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Abstract

This study develops a calibrated beam-based algorithm with awareness of the global
attention distribution for neural abstractive summarization, aiming to improve the
local optimality problem of the original beam search in a rigorous way. Specifically,
a novel global protocol is proposed based on the attention distribution to stipulate
how a global optimal hypothesis should attend to the source. A global scoring
mechanism is then developed to regulate beam search to generate summaries in
a near-global optimal fashion. This novel design enjoys a distinctive property,
i.e., the global attention distribution could be predicted before inference, enabling
step-wise improvements on the beam search through the global scoring mechanism.
Extensive experiments on nine datasets show that the global (attention)-aware
inference significantly improves state-of-the-art summarization models even using
empirical hyper-parameters. The algorithm is also proven robust as it remains to
generate meaningful texts with corrupted attention distributions. The codes and a
comprehensive set of examples are available.2

1 Introduction

As the barriers exist from the auto-regressive design of neural probabilistic text generators to pre-
dicting the global optimum directly [30], the heuristic algorithm beam search that factorizes global
optimization to multiple local optimizations, has been popularly used for text decoding [24]. In
the original beam search setting, the global optimum is a hypothesis g of the highest probability
among all possible sentences, and consists of words in vocabulary V . Given the global optimum
at step t denoted as g≤t, the local optimums l≤t refer to K candidate sequences with the highest
probabilities at each step. While it is necessary to compromise on the beam size K � V to ensure
text quality [3, 25, 24] and search efficiency, beam search suffers from a major limitation due to
its local property. Concretely, assuming that the global optimal hypothesis is within the K local
optimal hypotheses of the highest probabilities, i.e. p(g≤t) ≥ p(l≤t), for all t until the termination
T , it operates solely with the local information available at each step. In practice, such assumption
may however fail in the case that the probability of the global optimum at step τ < T is less than
those of the local optimums, i.e. p(g≤τ ) < p(l≤τ ), but is adjusted to a higher level in the later steps,
p(g>τ |g≤τ ) > p(l>τ |l≤τ ) and p(g≤τ )p(g>τ |g≤τ ) > p(l≤τ )p(l>τ |l≤τ ). This often leads beam
search to get stuck in the local optimum from step τ onward in generating texts.

∗corresponding author
2https://github.com/yema2018/global_aware
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Figure 1: (a) Attention distribution is composed of the summation of cross attention on the same-
colored lines, distinguished from that of different-colored lines which always equals 1 due to softmax.
(b) Local attention gradually increases as the decoding proceeds. (c) Desired situation: growing local
attention has been lower than global attention during decoding and exactly reaches it at the end.

To cope with this limitation, this study proposes a calibrated beam-based algorithm with global
awareness at all searching steps. Generally, our novel algorithm is implemented in two phases. Before
the beam search (Phase I), the global attention distribution is predicted in order to be included as a
protocol to calibrate beam search at each step, encouraging the generated hypotheses to attend to the
source in a more near-global optimal way. Specifically, the global attention distribution describes
how all reference tokens should assign the attention to each source token (illustrated in Figure 1.a),
which could be predicted from the source by training an attention-prediction model. The training is
fairly straightforward and resembles a sequence tagging task [12], except that the predicted attention
distribution from the source is a regression result. There are several advantages of using the attention
distribution as the global protocol. 1) Attention distributions are sensitive to the decoder input,
suggesting that any input to the decoder leads to a unique attention distribution with fixed model
parameters; 2) attention distributions are accessible for almost all text generation tasks thanks to the
recent advances in attention models [27, 4, 31]; 3) relying on the source only, the global attention
distribution can be predicted before beam search, thus offering a rigorous mechanism to calibrate a
global-aware beam search.

During beam search (Phase II), we develop a novel global scoring mechanism composed of attention
scores and length rewards to guide beam search based on the predicted global attention distribution. As
one main theoretical result, we show that the attention score can be considered as the probability that
generated texts attend to sources in line with the predicted global attention distribution. Specifically,
the generated tokens in each step update the local attention distribution to source tokens dynamically,
where the attention values grow monotonically as the generation proceeds (see Figure 1.b). Since the
desired situation is that the local distribution reaches exactly the global distribution at the terminal
step, we regulate the inference by discouraging local attention from exceeding their corresponding
predicted global attention at all steps.

With regards to the core target to investigate the possible paradigm that improves beam search with
global awareness during decoding, contributions of this study are summarized as follows:

• We argue that the limitation of beam search roots from its defect in finding the global
optimal hypothesis. We improve the algorithm by proposing a global protocol to regulate
beam search step-by-step. This paper is the first to predict and deploy the global attention
distribution to calibrate the inference in a rigorous way, thus returning a hypothesis that
attends to source tokens in a more near-global optimal manner. In contrast, previous
works [37, 7, 20, 29, 21] try to use attention distributions to improve beam search, but ignore
that the global attention distribution is predictable.
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• A novel global scoring mechanism is designed to evaluate the generated sequences at each
step based on the desired situation described in Figure 1.c. As theoretically justified, its
major component can be elegantly integrated into beam search in the form of a probability
so that merely O(K) of the time complexity is increased in each step (see Section § 3.1 for
more details).

• The proposed algorithm with global awareness manifests a robust and plug-and-play property
in enhancing beam search for neural abstractive summarization. Without requiring any
model or parameter modification, the global-aware inference shows excellent performance
in generating meaningful texts, even if the attention distribution is corrupted or not of its
own. Further, it is identified that summaries generated by global-aware inference are both
higher-quality and different from beam search hypotheses (see Global-aware in Table 1).
More interestingly, we find that the generation style of a dataset could be transferred by
the designated global attention distribution. For instance, summaries of higher abstractness
for CNN/DM could be generated by only replacing its global attention distribution with a
highly abstractive distribution during inference, as presented in Global-aware† of Table 1.

• On the empirical side, we show that the proposed global-aware inference can stably and
significantly boost two state-of-the-art summarization models BART [17] and PEGASUS
[39] to produce higher quality summaries on nine datasets, even if only the empirical
hyper-parameters are used.

Table 1: Use BART [17] fine-tuned in CNN/DM to generate summaries. Global-aware uses the
attention distribution learned from CNN/DM, while Global-aware† takes the attention distribution
learned from XSUM.

Beam search President Obama says climate change is a public health issue that affects all of us . Obama: "No challenge poses more
of a public threat than climate change" Obama: "Millions of people would lose their health insurance" if Affordable
Care Act is not upheld . Obama: "I am not anticipating the Supreme Court would make such a bad decision"

Global-aware President Obama says climate change is a public health issue that affects all of us . He says the average American can
do their part to reduce their own carbon footprint . Obama did not appear particularly concerned about the Supreme
Court challenge to the Affordable Care Act .

Global-aware† President Barack Obama says climate change is a public health issue . He says the average American can do their part
to reduce their carbon footprint .

2 Preliminary

The proposed decoding strategy is applied in BART [17] and PEGASUS [39] to perform sum-
marization. BART is a pre-trained seq-to-seq model whose structure essentially follows a vanilla
Transformer encoder-decoder [31]. PEGASUS has a similar structure but is pre-trained on a larger
dataset differently. Notably, the fine-tuned parameters of both models are downloaded from Hugging-
Face Models3 and are fixed in all subsequent operations, where “fine-tuned" means the pre-trained
model has been fine-tuned on a specific dataset.

2.1 Beam Search

Since the decoder of the seq-to-seq model is an auto-regressive model, the probability of a target
sequence y = (y0, · · · , yt, · · · , yT ) can be factorized to the probabilities conditional on the source
x = (x1, · · · , xi, · · · , xn) and y<t = (y0, · · · , yt−1), i.e.,

p(y|x) =

T∏
t=1

p(yt|x,y<t), T ≥ 1 (1)

When T = 0, y = (y0) and p(y0|x) = 1 because y0 is a fixed start token. Beam search [8] is a
decoding strategy to predict a target sequence by maximizing this factorization. Given a vocabulary
set V , at each inference step t, beam search selects a candidate beam set BKt = {bkt }Kk=1 (where each
beam bkt = (bk0 , · · · , bkt ) is a candidate sequence) from an all-possible beam set Bt of size K × |V|,
namely,

Bt =
{
bkt−1 ◦ v | bkt−1 ∈ BKt−1, v ∈ V

}
(2)

3https://huggingface.co/models
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BKt =
{
bkt | bkt = argtopk (log p(bt|x)) , bt ∈ Bt

}
, t ≥ 1 (3)

where argtopk(·) outputs K beams with the highest conditional probability, and ◦ is the concatenation
operation. Besides, BK0 = {bk0}Kk=1 where bk0 is the start token. By Eq. 1, log p(bt|x) is an
accumulated value. Its calculation can be simplified as:

log p(bt|x) =

{
log p(bkt−1|x) + log p(v|x, bkt−1), t ≥ 2

log p(v|x, bk0), t = 1
(4)

where the value of log p(bkt−1|x) is computed from the previous step. Therefore, at each step, we
only need calculate the condition probability of each token in the vocabulary set.

A beam is terminated after it generates an ending token, and the beam set of K terminated beams is
defined as Y . The final hypothesis y∗ is chosen from Y based on the beam probability normalized by
lengtha where a is a hyper-parameter of length [37]:

y∗ = argmax
yk∈Y

log p(yk | x)

(|yk| − 1)a
(5)

where yk = (yk0 , · · · , ykT ). |yk| − 1 is used since the start token is not considered in calculating the
length.

2.2 Attention Distribution

Attention distribution is a continuous vector whose element indicates the degree of attention paid to a
source token. The element is formed by the accumulation of cross attention, i.e.,

∑
t αt,i, where αt,i

refers to the cross attention that the tth token in the target sequence gives to the ith source token.4
Specially, cross attention is a scaled dot-product [31] of hidden states of the source x and the target
sequence y. Notably, since Transformer-decoder is an auto-regressive model, the cross attention
assigned by tth target token is actually calculated by y<t = (y0, · · · , yt−1).

Global Attention Distribution. The global attention distribution g = [g1, · · · , gi, · · · , gn] ∈ Rn is
the attention distribution given by the reference, where global attention gi refers to the total attention
that the reference attends to the ith source token, and n is the source length.

Optimal Length. The summation of g, namely
∑n
i=1 gi, is equal to

∑n
i=1

∑T
t=1 αt,i = T due to∑n

i=1 αt,i = 1 in softmax operation, where T is the reference length, or equivalently the optimal
length Z.

Local Attention Distribution. The local attention distribution lkt = [lkt,1, · · · , lkt,i, · · · , lkt,n] ∈ Rn is
the attention distribution of the kth generated sequence and updated at each decoding step t. Thereinto,
the local attention lkt,i denotes the total attention paid to the ith source token by the kth beam sequence
(bk1 , · · · , bkt ) and is dependent on the sequence generated before t, i.e., bkt−1 = (bk0 , · · · , bkt−1).

3 Proposed Global-aware Inference

3.1 Global Scoring Mechanism

The global scoring mechanism consists of an attention scoring function and a length reward function.
Given the global attention distribution g, the attention scoring function A(·) at the step t depends on
bkt−1,

A(bkt−1) =

∑n
i=1 min(lkt,i, gi)

ζkt
, ζkt =

n∑
i=1

lkt,i, t ≥ 1 (6)

where ζkt indicates the total attention that the generated sequence (bk1 , · · · , bkt ) gives to the source,
and ζkt = |bkt−1| = t because the assignable attention for each generated token is 1. Notably, Eq. 6
attains the maximum score provided that each lt,i ≤ gi. As mentioned in Section § 1, the reason for

4Mean pooling is used for multi-layers and multi-heads
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this design is that we desire the local attention lT,i at the termination is exactly gi, since the final
hypothesis is expected to attend to source tokens in the global-optimal manner. Meanwhile, we have
lT,i > lt,i for t < T because lt,i monotonically increases on t with αlm,i > 0. Therefore, at any
step, the local attention lt,i should not surpass gi. Otherwise, the attention score will decline, and
the penalty depends on the total amount by which these lt,i exceed gi (see Theorem 1). Further,
the attention score could be considered as the proportion of correctly assigned attention to the total
attention given by the generated sequence, where correct assignment indicates that all parts of lt,i
do not exceed gi. Also, it could be interpreted as the correct allocation probability of local attention
against the global attention distribution (see Corollary 1.1). In this case, the total attention score can
be expressed as the same multiplicative form as Eq. 1 to be elegantly integrated into beam search.
Theorem 1. Let M =

{
s : lkt,s > gs

}
and ∆k

t =
{
δ | ∀s ∈M, δ = lkt,s − gs

}
. Given ∆ =∑

δ∈∆k
t
δ where ∆ ≥ 0, then A(bkt−1) decreases as ∆ increases.

Corollary 1.1. The bound of A(bkt−1) is between 0 and 1.

Proof. See App. A.

In addition to the constraint for lt,i, we still desire lT,i = gi for each token. An ideal hypothesis
should have two characteristics simultaneously. Namely, its attention score at the termination is
the maximum 1, and its length equals the optimal length. Therefore, we introduce a length reward
function to cooperate with the attention score to penalize the situation lT,i 6= gi, which will be
discussed at the end of this subsection.

As mentioned before, the total attention score at the decoding step t is defined as:

A(bkt−1) =

t∏
m=1

A(bkm−1) (7)

Thus, the joint scoring function J(·) is modified from Eq. 4:
J(bt,x) = log p(bkt−1|x) + β logA(bkt−1) + log p(v|x, bkt−1)

=

t−1∑
m=1

(
log p(bm|x, (bkt−1)<m) + β logA(bkm−1)

)
+ log p(v|x, bkt−1) + β logA(bkt−1)

= J(bkt−1,x) + log p(v|x, bkt−1) + β logA(bkt−1), t ≥ 2
(8)

and J(b1,x) = log p(v|x, bk0) + β logA(bk0), where β is a hyper-parameter to trade-off between
the probability and attention score. Similar to log p(bt|x) in Eq. 4, J(bt,x) is also an accumulative
score. Consequently, at each step t, we only need compute p(v|x, bkt−1) and A(bkt−1). Compared
with Eq. 4, the time complexity of each step is only increased by O(K) as there are K attention
scores. Replacing log p(bt|x) in Eq. 3 by J(bt,x), we can select the top K beams of each decoding
step according to not only the probability distribution conditional on local information bkt−1 but also
the score conditional on global information g.

Considering the length reward function, the final hypothesis is thus defined as:

y∗ = argmax
yk∈Y

(
J(yk,x)

|yk| − 1
+ βγR(ζkT , Z)

)
(9)

where R(·) is the length reward function dependent on the optimal length Z and the candidate
hypothesis length ζkT . Exactly, ζkT is the total attention that a candidate hypothesis (yk1 , · · · , ykT ) pays
to the source and equals |yk| − 1. Besides, the attention score and length reward are weighted by
a hyper-parameter γ, and the role of β is to ensure that the two are at the same level relative to the
probability. We remove a in Eq. 5 as it only adjusts the length preference without really controlling
the length.

The design of R(·) could be straightforward – one only need ensure that it increases as ζkT approaches
Z, and reaches the maximum only at ζkT = Z. In this paper, we design a step-wise length reward
functionR(ζkt , Z) to better balance the relationship between the attention score and the length reward
and make the whole searching process as succinct as beam search. We put the design details of
the step-wise length reward in App. B, and we regard Eq. 9 as the general scoring formulation of
global-aware inference.
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3.2 Predict the Global Attention Distribution

Since the reference is unknown practically, the global attention distribution could only be predicted
from the source. We construct an attention-prediction model to learn the relationship between the
source tokens and the global attention distribution.

The input of the attention-prediction model is the fixed encoder output E ∈ Rn×d of BART or
PEGASUS plus learnable positional encodings P ∈ Rn×d, where d is the dimension of hidden
states. The input is fed to a learnable Transformer-encoder to obtain Ẽ ∈ Rn×d that is encoded with
additional context information, followed by a linear transformation with an exponential function:

ĝ = exp
(
ẼWg + bg

)
(10)

where ĝ ∈ Rn refers to the prediction of g, Wg ∈ Rd×1 and bg ∈ Rn are the learnable weights and
biases. The exponential function is imposed to ensure ĝ > 0. We choose the exponential function
for this operation because it is shown stable in the training and testing stage. Given the objective of
minimizing the distance between ĝ and g, the loss is defined as their Euclidean distance:

L = ‖ĝ − g‖2 (11)

The predicted optimal length Ẑ is the sum of elements in ĝ. Note that the length reward function is
not affected no matter whether Ẑ is an integer or not.

4 Experiment

4.1 Setup

Datasets. We evaluate the performance on totally 9 summarization datasets, where 2 datasets
(CNN/DM [10], XSUM [5]) with BART [17] and 8 datasets (XSUM [5], BillSum [15], Multi-News
[6], NewsRoom [9], WikiHow [16], Reddit TIFU [34], arXiv and PubMed [2]) with PEGASUS [39].
Thereinto, XSUM [5] is a highly abstractive dataset whose summaries are all expressed in a short
sentence.

Implementation Details. We adopt a randomly initialized 2-layer transformer-encoder in the
attention-prediction model wherethe structure of each layer is the same as the BART-encoder layer.
The optimizer is the Adabelief-optimizer [41] with eps 1e − 16, betas (0.9, 0.999), weight decay
1e − 4 and learning rate 2e − 5. The attention-prediction model is trained on the training set for
about 50, 000 steps, and checkpoints are saved per 10, 000 steps to select the best checkpoints on the
development set. Since the attention prediction is slightly different from common sequence tagging
tasks, we have summarized two notable points after several attempts – the dropout rate should be 0,
and a small learning rate is preferred. All experiments are conducted on 3 RTX 6000. We include
the global-aware inference in the generation code of HuggingFace transformers [36]. At the time of
evaluation, ROUGE-1, ROUGE-2 & ROUGE-L (R-1, R-2 & R-L) scores [22] are computed from the
ROUGE code5 used by BART [17].

Hyper-parameter Selection. Although the global-aware inference requires two new hyper-
parameters γ and β, some original hyper-parameters of beam search, namely length penalty, minimum
and maximum length, are omitted. The searching scopes of β and γ are in {2, 4, 6, 10, 12, 15, 18, 20}
and {0, 0.5, 1, 1.5, 2}, respectively. According to the numerical tests on the development set, we
finally choose β = 12, γ = 1.5 for CNN/DM and β = 4, γ = 0 for XSUM. As limited improvement
could be observed from larger γ’s, we recommend γ = 1 for normal or longer targets. When testing
the global-aware inference with PEGASUS [39], we directly use empirical hyper-parameters for
each dataset, namely β = 4, γ = 0 for XSUM and β = 12, γ = 1 for other 7 datasets. The beam
size K follows the setups in BART [17] and PEGASUS [39].

4.2 Results

Comparison with Beam Search. Beam search is a hard-to-beat baseline which has stood the test of
time and proven its superiority in practice for long [24]. In Table 2, we compare our global-aware

5https://github.com/pltrdy/files2rouge
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Table 2: ROUGE F1 scores of summaries generated by global-aware, in comparison to beam search
with length regularizations. Notably, global-aware uses empirical hyper-parameters.

XSUM BillSum Multi-News WikiHow
K = 8 R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Beam search [39] 47.05 24.53 39.33 57.00 39.65 52.70 47.29 18.91 43.31 41.86 19.04 40.40
Global-aware 47.33 24.66 39.50 58.66 40.12 53.96 47.95 19.08 43.93 42.82 19.68 41.43

Reddit TIFU NewsRoom PubMed arXiv
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Beam search [39] 27.55 8.67 22.12 42.05 29.88 38.70 44.25 19.19 41.11 43.82 16.75 39.28
Global-aware 28.31 9.13 23.30 44.68 31.71 41.28 45.78 20.16 42.62 44.92 17.41 40.31

inference to beam search with length regularizations (i.e., α in Eq. 5, accompanied with two hard
constraints, namely minimum length and maximum length). We strictly follow the hyper-parameter
setups of PEGASUS [39] in terms of beam search, while we only adopt empirical hyper-parameters
for our method. Even so, significant improvements can be observed on all the data sets, especially
when the summary is of normal or longer length.

Table 3: Comparison with other methods.

CNN/DM
K = 4 R-1 R-2 R-L

Beam search [17] 44.12 21.21 40.89
+ Our coverage 44.74 21.69 41.48
+ Repetition penalty [13] 44.11 21.14 40.87
+ Attention masking [1] 45.54 22.24 42.44

Global-aware 45.13 21.77 42.04

XSUM
K = 6 R-1 R-2 R-L

Beam search [17] 45.38 22.32 37.15
+ Our coverage 44.54 21.82 36.97
+ Repetition penalty [13] 45.40 22.31 37.13
+ Attention masking [1] 45.35 22.31 37.15

Global-aware 45.57 22.60 37.61

Table 4: ORACLE and ablation results.

CNN/DM
R-1 R-2 R-L

ORACLE global-aware 51.85 28.13 48.68
-w/o length reward 50.46 27.53 47.43

Global-aware 45.13 21.77 42.04
-w/o length reward 44.39 21.58 41.41
-w/o attention score 44.12 21.29 40.91

XSUM
R-1 R-2 R-L

ORACLE global-aware 49.50 26.24 41.13
-w/o length reward 48.92 26.48 41.45

Global-aware (γ = 1) 45.44 22.15 37.11
-w/o length reward 45.57 22.60 37.61
-w/o attention score 45.23 21.88 36.73

Table 5: Improvements of attention head masking and global-aware on beam search [39] in terms of
ROUGE-L F1 score. Both use empirical setups.

XSUM BillSum Multi-News WikiHow Reddit NewsRoom PubMed arXiv

Attention head masking [1] -0.31 0.23 0.34 0.10 -0.16 1.24 0.35 0.21
Global-aware 0.17 1.26 0.62 1.03 1.18 2.58 1.51 1.03

Comparison with Other Attention Approaches. In this part, we focus on comparing other ap-
proaches which also exploit certain attention distributions to improve beam search. The first is
the coverage penalty [37, 21]. To enhance its performance in summarization, we replace its pre-
set attention distribution with our predicted global attention distribution. Note that the coverage
function can only evaluate the generated sentences at the terminal step. Instead of comparing the
global-aware inference to the methods [29, 20, 7] that aim to reduce repetition using the dynamic
attention distribution, we compare our algorithm with the CTRL repetition penalty [13] which has
similar motivation but is more systematical and independent of training. Table 3 lists the comparison
results against different algorithms. It can be observed that our global-aware approach can improve
the performance of beam search stably and fundamentally. We also observe that the attention head
masking [1] appears to outperform the global-aware approach on CNN/DM, but it fails to gain any
improvement on XSUM. To further show the advantage of the proposed approach, we will take a
closer examination on the attention head masking [1] and our proposed approach in the next part.

Further Comparison with Attention Head Masking. First, one should bear in mind that the
attention head masking [1] acts on the model instead of beam search, which is opposite to us.
Specifically, it selects contents during decoding by disabling partial attention heads for unimportant
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Table 6: Generate CNN/DM summaries with
XSUM’s style.

R1/R2/RL Shorter beam search Global-aware†

F1 score 43.6/20.9/40.4 43.6/20.4/40.6
Recall 48.9/23.4/45.2 40.4/18.8/37.6
Precision 41.4/19.9/38.3 50.5/23.8/47.0

Table 7: Generate summaries with corrupted
attention distributions.

R-1 R-2 R-L

Beam search 27.00 12.21 23.88
Global-aware (10K) 28.78 12.82 25.51
Global-aware (100K) 29.59 13.72 26.30

Figure 2: Sensitive analysis in the test set.

2 4 6 10 12 15 18 20
40.5

41

41.5

42

R
-L

 f1
 s

co
re

s

CNN/DM, =1

global-aware
beam search

0 0.5 1 1.5 2
40.5

41

41.5

42

R
-L

 f1
 s

co
re

s

CNN/DM, =12

2 4 6 10 12 15 18 20
37

37.2

37.4

37.6

R
-L

 f1
 s

co
re

s

XSUM, =0

0 0.5 1 1.5 2
37

37.2

37.4

37.6

R
-L

 f1
 s

co
re

s

XSUM, =4

tokens to decrease the attention to these tokens. According to the reported results presented in Table
3, we can see that although attention masking achieves amazing results on CNN/DM, it does fail
completely on XSUM. Since hiding unimportant tokens from some heads results in the loss of context
information of salient tokens, this would lead to its instability. Thus, it could be ineffective for tasks
that require contextual information of the whole source such as XSUM. Taking a further comparison,
we deploy the attention head combinations selected for CNN/DM and XSUM to examine its effect
on PEGASUS [39]. These comparison results are shown in Table 5. Evidently, our method enjoys
a robust feature that is able to boost summary inference on various datasets and models even with
the same set of hyper-parameters. In contrast, attention masking [1] behaves much sensitive to the
changes of models and datasets. Besides, attention masking has to construct its training saliency
labels based on the longest common subsequences between a reference summary and the source.
This may be hardly achieved in some text generation tasks (e.g. translation) where no common
subsequence exists at all. Such drawback presents one main limitation for attention masking.

ORACLE Results and Ablation Study. ORACLE refers to the global-aware inference combined
with (true) global attention distribution instead of predicted global attention distribution. The related
results have been presented in Table 4, and the significant boosting certifies that the proposed method
could improve beam search with the global attention distribution. On the other hand, we conduct
ablation experiments on ORACLE and global-aware. Both results indicate that length reward plays
an important role in generating normal-length text but causes adverse effect on generating text of
very short length. Besides, the performance declines significantly when only length reward is applied,
due to the fact that sole length reward cannot calibrate beam search step-wise.

Robustness. We intend to examine the robustness of our proposed global-aware algorithm in this
and next part. To do so, we substitute the parameters in CNN/DM’s attention prediction model to
XSUM’s to create more abstractive summaries for CNN/DM. For comparison, we set the minimum
length of beam search as 0 to allow it to generate shorter summaries. Table 6 shows the F1 score,
recall and precision of the shorter beam search and global-aware†. It is surprising that even by using
the attention distribution from a different dataset with distinct properties, the proposed global-aware
mechanism still manages to generate meaningful summaries with competitive F1 scores, proving the
robustness of this algorithm. Moreover, the higher Precision and lower Recall of the global-aware
suggest that although information is partially lost, the algorithm still summarizes core information in a
concise format, compared to the standard beam search. On the other hand, we exploit a BART model
fine-tuned on CNN/DM to generate summaries of NewsRoom directly, and the ROUGE scores of
beam search are shown in Table 7. Next, we randomly select 10K and 100K samples from the training
set and use them to fine-tune the attention-prediction model, where the global-aware improves beam
search substantially. The experiment once again validates the robustness of the proposed inference
algorithm, as it maintains a reasonably good performance even from learning a corrupted attention
distribution from a BART without fine-tuning.

Sensitive Analysis. We further examine the performance robustness with respect to the hyper-
parameters. From Figure 2, we could see the global-aware inference is always better than beam
search in CNN/DM, no matter how its hyper-parameters change. Besides, the performance is less
sensitive to the hyper-parameters when β ≥ 10 or γ ≥ 1. While in XSUM, the global-aware could
improve beam search stably with γ = 0, but there is a significant decline when applying length
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Figure 3: Predicted and ORACLE global attention in BART. There are attention distributions of (a)
the whole source, (b) the source without the start & end tokens, (c) the source without the start & end
tokens and full stops.
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Figure 4: Changes of the attention distribution when (a) one word in the reference is replaced by a
similar word (s1) and a random word (s2), (b) the sentence order of the reference is shuffled, (c) a
factual knowledge in the reference is distorted.

reward. In fact, the attention score favors shorter hypotheses, and the length reward could alleviate
the bias. However, if the references of a dataset are already very short such as XSUM, the length
reward may lead to a counterproductive effect. Since the setup of CNN/DM is applicable to most
datasets, we argue that the global-aware inference is robust to both hyper-parameters in most cases.

5 Analysis on Global Attention Distribution

5.1 Distribution Law

The distribution law of global attention in BART [17] is shown in Figure 3. It is observed that most
attention is assigned to the start token and full stops which are not semantically salient, and most
of the remaining attention is unevenly allocated to (semantically) overlapped tokens between the
source and the reference (i.e., important words). It is worth mentioning that the importance here is no
longer a simple binary classification like in [7, 1], but a continuous numerical value decided by the
model knowledge learned from data. In general, one should not simply equate the global attention
with the word importance, but should be clear that it essentially reflects knowledge learned by the
attention model such as the syntactic and semantic structure of sentences. Meanwhile, the distribution
law indicates that attention distributions in pre-trained models may not be relevant with the uniform
distribution at all. That is to say, it is not reasonable to still use an uniform attention threshold (like
the threshold 1 preset in [37, 7]) to regulate the decoding of pre-trained models. Last but not least, our
general motivation is to alleviate locality bias by aligning the attention distribution of reference and
hypothesis, which does not really care how the global attention is distributed only if it is predictable.
However, the proposed penalty mechanism is indeed insensitive to some distributions, and we will
provide more thinking about this in App. G by applying the global-aware inference to translation.

5.2 Why It can be Predicted from Source?

Since the ORACLE experiments indicated that the global attention is helpful for decoding, the
concern remains if it is predictable using only source. In App. E.1 we will show the predictability
empirically, while here we just provide an interesting explanation. In our opinion, the global attention
distribution is an interpretable representation of reference which not only has the characteristics of
hidden representation but also can be explained by the source tokens. First of all, given the source,
the global attention is calculated by the input reference and trained neural network parameters;
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this is similar to achieving hidden representation. Moreover, like hidden representation, the global
attention distribution could also capture the semantic similarity, e.g., replacing a reference word
with a semantically similar word leads to slighter attention changes than that with a random word
(see Figure 4.a). Besides, it is observed from Figure 4.b and Figure 4.c that global attention is
able to represent the sentence order and factual knowledge. On the other hand, the global attention
distribution enjoys a distinct characteristic that each of its features can be explained as the degree of
attention paid to a source token, which means changes of such representation are regular to some
extent. For example, in Figure 4.c, we distort a numerical number in the reference to violate the
fact stated in the source, and then find that the attention assigned to the actual number originally is
most transferred to the special tokens and punctuation. Overall, similar sources should have similar
global attention distributions, since similar sources often have similar references and global attention
distribution is a representation of reference. Moreover, the global attention and source tokens are in
an one-to-one correspondence. Thereby, we argue that it is convenient to use the source to predict the
global attention distribution.

6 Related Work

In the field of text generation, efforts have been made to boost beam search with regards to the
attention distribution. For instance, some studies engage the attention distribution to penalize the
situation where sources fail to be fully covered in translation tasks [37, 21], while others [7, 29, 20]
incorporate dynamic attention distributions to evade tokens that have been highly regarded to reduce
repetition. However, none of the aforementioned studies attempts to apply the global attention
distribution to acquire the knowledge that the level of attention should be allocated to each token
from the reference. Further, the existing score functions used by those studies are rather different
from the proposed global scoring mechanism. More details can be seen in App. D.

In addition to the attention distribution, other techniques are developed to improve beam search in
terms of length bias [38], diversity-less [32], vapidity [11] and degradation [25, 3]. These methods
are not included for comparison because they are not suitable for summarization [38, 11], or do not
aim to enhance beam search as the main purpose [32, 25, 3]. Besides, we argue that these patches
to beam search are supposed to be hard for improving the performance stably and fundamentally
(as shown in Table 3 given by our global-aware method) because they fail to specify what a final
hypothesis should look like and are easy to trap into local optimums.

7 Conclusion

Beam search tends to fall into local optimums due to the lack of global information during inference.
To calibrate beam search on the premise of global awareness, this study proposes a predictable
protocol to stipulate how a global optimal hypothesis should attend to source tokens. By training a
simple prediction model of the global attention distribution, a novel global scoring mechanism is then
developed to regulate the inference on a step-wise basis. Our experiment shows that the proposed
global-aware beam search generates higher-quality summaries, relative to beam search and other
counterparts of the similar nature. Besides, the proposed algorithm is proven robust in generating
meaningful texts even with corrupted attention distributions, implying its potential to cooperate with
user-defined global attention distributions. We plan to focus our future study on generalizing the
global-aware inference to a broader range of text generation tasks, including not only text2text but
also image caption [33], multimodal summarization [19], graph2text [14] and data2text [26].
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