
An Efficient Matrix Multiplication Algorithm for Accelerating Inference in
Binary and Ternary Neural Networks

Mohsen Dehghankar 1 Mahdi Erfanian 1 Abolfazl Asudeh 1

Abstract
Despite their tremendous success and versatility,
Deep Neural Networks (DNNs) such as Large
Language Models (LLMs) suffer from inference
inefficiency and rely on advanced computational
infrastructure. To address these challenges and
make these models more accessible and cost-
effective, in this paper, we propose algorithms to
improve the inference time and memory efficiency
of DNNs with binary and ternary weight matrices.
Particularly focusing on matrix multiplication as
the bottleneck operation of inference, we observe
that, once trained, the weight matrices of a model
no longer change. This allows us to preprocess
these matrices and create indices that help reduce
the storage requirements by a logarithmic factor
while enabling our efficient inference algorithms.
Specifically, for a n× n weight matrix, our effi-
cient algorithm guarantees a time complexity of
O(n2

logn), a logarithmic factor improvement over
the standard vector-matrix multiplication. Besides
theoretical analysis, we conduct extensive exper-
iments to evaluate the practical efficiency of our
algorithms. Our results confirm the superiority
of our approach both with respect to time and
memory, as we observed a reduction in the mul-
tiplication time up to 29x and memory usage up
to 6x. When applied to LLMs, our experiments
show up to a 5.24x speedup in the inference time.

1. Introduction
Deep Neural Networks (DNNs) such as Large Language
Models (LLMs) have achieved remarkable success and
demonstrated versatility across a wide range of domains, yet
they encounter significant challenges related to inference in-

1Department of Computer Science, University of Illinois
Chicago, Chicago, USA. Correspondence to: Mohsen Dehghankar
<mdehgh2@uic.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

efficiency. These models demand substantial computational
resources, including specialized, costly GPUs with ample
memory to achieve real-time inference. This inefficiency
leads to slower response times, elevated energy consump-
tion, higher operational expenses, and, particularly, limited
accessibility for everyday users who lack access to advanced
computational infrastructure. For instance, current deploy-
ments of LLMs on typical consumer devices rely predom-
inantly on API calls to powerful, remote servers (OpenAI,
2024; AI21 Labs, 2024; Hu et al., 2021; Hugging Face,
2023). While this approach enables users to leverage LLMs
without needing advanced hardware, it introduces additional
costs and delays due to network dependency, along with po-
tential privacy concerns stemming from data transmitted to
and processed by external servers (Yao et al., 2024; Pearce
et al., 2023; Das et al., 2024; Finlayson et al., 2024).

Consequently, optimizing inference time and memory effi-
ciency on standard, widely available hardware has become
essential to make DNNs more practical and accessible for
broader, real-world applications.

To that end, recent efforts have focused on quantizing the
weights of DNNs, to enhance their computational efficiency
and reduce energy consumption (Moons et al., 2017; Hubara
et al., 2018; Wang et al., 2023; Chen et al., 2024; Ma et al.,
2024). For example, limiting the weights to ternary values
{−1, 0, 1} in 1.58-bit LLMs has demonstrated to preserve
accuracy comparable to that of general LLMs, thereby of-
fering a more effective alternative for inference tasks (Ma
et al., 2024).1

Expanding on recent advancements of DNNs with binary
and ternary weights, in this paper, we propose algorithms
that improve their inference time and memory efficiency.
Our approach makes deploying these models viable on a
broader range of devices, including those with limited com-
putational power, ultimately making these tools more widely
accessible and cost-effective.

Specifically, while viewing the inference process as se-
quences of multiplying activation vectors to weight matrices,
we make a critical observation: once the model is trained,
the weight matrices remain fixed and do not change.

1Related Work is further discussed in Appendix B.

1

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

Following this observation, while focusing on matrix mul-
tiplication as the bottleneck operation, we preprocess the
weight matrices of the trained model and create indices that
enable efficient multiplication during the inference time.
At a high level, our indices are bucketized permutation
lists. Interestingly, by replacing each weight matrix with
its preprocessed indices, our approach reduces the space
complexity of storing the weights by a logarithmic factor.

We propose two algorithms for efficient multiplication of
input vectors to the preprocessed weight matrices. When
the weight matrices are ternary, our algorithms first trans-
form those into pairs of binary matrices. Next, each binary
matrix is partitioned into a set of column blocks. Then,
permuting the rows based on a lexical order, we compute
a set of aggregate values that contribute to different ele-
ments of the result vector. This process guarantees a time
complexity of O(n2

log(n)−log log(n)) for n × n matrices in
our first algorithm. Furthermore, introducing an efficient
approach for writing the aggregate values in the result vec-
tor, our second algorithm improves the time complexity to
O(n2

log(n)). The run-time of our algorithms further improves
by fine-tuning their blocking parameter. Many widely used
advanced DNNs are characterized by weight matrices of
substantial sizes. For instance, the matrix size of GPT-3
is 12,288 (≈ 213) (Tsai, 2020; Tech, 2023; Brown, 2020),
and this value is even greater for GPT-4. Consequently,
achieving even a logarithmic factor improvement can have
a significant impact.

In addition to theoretical analysis, we perform rigorous
experiments to evaluate the time and memory of our algo-
rithms in practice. Confirming our theoretical findings, our
experiments demonstrate the superiority of algorithms over
the standard O(n2) multiplications approach. In particu-
lar, Our algorithms achieved up to a 29x reduction in
inference time and a 6x reduction in memory usage for
vector-matrix multiplication. When applied to 1.58-bit
LLMs, the inference speedup is up to 5.24x.

1.1. Paper Organization and Summary of Contribution

• Section 2: We formalize the vector-ternary-matrix mul-
tiplication problem and demonstrate its reduction to the
vector-binary-matrix multiplication problem.

• Section 3: Given the weight matrices of a trained model,
we preprocess them and construct indices that enable the
development of our efficient algorithms while reducing
the memory requirements by a logarithmic factor.

• Section 4: We introduce the RSR algorithm with a time
complexity of O

(
n2

log(n)−log(log(n))

)
for vector-binary-

matrix multiplication for n by n matrices. We further op-
timize this algorithm and introduce RSR++ that achieves
a faster running time of O(n2

log(n)).

We explain the generalization of our algorithms beyond
binary and ternary settings in Section 4.4 and discuss
parallelization in Appendix C.1.

• Sections 5: We conduct various experiments to demon-
strate the applicability of our algorithms for matrix multi-
plication using different implementation configurations.
We show that we can achieve up to 29x faster run time
and 6x less space usage on matrix multiplication. We also
conduct experiments on 1.58-bit LLMs. We discuss our
approach’s advantages and limitations in Appendix D.

2. Preliminaries
We consider the quantized DNNs with binary and ternary
weights. The computation bottleneck of the inference pro-
cess is a sequence of activation vector to weight matrix
multiplications – the primary focus of our work. 2 In this
section, we formally build the necessary notations, followed
by our problem formulation. To simplify the explanations,
we use ternary weights as a generalization of the binary
weights. As a result, all of our algorithms are readily appli-
cable to DNNs with either binary or ternary weights.

2.1. Notation

We denote vectors by v⃗ and use capital letters to refer to
matrices. For example, A ∈ En×m is a matrix of size n×m
with elements belonging to a set of permissible values, E.
Specifically, if E = {0, 1} (resp. E = {−1, 0, 1}), then
A ∈ En×m is denoted as a binary (resp. ternary) matrix.

Let Σn denote the set of all bijective permutation functions
σ : {1, 2, . . . , n} → {1, 2, . . . , n}. For a vector v⃗, the
permuted vector under σ is represented as πσ(v⃗), where
each element is repositioned such that πσ(v⃗)[i] = v⃗[σ(i)],
moving the element σ(i) in v⃗ to position i of the permuted
vector. We extend πσ to matrices by permuting their rows.
When σ is clear by the context, we may simplify πσ to π.
Let LN

n denote the set of all ordered lists of length n with
entries in N, and let LN

≤n represent the set of sorted lists
with length at most n. We use A[:, j] to indicate the j-th
column of a matrix A. Similarly, we use A[i, :] to refer to
the i-th row the matrix A and A[i, j] to indicate an element.

2.2. Problem Formulation

Given a vector v⃗ ∈ Rn and a ternary matrix A ∈
{−1, 0, 1}n×n, our objective is to efficiently compute the
product (v⃗ · A).3 In this setting, the vector v⃗ serves as the
activation output from the previous layer of the neural net-
work, and A is the weight matrix (See Figures 7 and 8 in

2Please refer to Appendix A for a background review.
3While all our algorithms and definitions are designed for any

n×m matrix, to simplify our complexity analysis, we assume A
is a square matrix.

2

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

Appendix A). Note that, while the vector v⃗ is provided at in-
ference time, weight matrices are fixed during the inference
time.

Here, we focus on a single multiplication instance and aim
to accelerate this operation beyond the quadratic time com-
plexity of the standard vector-matrix multiplication.
Problem 1 (Vector-Ternary-Matrix Product). Given an
input vector v⃗ ∈ Rn and a pre-defined ternary matrix A ∈
{−1, 0, 1}n×n, compute the product v⃗ ·A.

2.3. Solution Overview

Initially, we use the following proposition to reduce our
problem into a Vector-Binary-Matrix product.

Proposition 2.1. Any ternary matrix A can be expressed as
A = B(1) − B(2), where B(1) and B(2) are the following
binary matrices:

B(1)[i, j] =

{
0 if A[i, j] ∈ {−1, 0},
1 if A[i, j] = 1

(1)

B(2)[i, j] =

{
0 if A[i, j] ∈ {0, 1},
1 if A[i, j] = −1

Therefore, we focus on solving the following problem.
Problem 2 (Vector-Binary-Matrix Product). Given an
input vector v⃗ ∈ Rn and a pre-defined binary matrix B ∈
{0, 1}n×n, compute the product v⃗ ·B.

Following Proposition 2.1, any guarantees established for
Problem 2 equivalently apply to Problem 1 by a constant
factor. We introduce two algorithms to efficiently solves
Problem 2 (hence Problem 1): (1) Redundant Segment
Reduction (RSR) and (2) RSR++.

Figure 1 provides an overview of our approach. Our al-
gorithms identify and reuse redundant computations, by
first preprocessing the weight matrices and constructing es-
sential data structures utilized during inference time. The
preprocessing phase is explained in Section 3. Subsequently,
in Section 4, we describe the inference-time operations, il-
lustrating how our algorithms accelerate the multiplication
process, reducing the quadratic complexity of the standard
vector-matrix-multiplication by a logarithmic factor.

3. Preprocessing: Index Construction
In this section, we outline the preprocessing phase of our
approach, during which we construct the essential data struc-
tures for the matrix B in Problem 2. These structures are
designed to optimize and accelerate the multiplication pro-
cess during the inference time (explained in Section 4).

Given a ternary matrix A = W i, representing the weights
between two layers of a ternary NN, we first present it as the
subtraction of two binary matrices A = B(1) −B(2), as de-
scribed in Proposition 2.1. Let B be either B(1) or B(2). At
a high level, during the preprocessing time, we partition the
columns of B into a set of column blocks, associating each
block a row-permutation as its index to identify the longest
common segments across the columns. This permutation is
used later at the inference time for efficient vector-to-matrix
multiplication.

The space complexity for representing a matrix B is O(n2).
Interestingly, as we shall explain in Section 3.4.1, the space
complexity of our indices is O(n2

logn), reducing a logarith-
mic factor in the space required for representing B.

3.1. Step 1: Column Blocking

The first step of our preprocessing is Column Blocking – the
process of partitioning consecutive columns of the origi-
nal binary matrix B to construct a set of smaller, compact
matrices, each representing a distinct block of columns.

Definition 3.1 (k-Column Block). Let B ∈ Rn×n and
i ∈ {1, 2, · · · , ⌈nk ⌉}. We define B

[k]
i as an n × k matrix

containing columns (i− 1) · k + 1 to through min(i · k, n).
This construction yields a series of submatrices B

[k]
i that

partition B into ⌈nk ⌉ contiguous column blocks. Each B
[k]
i

is called a k-Column Block of B.4

For example, consider the following binary matrix,

B =


0 1 1 1 0 1
0 0 0 1 1 1
0 1 1 1 1 0
1 1 0 0 1 0
0 0 1 1 0 1
0 0 0 0 1 0


The set of 2-Column Blocks of B are as follows:

B
[2]
1 =


0 1
0 0
0 1
1 1
0 0
0 0

 , B
[2]
2 =


1 1
0 1
1 1
0 1
1 0
0 1

 , B
[2]
3 =


0 1
1 1
1 0
1 0
0 1
1 0



When k is clear by the context, we use Bi instead of B[k]
i to

denote the i-th block.
4This definition can be extended to any B ∈ Rm×n.

3

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

Figure 1: A visualization of the Redundant Segment Reduction method. The calculation of v⃗ ·B. In this example, k = 2.

3.2. Step 2: Row Permutation

The next step after column blocking is binary row ordering,
where the rows of each column block are sorted according
to a lexicographic order.

Definition 3.2 (Binary Row Order). Let Bi ∈ Rn×k be a bi-
nary matrix. For each row Bi[r, :], let Bi[r, :]2 be the corre-
sponding binary value of concatenating Bi[r, 1] · · ·Bi[r, k].
For example, if Bi[r, :] = [1, 0, 1, 1], then Bi[r, :]2 =
(1011)2. The Binary Row Order of Bi, denoted as πσBi

,
is defined as a permutation on Bi, such that the rows
of πσBi

(Bi) are sorted based on their corresponding bi-
nary value in ascending order. That is, ∀r ̸= s ≤ n,
if Bi[r, :]2 < Bi[s, :]2, then σBi

(r) < σBi
(s). We call

πσBi
(Bi) as the Binary Row Order of Bi.5

To further clarify the Binary Row Order, let us consider
Example 3.3.
Example 3.3. Let Bi be a block with two columns. The
permutation function σBi

= ⟨2, 5, 6, 1, 3, 4⟩6 provides a
Binary Row Order πσBi

(Bi) of the matrix Bi.

Bi =


0 1
0 0
0 1
1 1
0 0
0 0

 =⇒ πσBi
(Bi) =


0 0
0 0
0 0
0 1
0 1
1 1

 (2)

The right expression results from 002 < 012 < 112.

5In general, any binary matrix following this lexicographic
order is called Binary Row Ordered matrix in this paper.

6σBi(j) is the j-th value in σBi . For example, σBi(2) = 5.

We define Bin[k] as a binary 2k×k matrix which has exactly
one row for each binary value from 0 to 2k − 1, and it is
also Binary Row Ordered. For example,

Bin[1] =

[
0
1

]
, Bin[2] =


0 0
0 1
1 0
1 1

 , Bin[3] =



0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


3.3. Step 3: Segmentation

Next, we segment each binary row ordered matrix (the sorted
column blocks) into groups of rows with the same binary
value representation, enabling further matrix compaction.

Definition 3.4 (Segmentation List). Given a Binary Row
Ordered matrix B of size n× k, the function S(B) returns
the list of the boundary indices, specifying the ranges of
rows with the same binary value representations.

For example, the segmentation on a column block Bi is
defined as S(πσBi

(Bi)). For simplicity, we denote this seg-
mentation as S(Bi). Specifically, let ℓ = S(Bi)[j]. Then,
all rows in range

[
ℓ,S(Bi)[j + 1]

)
, have the binary value

representation Bi[ℓ, :]2. Note that min{2k, n} provides an
upper bound on the size of S(Bi).

Consider the Binary Row Ordered matrix πσBi
(Bi) shown

in Example 3.3. The Segmentation list of this matrix is
[1, 4, 6] because the first row is the beginning of 00 rows.
Then, 01 starts from index 4, and 11 starts at index 6.

4

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

Row Binary Value 00 01 10 11
Start Index 1 4 6 6

Figure 2: The Full Segmentation of Example 3.3. There is
no starting index for row 10, so we skip it by using the same
start index of next available value. The Full Segmentation
list is the second row of the table.

Algorithm 1 Preprocess
1: Input: binary matrix B, and a parameter k
2: Output: permutations σBi

and segmentations Li =
S(Bi)

3: Create k-Column blocks Bi ▷ Blocking
4: for each block Bi do
5: σBi ← Binary Row Order of Bi ▷ Permutation
6: Li ← Segments of πσBi

(Bi) ▷ Segmentation
7: end for
8: Return: {σBi

| ∀i} and {Li | ∀i}

For a Binary Row Ordered matrix of dimensions n× k, we
extend this concept to define Full Segmentation as the list
of exactly 2k elements, where the jth element of the list
indicates the first index of a row that has the binary value
j. For example, the Full Segmentation of matrix πσBi

(Bi)
in Example 3.3 is [1, 4, 6, 6]. Since there are no rows for
10, the same boundary is assigned for the next value. See
Figure 2 for an illustration.

From now on, we use the same notation S to denote the Full
Segmentation for a Binary Row Ordered matrix.

Proposition 3.5. For a binary matrix Bi ∈ {0, 1}n×k and
j < 2k, S(Bi)[j + 1] − S(Bi)[j] represents the number
of rows in Bi whose binary value corresponds to j. The
number of rows for j = 2k is n+ 1− S(Bi)[j].

Given the Full Segmentation of a Binary Row Ordered ma-
trix, a compact representation of the matrix can be obtained
by retaining only the first indices of each unique row value
in the segmentation list. In the following sections, for sim-
plicity, we use Li instead of S(Bi) to show the Full Seg-
mentation of the permuted Column Block Bi.

3.4. Preprocessing Algorithm

Putting all three steps together, the preprocessing algorithm
is described in Algorithm 1. The algorithm starts by select-
ing a parameter k such that k ≤ log2(n). Next, it computes
the k-Column Blocks of B. Hereafter, we denote these
blocks as Bi rather than B

[k]
i for i ≤ ⌈nk ⌉. For each Bi,

the algorithm proceeds to calculate both the Binary Row
Orders σBi

and the Full Segmentations Li. Figure 1 (Pre-
processing – the left figure) provides a visual example of
the preprocessing steps.

3.4.1. COMPLEXITY ANALYSIS

Theorem 3.6. Representing a binary or ternary weight ma-
trix as block indices requires a space complexity O

(
n2

log(n)

)
,

and the preprocessing algorithm to generate the block in-
dices has a time complexity of O(n2).

4. Inference Time: Vector-to-Matrix
Multiplication

To simplify our analysis, without loss of generality, let us
assume the weight matrices are of size n× n. Specifically,
given a preprocessed n × n binary matrix B, we aim to
efficiently compute the product v⃗ ·B when a vector v⃗ ∈ Rn

is provided at inference time (see Figure 8 in Appendix A).

4.1. Segmented Sum Computation

Recall that during the preprocessing time, for each column
block Bi, we construct a permutation function σBi

and a
full segmentation list Li as its index.

At the inference time, given a vector v⃗, our objective is to
efficiently compute the multiplication of v⃗ by each column
block Bi, using (σBi

, Li).

Our first step is computing the Segmented Sums over the
permuted vector πσBi

(v⃗) – i.e., the sum for each interval in
the permuted vector that corresponds to groups of similar
rows in the binary matrix Bi.

Definition 4.1 (Segmented Sum). Consider the permutation
function σBi

and the full segmentation list Li, for a column
block Bi. Let v⃗π = πσBi

(v⃗) be the permutation of the
vector v⃗ ∈ Rn. The Segmented Sum of v⃗π on Li is defined
as a vector SSLi

(v⃗π) of size |Li| where,

SSLi
(v⃗π)[j] =


∑Li[j+1]−1

k=L[j] v⃗π[k] if j < |Li|

∑n
k=Li[j]

v⃗π[k] if j = |Li|
(3)

For example, for the Full Segmentation defined for Example
3.3 and a given vector v⃗ = [3, 2, 4, 5, 9, 1], we have:

SS(v⃗) = [9, 14, 0, 1] (4)

Where 9 = 3 + 2 + 4, 14 = 5 + 9, 1 = 1, and the third
element is 0 because there is no 102 in the segmentation.

Computing the Segmented Sums using Equation 3 requires
first computing the permuted vector v⃗π. Instead, to effi-
ciently compute the Segmented Sums in place (without

5

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

Algorithm 2 RSR (Inference Time)

1: Input: vector v⃗ ∈ Rn, binary matrix B
2: Output: result r⃗ = v⃗ ·B where r⃗ ∈ Rn

3: for each block Bi do
4: u⃗← SSLi,σBi

(v⃗) ▷ Step 1; Segmented Sum (Eq 5)
5: r⃗i ← u⃗ ·Bin[k] ▷ Step 2; Block Product
6: end for
7: r⃗ ← (r⃗1, r⃗2, · · · , r⃗⌈n

k ⌉) ▷ Concatenate block results
8: Return: r⃗

computing the permuted vector), we use Equation 5:

SSLi(v⃗π)[j] = (5)

SSLi,σBi
(v⃗)[j] =


∑Li[j+1]−1

k=L[j] v⃗ [σBi(k)] if j < |Li|,

∑n
k=Li[j]

v⃗ [σBi
(k)] if j = |Li|

4.2. RSR

We are now ready to describe our algorithm RSR for com-
puting v⃗.B at the inference time. Given the input vector v⃗,
for each column block Bi, in Step 1 we use the permutation
function σBi and the full segmentation list Li to compute
the Segmented Sum SSLi,σBi

(v⃗) using Equation 5.

Then, we use Lemma 4.2 to calculate v⃗ ·Bi.
Lemma 4.2. v⃗ ·Bi = SSLi,σBi

(v⃗) ·Bin[k].

Following Lemma 4.2, as the final step in the inference time,
in Step 2 we calculate the product SSLi,σBi

(v⃗) ·Bin[k] for
each k-Column Block Bi. Algorithm 2 shows a pseudo-
code of this algorithm.

4.2.1. COMPLEXITY ANALYSIS

For each column block Bi, step 1 takes O(n) since it makes
a pass over each element of v⃗ exactly once. Step 2 computes
the product of a vector of size 2k with a matrix of dimen-
sions 2k × k, resulting in a time complexity of O(k · 2k).

The entire process is applied to n
k k-Column Blocks. Con-

sequently, the total query time is O
(
n
k (n+ k · 2k)

)
. For

any selection of k · 2k ≤ n, the overall running time can be
written as O

(
n2

k

)
.

Specifically, setting k = log(n
log(n)) results in a time com-

plexity of O
(

n2

log(n
log(n)

)

)
= O

(
n2

log(n)−log(log(n))

)
.

Theorem 4.3. The RSR algorithm solves Problem 1 with
the time complexity of O

(
n2

log(n)−log(log(n))

)
.

4.2.2. THE OPTIMAL k

While we could prove Theorem 4.3 by choosing k =
log(n

log(n)), this choice might not be optimal, i.e., it may

Figure 3: Visualizing Step 2 of RSR++ (Algorithm 3) versus
RSR at inference time.

not minimize the run-time of the algorithm.

The optimal value of k can be found using Equation 6.

kopt = argmin
k∈[log(log(n))]

n

k
(n+ k2k) (6)

To find the optimal value of k based on Equation 6, we apply
a binary search on k in the range [1, log(n)− log(log(n))].
In Appendix F.1, we run experiments to find the optimal
value of k and to evaluate the impact of varying it.

4.3. RSR++

Having presented RSR, we now present our faster algorithm
RSR++ that focuses on improving Step 2 of RSR. This step
involves computing the product of a vector u⃗ of size 2k

and the binary matrix Bin[k] of size 2k × k (Line 2 of
Algorithm 2). The standard vector-matrix multiplication,
in this case, leads to O(k · 2k) time. However, the special
structure of matrix Bin[k] allows us to reduce it to O(2k).
Algorithm 3 shows the pseudo-code for this multiplication.
See Figure 3 for a visualization of this approach.

Let r⃗ denote the final result of this product, u⃗ ·Bin[k]. We
build r⃗ starting from the k-th element to the first one. (i) The
k-th element can be calculated by summing up the elements
in u⃗ with odd indices. For example, in RSR++ visualization
in Figure 3, the sum of odd-index elements (orange cells)
in the top row is 23. Then, (ii) we calculate a vector x⃗ of
size |u⃗|

2 where we sum each two consecutive elements of
u⃗. Now we can see that the (k − 1)-th element of r⃗ can be
calculated by doing the same process as (i), this time, on x⃗
(see rows 2 and 3 in RSR++ visualization in Figure 3). We

6

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

continue this process by repeating steps (i) and (ii) to build
all k elements of r⃗.

4.3.1. COMPLEXITY ANALYSIS

Step (i) is linear in terms of the size of x⃗ at each step (see
Line 5 of Algorithm 3). As a result, the running time is∑1

i=k O(2i) = O(2k). Step (ii) also takes linear in size
of x⃗. Consequently, the overall time calculating u⃗ ·Bin[k]

using this subroutine takes O(2k).

We can follow the same process of analyzing RSR, but this
time using RSR++ as a subroutine for Line 5 of Algorithm
2. Based on the same analysis in Section 4.2.1, the inference
time would be O(nk (n+ 2k)), for a k = log(n) this would

result in the running time of O
(

n2

log(n)

)
.

Theorem 4.4. The RSR++ algorithm solves Problem 1 with
a time complexity of O

(
n2

log(n)

)
.

4.3.2. THE OPTIMAL k

The process for finding the optimal value of k for RSR++ is
the same as the one for RSR, except that the binary search
is applied in the range [1, log(n)] to optimize the following
equation:

kopt = argmin
k∈[log(n)]

n

k
(n+ 2k) (7)

4.4. Generalization

Our algorithms naturally extend to vector multiplication
with any q-bit matrix. Specifically, given a matrix A where
each entry is encoded using q bits, we can decompose A
into a weighted sum of binary matrices:

A =

q−1∑
k=0

2k ·Bk,

where each Bk is a binary matrix in which the element
Bk[i, j] is 1 if and only if the kth bit of A[i, j] is set. We
then apply the RSR algorithm separately to each Bk, and
combine the resulting products. This extension incurs only
a linear overhead in runtime with respect to q.

4.5. Parallelization

Due to the independence of computations across column
blocks, our algorithms are naturally parallelizable. We dis-
cuss the parallelization of our algorithms on CPU and GPU
in Appendix C.1.

5. Experiments
In this section, we evaluate our proposed algorithms’ time
and memory performance in real-world scenarios. Our
codes are publicly available in this repository. In addi-
tion, some of our implementation details for CPU and GPU
experiments are provided in Appendix E. In the following,
first in Section 5.1, we detail the native C++ implemen-
tation of both RSR and RSR++, comparing their runtime
performance under a fair setting to validate our theoretical
guarantees. In Section 5.2, we implement and evaluate the
algorithms using Python’s NumPy package, providing in-
sights into their performance in a more practical and widely
used computational environment. Finally, in Sections 5.3
and 5.4 we conduct experiments on real 1.58-bit LLMs.
Our extended experiments, including implementations in
BitNet.cpp environment and per transformer module analy-
sis, are provided in Appendix F. Specifically, Appendix F.1
explores the process of determining the optimal value of k,
identifying the best k for each input size n. A performance
comparison between RSR and RSR++ is provided in Ap-
pendix F.2, followed by extended run-time analysis of RSR
on NumPy in Appendix F.3. A performance evaluation of
our algorithm using GPU is also provided in Appendix F.4.

5.1. Native Implementation

In this section, we focus on verifying the theoretical foun-
dation of our proposed methods, RSR and RSR++, using
native implementations in C++. We selected C++ as the im-
plementation language because, being a compiled language,
it is less susceptible to runtime noise, allowing inference
time to better reflect the exact time complexity of the meth-
ods, relatively. As baselines, we also implemented Standard
Matrix Multiplication, which we will refer to as Standard
throughout this section.

For input, we assume access to a binary weight matrix Bn×n

where 211 ≤ n ≤ 216 during preprocessing. During infer-
ence time, given input vector v⃗ of size n, our aim is to
compute v · B. with both B and v⃗ values generated ran-
domly. These parameters align with typical size of weight
matrices and input vector patterns commonly encountered
in deep learning and large language model (LLM) infer-
ence tasks. We then measure inference time across varying
values of n for each method. We also utilized the optimal
value of k for each n, which is discussed in detail in Ap-
pendix F.1. Figure 4 presents the inference times for these
methods. Notably, our proposed algorithms achieve up to
a 29x speedup over the Standard baseline when n = 216,
representing a substantial improvement that could signifi-
cantly impact DNN and LLM architectures, enabling them
to utilize binary and ternary weights more effectively.

7

https://github.com/UIC-InDeXLab/RSR

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

211 212 213 214 215 216

n (log2 scale)

101

102

103

104

105

Ti
m
e
(lo

g 1
0
 s
ca

le
, m

s)

9.33x

10.17x

14.60x

20.64x

25.07x

29.55x
Standard
RSR
RSR++

Figure 4: Comparison of RSR, RSR++, and Standard on
native C++ implementation for Binary Matrix Multiplica-
tion. The speedup values are between RSR++ and Standard.
Each value is the average of 10 different runs.

211 212 213 214 215 216
n (log2 scale)

101

102

103

104

M
em

or
y
U
sa
ge
 (l
og

10
 s
ca
le
, M

B
)

3.90x

3.95x

4.96x

5.96x

5.98x

5.99x
NumPy
RSR (final usage)
RSR (peak usage)

Figure 5: Memory consumption of RSR after the preprocess-
ing is done. Compared to memory required for the Standard
matrix multiplication (NumPy). In RSR, we only store per-
mutations and segmentation lists in the memory.

5.2. Matrix Multiplication Using NumPy

In this section, we investigate the practical performance
improvements achieved by RSR, extending beyond native
simulation environments. To this end, we use NumPy, a
state-of-the-art library for matrix multiplication upon which
numerous high-performance computing libraries are based.
We implement RSR in Python using NumPy’s built-in func-
tionalities and compare the inference time and memory
consumption between RSR and NumPy’s np.dot() func-
tion (referred to as NumPy). We provide our Inference time
evaluation in Appendix F.3, where in summary, we observed
an up to 24x faster inference times by our algorithm.

RSR requires a preprocessing step to compute permutations
and segments, where only these two values need to be stored

to calculate the final weights. This preprocessing enables
substantial compression. Figure 5 illustrates the memory
consumption in megabytes for NumPy and RSR. In the peak
of preprocessing procedure, both the weight matrix A and
the segment data are stored in memory (indicated by the
green line); however, after computation, only the segmenta-
tion lists and permutations are stored and A will be cleared
from memory. For a matrix of size n = 216, the storage
required is reduced to less than 17% of the original matrix
size (5.99x improvement), highlighting the benefits of this
approach for large-scale storage and data transfer.

In summary, RSR provides practical advantages for deploy-
ing large models. For instance, companies training new
LLMs could preprocess their weights to release only the
final segments, permutations, and the optimal parameter k.
This would result in up to 24x faster inference times and
up to 5.99x memory reduction, significantly easing both
storage and transfer demands.

5.3. LLM Inference on CPU

To further evaluate the practical performance of our algo-
rithms, we examine their application to quantized large
language models by replacing the matrix multiplications in
the fully connected layers. Specifically, we run experiments
using the 1.58-bit quantized versions of Llama3 and Fal-
con3.7 The experiments were conducted on a server with
the following specifications: a 16-core Intel Xeon CPU, an
NVIDIA Tesla T4 GPU, 32 GB of RAM, and Debian 11
as the operating system. Our algorithms were implemented
using the PyTorch8 library in Python. The details of the
implementation is discussed in the Appendix E.

In this experiment, we perform LLM inference on CPU
to assess the speedup gain by our algorithms on a simple
setting without parallalization. This setup simulates en-
vironments with limited computational resources, such as
personal devices. Subsequently, in the Section 5.4, we shall
extend our implementation to GPU, using the parallelization
techniques outlined in Section C.1.

We utilized the 1.58-bit model implemented following the
work in (Ma et al., 2024). Having downloaded the weights
of the pre-trained model, we applied the pre-processing
step of our algorithm on the weight matrices (this step is
done only once per model). During the inference time, for
each fully connected layer (torch.nn.BitLinear), we
integrated and executed the inference step of RSR.

To evaluate the performance, we conducted experiments on
three datasets. First, we generated a synthetic dataset of
short factual questions (ShortQuestions) with assistance

7Link to Llama3-8B-1.58bit, Falcon3-3B-1.58bit , and Falcon3-
10B-1.58bit on Huggingface.

8https://pytorch.org/

8

https://huggingface.co/HF1BitLLM/Llama3-8B-1.58-100B-tokens
https://huggingface.co/tiiuae/Falcon3-3B-Instruct-1.58bit
https://huggingface.co/tiiuae/Falcon3-10B-Instruct-1.58bit
https://huggingface.co/tiiuae/Falcon3-10B-Instruct-1.58bit
https://pytorch.org/

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

ShortQuestions SimpleQuestion TREC QA
0

50

100

150

200

250

300

350

400

Ru
nn

in
g
Ti
m
e
(s
)

336.7 (4.92x)

391.8 (4.99x)

326.4 (4.99x)

68.5 78.5 65.4

Average Inference Time for Llama3-8B-1.58-bit
Standard
RSR

ShortQuestions SimpleQuestion TREC QA
0

20

40

60

80

100

120

140

Ru
nn

in
g
Ti
m
e
(s
) 96.9 (5.24x) 101.4 (4.88x)

72.4 (4.11x)

18.5 20.8 17.6

Average Inference Time for Falcon3-3B-1.58-bit
Standard
RSR

ShortQuestions SimpleQuestion TREC QA
0

50

100

150

200

250

300

350

400

Ru
nn

in
g
Ti
m
e
(s
)

336.6 (4.91x)

391.8 (5.00x)

326.4 (5.00x)

68.5 78.4 65.3

Average Inference Time for Falcon3-10B-1.58-bit
Standard
RSR

Figure 6: Average inference time on CPU for different 1.58-bit models. The x-axis represents the three different datasets.

from GPT-49. The other two datasets used were Simple-
Questions (Diefenbach et al., 2017) and TREC QA (Wang
et al., 2007). The matrix sizes in the Llama3 model ranged
from 212 to 213, while for Falcon3 models, they ranged from
211 to 212. For each input, we generated a single token by
running one feedforward pass through the LLM and verified
the equality of responses with and without applying RSR.

The average inference times are presented in Figure 6.
Standard is the baseline 1.58-bit model without any
change and RSR is our algorithm. As shown, the inference
time of the LLM improves by up to 5.24x. While the stan-
dard method benefits from low-level PyTorch optimizations
for single vector-to-matrix multiplications10, our algorithm
operates solely at the application level without leveraging
these optimizations. This introduces additional overhead,
which reduces the observed speedup compared to experi-
ments focused purely on matrix multiplication. However,
the space usage of this implementation remains identical to
the baseline, as the size of the segmentation matrixM is
the same as the ternary weight matrix (See Appendix C.1
for the definition of segmentation matrix).

5.4. LLM Inference on GPU

Using the implementation detailed in Appendix E.3, we
evaluated the inference time of the models with and with-
out the RSR implementation on GPU, and the results are
presented in Table 1. Notably, we achieved nearly a 2.5x
speedup, despite our algorithm being implemented at the
application level, compared to the optimized matrix multipli-
cation of PyTorch. Our experiments on naive vector-matrix
multiplication on GPU is provided in Appendix F.4.

9See Appendix E.1 for more details.
10PyTorch default settings such as caching mechanisms,

backend-specific optimizations (e.g., cuBLAS, cuDNN), and ker-
nel fusion, are fully enabled.

Model Standard (µs) RSR (µs)

Llama3-8B-1.58bit 392 ± 20 225 ± 29
Falcon3-3B-1.58bit 560 ± 24 206 ± 21
Falcon3-10B-1.58bit 364 ± 82 210 ± 24

Table 1: Average inference time on GPU. All values are in
microseconds ± standard deviation.

6. Conclusion
This paper presented algorithms that significantly improve
inference time and memory efficiency for quantized neu-
ral networks (like LLMs) with binary and ternary weights.
By preprocessing weight matrices to create indices, our
approach reduces storage complexity for maintaining the
model weights by a logarithmic factor. It enhances inference
efficiency, achieving a time complexity of O(n2

logn).

Furthermore, our experiment results across various settings
demonstrated the practical advantages of our methods, with
observed reductions in inference time of up to 29x and
memory usage of up to 6x, underscoring the potential of our
approach to make LLMs more accessible and cost-effective.

Acknowledgments
This work was supported in part by the National Science
Foundation, Grant No. 2348919 and 2107290. The authors
would like to thank the anonymous reviewers for their time
and invaluable feedback.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

References
AI21 Labs. Ai21 studio, 2024. URL https://www.
ai21.com/studio. Accessed: 2024-11-09.

Arlazarov, V. L., Dinitz, Y. A., Kronrod, M., and Faradzhev,
I. On economical construction of the transitive closure of
an oriented graph. In Doklady Akademii Nauk, volume
194, pp. 487–488. Russian Academy of Sciences, 1970.

Brown, T. B. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Chen, M., Shao, W., Xu, P., Wang, J., Gao, P., Zhang, K.,
Qiao, Y., and Luo, P. Efficientqat: Efficient quantization-
aware training for large language models. arXiv preprint
arXiv:2407.11062, 2024.

Choi, S., Shim, K., Choi, J., Sung, W., and Shim, B.
Terngemm: General matrix multiply library with ternary
weights for fast dnn inference. In 2021 IEEE Workshop
on Signal Processing Systems (SiPS), pp. 111–116, 2021.
doi: 10.1109/SiPS52927.2021.00028.

Courbariaux, M., Bengio, Y., and David, J.-P. Binarycon-
nect: Training deep neural networks with binary weights
during propagations. Advances in neural information
processing systems, 28, 2015.

Dai, S., Venkatesan, R., Ren, M., Zimmer, B., Dally, W., and
Khailany, B. Vs-quant: Per-vector scaled quantization
for accurate low-precision neural network inference. Pro-
ceedings of Machine Learning and Systems, 3:873–884,
2021.

Das, B. C., Amini, M. H., and Wu, Y. Security and privacy
challenges of large language models: A survey. arXiv
preprint arXiv:2402.00888, 2024.

Diefenbach, D., Tanon, T. P., Singh, K. D., and Maret,
P. Question answering benchmarks for wikidata. In
Proceedings of the ISWC 2017 Posters & Demonstrations
and Industry Tracks co-located with 16th International
Semantic Web Conference (ISWC 2017), Vienna, Austria,
October 23rd - to - 25th, 2017., 2017. URL http://
ceur-ws.org/Vol-1963/paper555.pdf.

Finlayson, M., Ren, X., and Swayamdipta, S. Logits of
api-protected llms leak proprietary information. arXiv
preprint arXiv:2403.09539, 2024.

Guo, H., Brandon, W., Cholakov, R., Ragan-Kelley, J., Xing,
E. P., and Kim, Y. Fast matrix multiplications for lookup
table-quantized llms. arXiv preprint arXiv:2407.10960,
2024.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of

large language models. arXiv preprint arXiv:2106.09685,
2021.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks. Advances in
neural information processing systems, 29, 2016.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Quantized neural networks: Training neu-
ral networks with low precision weights and activations.
Journal of Machine Learning Research, 18(187):1–30,
2018.

Hugging Face. Autotrain by hugging face. Accessed:
2024-11-09, 2023. https://huggingface.co/
autotrain.

Liberty, E. and Zucker, S. W. The mailman algorithm: A
note on matrix–vector multiplication. Information Pro-
cessing Letters, 109(3):179–182, 2009.

Ma, S., Wang, H., Ma, L., Wang, L., Wang, W., Huang, S.,
Dong, L., Wang, R., Xue, J., and Wei, F. The era of 1-bit
llms: All large language models are in 1.58 bits. arXiv
preprint arXiv:2402.17764, 2024.

McKinstry, J. L., Esser, S. K., Appuswamy, R., Bablani,
D., Arthur, J. V., Yildiz, I. B., and Modha, D. S. Dis-
covering low-precision networks close to full-precision
networks for efficient embedded inference. arXiv preprint
arXiv:1809.04191, 2018.

Moons, B., Goetschalckx, K., Van Berckelaer, N., and Ver-
helst, M. Minimum energy quantized neural networks. In
2017 51st Asilomar Conference on Signals, Systems, and
Computers, pp. 1921–1925. IEEE, 2017.

OpenAI. Models, 2024. URL https://platform.
openai.com/docs/models. Accessed: 2024-11-
09.

Park, H. and Choi, K. Cell division: weight bit-width re-
duction technique for convolutional neural network hard-
ware accelerators. In Proceedings of the 24th Asia and
South Pacific Design Automation Conference, pp. 286–
291, 2019.

Pearce, H., Tan, B., Ahmad, B., Karri, R., and Dolan-Gavitt,
B. Examining zero-shot vulnerability repair with large
language models. In 2023 IEEE Symposium on Security
and Privacy (SP), pp. 2339–2356. IEEE, 2023.

Tech, W. G. The journey of openai gpt mod-
els. https://medium.com/walmartglobaltech/the-journey-
of-open-ai-gpt-models-32d95b7b7fb2, 2023. Accessed:
2024-11-03.

10

https://www.ai21.com/studio
https://www.ai21.com/studio
http://ceur-ws.org/Vol-1963/paper555.pdf
http://ceur-ws.org/Vol-1963/paper555.pdf
https://huggingface.co/autotrain
https://huggingface.co/autotrain
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://medium.com/walmartglobaltech/the-journey-of-open-ai-gpt-models-32d95b7b7fb2
https://medium.com/walmartglobaltech/the-journey-of-open-ai-gpt-models-32d95b7b7fb2

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

Trusov, A., Limonova, E., Nikolaev, D., and Arlazarov, V. V.
Fast matrix multiplication for binary and ternary cnns
on arm cpu. In 2022 26th International Conference on
Pattern Recognition (ICPR), pp. 3176–3182, 2022. doi:
10.1109/ICPR56361.2022.9956533.

Tsai, A. Explaining gpt-3 architecture and work-
ing. https://medium.com/@tsaiabhi.cool/explaining-gpt-
3-architecture-and-working-d0219c79202c, 2020. Ac-
cessed: 2024-11-03.

Wang, H., Ma, S., Dong, L., Huang, S., Wang, H., Ma, L.,
Yang, F., Wang, R., Wu, Y., and Wei, F. Bitnet: Scaling 1-
bit transformers for large language models. arXiv preprint
arXiv:2310.11453, 2023.

Wang, J., Zhou, H., Song, T., Mao, S., Ma, S., Wang, H.,
Xia, Y., and Wei, F. 1-bit ai infra: Part 1.1, fast and
lossless bitnet b1. 58 inference on cpus. arXiv preprint
arXiv:2410.16144, 2024a.

Wang, L., Ma, L., Cao, S., Zhang, Q., Xue, J., Shi, Y.,
Zheng, N., Miao, Z., Yang, F., Cao, T., et al. Ladder:
Enabling efficient {Low-Precision} deep learning com-
puting through hardware-aware tensor transformation. In

18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), pp. 307–323, 2024b.

Wang, M., Smith, N. A., and Mitamura, T. What is the
jeopardy model? a quasi-synchronous grammar for qa.
In Proceedings of the 2007 joint conference on empirical
methods in natural language processing and computa-
tional natural language learning (EMNLP-CoNLL), pp.
22–32, 2007.

Wu, J., Leng, C., Wang, Y., Hu, Q., and Cheng, J. Quantized
convolutional neural networks for mobile devices. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4820–4828, 2016.

Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z., and Zhang, Y.
A survey on large language model (llm) security and pri-
vacy: The good, the bad, and the ugly. High-Confidence
Computing, pp. 100211, 2024.

Yuan, Z., Zhou, R., Wang, H., He, L., Ye, Y., and Sun, L.
Vit-1.58 b: Mobile vision transformers in the 1-bit era.
arXiv preprint arXiv:2406.18051, 2024.

Zhu, C., Han, S., Mao, H., and Dally, W. J. Trained ternary
quantization. arXiv preprint arXiv:1612.01064, 2016.

11

https://medium.com/@tsaiabhi.cool/explaining-gpt-3-architecture-and-working-d0219c79202c
https://medium.com/@tsaiabhi.cool/explaining-gpt-3-architecture-and-working-d0219c79202c

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

APPENDIX

x1

x2

...
xnI

n1,1

n1,2

...
n1,n1

n2,1

n2,2

...
n2,n2

y1

...
yno

Input

W 1

W1
1,1

W1
nI,n1

Layer 1

W 2

W2
1,1

W2
n1,n2

Layer 2

W 3

W3
1,1

W3
n,mo

Output

Figure 7: A feedforward neural network with ℓ = 3 layers
and ni nodes per hidden layer.

ak−1
1 · · · ak−1

n

()
W k

1,1 W k
1,2 W k

1,3 W k
1,n

W k
2,1 W k

2,2 W k
2,3 W k

2,n

W k
3,1 W k

3,2 W k
3,3 W k

3,n

...
...

...
...

W k
n,1 W k

n,2 W k
n,3 W k

n,n




zk1 zk2 zk3 · · · zkn

()

a⃗
k−

1 W
k
:,2

Figure 8: Illustration of vector-to-matrix multiplication as
the core inference operation.

A. Background
A trained DNN model consists of a collection of weights
used for inference (Figure 7). The weights are learned
during the training phase and are fixed during the inference
time. During the inference time, given an input vector, the
feedforward process can be viewed as a series of matrix
multiplications applied to the input vector to produce the
final output. For instance, consider the two consecutive
layers shown in a multi-layer perceptron in Figure 7. Each
weight matrix W i represents the edge weights between
layers (i− 1) and i with layer 0 being the input vector. The
feedforward step is a chain of matrix products and activation
functions that maps input vector x⃗ to output vector y⃗; it can
be represented as follows (with a⃗0 = x⃗), where f is the
activation function (e.g., sigmoid or ReLU).

z⃗k = a⃗k−1W k a⃗k = f(z⃗k)

Figure 8 visualizes the bottleneck operation of the inference
process: the multiplication of each activation vector a⃗k−1

to the weight matrix W k to generate the vector z⃗k.

Building on this background, our work focuses on accel-
erating the bottleneck operation, the vector-ternary-matrix
product. By improving the speed of this operation, we
proportionally accelerate the entire inference process of a
quantized LLM (or, more generally, a neural network), as
each matrix product in the feedforward procedure is com-
puted sequentially until the output layer. We reformulate this
problem as a vector-binary-matrix multiplication, thereby
enabling compatibility with both binary and ternary matri-
ces.

B. Related Work
In this paper, we consider the quantized DNNs with binary
and ternary weights (Dai et al., 2021; Wu et al., 2016; McK-
instry et al., 2018; Zhu et al., 2016; Courbariaux et al., 2015;
Hubara et al., 2016).

Examples of ternary DNNs include (Moons et al., 2017;
Hubara et al., 2018; Yuan et al., 2024) and 1.58-bit
LLMs (Ma et al., 2024), where the weights are limited
to {−1, 0, 1}.

Previous research has explored enhancing matrix multiplica-
tion through hardware-level accelerations (Guo et al., 2024;
Wang et al., 2024b; Park & Choi, 2019; Trusov et al., 2022;
Choi et al., 2021). In contrast, our approach focuses on de-
signing an algorithm that provides a guaranteed logarithmic
improvement over naive matrix multiplication at the appli-
cation layer, independent of specific hardware architectures.

The Four Russians Algorithm (Arlazarov et al., 1970) is
a classical method for efficient Boolean matrix multiplica-
tion. While the Four Russians Algorithm relies on tiling the
matrix and computing the smaller products, our approach
focuses on matrix column-blocks and extends to both binary
and ternary matrices. Additionally, their method is designed
for matrix-to-matrix multiplication, whereas our method is
for vector-to-matrix operations where the vector is a random
Rn vector.

A related algorithm is the Mailman algorithm (Liberty &
Zucker, 2009), which also reduces matrix-vector multipli-
cation time by a logarithmic factor through preprocessing.
However, its preprocessing differs from ours: the Mailman
algorithm constructs a matrix P by considering all possible
binary-valued columns and expresses A = U ×P , enabling
fast multiplication. In contrast, our approach constructs
a list of permutations and segment sums, allowing us to
achieve an O(log n− log log n) speedup even when multi-
plying a vector by the matrix P . Additionally, as discussed

12

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

in Section C.1, we design a segment matrix structurally
similar to P and leverage it in parallel settings.

C. Proofs
Theorem 3.6. Representing a binary or ternary weight ma-
trix as block indices requires a space complexity O

(
n2

log(n)

)
,

and the preprocessing algorithm to generate the block in-
dices has a time complexity of O(n2).

Proof. For Binary DNNs, let B = W ℓ be a binary weight
matrix. For Ternary DNNs, let a weight matrix A = W ℓ

be expressed as A = B(1) − B(2) using Proposition 2.1.
Then represent A using the block indices of B(1) and B(2)

produced by Algorithm 1. Let B be either B(1) or B(2).

Time Complexity: During the preprocessing, we read all
elements of the input matrix B, which requires O(n2) time.
Blocking the matrix into k-Column Blocks has a time com-
plexity linear to the number of blocks while determining the
permutation corresponds to performing a bucket sort on the
rows to achieve the lexicographic ordering, which requires
O(n). Consequently, the total preprocessing time is O(n2).
Given that the input matrix size is O(n2), this complexity
is asymptotically optimal, as any algorithm requires reading
the matrix B in O(n2).

Space Complexity: The output of the preprocessing phase
is a permutation and a segmentation list as each block in-
dex. Recall that |Li| = |S(Bi)| = 2k, where k ≤ log2(n).
Therefore, storing each block index requires O(n) space.
The total number of column blocks is n

k . Hence, the to-
tal space complexity of the preprocessing output is O(n

2

k).
Particularly, when k = log(n), the space complexity is
O(n2

log(n)). As explained in Section 4, the inference algo-
rithms only require access to the block indices. Therefore,
replacing the weight matrices with the block indices, we
reduce the space complexity by a logarithmic factor.

Lemma 4.2. v⃗ ·Bi = SSLi,σBi
(v⃗) ·Bin[k].

Proof. Define u⃗ = SSLi,σBi
(v⃗). At first, we should show

that |u⃗| = 2k, and as a result, the product on the right-
hand side is valid. We know that |SSLi,σBi

(v⃗)| = |Li|
(see Definition 4.1). In addition, based on Definition 3.4,
we know that in the Segmentation list, there is exactly one
element for each possible binary value between 1 to 2k. So
|Li| = |S(Bi)| = 2k =⇒ |u⃗| = 2k.

Now, let us focus on a single column of Bi (jth column).
We show that ⟨v⃗ · Bi[:, j]⟩ = ⟨u⃗ · Bin[k][:, j]⟩, where ⟨⟩ is
the dot product of two vectors. Based on the Definition 4.1,

we know that the lth element of u⃗ is the lth segment sum
of πσBi

(v⃗). This segment is the sum of some consecutive
elements of πσBi

(v⃗). Based on Definition 3.2, this permuta-
tion is designed such that similar rows of Bi are positioned
together. This means that all the elements of v⃗ that are in
this segment (we denote this segment as Sl, in other words,
Sl is the indices of v⃗ that lie in this segment) are multiplied
to the same binary value in Bi. Call this value as bl. As a
result, we can factor bl out for each segment of v⃗ in the dot
product. We can rewrite the dot product as:

⟨v⃗ ·Bi[:, j]⟩ =
n∑

q=1

v⃗[q] ·Bi[q, j] (8)

=

2k∑
l=1

(
∑
e∈Sl

v⃗[e]) · bl =
2k∑
l=1

u⃗[l] · bl

Where in the last line we used the fact that ∀l, u⃗[l] =∑
e∈Sl

v⃗[l].

Each bl is the single that in column j of Bi corresponds to
the segment Sl. Based on Definition 3.2, the applied per-
mutation tries to sort all columns based on the lexicographic
order of rows. So, this means that Bin[k][l, j] = bl and as a
result,

2k∑
l=1

u⃗[l] · bl =
2k∑
l=1

u⃗[l] ·Bin[k][l, j] (9)

= ⟨u⃗ ·Bink[:, j]⟩ (10)

As a result, for all columns j, the dot products are equal
⟨v⃗ ·Bi[:, j]⟩ = ⟨u⃗ ·Bin[k][:, j]⟩. Consequently, the vector-
matrix products are also equal.

C.1. Parallelization

In this section, we discuss two approaches for parallelizing
our algorithms to handle high-performance workloads.

I. Parallelization based on block independence: Our
RSR and RSR++ algorithms conduct each block computa-
tion in isolation, independent of the other block computa-
tions. Consequently, the block productions can be executed
concurrently during the inference time. As a result, utilizing
c computation cores, the time complexities are further re-
duced by a c factor, reducing the time complexities of RSR
and RSR++ to O

(
n2

c(log(n)−log(log(n)))
)

and O
(

n2

c log(n)

)
,

respectively. Additionally, further parallelization can be
achieved by applying block production simultaneously on
different columns of the binary-encoded matrix Bin[k].

13

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

Algorithm 3 RSR++ (Step 2 in Inference Time)

1: Input: vector u⃗ ∈ R2k , and matrix Bin[k]

2: Output: result r⃗ = u⃗ ·Bin[k]

3: Initialize x⃗← u⃗
4: for i from k to 1 do
5: r⃗i ← sum of odd indexed elements of x⃗
6: Initialize v⃗ to a vector of size |x⃗|

2

7: for j from 1 to |x⃗|
2 do

8: v⃗[j]← x⃗[2i− 1] + x⃗[2i]
9: end for

10: end for

II. Parallelization on GPU: Our second approach is
based on the GPU implementation of our RSR algorithm
discussed in Section 5.4 and Appendix E.3, and involves
converting the segmentation and permutation steps during
inference into a single 3D tensor multiplication. For each
column-block j, we define a segmentation matrixMj of
size n× 2k, where each column is a one-hot vector of size
n indicating which element of the input vector v⃗ belongs to
that segment (with a total of 2k segments; see Section 4.1).
Multiplying v⃗ by this matrix produces the vector u⃗ (see
Algorithm 2 and Figure 1). The result is then multiplied
by Bin[k]. By stacking all Mj matrices across all j, we
construct a 3D tensorM. PrecomputingM× Bin[k] al-
lows us to reduce the inference process to a single tensor
multiplication, significantly enhancing parallelization.

Future work could explore leveraging specific hardware
instructions, such as blocking, permutations, segmentations,
and block productions, to further optimize these steps at the
hardware level in parallel.

D. Discussion
In this section, we discuss some of the advantages and lim-
itations of our proposed algorithms and outline potential
directions for future research in this area.

D.1. Advantages

• Our RSR++ algorithm shows up to a 29x improvement
in inference time and a 6x reduction in memory usage,
as observed in our experiments. Note that following
our complexity analyses, these numbers get even larger
by the size of the network layers. This significant
improvement indicates that the algorithm can support
larger hidden layers and matrices to enhance model ac-
curacy while requiring fewer computational resources.

• The efficiency of our algorithm leads to reduced en-
ergy consumption, further contributing to the model’s
practicality and sustainability.

• Our approach enables the deployment of more ad-
vanced models on ordinary devices, such as per-

sonal computers, with limited memory and processing
power.

• By processing one column block at a time, the algo-
rithm only requires memory equivalent to the size of
a single block, which is significantly less than that
needed for full matrix multiplication.

• Last but not least, our method is deployable on top of
any of the current or future binary or ternary models,
without requiring any fine-tuning or re-training of the
LLM or DNN. Once a model is trained, our preprocess-
ing step can be applied once, allowing the preprocessed
model to be utilized at any future point.

D.2. Limitations

• PyTorch’s hardware-level optimizations on GPUs
make single vector-to-matrix multiplication extremely
fast and efficient. The current implementation of our
methods is at the application level and does not lever-
age hardware-specific instructions, which limits the
speedup achieved when applied to real LLMs.

• Our approach demonstrates significant speedups when
working with Python packages for matrices larger than
210 in size. For smaller matrices, hidden constants and
implementation overheads tend to dominate, reducing
the practical benefits despite the theoretical guaran-
tees. However, in real-world models, matrix sizes are
typically much larger than this threshold, as discussed
earlier.

E. Experiments Details
E.1. Synthetic Dataset

We built a synthetic dataset containing a set of short factual
questions (ShortQuestions). In order to build this dataset, we
used GPT-4 to give us a list of questions. For example, one
sampled question from this dataset looks like: “What is the
capital of France?”, and the responses of both Standard
and RSR models were “Paris”. This is because we limited
each model to generate only one token through a single
feedforward pass.

E.2. PyTorch Implementation Details: CPU
Experiments

To further optimize Algorithm 2, for each column-block
j, we constructed a segmentation matrixMj of size n ×
2k. Each column of Mj is a one-hot vector of size n,
representing the indices of elements in v⃗ that belong to
the corresponding segment before the permutation, with 2k

segments in total (see Figure 1). The inference process is
then reduced to a matrix multiplication v⃗ ×N , followed by
reshaping the output, where N =M×Bin[k] andM is a

14

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

3D tensor containing all matricesMj corresponding to the
n
k blocks. This approach takes advantage of the low-level
optimizations already integrated into PyTorch. However,
the baseline we compare against benefits from additional
PyTorch-specific optimizations beyond this implementation.

The forward() function in the baseline model
(BitLinear) uses a single vector-matrix multiplication in
PyTorch:

1 def forward(self, input):
2 y = input @ self.ternary_matrix
3 return y

Listing 1: Simplified forward function in baseline

However, in the changed code, this function looks like this;

1 # self.rsr_matrix <= segmentation matrix
2 def forward(self, input):
3 y = (input @ self.rsr_matrix).permute

(1, 0, 2).reshape(input.size(1),
-1)

4 return y

Listing 2: Simplified RSR implementation

E.3. PyTorch Implementation Details: GPU
Experiments

To optimize the runtime of the previously discussed CPU
implementation on the GPU, we parallelized the vector-
matrix multiplication. Using the segmentation matrixM,
the multiplication was parallelized along its second dimen-
sion, corresponding to k (see Section 4.2.2). To achieve this,
we first expanded the input vector to a size k times larger:

1 input_expanded = input.unsqueeze(1).
expand(-1, k, -1)

Listing 3: RSR implementation on GPU (step 1)

Then, we ran a single multiplication of input expanded
and the matrix and finally reshaped the result:

1 expanded_result = torch.bmm(
input_expanded, seg_matrix).squeeze
(1)

2 result = torch.stack([expanded[:,j,:]
for j in range(k)], dim=2).reshape(
v.size(0), -1).unsqueeze(0)

Listing 4: RSR implementation on GPU (step 2)

This approach enables the computation of the product in
parallel on the GPU. However, it does not utilize low-level
optimized parallelization on the GPU, highlighting the need
for future work on hardware-level optimizations for segmen-
tation and permutation operations.

An evaluation of a single vector-matrix multiplication on
GPU based on this implementations is provided in Ap-
pendix F.4.

F. Extended Experiment Results
F.1. Parameter k Optimization

As outlined in Section 4.2.2, the optimal value of k for
RSR (reps. RSR++) is determined through a binary search
over the interval [0, log(n

log(n))] (resp. [0, log(n)]). Once
the optimal k is identified for each n, it is then applied
in the subsequent experiments. Figures 9a and 9b show
the running time with respect to different k values. By
increasing n, the optimum value of k also increases.

F.2. RSR vs. RSR++ on Native Implementation

In Section 5.1, we observed the performance gain of RSR
and RSR++ in comparison with the standard vector-matrix
multiplication across different input sizes (n). In this section,
we focus on the performance gain of RSR++ versus RSR
across different settings. To do so, we use our native C++
implementation discussed in Section 5.1.

Figure 10 illustrates the difference between only RSR++ and
RSR for in the inference time. In this figure, we can see up to
25% improvement when using RSR++ in the Step 2 of infer-
ence time (See Algorithm 3). The improvement percentage
is computed using the formula T (RSR)−T (RSR++)

T (RSR) × 100.

211 212 213 214 215 216
n

101

102

103

Ti
m
e
(lo

g
sc
al
e,
 m

s)

−25.0%

−20.0%

−7.7%

−17.4%

−9.3%

−5.0%
Algorithm

RSR
RSR++

Figure 10: The comparison of RSR and RSR++. The per-
centage shows how much improvement we get using RSR++
relative to RSR. This is a native C++ implementation.

F.3. Matrix Multiplication Using NumPy: Inference
Time

In this section, we present the running time improvements
achieved by RSR, on our implementation of RSR in Python

15

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

2 4 6 8 10 12
k

101

102

103

104

105

106

Ti
m
e
(lo

g 1
0
 s
ca

le
, m

s)

n
211
212

213
214

215
216

(a) RSR

2 4 6 8 10 12
k

101

102

103

104

Ti
m
e
(lo

g 1
0
 s
ca

le
, m

s)

n
211
212

213
214

215
216

(b) RSR++

Figure 9: Finding the optimum k for each n. The red dots show the best k for each n that results in the best running time.
Once calculating the optimum k values, we use them for other experiments.

211 212 213 214 215 216
n (log2 scale)

101

102

103

104

Ti
m
e
(lo

g 1
0
 s
ca
le
, m

s)

1.69x

4.38x

10.38x

17.19x

24.01x

17.84x
NumPy
RSR

(a) Binary

211 212 213 214 215 216
n (log2 scale)

102

103

104

Ti
m
e
(lo

g 1
0
 s
ca
le
, m

s)

0.77x

2.68x

4.15x

7.42x

12.76x

8.96x
NumPy
RSR

(b) Ternary

Figure 11: Comparison of Time required to perform a vector to weight Matrix multiplication for (11a) Binary and (11b)
Ternary weights between NumPy and RSR. Each data point is an average of 4 different runs.

using NumPy’s built-in functionalities, discussed in Sec-
tion 5.2.

As in previous sections, let An×n denote our weight matrix
and v⃗ the input vector, where our goal is to compute v⃗ ·A.
We run the experiments on both Binary and Ternary matrices.
This matrix is available prior to inference time, so we can
run preprocessing on that. For the parameter k, we use the
previously determined optimal values in Section F.1.

We initialize n at 211 and double its size in each experiment
up to 215. Each multiplication is executed four times, with
results averaged to mitigate noise. Figures 11a and 11b
present results for matrix multiplication using both the naive
NumPy method and RSR for Binary and Ternary weight
matrices, respectively. As shown, RSR achieves up to a 24x

speedup over the NumPy baseline on binary matrices of
size n = 215, illustrating that our algorithm not only meets
theoretical guarantees but also outperforms state-of-the-art
practical methods.

F.4. Performance evaluation on GPU

Using our GPU implementation in Appendix E.3, we evalu-
ated the performance of a single vector-matrix multiplica-
tion on GPU. The results are provided in Figure 12. Here,
we utilized matrices of size 211 to 214 and we can see up
to 2x speedup. However, as long as the n (size of matrix)
increases, the overhead of application-level optimization
reducing the speedup compared to the optimized PyTorch
standard implementation of vector-matrix product.

16

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

Figure 13: Time comparing RSR and original BitNet.cpp
implementation.

Figure 14: Per module speedup comparison of Standard and
RSR augmented Llama3-8B-1.58 model.

211 212 213 214

n (log2 scale)

10−1

100

Ti
m
e
(lo

g 1
0
 s
ca

le
, m

s)

2.87x

2.52x

1.62x

1.53x
Standard (Torch)
RSR

Figure 12: Comparison of time required to perform the
vector-ternary-matrix multiplication on GPU.

F.5. BitNet.cpp Comparison

In this section, we present an additional experiment to
compare our ternary vector-matrix multiplication method
with the optimized CPU implementation provided in
BitNet.cpp (Wang et al., 2024a). The BitNet.cpp focuses
primarily on optimizing the packing and unpacking of
ternary weights. For instance, it uses the I2S kernel (Wang
et al., 2024a; 2023), where every four 2-bit ternary values
are packed into a single uint8 value (Wang et al., 2024a). In-
ference is then performed directly on these packed weights
without unpacking, using an efficient custom kernel. We
compare the performance of our matrix multiplication algo-
rithm against this kernel across various matrix sizes. The
results are shown in Figure 13.

Despite not implementing hardware-specific or low-level
kernel optimizations in our implementation (RSR), we still
observe a significant speedup in ternary matrix multiplica-
tion performance. We consider optimizing and utilizing
kernel and hardware-specific instructions for RSR in fu-
ture work, and we mainly focused on the algorithmic and
application-level description in this work.

F.6. Per Module Speedup

In this section, we analyze the speedup obtained for each
individual PyTorch module in Llama3-8B-1.58. Fig-
ure 14 illustrates the speedup achieved by our method across
different modules. The corresponding module names along
with their roles in the Transformer architecture are summa-
rized in Table 2.

17

An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

Module Name Transformer Component

embed tokens Input Embedding Layer
rotary emb Rotary Positional Embedding (RoPE)
input layernorm LayerNorm before Attention
q proj Query Projection (Attention)
k proj Key Projection (Attention)
v proj Value Projection (Attention)
o proj Output Projection (Attention)
post attention layernorm LayerNorm before MLP
gate proj Gated Linear Unit (GLU) Projection (MLP)
act fn Activation Function (MLP)
up proj Upward Projection (MLP)
down proj Downward Projection (MLP)
norm Final LayerNorm (Post Decoder Blocks)
lm head Output Linear Projection to Vocabulary

Table 2: Module names and their corresponding roles in the Transformer architecture.

18

	Introduction
	Paper Organization and Summary of Contribution

	Preliminaries
	Notation
	Problem Formulation
	Solution Overview

	Preprocessing: Index Construction
	Step 1: Column Blocking
	Step 2: Row Permutation
	Step 3: Segmentation
	Preprocessing Algorithm
	Complexity Analysis

	Inference Time: Vector-to-Matrix Multiplication
	Segmented Sum Computation
	RSR
	Complexity Analysis
	The optimal k

	RSR++
	Complexity Analysis
	The optimal k

	Generalization
	Parallelization

	Experiments
	Native Implementation
	Matrix Multiplication Using NumPy
	LLM Inference on CPU
	LLM Inference on GPU

	Conclusion
	Background
	Related Work
	Proofs
	Parallelization

	Discussion
	Advantages
	Limitations

	Experiments Details
	Synthetic Dataset
	PyTorch Implementation Details: CPU Experiments
	PyTorch Implementation Details: GPU Experiments

	Extended Experiment Results
	Parameter k Optimization
	RSR vs. RSR++ on Native Implementation
	Matrix Multiplication Using NumPy: Inference Time
	Performance evaluation on GPU
	BitNet.cpp Comparison
	Per Module Speedup

