need for further research into AI’s019
multimodal understanding of human behavior.020

1 Introduction021

Throughout our lives, we continuously generate022

hypotheses about other people’s emotions, knowl-023

edge, and a range of other mental states; these 024

hypotheses guide how we understand and interact 025

with others. This ability, known as Theory of Mind 026

(ToM) (Premack and Woodruff, 1978), is essential 027

for interpreting behavior at the individual level and 028

fundamental to coherent human social interaction 029

(Byom and Mutlu, 2013). 030

Humans rely on more than just language to ex- 031

press their mental states. Gaze, facial expressions, 032

body posture, gestures, and vocal cues all play an 033

important role in communicating how we feel and 034

what we think. This combination of verbal and 035

non-verbal cues provides relevant multimodal in- 036

formation to infer mental states of others (Byom 037

and Mutlu, 2013; Bayliss and Tipper, 2006; De Son- 038

neville et al., 2002). 039

For artificial agents, this information can serve 040

as multimodal input that enhances socially intel- 041

ligent behavior, empowering users across a wide 042

range of applications: from facilitating commu- 043

nication and enhancing collaboration to offering 044

companionship. A robust ToM enables such sys- 045

Figure 1: Overview of MOMENTS questions.
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tems to anticipate intentions, understand desires046

and emotions, and detect knowledge gaps, to adapt047

their behavior to support users more effectively048

(Oguntola et al., 2021). Importantly, this requires049

not only inferring individual mental states, but do-050

ing so in context—accurately "reading the room"051

by processing these signals to interpret human be-052

havior in socially situated settings (Williams et al.,053

2022).054

Most existing benchmarks proposed to mea-055

sure ToM in artificial agents predominantly cen-056

ter around belief-tracking tasks within text-based057

narratives or simplified multimodal settings (Chen058

et al., 2025a). While these approaches evaluate059

models’ ability to reason about who knows or be-060

lieves what, they frequently neglect the interplay061

of emotions, intentions, pragmatic communication,062

and social contexts that characterize genuine hu-063

man interactions. Consequently, a clear gap ex-064

ists between existing evaluations and the richer,065

socially grounded reasoning required in realistic066

scenarios.067

To support the development of socially intelli-068

gent multimodal agents and assess current mod-069

els’ ToM in realistic, socially grounded scenar-070

ios, we introduce MOMENTS (Multimodal Men-071

tal States), a comprehensive multimodal video072

question-answering benchmark designed to eval-073

uate ToM across seven abilities derived from the074

ATOMS taxonomy (Beaudoin et al., 2020): In-075

tentions, Desires, Beliefs, Knowledge, Percepts,076

Non-literal Communication, and Emotions. The077

dataset comprises 2,344 human-annotated ques-078

tions and 9,376 candidate answers sourced from079

168 long-form videos, annotated with short and080

long context windows, multimodal cue markers,081

and adversarially-generated distractors to minimize082

biases.083

To the best of our knowledge, MOMENTS is084

the first benchmark to evaluate multimodal ToM085

in real-world videos with human actors, framing it086

explicitly as a socially situated ability. Our contri-087

butions are as follows:088

• MOMENTS: A novel multimodal benchmark089

with over 2,300 questions from real-world,090

long-form video data, explicitly structured to091

assess diverse ToM abilities.092

• An LLM-in-the-loop annotation frame-093

work designed to produce challenging dis-094

tractors and mitigate bias in answer sets.095

• A baseline evaluation of multimodal LLMs, 096

highlighting that although visual information 097

improves performance, current models still 098

predominantly rely on textual cues, underscor- 099

ing the need for improved multimodal integra- 100

tion throughout the reasoning process. 101

2 Related Work 102

Prior benchmarks for ToM broadly fall into two 103

categories: text-only and multimodal. Traditional 104

text-only benchmarks, such as TOMI (Le et al., 105

2019) and HI-TOM (He et al., 2023), predomi- 106

nantly focus on probing models’ ability for nested 107

belief tracking and logical inference through text 108

stories lacking realistic social context. TOMBench 109

(Chen et al., 2024) expands beyond belief tracking 110

alone, incorporating a broader taxonomy of social 111

and pragmatic ToM tasks (e.g., faux-pas detection, 112

persuasion, hidden emotions, desires) within every- 113

day textual scenarios. Despite this richer coverage, 114

it remains constrained by its purely textual format, 115

lacking multimodal information critical to human 116

social understanding (Byom and Mutlu, 2013). 117

Multimodal approaches such as MMToM-QA 118

(Jin et al., 2024) present procedurally-generated 119

videos of single actors in household tasks, primar- 120

ily evaluating goal and belief inferences without 121

meaningful social interaction or emotional com- 122

plexity. Similar to the text-only evaluations dis- 123

cussed above, this setup fails to reflect the depth 124

and nuance of genuine human social behavior, lim- 125

iting its applicability in evaluating socially intelli- 126

gent AI systems (Chen et al., 2025a). 127

From the social intelligence perspective, Social 128

IQa (Sap et al., 2019) probes social and emotional 129

intelligence of models through multiple choice 130

questions that require reasoning about social mo- 131

tivations, reactions, and actions based on specific 132

situations. SOTOPIA (Zhou et al., 2023) evalu- 133

ates how models navigate complex social scenar- 134

ios and achieve social goals. EmoBench (Sabour 135

et al., 2024) measures emotional intelligence by 136

assessing models’ ability to understand and apply 137

emotional knowledge in complex social scenarios. 138

However, these works are again limited to text-only 139

evaluations and do not measure ToM directly. 140

Social Genome (Mathur et al., 2025) (based on 141

SocialIQ2 (Wilf et al., 2023)) addresses the evalua- 142

tion of social interaction understanding in VLMs 143

through video-based multiple-choice questions, but 144

videos are limited to 60 second clips, and evalua- 145

tion is not designed to evaluate ToM. Furthermore, 146
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Figure 2: MOMENTS Annotation Pipeline. Different colored t-shirts represent different annotators/reviewers.

(Guo et al., 2023) observed a strong bias in the147

representations of correct and incorrect answer can-148

didates, where LLMs can achieve high accuracy149

with no context or transcription.150

Given the limitations in prior work, there is a151

need for evaluating ToM within realistic multi-152

modal settings, capturing authentic social interac-153

tions beyond goals and beliefs alone (Chen et al.,154

2025a).155

3 Dataset Design156

Recognizing the limitations of previous bench-157

marks, we design MOMENTS based on two core158

principles: (1) an established taxonomy of socially159

relevant ToM abilities –Emotions, Non-Literal160

Communication, Desires, Intentions, Knowledge,161

Percepts, and Beliefs– to evaluate ToM beyond the162

commonly addressed belief and goal probing abil-163

ities, and (2) long-form videos with real human164

actors that provide sufficient context and multi-165

modal signals (e.g., facial expressions, gaze, body166

language, speech tone) to richly characterize inter-167

personal dynamics and mental states. This section168

outlines our taxonomy for probing different ToM169

abilities, the video selection process, and the anno-170

tations included in each question.171

3.1 Taxonomy and Question Design172

We adopt the ATOMS taxonomy (Abilities in The-173

ory of Mind Space) introduced by Beaudoin et al.174

(2020) from their meta-analysis of ToM studies and175

proposed as a systematic framework for model eval-176

uation by Ma et al. (2023). ATOMS categorizes177

ToM into seven distinct abilities: Knowledge, Emo-178

tions, Desires, Beliefs, Intentions, and Non-literal179

Communication (NLC). We describe each ability180

in Table 1. This taxonomy supports precise ques-181

tion formulation and provides a detailed framework 182

for systematically evaluating specific ToM abilities 183

in models. We design annotation guidelines (See 184

Appendix A.9) around it. 185

3.2 Video Selection 186

Existing datasets contain synthetic videos or 187

minute-long clips to incorporate limited temporal 188

context. We instead propose to use short films 189

as these contain more complex characterizations 190

and longer temporal contexts, while having a self- 191

contained narrative. Our videos come from the 192

SF20K dataset (Ghermi et al., 2024), which con- 193

tains a curated collection of short films from the 194

YouTube channel Omeleto. Ghermi et al. (2024) 195

verified that these films exhibit minimal informa- 196

tion leakage to state-of-the-art language models 197

compared to other common video sources like the 198

sitcom Friends. Additionally, the videos are high- 199

quality, vary in length (10 to 20 minutes), and pro- 200

vide complete, cohesive stories. 201

Not all short films have scenarios suitable for 202

evaluating ToM. To filter these out, we prompted 203

GPT-4o with film synopses to identify ones that 204

likely contain interesting social dynamics. We then 205

select videos with the highest likelihood of gener- 206

ating meaningful question-answer pairs and assign 207

each annotator a a subset of these to annotate. 208

3.3 Data Organization 209

In line with prior work, we adopt a multiple-choice 210

question-answer (MCQA) format, where each ques- 211

tion includes one correct answer and three plausible 212

but incorrect distractors. Figure 1 exemplifies two 213

items from MOMENTS, and more representative 214

examples are presented in Appendix A.1. Below, 215

we describe the structure and annotations included 216

in each data point: 217
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ToM Ability Overview Example Q Example A

Knowledge Understanding what a person knows or
does not know based on their sensory
access.

Why is the old man more
interested in the box on the
table than the book?

The box is unfamiliar to him,
therefore more interesting.

Emotions Identifying and reasoning about emo-
tional responses, their evolution, and
when emotions are hidden or complex.

How is the girl feeling after
hearing the news?

She is saddened but hides
her true feelings with a
smile.

Desires Situations that involve preferences,
conflicting desires, or actions driven by
desire.

Why is the man making an
effort to defend his friend’s
actions?

He knows his friend stole,
but feels attracted to him and
wants to stay on good terms.

Beliefs Comprehending true and false beliefs
and how beliefs influence actions.

Why does the mother pre-
tend to be surprised by the
birthday cake?

She thinks her daughter be-
lieves the cake is a surprise,
even though she helped plan
it.

Intentions Understanding goals, motivations, and
the underlying reasons for actions.

Why does the woman inter-
rupt the conversation?

She wants to change the
topic.

Percepts Reasoning about what a character can
or cannot perceive through their senses.

Why does the old man not
try to catch the falling vase?

He did not see it, so he did
not try to catch it.

NLC Interpreting humour, sarcasm, decep-
tion, and other speech that goes beyond
literal meaning.

Why does the man say he is
stuck in traffic?

He is lying to avoid conflict
with his boss.

Table 1: Overview for ATOMS abilities covered in MOMENTS with example question/answer pairs.

Questions are derived from specific scenes in218

the short films and must probe one or more ToM219

abilities as defined in the ATOMS taxonomy.220

Answer Set includes one correct option and three221

distractors. Annotators are instructed to write dis-222

tractors that are as plausible as possible, such that223

only a nuanced understanding of the context can224

reveal the correct answer. We paid special attention225

to the distractors, see Section 4.2 for more details226

on this.227

Tags for ToM Abilities specify which ToM abil-228

ities (See Table 1) are targeted by the question.229

Questions may be annotated with multiple abilities,230

acknowledging that these often intersect in various231

scenarios.232

Timestamps mark the start and end of the video233

segment relevant to the question. Each question is234

annotated with two context windows:235

• Full Context Window [t0, tj]: A longer seg-236

ment starting from the beginning of the video,237

intended to provide full narrative context use-238

ful for understanding character backgrounds,239

motivations, and evolving social dynamics.240

• Focused Context Window [ti, tj]: A shorter241

segment containing only the immediate con-242

text required to answer the question. This243

window excludes broader narrative informa- 244

tion, focusing instead on the specific scene 245

being queried. 246

During evaluation, we explicitly instruct models 247

that the question refers to the end of the provided 248

interval (tj). This approach minimizes reliance on 249

temporal references that may hint at the correct an- 250

swer, which requires understanding the interaction. 251

If leveraged effectively, the Full Context Window 252

provides all the information required to understand 253

characters, providing better insights into their men- 254

tal states and interpersonal dynamics. 255

Multimodal Cue Tags indicate whether answer- 256

ing the question relies on interpreting specific non- 257

verbal or auditory signals. These tags were op- 258

tionally marked by annotators and are present only 259

when such cues were deemed necessary for under- 260

standing the interaction. The possible cues include: 261

"Facial Expressions or Gaze", "Body Language", 262

and "Speech-related". 263

4 Annotation Methodology 264

Creating multiple-choice questions for this task is 265

challenging. Annotators must understand different 266

ToM abilities, find relevant moments in short films, 267

and write clear questions. Making good distractors 268

is also difficult because humans often create dis- 269

tractors that models can easily guess without seeing 270
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Figure 3: Boxplots comparing the average accuracies across different models and abilities.

Statistic Length

Question Length 12.64± 4.2
Correct Answer Length 14.62± 7.8
Distractor Length 14.97± 7.7
[ti, tj ] length 42.44± 55.5
[t0, tj ] length 388.47± 262.3

Number of Videos 168
Video length (m) 14.56± 4.65

Table 2: Top: Mean length ± SD of questions, correct
answers, and distractors (in words), together with the
average duration of the focused [ti, tj ] and full [t0, tj ]
context windows (in seconds). Bottom: Number of
Videos and average duration (in minutes)

the video context, as observed by Guo et al. (2023)271

in other multimodal social understanding datasets.272

To address these challenges, we conducted two273

pilot annotation rounds (see Appendix A.2) before274

launching the main annotation phase. Findings275

from the pilots helped us refine our pipeline to276

address the cognitive demands of ToM question277

creation, reduce annotation biases, and ensure ques-278

tion quality. The final methodology included care-279

fully structured annotation phases, refined guide-280

lines, and a custom-built platform to support robust281

distractor generation.282

4.1 Annotation Pipeline283

Annotation guidelines were centered around the284

ATOMS taxonomy and the specific goals of the285

benchmark. They included illustrative examples,286

key indicators (what to look for) for each ToM abil-287

ity, and clearly defined criteria for both acceptable288

and problematic question types. We iteratively re-289

fined the guidelines based on feedback from our290

expert sociologist and from the annotators them-291

selves during the pilot runs. 292

The main annotation phase spanned six weeks 293

and involved 16 annotators who collectively pro- 294

duced 2,344 questions. This phase followed the 295

methodology developed during the second pilot 296

and incorporated several design choices aimed at 297

improving quality and reducing bias (see Figure 2 298

for an overview): 299

• Annotators were asked to watch the full short 300

film before writing questions to ensure under- 301

standing of character motivations and social dy- 302

namics. 303

• Each was assigned 2–3 ToM abilities to special- 304

ize in, promoting category-specific expertise. 305

• The schedule alternated weekly: a week fo- 306

cused on writing questions, the next on cre- 307

ating distractors for peers’ questions. During 308

the distractor-creation stage, annotators flagged 309

poorly written or overly subjective questions, 310

adding a layer of peer-based quality control. 311

• A custom platform integrated an LLM for real- 312

time distractor feedback, flagging biased sets 313

automatically (Section 4.2). 314

• We provided weekly feedback based on a re- 315

view of the submitted material. For questions, 316

we emphasized clarity, appropriate ToM cate- 317

gory assignment, and avoidance of overly sub- 318

jective QA pairs. For distractors, we focused on 319

ensuring that none of the distractors could be 320

considered a "technically correct" answer. 321

• We provided bonuses for early submissions and 322

for the annotators who produced the highest- 323

quality questions. 324

This approach encouraged focused annotation, 325

peer-based quality control, and robust distractor 326

generation, resulting in the final MOMENTS eval- 327
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uation dataset. Table 2 report statistics about the328

dataset. In Appendix A.6, we report the demo-329

graphics of annotators, cost of the annotations, and330

number of questions associated to each ToM abil-331

ity.332

4.2 Framework for Distractor Creation333

Models frequently rely on subtle biases to guess334

correctly; our initial pilot batch showed this issue335

with models consistently achieving non-trivial per-336

formance by identifying correct answers without337

the required context. Creating high-quality dis-338

tractors remains challenging for annotators despite339

providing them with guidelines; even subsequent340

re-annotation of distractors by us similarly demon-341

strated persistent biases.342

While various post-hoc strategies exist to miti-343

gate distractor bias (Ye and Kovashka, 2021; Guo344

et al., 2023), we integrate bias prevention directly345

into the annotation workflow. We designed a cus-346

tom annotation platform embedded with an LLM347

acting as an on-the-fly evaluator for newly pro-348

posed distractor sets.349

Given a question with one correct answer and350

three proposed distractors, the platform evaluates351

potential biases distractor as described in Algo-352

rithm 1.353

Algorithm 1: Distractor Set Assessment
Input: Question Q, correct answer a∗,

distractors D = {d1, d2, d3}, trials
N , threshold k.

Output: Indicator of biased distractors

c← 0;
for i← 1 to N do

A← shuffle({a∗} ∪D);
a← LLMAnswer(Q,A);
if a = a∗ then

c← c+ 1;

if c ≥ k then
return flag biased;

354

We establish empirically determined k = 5 and355

N = 6 to balance reliability and computational356

efficiency. A distractor set is flagged as biased if357

the model identifies the correct answer k or more358

times out of N trials. We initially employed GPT-359

4o-mini as the LLM for the first 800 questions; as360

we observed that the cost was relatively low, we de-361

cided to use GPT-4o for the remaining annotations.362

5 Experimental Evaluations363

We conduct experiments to evaluate the perfor-364

mance of current multimodal models in inferring365

[t0, tj ] [ti, tj ]

Video LLMs T V T T V T

LLaVA-Video-7B 46.7 49.5 (+2.8) 45.4 52.1 (+6.7)
LongVA-7B-DPO 40.7 44.8 (+4.2) 41.6 44.3 (+2.8)
InternVL2.5 8B 45.7 46.5 (+0.8) 46.0 52.0 (+6.0)
Qwen2.5 VL 8B 41.1 37.7 (-3.4) 38.0 43.7 (+5.7)

Speech LLMs A

Kimi-Audio-7B 31.7 48.7
Qwen2-Audio-7B 34.6 34.9

V A

Human* 86.0

Table 3: Accuracy of different models in MOMENTS.
We report Accuracy in both Full [t0, tj ] and Focused
[ti, tj ] Context Windows. For the Video LLMs we re-
port scores with (T) transcripts and video+transctipts
(VT) inputs, and for Speech LLMs with audio as input
(A). * Human evaluation was carried out by a participant
external to the annotation process in the [t0, tj ] setting
on a subset of 100 samples, with video and audio V A.

mental states and to identify the factors that influ- 366

ence their performance. Specifically, we aim to 367

answer: (i) How well do these models perform 368

across different ToM abilities? (ii) To what degree 369

does visual information and context length impact 370

performance? and (iii) How effective is our LLM- 371

in-the-loop distractor creation platform at mitigat- 372

ing answer set biases? To this end, we report model 373

accuracies on MOMENTS, ablate the effect of the 374

visual modality and context window length, and 375

assess performance in a no-context setting against 376

baselines lacking bias-mitigation mechanisms. 377

5.1 Experimental Setup 378

We evaluate both video-based and speech-based 379

LLMs. For Video LLMs, we test LLaVa-Video 7B 380

(Zhang et al., 2024b), LongVA 7B (Zhang et al., 381

2024a), InternVL 2.5 8B (Chen et al., 2025b), and 382

Qwen2.5 VL 7B (Bai et al., 2025). Each model 383

is provided with 64 uniformly sampled frames per 384

question (see Appendix A.5 for ablations on frame 385

count). For Speech LLMs, we evaluate Kimi 7B 386

(KimiTeam et al., 2025) and Qwen2 Audio (Chu 387

et al., 2024). We employ the transformers library 388

(Wolf et al., 2020), with temperature set to 0 when 389

generating the answers. All experiments are run 390

using an NVIDIA A100 card. 391

5.2 LLM Evaluation 392

As most open-weight Video LLMs process only 393

vision and text, we transcribe dialogues using ASR 394

through WhisperX using Whisper large-v2 as the 395
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backbone model (refer to Appendix A.4 for an eval-396

uation on the performance of the ASR system). We397

evaluate under two conditions: using both video398

and transcript (VT), and using transcript only (T).399

We also compare model performance under the Full400

[t0, tj ] vs. Focused [ti, tj ] Context Windows.401

Global Accuracy Table 3 reports the global ac-402

curacy on MOMENTS; we observe that video input403

improves performance in most cases. However, the404

gains are modest, indicating that current models405

may underutilize visual cues. Performance tends406

to drop when using the longer Full Context Win-407

dow, we attribute this to the fact that long video408

understanding is still challenging for open models.409

Accuracy by ToM Ability Figure 3 presents box-410

plots with per-model scatter points, showing ToM411

accuracies across abilities under two context win-412

dow conditions. Overall, models perform better413

with shorter Focused Context Windows, though the414

effect of context length varies by ability. For in-415

stance, questions targeting Emotions and Beliefs416

show higher accuracy with shorter context, suggest-417

ing these tasks rely more on immediate cues. In418

contrast, Knowledge questions benefit more from419

the Full Context Window, indicating that extended420

narrative context may be necessary to answer them421

effectively. Across both settings, models consis-422

tently perform best on Non-Literal Communication,423

while Percepts remains the most challenging ability.424

Future work should investigate how context win-425

dow length affects human performance in this task.426

In Figure 4, we further analyze the role of visual427

input by averaging accuracies across Video LLMs.428

While the visual modality is not yet fully leveraged,429

resulting in only marginal improvements, it still430

contributes positively across all abilities, indicating431

its potential for enhancing ToM reasoning. which432

may depend more on immediate context.433

Multimodal Cues We further analyze perfor-434

mance on questions requiring multimodal under-435

standing (facial expression or gaze, body language,436

and speech-related cues). As shown in Table 5, in-437

corporating visual input and using a shorter context438

window generally improves performance, particu-439

larly for questions involving Body Language and440

Facial Expressions or Gaze. In contrast, Speech-441

related questions show smaller gains, suggesting a442

stronger reliance on textual cues.443
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Avg. Acc. in T
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Figure 4: Average accuracies across Video LLMs high-
lighting the effect of the vision modality accuracy on
different ToM abilities (Focused Context Window).

Model SIQ2-dev M-P1 MOMENTS

Qwen2.5 VL 8B 52.49 60.59 36.05 (-24.54)
LongVA-7B-DPO 53.38 58.49 34.85 (-23.63)
LLaVA-Video-7B 56.2 59.48 40.10 (-19.38)
InternVL2.5 8B 51.43 55.39 36.26 (-19.13)

Table 4: Accuracy by guessing the correct answer,
where models are not provided with any context about
the question. M-P1 refers to our first pilot study, and
SIQ2-dev to the development set of SocialIQ2 (Wilf
et al., 2023).

5.3 Evaluation on Answer Set Bias 444

In this section, we evaluate the impact of using 445

an LLM-in-the-loop design during the annotation 446

pipeline, specifically for distractor creation. For 447

MCQA-style ToM evaluation to be meaningful, 448

questions should not be answerable without access 449

to some form of context such as video, audio, or 450

transcripts. However, as observed in our initial pilot 451

and in prior work (Guo et al., 2023), models often 452

exploit biases in question-answer sets to guess the 453

correct answer even without contextual input. 454

We assess the extent of this issue by compar- 455

ing MOMENTS to two baselines: our initial pilot 456

(which did not use LLM assistance for distractor 457

creation) and SocialIQ2, a similar video MCQA 458

dataset. We prompt models with only the questions 459

and answer options (without context) and measure 460

their accuracy. As shown in Table 4, our proposed 461

LLM-assisted distractor generation substantially 462

reduces answer-set bias and lowers model accu- 463

racy by over 20 percentage points, highlighting the 464

effectiveness of our approach. 465

By reducing biases in the answer sets, we create 466

greater headroom for models to improve through 467

actual reasoning rather than shortcut learning. 468
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∆tj−t0 ∆V T−T

Body Langauge 4.25 6.96
F. Exp. and Gaze 3.29 6.14
Speech-related 2.41 3.49

Table 5: Effect of interval length and the visual input
on questions marked by annotators as reliant on Multi-
modal Cues. ∆tj−t0 refers to the average difference in
accuracy across models for the questions marked with
each specific multimodal cue between the Focused and
Full Contexts, where a positive value means that the
shorter interval scores higher. ∆V T−T refers to the av-
erage difference in accuracies between the VT and the
T setting, which describes the reliance on the vision
modality for those questions.

6 Open Challenges for Future Model469

Development470

Our evaluations on MOMENTS suggest that current471

limitations in multimodal ToM performance may472

stem not only from the reasoning capabilities of473

large language models, but also from how these474

systems access and process multimodal evidence.475

Our findings point to several technical factors that476

likely limit models’ ability to reason about mental477

states in socially rich scenarios. In this section,478

we outline four open challenges that, if addressed,479

could foster progress toward building better social480

multimodal agents.481

Capturing Prosody and Ambient Sound in Au-482

dio Transcripts alone omit environmental sounds483

and paralinguistic cues (speaker prosody, intona-484

tion), which support accurate inferences about485

Percepts, Emotions, Intentions, and Non-literal486

Communication. In addition, errors in the ASR487

propagate downstream. The advantage of Kimi-488

Audio over every transcript-only system on the489

focused window (See Table 3) underscores this490

missed potential. Future work must either (i)491

inject information-dense audio descriptors into492

video–text pipelines or (ii) employ architectures493

that process audio directly in addition to videos.494

Precise Vision–Speech Alignment Answering495

Who said what, when? requires time-synchronised496

links between each utterance, the speaking char-497

acter, and the surrounding visual context. With-498

out such alignment, models cannot track which499

speakers possess which knowledge, nor can they500

exploit gaze, facial expressions, or body language501

that modulate dialogue meaning. The small gains502

we observe from adding vision (Table 3), and the503

limited improvements on questions marked as re- 504

liant on visual cues (Table 5). suggest that existing 505

pipelines underutilize this channel; finer-grained, 506

temporally aligned representations are necessary. 507

Human-Centered Frame Selection Uniform 508

frame sampling risks missing short yet meaningful 509

signals while wasting computation on redundant 510

content. Simply increasing the frame rate is expen- 511

sive and, as our ablation in Appendix A.5 shows, 512

does not improve performance. Specialized frame 513

sampling strategies that prioritise human-salient 514

events (faces, hands, gaze shifts) are needed to cap- 515

ture the cues that observers actually rely on. 516

Structured Reasoning over Multimodal Evi- 517

dence Reasoning improves a wide range of text- 518

only tasks, including ToM benchmarks. However, 519

as Mathur et al. (2025) reports, asking VLMs to 520

reason neither boosts accuracy nor yields human- 521

aligned explanations for social MCQA in videos. 522

We argue that effective multimodal reasoning may 523

be bottlenecked by the three challenges above: 524

noisy or impoverished audio, weak vision–speech 525

alignment, and sub-optimal frame selection. Until 526

models receive richer, better-organized evidence, 527

additional reasoning steps are unlikely to help. 528

7 Conclusion 529

We introduced MOMENTS, a benchmark that 530

probes seven ToM abilities in realistic, long-form 531

videos. It contains over 2,300 human-annotated 532

MCQA items with substantially reduced biases in 533

answer sets compared to prior datasets. From base- 534

line experiments with Video and Speech LLMs 535

we observe: (i) visual input offers consistent yet 536

modest gains, indicating under-exploited multi- 537

modal cues; (ii) audio-native models can outper- 538

form transcript-only models, highlighting the im- 539

portance of paralinguistic signals; and (iii) perfor- 540

mance tends to drop on extended context windows, 541

highlighting limitations in long-range video reason- 542

ing. 543

Based on these results, we identify several open 544

challenges that likely constrain progress on multi- 545

modal ToM tasks, ranging from multimodal align- 546

ment and audio processing to frame selection and 547

reasoning over noisy evidence. Addressing these 548

issues will be essential for developing AI systems 549

capable of truly understanding, predicting, and re- 550

sponding to human mental states in complex real- 551

world settings. 552

8



Limitations553

We adopt a multiple-choice QA format in MO-554

MENTS to streamline annotation and ensure con-555

sistent evaluation. While this design supports scal-556

able benchmarking, it limits analysis of lower-level557

behavioral cues such as turn-taking, speech acts,558

or gesture dynamics as we do not provide annota-559

tions on them. Investigating the relation between560

these cues and specific ToM abilities remains an561

important direction for future work. Additionally,562

MOMENTS uses static video data, which does not563

capture model performance in interactive or dy-564

namic social environments. Extending evaluation565

to such settings is a promising but currently chal-566

lenging task, as it would require reliably simulating567

complex, multimodal human behaviors. Finally,568

although using multiple annotators per question569

could reduce subjectivity, resource constraints lim-570

ited us to one annotator per question. To mitigate571

this, we incorporated peer-checking during distrac-572

tor creation and conducted multiple rounds of au-573

thor review to ensure data quality and consistency.574
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A Appendix 729

A.1 Samples from MOMENTS Across ToM 730

Abilities 731

Figure 5 presents representative samples of MO- 732

MENTS questions covering different ToM abilities. 733

Each example includes the question, the full answer 734

set (one correct option and three distractors), the 735

targeted ToM abilities, and any multimodal cues 736

identified by annotators as relevant for answering 737

the question. 738

We provide an anonymized repository with 739

a sample of annotations for reviwing pur- 740

poses: https://anonymous.4open.science/r/ 741

MoMentS-78B0. We will release the full dataset 742

upon publication. 743

A.2 Pilot Annotations 744

We conducted two pilot annotation phases prior to 745

the main annotation batch to identify challenges 746

and refine our pipeline. 747

First Pilot Annotation We recruited annotators 748

through Prolific, selecting participants who were 749

native English speakers with a university degree. 750

Each annotator was asked to create both ques- 751

tions and distractors covering all seven ToM abili- 752

ties. This pilot produced 268 question–answer sets. 753

From analyzing submissions from this annotation 754

batch, we identified the following issues: 755

• Many questions were low quality, some had 756

grammatical issues, others focused on plot 757

rather than ToM. 758

• Models achieved over 50% accuracy without 759

context, pointing to biases in the distractor 760

sets (see Table 4). 761
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Figure 5: Samples from MOMENTS Representing Each ToM Abilities.
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• Annotators often mislabeled the ToM ability,762

indicating limited understanding of the cate-763

gories.764

We traced these problems to the following765

causes:766

• Time constraints imposed by Prolific’s sys-767

tem created pressure that negatively impacted768

annotation quality.769

• Prolific communication channels made direct770

communication with annotators difficult, as771

they did not communicate their questions ef-772

fectively.773

• Tasking annotators with all seven categories774

was overwhelming, leading to overall misclas-775

sification.776

• Most effort was spent on writing questions,777

resulting in weaker distractors.778

• Models could exploit biases in seemingly779

good distractors, without needing any context780

to answer.781

Second Pilot Annotation To address these is-782

sues, we made the following changes:783

• We directly hired seven undergraduate stu-784

dents from psychology and social sciences785

and used group messaging for better commu-786

nication.787

• Each annotator was assigned only 2–3 ToM788

abilities to help them specialize.789

• Annotation was split into two phases: creat-790

ing questions in the first week and distractors791

in the second. This was done to help annota-792

tors concentrate their efforts on writing high-793

quality questions first, then shift their focus to794

creating high-quality distractors.795

• A custom annotation platform with an LLM796

was introduced to automatically flag biased797

distractors (see Section 4.2).798

• Annotators were encouraged to spread their799

work throughout the week to reduce low-800

quality submissions due to pressure in last-801

minute submissions.802

• We provided weekly reviews and feedback to803

improve consistency and quality.804

This second pilot resulted in 350 high-quality 805

questions. Most of the design choices from this 806

phase were carried over to the main annotation 807

batch. 808

A.3 Prompt For Video Filtering 809

810
You are a film critic and psychologist 811

with expertise in Theory of Mind ( 812
ToM) as described by the ATOMS 813
taxonomy. Your task is to analyze 814
the movie synopsis and captions 815
below to determine how likely it is 816
that the movie includes themes or 817
questions related to Theory of Mind. 818

819
Theory of Mind involves understanding 820

and attributing mental states to 821
oneself and others. Consider the 822
following key components: 823

1. Knowledge: Recognizing that 824
characters hold organized 825
information and mental 826
representations that shape their 827
understanding. 828

2. Emotions: Identifying complex 829
emotional responses , including mixed 830
or evolving emotions. 831

3. Desires: Understanding that 832
characters may have varied and 833
sometimes conflicting desires 834
driving their actions. 835

4. Beliefs: Discerning true versus false 836
beliefs and recognizing higher - 837

order beliefs (beliefs about 838
o t h e r s beliefs). 839

5. Intentions: Inferring c h a r a c t e r s 840
goals and the reasoning behind their 841
actions. 842

6. Percepts: Noting how characters 843
perceive their world differently 844
based on their sensory experiences. 845

7. Non -literal Communication: 846
Interpreting subtleties such as 847
sarcasm , humor , or metaphors that 848
imply meanings beyond the literal 849
words. 850

851
Using this framework , please analyze the 852

following content: 853
854

Movie Synopsis: {synopsis} 855
Movie Captions: {caption} 856

857
Based on your analysis , provide a 858

probability (as an integer 859
percentage between 0 and 100) 860
indicating how likely it is that 861
this movie involves Theory of Mind 862
related questions or themes. Your 863
answer should be only the integer 864
value with no additional commentary. 865
choose the best number that seems 866

appropriate based on the data. 867868
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global-WER DER

base 0.362 0.412
large-v2 0.206 0.363
large-v3 0.166 0.409

Table 6: Comparison of average WER and DER across
the three evaluated models.

A.4 Evaluation on ASR quality869

In this subsection, we describe our audio process-870

ing pipeline, present, and report its ASR perfor-871

mance on a subset of human-annotated transcripts.872

ASR Pipeline We use WhisperX (Bain et al.,873

2023) to transcribe the short films. Its multilin-874

gual capabilities make it suitable for both English875

and non-English videos in our dataset. For speaker876

diarization, we employ PyAnnote (Bredin, 2023).877

ASR Quality Evaluation We evaluate the ASR878

pipeline using different base Whisper models on879

a subset of 50 human-transcribed videos, report-880

ing global Word-Error Rate (WER) and Diariza-881

tion Error Rate (DER. For global WER we con-882

catenate each file’s reference and ASR transcripts883

lower-casing and punctuation removal and com-884

puting WER = (S + I +D)/N , where S, I , and885

D are the numbers of substituted, inserted, and886

deleted words, and N is the total number of refer-887

ence words. For DER, we evaluate only within888

spans where the reference marks speech. The889

score is DER = (Tmissed + Tconfusion)/Tref, where890

Tmissed is reference speech with no ASR cover-891

age, Tconfusion is overlapped speech attributed to892

the wrong mapped speaker, and Tref is the total du-893

ration of speech in the reference annotation. We894

report these in Table 6, while Whisper large-v3895

scores the lowest average global WER, in practice896

we notice that it failed to transcribe some of the897

videos. This does not happen with large-v2, whose898

DER is the lowest; because of this, we opted for the899

latter as the chosen model for transcribing audio900

for the Video LLMs.901

A.5 Ablation on number of frames902

Increasing the number of video frames increases903

computational cost, as most Video LLMs embed904

frame patches significantly extending the context905

length processed by the language model. To as-906

sess the tradeoff between context length and per-907

formance, we evaluate three models on 1,500 ran-908

domly selected MOMENTS entries using 64 and909

96 frames. 910

As shown in Table 7, increasing the number of 911

frames does not lead to consistent improvements. 912

In several cases, performance actually drops, likely 913

due to redundancy or context saturation. Based 914

on these results, we use 64 frames for all main 915

evaluations in the paper. 916

A.6 Dataset Statistics and Annotation Cost 917

The main annotation batch involved 16 participants: 918

12 undergraduate students in psychology and social 919

sciences, two computer scientists, and two clinical 920

psychologists. 12 of them were female and 4 male, 921

all of them between 20 and 30 years old. Twelve 922

of the annotators were from Canada, and the re- 923

maining were from Mexico. All participants were 924

explained the purpose of their annotations in an 925

onboarding session. 926

Annotation Cost Annotators were compensated 927

at a rate of 17 CAD per hour through UpWork. To 928

encourage steady progress, a weekly bonus of 10 929

USD was provided to those who completed at least 930

half of their assignments by midweek. An addi- 931

tional performance-based bonus of 150 USD was 932

awarded to annotators who produced the highest- 933

quality annotations. The total cost of the MO- 934

MENTS main annotation effort amounted to 8,745 935

USD. 936

Dataset Statistics MOMENTS contains 2,344 937

questions across 168 short films, the majority of 938

which are in English (144). We also include a sub- 939

set of 11 films in other languages. Table 9 reports 940

the number of videos per language. 941

In Table 2, we report the average question length, 942

average answer lengths, and durations of the full 943

and focused context windows. We also display the 944

distributions of lengths for answers, focused, and 945

full context windows in Figures 6, Figure 7, and 946

Figure 8, respectively. 947
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[t0, tj ] [ti, tj ]
Model T V T -64 V T -96 T V T -64 V T -96

LLaVA-Video-7B 46.33 47.7 (+1.4) 47.3 (+1.0) 44.45 50.7 (+6.3) 49.7 (+5.3)
LongVA-7B-DPO 40.94 45.5 (+4.5) 42.6 (+1.6) 41.19 42.9 (+1.8) 44.6 (+3.4)
InternVL2.5 8B 45.58 45.6 (+0.1) 48.2 (+2.6) 44.45 51.7 (+7.3) 50.4 (+6.0)

Table 7: Global accuracy on a subset of 1,500 MOMENTS samples using only transcripts (T ), and transcripts plus
64 or 96 frames (V T -64 and V T -96). Results are reported for both the Full ([t0, tj ]) and Focused ([ti, tj ]) Context
Windows. We mark in bold the highest increase over T between 96 and 64 frames.

ToM Ability # Questions

Emotions 580
Beliefs 293
Desires 425
Intentions 861
Percepts 307
Knowledge 277
NLC 331

Table 8: Number of questions associated with each ToM
ability.

Language Number of Videos

English 144
Russian 6
Spanish 5
French 3
Persian 3
Italian 1
Arabic 1
Swedish 1
Korean 1
Danish 1
Hindi 1
Japanese 1

Total 168

Table 9: Number of videos per language.

Figure 6: Distribution of lengths for correct answers
and distractors.

Figure 7: Length distribution of the Focused Context
Windows.

Figure 8: Length distribution of the Full Context Win-
dows.
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A.7 Copyright and License948

We release MOMENTS annotations under949

a CC BY-NC-SA 4.0 license (Attribution-950

NonCommercial-ShareAlike 4.0 International),951

intended only for academic research purposes.952

Following Ghermi et al. (2025) and Wilf et al.953

(2023), we do not distribute the video content di-954

rectly. We provide URLs linking to the original955

videos on YouTube, complying with YouTube’s956

Terms of Service (https://www.youtube.com/957

static?template=terms).958

A.8 Ethical Considerations959

Representation and Bias Most of MOMENTS960

videos are in English and reflect Western cultural961

norms. Additionally, annotators were from Canada962

and Mexico, which may influence interpretations of963

emotions, intentions, or non-literal communication.964

Potential Misuse MOMENTS is designed to965

evaluate models’ ability to infer mental states in966

socially grounded scenarios to foster progress in967

socially intelligent AI. However, ToM capabilities968

could also be misused to simulate deceptive, manip-969

ulative, or persuasive behavior in artificial agents.970

To mitigate this risk, we license the dataset for aca-971

demic research only under a CC BY-NC-SA 4.0972

license, and we strictly stand against any use in973

applications that exploit it for unethical purposes.974

Personally Identifying Information or Offensive975

Content Questions and answer sets do not con-976

tain personally identifying information as they use977

descriptors to refer to the characters. Since ques-978

tions ask about character’s mental states, they do979

not contain offensive content.980

A.9 Guidelines for Question and Distractor981

Annotation982

The following pages contain the annotation guide-983

lines provided to annotators during the first annota-984

tion batch. Separate documents were provided for985

the question creation and distractor creation stages986

to reflect the specific goals and challenges of each.987
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