Under review as a conference paper at ICLR 2025

ENHANCING CERTIFIED ROBUSTNESS VIA BLOCK RE-
FLECTOR ORTHOGONAL LAYERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Lipschitz neural networks are well-known for providing certified robustness
in deep learning. In this paper, we present a novel efficient Block Reflector
Orthogonal layer that enables the construction of simple yet effective Lips-
chitz neural networks. In addition, by theoretically analyzing the nature of
Lipschitz neural networks, we introduce a new loss function that employs an
annealing mechanism to improve margin for most data points. This enables
Lipschitz models to provide better certified robustness. By employing our
BRO layer and loss function, we design BRONet, which provides state-of-
the-art certified robustness. Extensive experiments and empirical analysis
on CIFAR-10, CIFAR-100, and Tiny-ImageNet validate that our method
outperforms existing baselines.

1 INTRODUCTION

Although deep learning has been widely adopted in various fields (Wang et al.| 2022} Brown
et al. 2020), it is shown to be vulnerable to adversarial attacks (Szegedy et al., |2013]). This
kind of attack crafts an imperceptible perturbation on images (Goodfellow et al., |2014) or
voices (Carlini & Wagner}, |2018)) to make Al systems make incorrect predictions. In light
of this, many adversarial defense methods have been proposed to improve the robustness,
which can be categorized into empirical defenses and theoretical defenses. Common empirical
defenses include adversarial training (Madry et al.l 2018} |Shafahi et al., |2019; [Wang et al.l
2023) and preprocessing-based methods (Samangouei et al., [2018; Das et al 2018} [Lee
& Kim), 2023). Though effective, the empirical defenses cannot provide any robustness
guarantees. Thus, the defenses may be ineffective when encountering sophisticated attackers.
Unlike empirical defenses, theoretical defenses offer quantitative and provable guarantees of
robustness, ensuring no adversarial examples within a specific £,-norm ball with a radius
around the prediction point.

Theoretical defenses against adversarial attacks are broadly categorized into probabilistic
and deterministic (Li et al.| 2023) methods. Randomized smoothing (Cohen et al., 2019;
Lecuyer et al., [2019; |Yang et al., [2020]) is a prominent probabilistic approach, known for
its scalability in providing certified robustness. However, its reliance on extensive sam-
pling substantially increases computational overhead during inference, limiting its practical
deployment. Furthermore, the certification provided is probabilistic in nature.

Conversely, deterministic methods, exemplified by interval bound propagation (Ehlers, [2017}
Gowal et al.l 2018; Mueller et al., |2022; |Shi et al., [2022)) and CROWN (Wang et al. 2021}
Zhang et al. [2022), efficiently provide deterministic certification. These methods aim to
approximate the lower bound of worst-case robust accuracy to ensure deterministic robustness
guarantees. Among various deterministic methods, neural networks with Lipschitz constraints
are able to compute the lower bound of worst-case robust accuracy with a single forward
pass, making them the most time-efficient at inference time. They are known as Lipschitz
neural networks.

Lipschitz neural networks are designed to ensure that the entire network remains Lipschitz-
bounded. This constraint limits the sensitivity of the outputs to input perturbations, thus

!The code will be made available upon acceptance. A version has been provided for reviewers.
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providing certifiable robustness by controlling changes in the logits. A promising approach
to constructing Lipschitz neural networks focuses on designing orthogonal layers, which
inherently satisfy the the 1-Lipschitz constraint. Furthermore, these layers help mitigate the
issue of vanishing gradient norms due to their norm-preserving properties.

In this work, we introduce the Block Re-
flector Orthogonal (BRO) layer, which 8] BRONC'S
outperforms existing methods in terms of LiResNet
computational efficiency as well as robust
and clean accuracy. We utilize our BRO
layer to develop various Lipschitz neural net-
works, thereby demonstrating its practical
utility across various architectures. Addi-
tionally, we develop a new Lipschitz neural
network BRONet, which shows promising
results.
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networks, analyzing their inherent limited 721 oL N
capability. Building on this analysis, we 63 64 65 66 67 68 6 70 T
introduce a novel loss function, the Logit Certified Robust Accuracy (%)
Annealing loss, which is empirically shown o

to be highly effective for training Lipschitz Flgure} 1: V.lsuahzatlon of modgl performance.
neural networks. The certification results Lhe circle size denotes model size.

of the proposed method outperform state-of-the-art methods with reasonable number of
parameters, as Figure [1| shows.
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Our contributions are summarized as follows:

e We propose a novel BRO method to construct orthogonal layers using low-rank parame-
terization. It is both time and memory efficient, while also being stable during training
by eliminating the need for iterative approximation algorithms.

e We unlock the potential of applying orthogonal layers to more advanced architectures,
enhancing certified robustness while reducing resource requirements.

e We construct various Lipschitz networks using BRO method, including newly designed
BRONet, which achieves state-of-the-art certified robustness without adversarial training.

e Based on our theoretical analysis, we develop a novel loss function, the Logit Annealing
loss, which is effective for training Lipschitz neural networks via an annealing mechanism.

e Through extensive experiments, we demonstrate the effectiveness of our proposed method
on the CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets.

2 PRELIMINARIES

2.1 CERTIFIED ROBUSTNESS WITH LIPSCHITZ NEURAL NETWORKS

Consider a function f : R™ — R™. The function is said to exhibit L-Lipschitz continuity
under the />-norm if there exists a non-negative constant L such that:

o1,eRm |71 — 22|

where ||-|| represents the ¢ norm. This relationship indicates that any variation in the
network’s output is limited to at most L times the variation in its input, effectively character-
izing the network’s stability and sensitivity to input changes. Specifically, under the ¢o-norm,
the Lipschitz constant is equivalent to the spectral norm of the function’s Jacobian matrix.

Assuming f(z) is the output logits of a neural network, and ¢ denotes the target label.
We say f(x) is certifiably robust with a certified radius ¢ if argmax; f(z + 6); = t for
all perturbations {0 : ||§]] < e}. Determining the certified radii is crucial for certifiable
robustness and presents a significant challenge. However, in L-Lipschitz neural networks,
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e can be easily calculated using ¢ = max(0, M (z)/v2L), where M¢(x) denotes the logit
difference between the ground-truth class and the runner-up class in the network output.
That is, Ms(z) = f(z): — maxg f(x)r (Tsuzuku et all [2018; Li et al., 2019).

2.2  LIPSCHITZ CONSTANT CONTROL & ORTHOGONALITY IN NEURAL NETWORKS

Obtaining the exact Lipschitz constant for general neural networks is known to be an NP-
hard problem (Virmaux & Scaman, 2018)). However, there are efficient methods available
for computing it on a layer-by-layer basis. Once the Lipschitz constant for each layer is
determined, the Lipschitz composition property allows for the calculation of the overall
Lipschitz constant for the entire neural network. The Lipschitz composition property states
that given two functions f and g with Lipschitz constants Ly and L4, their composition
h = go f is also Lipschitz with a constant Lj, < L, - Ly. We can use this property to obtain
the Lipschitz constant of a complex neural network f:

l
f=diogi10...0¢1, Lip(f) <] Lip(es). (2)
i=1

Thus, if the Lipschitz constant of each layer is properly regulated, robust certification
can be provided. A key relevant property is orthogonality, characterized by the isometry
property ||[Wz| = ||z| for a given operator W. Encouraging orthogonality is crucial for
controlling the Lipschitz constant while preserving model expressiveness (Anil et al.l |2019),
as it helps mitigate the vanishing gradient problem and ensures a tight Lipschitz bound for
the composition of layers in Equation [2}

3 RELATED WORK

Orthogonal Layers Orthogonality in neural networks is crucial for various applications,
including certified robustness via Lipschitz-based methods, GAN stability (Miiller et al.,
2019), and training very deep networks with inherent gradient preservation. While some
approaches implicitly encourage orthogonality through regularization or initialization (Qi
et al., 2020} [Xiao et al., 2018)), explicit methods for constructing orthogonal layers have
garnered significant attention, as evidenced by several focused studies in this area. [Li et al.
(2019) proposed Block Convolution Orthogonal Parameterization (BCOP), which utilizes
an iterative algorithm for orthogonalizing the linear transformation within a convolution.
Trockman & Kolter| (2020) introduced a method employing the Cayley transformation
W = (I —-V)I+ V)™ ! where V is a skew-symmetric matrix. Similarly, Singla & Feizi
(2021b) developed the Skew-Orthogonal Convolution (SOC), employing an exponential
convolution mechanism for feature extraction. Additionally, |[Xu et al.|(2022) proposed the
Layer-wise Orthogonal training (LOT), an analytical solution to the orthogonal Procrustes
problem (Schénemann, |1966), formulated as W = (VVT)~1/2V/. This approach requires the
Newton method to approximate the internal matrix square root. [Yu et al.| (2021]) proposed
the Explicitly Constructed Orthogonal Convolution (ECO) to enforce all singular values of
the convolution layer’s Jacobian to be one. Notably, SOC and LOT achieve state-of-the-art
certified robustness for orthogonal layers. Most matrix re-parameterization-based methods
can be easily applied for dense layers, such as Cayley, SOC, and LOT. One recently proposed
orthogonalization method for dense layers is Cholesky (Hu et al., 2024)), which explicitly
performs QR decomposition on the weight matrix via Cholesky decomposition.

Other 1-Lipschitz Layers A relaxation of isometry constraints, namely, |[Wz| < |z||,
facilitates the development of extensions to orthogonal layers, which are 1-Lipschitz layers.
Prach & Lampert| (2022)) introduced the Almost Orthogonal Layer (AOL), which is a
rescaling-based parameterization method. Meanwhile, [Meunier et al.| (2022)) proposed the
Convex Potential Layer (CPL), leveraging convex potential flows to construct 1-Lipschitz
layers. Building on CPL, |Araujo et al| (2023) presented SDP-based Lipschitz Layers (SLL),
incorporating AOL constraints for norm control. Most recently, Wang & Manchester| (2023])
introduced the Sandwich layer, a direct parameterization that analytically satisfies the SDP
conditions outlined by |Fazlyab et al.| (2019).
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Lipschitz Regularization While the aforementioned methods control Lipschitz constant
by formulating constrained layers with guaranteed Lipschitz bound, Lipschitz regularization
methods estimate the layer-wise Lipschitz constant via power iteration (Farnia et al. [2019)
and apply regularization to control it. [Leino et al. (2021) employed a Lipschitz regularization
term to maximize the margin between the ground truth and runner-up class in the loss
function. Hu et al.| (2023;2024) further proposed a new Lipschitz regularization method
Efficiently Margin Mazimization (EMMA ), which dynamically adjust all the non-ground-truth
logits before calculating the cross-entropy loss.

4 BRO: BLOCK REFLECTOR ORTHOGONAL LAYER

In this section, we introduce the BRO layer, designed to provide certified robustness via
low-rank orthogonal parameterization. First, we detail the fundamental properties of our
method. Next, we leverage the 2D-convolution theorem to develop the BRO orthogonal
convolutional layer. Finally, we conduct a comparative analysis of our BRO with existing
state-of-the-art orthogonal layers.

4.1 LOW-RANK ORTHOGONAL PARAMETERIZATION SCHEME

The core premise of BRO revolves around a low-rank parameterization applied to an
orthogonal layer, as introduced by the following proposition. A detailed proof is provided in
Appendix [A7T]
Proposition 1. Let V € R™*™ be a matriz of rank n, and, without loss of generality,
assume m > n. Then the parameterization W = I — 2V (VIV)=IVT satisfies the following
properties:

1. W is orthogonal and symmetric, i.e., W' =W and WTW = 1.

2. W s an n-rank perturbation of the identity matriz, i.e., it has n eigenvalues equal
to —1 and m — n eigenvalues equal to 1.

3. W degenerates to the negative identity matrix when V is a full-rank square matriz.

This parameterization draws inspiration from the block reflector (Dietrich| [1976; |Schreiber|
[1988)), which is widely used in parallel QR decomposition and is also important
in other contemporary matrix factorization techniques. This approach enables the parame-
terization of an orthogonal matrix derived from a low-rank unconstrained matrix, thereby
improving the computational efficiency.

Building on the definitive property of the proposition above, we initialize the parameter
matrix V' as non-square to prevent it from degenerating into a negative identity matrix.

While the above discussion revolves around weight matrices for dense layers, the parameteri-
zation can also be used to construct orthogonal convolution operations. Specifically, given
an unconstrained kernel V& R*"*kxk where each slicing V[:, :, 4, j] is defined as in Propo-
sition Wecony = Lcony — 2V & (VT ® V)f1 ® VT constitutes an orthogonal convolution,
where the operation ® represents the convolution operation. Note that computing the inverse
of a convolution kernel is challenging; therefore, we solve it in the Fourier domain instead.
Following prior work (Trockman & Kolter, 2020; Xu et al., 2022), we apply the 2D convolution
theorem (Jain, 1989) to perform the convolution operation. Define FFT : R%*% — C*** as
the 2D Fourier transform operator and FFT ™! : C**¢ — C5** as its inverse, where s x s
denotes the spatial dimensions, and FFT and IFFT are applied along these dimensions. The
2D convolution theorem asserts that the circular convolution of two matrices in the spatial
domain corresponds to their element-wise multiplication in the Fourier domain. Furthermore,
based on the idea that multi-channel convolution in the Fourier domain corresponds to a
batch of matrix-vector products (Trockman & Kolter] [2020)), we can perform orthogonal
convolution in the following manner. Let X = FFT(X) and V = FFT(V), the convolution
operation Y = (Icony —2V® (VI ® V) ! ® V1) ® X is then computed as Y = FFT! (Y)
and Yz; = I/V:.:,i.,jX:.i,ja where H/:,:.,i,j =1- 2‘/:,;710'(V:iﬁi’jv:,;_’i,j)ilVv::k:’i‘j and V*//

i Algorithm details the proposed method, assuming
the input and output channels are equal to c.

repre-
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Algorithm 1 BRO Convolution

1: Input: Tensor X € R°**** Kernel V € R F*F with n < ¢ > ¢ is channel size.
2: XP2d .= zero pad(X, (k, k, k, k)) € Rex(s+2k)x(s+2k)

3: VP .= zero _pad(V,(0,0,k + s,k + 5)) € Rox7x(s42k)x (s+2k)

4: X .— FFT(Xpad) c ch(s+2k)><(s+2k) : f/ = FFT(vpad) c C(':X7z><(s+2k)><(s+2k)

5. for alli,j € {1,...,s+ 2k} do

6: Yi,j=- 2‘/:,:,1',]'(‘/;f;ﬂ"j‘/:,:,i,j)_lui,i7j)X:,i,j > Apply our parameterization.
7: end for ~

8: Y :=FFT (V)

9: return (Y. y._g p:—k).real > Extract the real part.

Proposition 2. Consider J € C'*P as a unitary matriz. Define V and V such that
V = JVJ*, where V.€ RP*? and V € CP*P. Let H(V) = I — 2V(V*V)~'V* be our

parameterization. Then, H(V) = JH(V)J*.

Although the operation involves complex numbers, the resulting output Y remains a real
matrix. This follows from Proposition [2] when J and J* are treated as the Fourier and
inverse Fourier transformations, respectively. The dimension p is realized by ¢ X s x s. The

complex function H(V'), when composed with these transformations, yields a real matrix
H(V). The proof is provided in Appendix

For layers where the input dimension differs from the output dimension, we enforce the
1-Lipschitz constraint via semi-orthogonal layers. In these layers, only one side of the
orthogonality condition is satisfied, either WTW = I or WWT = I. We derive the
parameterization of these layers by constructing an orthogonal matrix W and subsequently
truncating it to the required dimensions.

4.2 PROPERTIES OF BRO LAYER

This section compares BRO to SOC and LOT, the state-of-the-art orthogonal layers.

Iterative Approximation-Free Both LOT N

and SOC utilize iterative algorithms for con- | soc |55
structing orthogonal convolution layers. Al- AT =y
though these methods’ error bounds are the- =8 i %

oretically proven to converge to zero, em-
pirical observations suggest potential viola-
tions of the 1-Lipschitz constraint. Prior work

1
(Béthune et al. [2022) has noted that SOC’s 2 ¢ ’i—" s
construction may result in non-1-Lipschitz / - ' . R
layers due to approximation errors inherent in o ¥

Runtime (Sec)

the iterative process involving a finite number
of terms in the Taylor expansion. Regarding
LOT, we observe numerical instability dur- # Layers

ing training due to the Newton method for

orthogonal matrix computation. Specifically, Figure 2: Comparison of runtime and memory
the Newton method break the orthogonality usage among SOC, LOT, and the proposed
when encountering ill-conditioned parame- BRO.

ters, even with the 64-bit precision computation recommended by the authors. An illustrative
example is that using Kaiming initialization instead of identity initialization
results in a non-orthogonal layer. Detailed experiments are provided in Appendix [D.6 In
contrast, the proposed BRO constructs orthogonal layers without iterative approximation,
ensuring both orthogonality and robustness certification validity.

Time and Memory Efficiency LOT’s internal Newton method requires numerous steps
to approximate the square root of the kernel, significantly prolonging training time and
increasing memory usage. Conversely, the matrix operations in BRO are less complex,
leading to substantially less training time and memory usage. Moreover, the low-rank
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parametrization characteristic of BRO further alleviates the demand for computational
resources. When comparing BRO to SOC, BRO has an advantage in terms of inference time
as SOC requires multiple convolution operations to compute the exponential convolution.
Figure |2 shows the runtime per epoch and the memory usage during training. We analyze the
computational complexity of different orthogonal layers both theoretically and empirically.
The detailed comparison can be found in Appendix [A-3]

Non-universal Orthogonal Parameterization While a single BRO layer is not a universal
approximator for orthogonal layers, as established in the second property of Proposition
we empirically demonstrate in Section [7.2] that the expressive power of deep neural networks
constructed using BRO is competitive with that of LOT and SOC.

5 BRONET ARCHITECTURE

We design our architecture BRONet similar to SLL and LiResNet. It consists of a stem
layer for image-to-feature conversion, several convolutional backbone blocks of same width
for feature extraction, a neck block to convert feature maps into flattened vectors, and
multiple dense blocks followed by a spectral normalized LLN layer (Singla et al., [2022]). For
non-linearity, MaxMin activation (Anil et al., | 2019; |(Chernodub & Nowicki, [2016) is used.
Further details can be found in Appendix [B.2]

Compared to LiResNet with Lipschitz-regularized (Lip-reg) convolutional backbone blocks
and SLL with SDP-based 1-Lipschitz layers, all the backbone blocks are BRO orthogonal
parameterized, which ensures a tight Lipschitz composition bound in Equation [2] and is
free from gradient norm vanishing. We keep the first stem layer in BRONet to be the only
Lipschitz-regularized layer since we empirically find it benefits the model training with a
more flexible Lipschitz control. Note that the Lipschitz composition bound of BRONet
remains tight due to the orthogonal backbone blocks. Let the stem layer be W7 and @ be
the composition of the layers before the neck block with Q7 Q = I, we have:

Lip(@W1) =  Amax (QU1)T(QW1)) = \/Aax(W{ W) = Lip(177), (3)

where Apax(+) is the largest eigenvalue. Conversely, stacking multiple non-orthogonal layers
such as Lip-reg or SLL does not necessarily results in a tight Lipschitz bound in Equation 2]

6 LoGIT ANNEALING Loss FuNcTION

Singla et al.| (2022)) posited that cross-entropy (CE) loss is inadequate for training Lipschitz
models, as it fails to increase the margin. Thus, they integrated Certificate Regularization
with the CE loss, formulated as: Lcg — yrelu(M(z)), where relu(My(z)) is the CR term
and ~ is a hyper-parameter. However, our investigation identifies several critical issues
associated with the CR term, such as discontinuous loss gradient and gradient domination.
Please see Appendix [C.2] for details.

Our insight reveals that Lipschitz neural networks inherently possess limited model complexity,
which impedes empirical risk minimization. Here, we utilize Rademacher complexity to justify
that the empirical margin loss risk (Bartlett et al., [2017)) is challenging to minimize with
Lipschitz neural networks. Let H represent the hypothesis set. The empirical Rademacher

complexity of H over a set S = {x1,x2,...,2,} is given by:
1 n
Rs(H) =E, | sup — oih(x;) |, 4
(M) =B |sup 2> it )] ()

where o; are independent Rademacher variables uniformly sampled from {—1,1}. Next, we
use the Rademacher complexity to demonstrate that a model with low capacity results in a
greater lower bound for margin loss risk.

Theorem 1. Given a neural network f and a set S of size n, let £, denote the ramp loss (a
special margin loss, see Appendi:z:@ (Bartlett et all |2017). Let F represent the hypothesis
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set of f. Define that:
Fri=A{(z,y) = LM(f(2),9) : f € Fl (5)

n
Assume that P, is the prediction error probability. Then, with probability 1 — 9§, the empirical
margin loss risk R.(f) is lower bounded by:

In(1/0)

R7<f)ZPe_2mS(fT>_3 m

(7)

Furthermore, for the L-Lipschitz neural networks, we introduce the following inequality to
show that the model complexity is upper bounded by L

Proposition 3. Let F be the hypothesis set of the L-Lipschitz neural network f, and £, is
the ramp loss with Lipschitz constant 1/7, for some 7 > 0. Then, given a set S of size n, we

have:
n
*Sungzf xz S Z”xZH

Rs(Fr) =E, *SU.IL)ZO’Z L0 f)(x;) -
n fer? i—1 n fer: i—1
This is also known as Ledoux-Talagrand contraction (Ledoux & Talagrand, [2013)). In
Lipschitz neural networks, the upper bound is typically lower than in standard networks due
to the smaller Lipschitz constant L, consequently limiting Rg(F;).

According to Theorem [} the empirical margin loss risk exhibits a greater lower bound if
Rs(F-) is low. It is important to note that the risk of the CR term, i.e., CR loss risk, is

exactly the margin loss risk decreased by one unit when 7 = 1/v. That is R¢ R( =R (f)-1.
This indicates that CR loss risk also exhibits a greater lower bound. Thus, it is unlikely
to minimize the CR term indefinitely if the model exhibits limited Rademacher complexity.
Note that limited Rademacher complexity can result from a low Lipschitz constant or a
large sample set. This also implies that we cannot limitlessly enlarge the margin in Lipschitz
neural networks, especially for large real-world datasets. Detailed proofs can be found in

Appendix [C]

The CR term encourages a large margin for every data point simultaneously, which is
impossible since the risk has a great lower bound. Due to the limited capacity of Lipschitz
models, we must design a mechanism that enables models to learn appropriate margins for
most data points. Specifically, when a data point exhibits a large margin, indicating further
optimizing it is less beneficial, its loss should be annealed to allocate capacity for other data
points. Based on this idea, we design a logit annealing mechanism to modulate the learning
process, gradually reducing loss values of the large-margin data points. Consequently, we
propose a novel loss function: the Logit Annealing (LA) loss. Let z = f(z) represent the
logits output by the neural network, and let y be the one-hot encoding of the true label ¢.
We define the LA loss as follows:

Lra(z,y) = =T (1 — p;)? log (p;), where p = softmax(Z¥). 9)

The hyper-parameters temperature T and offset ¢ are adapted from the loss function in
Prach & Lampert| (2022) for margin training. The term (1 —p;)?, referred to as the annealing
mechanism, draws inspiration from Focal Loss (Lin et al. 2017). During training, LA loss
initially promotes a moderate margin for each data point, subsequently annealing the data
points with large margins as training progresses. Unlike the CR term, which encourages
aggressive margin maximization, our method employs a balanced learning strategy that
effectively utilizes the model’s capacity, especially when it is limited. Consequently, LA loss
allows Lipschitz models to learn an appropriate margin for most data points. Please see
Appendix [C] for additional details on LA loss.

7 EXPERIMENTS

In this section, we first evaluate the overall performance of our proposed BRONet against
the /5 certified robustness baselines. Next, to further demonstrate the effectiveness of the



Under review as a conference paper at ICLR 2025

Table 1: Comparison of our method’s performance with previous works. The ¢ perturbation
budget ¢ for certified accuracy is chosen following the convention of previous works. For fair
comparison, diffusion-generated synthetic datasets are not used.

Clean Cert. Acc. (g)

Datasets Models #Param.

Acc. 36 72 108

255 255 255

Cayley Large (Trockman & Kolter|[2020) 21M 74.6 61.4 46.4 32.1

SOC-20 (Singla et al.|[2022) 27TM 76.3 62.6 48.7 36.0

LOT-20 (Xu et al.||2022) 18M 771 64.3 495 36.3

CPL XL (Meunier et al.| 2022) 236M 78.5 64.4 48.0 33.0

CIFARI10 AOL Largc (Prach & Lampert||2022) 136M 71.6 64.0 56.4 49.0
SOC-204+CRC (Singla & Feizi|[2022) 40M 79.1 66.5 52,5 38.1

SLL X-Large(Araujo et al.|[2023] 236M 73.3 64.8 55.7 47.1

LiResNet(Hu et al.|[2024) 83M 81.0 69.8 56.3 42.9

BRONet-M 3™ 81.2 69.7 55.6 40.7

BRONet-L 68M 81.6 70.6 57.2 425

Cayley Large (Trockman & Kolter|[2020) 21M 43.3  29.2 188 11.0

SOC-20 (Singla et al.||2022) 27TM 47.8 34.8 23.7 15.8

LOT-20 (Xu et al.||2022) 18M 48.8 352 243 16.2

CPL XL (Meunier et al.| 2022) 236M 47.8 33.4 20.9 12.6

AOL Large (Prach & Lampert|[2022) 136M 43.7 33.7 26.3 20.7

CIFAR100 SOC-20+CRC (Singla & Feizil [2022) 40M 51.8 38.5 27.2 185
SLL X-Large(Araujo et al.||[2023] 236M 47.8  36.7 28.3 22.2

SaIldWiCh(Wang & Manchester||2023) 26M 46.3 35.3 26.3 20.3

LiResNet(Hu et al.|[2024) 83M 53.0 40.2 283 19.2

BRONet-M 3™ 54.1 40.1 285 19.6

BRONet-L 68M 54.3 40.2 29.1 20.3

SLL X-Large(Araujo et al.|[2023) 1.1B 32.1 232 16.8 12.0

Tiny—ImageNet Sandwich(Wang & Manchester] 2023) 39M 33.4 24.7 18.1 134
- LiResNet(Hu et al.|[2024) 133M 40.9 26.2 15.7 8.9
BRONet 75M 41.2 29.0 19.0 12.1

BRO layer, we conduct fair and comprehensive evaluations on multiple architectures for
comparative analysis with orthogonal and other Lipschitz layers in previous literature. Lastly,
we present the experimental results and analysis on the LA loss function. For detailed
implementation information, refer to Appendix

7.1 MAIN RESULTS

We compare BRONet to the current leading methods in the literature. Figure [1| presents a
visual comparison on CIFAR-10. Furthermore, Table [I] details the clean accuracy, certified
accuracy, and the number of parameters. On CIFAR-10 and CIFAR-100, our model achieves
the best clean and certified accuracy with the ¢» perturbation budget ¢ = 36/255. On the
Tiny-ImageNet dataset, our method surpasses all baselines in terms of overall performance,
demonstrating its scalability. Notably, BRONets achieves these results with a reasonable
number of parameters.

7.2 ABLATION STUDIES

Extra Diffusion Data Augmentation As demonstrated in previous studies (Hu et al.,
2024;|Wang et al., 2023]), incorporating additional synthetic data generated by diffusion models
such as elucidating diffusion model (EDM) (Karras et al., 2022) can enhance performance.
We evaluate the effectiveness of our method in this setting, using diffusion-generated synthetic
datasets from [Hu et al.| (2024)); Wang et al.| (2023)) for CIFAR-10 and CIFAR-100, which
contain post-filtered 4 million and 1 million images, respectively. Table [2] presents the results,
showing that combining LA and BRO effectively leverages these synthetic datasets to enhance
performance.
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Table 2: Improvements of combining LA and BRO with LiResNet using diffusion data aug-
mentation. The best results of each dataset are marked in bold. Performance improvements
and degradations relative to the baseline are marked in green and red, respectively.

Clean Cert. Acc. (g)

Datasets Methods Acc. 36 Y 108

255 255 255

LiResNet 87.0 78.1 66.1 53.1
((JfrF]%)As{lill)O +LA 86.7 (-0.3) 78.1 (+0.0)  67.0 (+0.9) 54.2 (+1.1)
+LA + BRO 87.2(+0.2) 783 (+0.2) 67.4(+1.3) 54.5(+1.4)

LiResNet 61.0 48.4 36.9 26.5
C(H‘J‘/égivll())(] +LA 61.1 (+0.1) 489 (+0.5) 37.5(+0.6) 27.6(+1.1)
+LA + BRO 61.6 (+0.6) 49.1 (+0.7) 37.7 (+0.8) 27.2 (+0.7)

Table 3: Comparison of clean and certified accuracy using different Lipschitz convolutional
backbones. The best results are marked in bold. #Layers is the number of convolutional
backbone layers, and #param. is the number of parameters in the constructed architecture.

Conv. CIFAR-10 EDM CIFAR-100 EDM

Backbone #Layers  7#Param. 36 (+72 )108 36 (tz 1)08

Clean 255 258 288 Clean 255 258 288
LOT 2 59M 85.7 76.4 65.1 52.2 59.4 476 36.6 26.3
Cayley 6 68M 86.7 777 66.9  54.3 61.1 48.7 37.8 275
Cholesky 6 68M 85.4 76.6 65.7 53.3 59.4 474  36.8 26.9
SLL 12 83M 85.6 76.8 66.0 53.3 59.4 476 36.6 27.0
SOC 12 83M 86.6 78.2 67.0 54.1 60.9 489 376 27.8
Lip-reg 12 83M 86.7 78.1 67.0 54.2 61.1 489 375 276
BRO 12 68M 87.2 78.3 67.4 54.5 61.6 49.1 377 272

Backbone Comparison As the improvements in the previous work by Hu et al.| (2024)
primarily stem from using diffusion-generated synthetic datasets and architectural changes,
we conduct a fair and comprehensive comparison of different Lipschitz convolutional layers
using the default LiResNet architecture (with Lipschitz-regularized convolutional layers),
along with LA and diffusion-based data augmentation. The only modification is swapping
out the convolutional backbone layers. It is important to note that for FFT-based orthogonal
layers (excluding BRO), we must reduce the number of backbone layers to stay within
memory constraints. LOT has the fewest parameters due to its costly parameterization.
With half-rank parameterization in BRO, the number of parameters for BRO, Cayley, and
Cholesky remain consistent, while SLL, SOC, and Lipschitz-regularized retain the original
number of parameters. The results in Table [3]indicate that BRO is the optimal backbone
choice compared to other layers in terms of overall performance.

LipConvNet Benchmark To further validate the effectiveness of BRO, we also evaluate
it on LipConvNets, which have been the standard architecture in the literature on orthogonal
layers (Singla & Feizil [2021b} 2022; Xu et all 2022). For LipConvNets details, refer to
Appendix [B.2] Table [4] illustrates the certified robustness of SOC, LOT, and BRO layers. It
is evident that the LipConvNet constructed by BRO layers compares favorably to the other
orthogonal layers in terms of clean and robust accuracy. Detailed comparisons are provided

in Appendix [D-5]

7.3 LA Loss EFFECTIVENESS

Table [2 illustrates the performance improvements achieved using the proposed LA loss, with
LA showing better results on CIFAR-100 compared to CIFAR-10. We also provide extensive
ablation experiments in Appendix [D.3] to validate its effectiveness on different architectures
and datasets. Our experiments show that LA loss promotes a balanced margin, increasing
clean and certified robust accuracies by approximately 1% to 2%, especially for models
trained on more challenging datasets like Tiny-ImageNet. See Table [11] for more details.

To demonstrate that the LA loss enables learning an appropriate margin for most data points,
we further investigate the certified radius distribution. Following |Cohen et al.| (2019)), we
plot the certified accuracy with respect to the radius on CIFAR-100 to visualize the margin

9
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Table 4: Comparison of clean and certified accuracy with different orthogonal layers in
LipConvNets (depth-width). Instances marked with a dash (-) indicate out of memory during
training. The best results with each model are marked with bold.

Models Layers CIFAR-100 Tiny-ImageNet
36 72 108 36 72 108
Clean 255 255 255 Clean 255 2585 SEE

. SOC 475 347 240 159 380 265 177 113
LipConvNet /o 49’1 355 244 163 402 279 187 11.8

(10-32) BRO 486 354 24.5 161 394 28.1 182 116

: SOC 482 349 244 162 389 271 176 112
LipConvNet

“El(ﬁ;) ' LOT  49.4 358 248 16.3 - - - -

BRO  49.4 36.2 24.9 16.7 40.0 28.1 18.9 12.3

. SOC 485 355 244 163 393 273 176 11.2
L N
lpi;) %Z) °LOT 496 361 247 162 - - - -
(10- BRO  49.7 36.7 25.2 16.8 40.7 28.4 19.2 12.5

distribution in Figure[3] The certified radius Table 5: The median, variance and skewness

is proportional to the margin in Lipschitz of certified radius distribution.
models. Thus, the x-axis and y-axis can be

. Loss Median Variance Skewness

seen as margin and complementary cumula-
tive distribution of data points, respectively CE 0.2577 0.0732 1.2114

. 1s CE+CR  0.2750 0.1000 1.4843
(Lecuyer et al.,2019). The results indicate LA 0.2840 0.0797 10539
that the number of data points with appro-
priate margins increases, which is evident as 0.7
the red curve rises higher than the others at Training
the radius between [0.0, 0.6]. Moreover, the 0.6 — LA
clean accuracy, which corresponds to certi- — CE
fied accuracy at zero radius, is also observed § 03y — CE+CR
to be slightly higher. This suggests that the 5 KN Test
LA loss does not compromise clean accuracy § 041 \%gtx -—-- LA
for robustness. To further understand the B 0.3 R ---- CE
annealing mechanism, we analyze the distri- & ™ = ---- CE+CR
bution of the certified radius across the data g 0.2
points, as shown in Table [§] Compared to
CR, the LA loss reduces both the positive 0.1
skewness and variance of the distribution,
indicating a rightward shift in the peak and 0.0

00 01 02 03 04 05 06 07 08

a decrease in the dispersion of the radius. Radius

This suggests that LA loss helps mitigate

the issue of overfitting to certain data points  Figure 3: Certified accuracy with respect to

and improves the certified radius for most radius. LA loss helps learn appropriate margin.
points. In addition to the experiments men-

tioned above, we also provide experiments in Appendix [D] including the empirical robustness
test, ablation studies for BRO rank, loss, and so on.

8 CONCLUSION

In this paper, we introduce a novel BRO layer to construct various Lipschitz neural networks.
The BRO layer features low-rank parameterization and is free from iterative approximations.
As a result, it is both memory and time efficient compared with existing orthogonal layers,
making it well-suited for integration into advanced Lipschitz architectures to enhance
robustness. Furthermore, extensive experimental results have shown that BRO is one of
the most promising orthogonal convolutional layers for constructing expressive Lipschitz
networks. Next, we address the limited complexity issue of Lipschitz neural networks and
introduce the new Logit Annealing loss function to help models learn appropriate margins.
Moving forward, the principles and methodologies in this paper could serve as a foundation
for future research in certifiably robust network design.

10
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REPRODUCIBILITY

To ensure the reproducibility of our experiments, we have provided detailed implementation
of the proposed BRO method. Additionally, the code is included in the supplementary
material, enabling readers to replicate the experiments. The implementation of Algorithm [I]
can be found in lipconvnet/models/layers/bro_conv.py.
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A BRO LAYER ANALYSIS

A.1 PROOF OF ProrosITION [II

Proposition 1. Let V € R™*™ be a matriz of rank n, and, without loss of generality,
assume m > n. Then the parameterization W = I — 2V (VIV)=YVT satisfies the following
properties:

1. W is orthogonal and symmetric, i.e., W =W and WTW = 1.

2. W is an n-rank perturbation of the identity matriz, i.e., it has n eigenvalues equal
to —1 and m —n eigenvalues equal to 1.

3. W degenerates to the negative identity matrix when V is a full-rank square matriz.

Proof. Assuming V is as defined in Proposition [ the symmetry of this parameterization is
straightforward to verify. The orthogonality of W, however, requires confirmation that the
following condition is satisfied:

WWT = (I -2v(V'V)"'vH (I —2v(VTV)tv T
= (I —2v(VTV) VI —2v(vTV)TivT)
=1 —4V(VTV) VT av(viv)Stviv vty vt
=T —4av(VTV) "W pav(viv) Tyt
=1 (10)
Next, define S = {vy,vs,- -+ ,v,} as the set of column vectors of V. Let e; denote the i-th
standard basis vector in R™. Then, we have
W, = (I =2V(VTV)1Vv T,
=v; = 2V(VTV) "ty Ty,
= = 2V(VTV) L (VT Ve;)
=v; = 2V(VTV) L (VTV)e;

= V; — 2V€1
v; — 2v; = —v;. (11)
For the vectors in the orthogonal complement of S, denoted by S* = {v, 11, Vnia, -+, Um}s
we have
Wu; = (I = 2VIVIV) VT = ;. (12)

The equality holds because, for all v; € S+, we have VTv; = 0.

Therefore, the eigenspace corresponding to eigenvalue —1 is spanned by S, while the
eigenspace corresponding to eigenvalue 1 is spanned by S-*.

Assume V is a full-rank square matrix, which implies that V' is invertible. Thus:
W=1-2v(viv)y~tvT
=I-2vv-i(vh)~tvT
=1-2I
=1 (13)
Thus, the proof is complete. O

A.2 PROOF OF PROPOSITION

Proposition 2. Consider J € CP*P as a unitary matriz. Define V and V such that
V. = JVJ*, where V. € RP*P and V € CP*P. Let H(V) = I — 2V (V*V)=IV* be our
parameterization. Then, H(V) = JH(V)J*.
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Proof. Assume J and V are as defined in Proposition [2] Then
JHV)J =J(I -2v(VTV)~tvT)g
=1 —2(J* JVIN(JVVI) L JV*T*J)
=T —2VJ)[(JV* V) LIV

=] —2V(V*V)"lv* (*)
= H(V).
The equality at (x) holds because
(V)L =gV VI L (14)
O

A.3 COMPLEXITY COMPARISON OF ORTHOGONAL LAYERS

In this section, we demonstrate the computational and memory advantages of the proposed
method by analyzing its complexity compared to prior work. We use conventional notation
from [Prach et al.| (2023). We focus on algorithmic complexity and required memory,
particularly in terms of multiply-accumulate operations (MACSs). The detailed complexity
comparison is presented in Table [7]

The analysis has two objectives: input transformation and parameter transformation. The
computational complexity and memory requirements of the forward pass during training
are the sum of the respective MACs and memory needs. The backward pass has the same
complexity and memory requirements, increasing the overall complexity by a constant factor.
In addition to theoretical complexity, we report the practical time and memory usage for
different orthogonal layers under various settings in Figure

In the following analysis, we consider only dimension-preserving layers, where the input
and output channels are equal, denoted by c. Define the input size as s X s x ¢, the batch
size as b, the kernel size as k x k, the number of inner iterations of a method as t, and the
rank-control factor for BRO as «, as listed in Table[6] To simplify the analysis, we assume
¢ > logy(s). Under the PyTorch (Paszke et al., |2019)) framework, we can also assume that
rescaling a tensor by a scalar and adding two tensors do not require extra memory during
back-propagation.

Standard Convolution In standard convolutional layers, the computational complexity of
the input transformation is C' = bs?c?k? MACs, and the memory requirement for input and
kernel are M = bs?c and P = c?k?, respectively. Additionally, these layers do not require
any computation for parameter transformation.

SOC For the SOC layer, t convolution iterations are required. Thus, the input transformation
requires computation complexity and memory ¢ times that of standard convolution. For the
parameter transformation, a kernel re-parameterization is needed to ensure the Jacobian of
the induced convolution is skew-symmetric. During training, the SOC layer applies Fantastic
Four (Singla & Feizi, [2021a)) technique to bound the spectral norm of the convolution, which
incurs a cost of ¢*k“t. The memory consumption remains the same as standard convolution.

LOT The LOT layer achieves orthogonal convolution via Fourier domain operations. Apply-
ing the Fast Fourier Transform (FFT) to inputs and weights has complexities of O(bes? log(s?))
and O(c?s?log(s?)), respectively. Subsequently, s? matrix orthogonalizations are required
using the transformation V(VTV)_%. The Newton Method is employed to find the inverse
square root. Specifically, let Yo = VTV and Zy = I, then Y; is defined as

1 1
Yipn = §Yi BI - 2;Y3), Zig1= 3 (8 — Z:Y;) Z. (15)
This iteration converges to (VTV)*%. Executing this procedure involves computing 4s%t

matrix multiplications, requiring about 4s2¢3t MACs and 4s2¢?t memory. The final steps

consist of performing $bs? matrix-vector products, requiring 1bs*c> MACs, as well as the
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Figure 4: Demonstration of the runtime and memory consumption under different settings
with LipConvNet architecture. The notation n denotes the input size, init denote the initial
channel of the the entire model, and k denotes the kernel size. The batch sizes are fixed at
512 for all plots, and each value is the average over 10 iterations.
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Table 6: Notation used in this section.

Notation Description

batch size
kernel size
input/output channels
input size (resolution)
number of internal iterations
Rank-Control factor for BRO

PSRV S SIS N

Table 7: Computational complexity and memory requirements of different methods. We
report multiply-accumulate operations (MACS) as well as memory requirements for batch
size b, input size s X s X ¢, kernel size k X k and number of inner iterations ¢ for SOC and LOT,
rank-control factor k € [0, 1] for BRO. We denote the complexity and memory requirement
of standard convolution as C = bs?c?k?, M = bs’c, and P = c?k?, respectively.

Method Input Transformations Parameter Transformations

MACS O() Memory MACS O(-) Memory O()

Standard C M - P
SOC Ct Mt 2kt P
LOT bs2c? 3M 4523t 4522t
BRO bs2c? 2.5M 23k 25%¢?

inverse FFT. Given our assumption that ¢ > log(s?), the FFT operation is dominated by
other operations. Considering the memory consumption, LOT requires padding the kernel
from a size of ¢ x ¢ x k x k to ¢ x ¢ x s X s, requiring bs?c? memory. Additionally, we need
to keep the outputs of the FFT and the matrix multiplications in memory, requiring about
452c*t memory each.

BRO Our proposed BRO layer also achieves orthogonal convolution via Fourier domain
operations. Therefore, the input transformation requires the same computational complexity
as LOT. However, by leveraging the symmetry properties of the Fourier transform of a real
matrix, we reduce both the memory requirement and computational complexity by half.
During the orthogonalization process, only %32 are addressed. The low-rank parameterization

results in a complexity of approximately s?c?x and memory usage of §s?c?. Additionally, we
need to keep the outputs of the FFT, the matrix inversion, and the two matrix multiplications

in memory, requiring about %SQCQt memory each.

B IMPLEMENTATION DETAILS

In this section, we will detail our computational resources, the architectures of BRONet
and LipConvNet, rank-n configuration, hyper-parameters used in LA loss, and experimental
settings.

B.1 COMPUTATIONAL RESOURCES

All experiments are conducted on a computer with an Intel Xeon Gold 6226R processor and
192 GB of DRAM memory. The GPU we used is the NVIDIA RTX A6000 (10,752 CUDA
cores, 48 GB memory per card). For CIFAR-10 and CIFAR-100, we used a single A6000
card for training. For Tiny-ImageNet and diffusion data augmentation on CIFAR-10/100, we
utilized distributed data parallel (DDP) across two A6000 cards for joint training. Training a
LipConvNet-10 on this setup, as detailed in Table [I3] required approximately 3,400 seconds.
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W=I-2v({VTv)-tvT

Figure 5: The proposed Block Reflector Orthogonal (BRO) convolution kernel, which is an
orthogonal matrix, employs Fourier transformation to simulate the convolution operation.
This convolution is inherently orthogonal and thus 1-Lipschitz, providing guarantees for
adversarial robustness.

X5N
32x32x3 > 16x16x64 > 8x8x128 > ... > 1x1x1024

LLN

-

Figure 6: Following |Trockman & Kolter| (2020)); |Singla & Feizi (2021b); Xu et al.| (2022
we use the proposed orthogonal convolution layer to construct the Lipschitz neural network.
This figure illustrates the LipConvnet-5, which cascades five BRO convolution layers. The
activation function used is the MaxMin function, and the final layer is the last layer
normalization (LLN).

B.2 ARCHITECTURE DETAILS

The proposed BRO layer is illustrated in Figure [5] In this paper, we mainly use the BRO
layer to construct two different architectures: BRONet and LipConvNet. We will first explain
the details of BRONet, followed by an explanation of LipConvNet constructed using the
BRO layer.

BRONet Architecture Figure [7] illustrates the details of the BRONet architecture, which
is comprised of several key components:

e Stem: This consists of a unconstrained convolutional layer that is Lipschitz-
regularized during training. The width W is the feature channel dimension, which
is an adjustable parameter.

e Backbone: This segment includes L BRO convolutional blocks of channel width W,
each adhering to the 1-Lipschitz constraint.

e Neck: This consists of a convolutional down-sampling layer followed by a dense
layer, which reduces the feature dimension. For the convolutional layer, we fol-
low LiResNet @ to construct a 1-Lipschitz matrix with dimension
(Cout, Cin X k?) and reshape it back to (Cout, Cin, k, k). It is important to note that
while the reshaped kernel differs from the orthogonal convolution described in BRO
convolutional layer, it remains 1-Lipschitz bounded due to being non-overlapping
(stride = kernel size k) (Tsuzuku et al. 2018).

e Dense: BRO or Cholesky-orthogonal (Hu et al., |2024) dense layers with width 2048

are appended to increase the network’s depth and enhance the model capability.

e Head: The architecture concludes with an LLN (Last Layer Normalization) layer,
an affine layer that outputs the prediction logits.

We can use the W, L, and D to control the model size.

LipConvNet Architecture This architecture is utilized in orthogonal neural networks such
as SOC and LOT. The fundamental architecture, LipConvNet, consists of five orthogonal
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Figure 7: Following the LiResNet architecture (Leino et al., 2021; |Hu et al.| [2023)), we utilized
the BRO layer to construct BRONet. The parameters L, W, and D can be adjusted to
control the model size.

convolutional blocks, each serving as a down-sampling layer. The MaxMin or householder
(Singla et al., [2022) activation function is employed for activation, and the final layer is an
affine layer such as LLN. Figure [6] provides an illustration of LipConvNet. To increase the
network depth, dimension-preserving orthogonal convolutional blocks are added subsequent
to each down-sampling block; thus, the depth remains a multiple of five. We use the
notation LipConvNet-N to describe the depth, where N represents the number of layers. For
example, LipConvNet-20 indicates a network with 20 layers, consisting of five down-sampling
orthogonal layers and 15 dimension-preserving orthogonal layers.

B.3 ARCHITECTURE AND RANK-N CONFIGURATION

As mentioned in Section for BRO layers with dimension dou = di, = m, we explicitly
set the unconstrained parameter V' to be of shape m x n with m > n to avoid the degenerate
case. For the BRONet-M backbone and dense layers, we set n = m/4 for CIFAR-10 and
CIFAR-100 and n = m/8 for Tiny-ImageNet experiments. For the BRONet-L architecture,
we use n = m/2 for for the BRO backbone and use Cholesky-orthogonal dense layers. For
LipConvNet, we set n = m/8 for all experiments. An ablation study on the effect of different
choices of rank-n is presented in Appendix [D.2]

B.4 LA HYPER-PARAMETERS

Unless particularly specified, the LA loss hyper-parameters T, £, and § are set to
0.75, 2v/2, and 5.0, respectively. The hyper-parameters are selected by an ablation ex-
periments done on LipConvNet. Please see Appendix for the experiments.

B.5 TaBLE [I] DETAILS

On CIFAR-10 and CIFAR-100, BRONet is configured with L12W512D8, and on Tiny-
ImageNet, it is L6W512D4. Mainly following |Hu et al.| (2024)), we use NAdam (Dozat| 2016)
and the LookAhead Wrapper (Zhang et al., 2019) with an initial learning rate of 107°,
batch size of 256, and weight decay of 4 x 10™°. The learning rate follows a cosine decay
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schedule with linear warm-up during the first 20 epochs, and the model is trained for a
total of 800 epochs. We combine the LA loss with the EMMA (Hu et al., |2023)) method
to adjust non-ground-truth logit values for Lipschitz regularization on the stem layer. The
target budget for EMMA is set to e = 108/255 and offset for LA is set to & = 2. To report
the results of LiResNet (Hu et al.| 2024), we reproduce the results without diffusion data
augmentation for fair comparison. All experimental results are the average of three runs.
For other baselines, results are reported as found in the literature.

B.6 TABLE [2] DETAILS

In this table, we utilize diffusion-synthetic datasets from Hu et al.| (2024)); [Wang et al.| (2023])
for CIFAR-10 and CIFAR-100, which contain 4 million and 1 million images, respectively.
Following Hu et al.| (2024), we employ a 1:3 ratio of real to synthetic images for each
mini-batch, with a total batch size of 1024. We have removed weight decay, as we observed
it does not contribute positively to performance with diffusion-synthetic datasets. All other
settings remain consistent with those in Table [I]

B.7 TaBLE [B] DETAILS

The settings are consistent with those in Table [2] where we use the default architecture
of LiResNet (L12W512D8), LA loss, and diffusion data augmentation. We replace the
convolutional backbone for each Lipschitz layer.

B.8 TaBLE [ DETAILS

Following the training configuration of [Singla & Feizi (2021b)), we adopt the SGD optimizer
with an initial learning rate of 0.1, which is reduced by a factor of 0.1 at the 50-th and 150-th
epochs, over a total of 200 epochs. Weight decay is set to 3 x 10™%, and a batch size of 512
is used for the training process. The architecture is initialized with initial channel sizes of
32, 48, and 64 for different rows in the table. The LA loss is adopted for training.

C LoaGIT ANNEALING L0OSss FUNCTION

In this section, we delve into the details of the LA loss. Initially, we will prove Theorem [T}
which illustrates the lower bound of the empirical margin loss risk. Next, we will visualize
the LA loss and its gradient values. Additionally, we will discuss issues related to the CR
term used in the SOC and LOT frameworks. Lastly, we will thoroughly explain the annealing
mechanism.

C.1 EMPIRICAL MARGIN Loss RISk

Here, we explain Theorem [1} which demonstrates how model capacity constrains the opti-
mization of margin loss. The margin operation is defined as follows:

My = f(x) — rgg}f(x)k- (16)

This operation is utilized to formulate margin loss, which is employed in various scenarios
to enhance logit distance and predictive confidence. The margin loss can be effectively
formulated using the ramp loss (Bartlett et al.l |2017)), which offers a analytic perspective on
margin loss risk. Ramp loss provides a linear transition between full penalty and no penalty
states. It is defined as follows:

0 if f(x): — maxppe f(2)r > T,

ET,ramp(.fy x, y) == 1 if f(x)t - maxk# f(x)k: S 07
1 — f@emmaxize f@k Gt erwise.

T
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We employ the margin operation and the ramp loss to define margin loss risk as follows:

R-(f) = E(éT,ramp(M(f(x)? v)), (17)
Re(f) = 1 3 rvamp (MU (), 1), (18)

where R}( f) denotes the corresponding empirical margin loss risk. According to Mohri et al.
(2018), a risk bound exists for this loss:

Lemma 1. (Mohri et al.,|2018, Theorem 3.3) Given a neural network f, let T denote the

ramp loss. Let F represent the function class of f, and let Rg(.) denote the Rademacher

complexity. Assume that S is a sample of size n. Then, with probability 1 — &, we have:
In(1/6)

R (f) < Ro(f) +2Rs(Fr) + 3y =5 = (19)

Next, apply the following properties for the prediction error probability:

P. = Pr argmax f(2); # y| = Pr[-M(f(2),y) = 0] (20)
= E1[M(f(z),y) < 0] (21)
< E(lr ramp(M(f(2),))) (22)
— R.(f), (23)

where P, is the prediction error probability. Assuming that the P, is fixed but unknown, we
can utilize Lemma [I] to prove Theorem

7éf‘r(f) Z/Pe_QmS(]:T)_g ln(;,r{é)

This illustrates that the lower bound for the margin loss risk is constrained by model
complexity.

(24)

Next, we illustrate and prove the relationship between margin loss risk and the CR loss risk.
Let the empirical CR loss risk be defined as follows:

Ren(f) = = 37 —yrela(M(f (2, ) (25)

i
Proposition 4. Let ﬁCR(f) and ﬁr(f) are the CR loss risk and margin loss risk, respectively.
Assume that T = sup; My(x;) and v = 1/7. Then, Ror(f) is R, (f) decreased by one unit:

Rer(f) = Re(f) = 1. (26)
Proof. (Proof for Proposition {4f) Consider two cases based on the value of M(z):

e When M(z) < 0: the CR loss is always zero and the ramp loss is always one. Thus,
the distance between Reg(f) and R, (f) is one.

e When M(z) > 0: The distance between the ramp loss and CR loss is:

e (MU (20, :)) + reln(MF (), 50) = 1= 20 o
=1 M), @)
Therefore, the empirical CR loss risk can be rewritten as:
Ron(f) = Re(f) ~ 1 (3~ )My, where (28)
My = ine{xi|/\/l(:ri)>0} M(zs). (29)
This equation simplifies to the one stated in Proposition [4]if v = 1/7. O
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Figure 8: Comparison of three loss functions. The x-axis is p;. This figure displays curves
representing the behavior of the proposed LA loss, contrasted with cross-entropy loss and
the Certificate Regularization (CR) term. We observe the discontinuous gradient of the
CR term. Additionally, the gradient of the CR term tends to infinity as p; approaches one,
leading to gradient domination and subsequently hindering the optimization of other data
points. In contrast, the proposed LA loss employs a different strategy, where the gradient
value anneals as nears one. This prevents overfitting and more effectively utilizes model
capacity to enhance learning across all data points.

Conclusively, we demonstrate that the CR loss risk has a lower bound as follows:

In(1/4)
2n

7%‘C’R(f) > Pe — QmS(FT) -3 -1 (30)
When the complexity is limited, CR loss risk exhibits a great lower bound. This indicates
that we cannot indefinitely minimize the CR loss risk. Thus, enlarging margins using the
CR term is less beneficial beyond a certain point.

C.2 CR IssuEs

We compare LA loss, CE loss, and the CE+CR loss with v = 0.5. Figure [§ illustrates the
loss values and their gradient values with respect to p;, where p; represents the softmax
result of the target logit. When using CR term as the regularization for training Lipschitz
models, we summarize the following issues:

(1). Discontinuous loss gradient: the gradient value of CR term at p; = 0.5 is discon-
tinuous This discontinuity leads to unstable optimization processes, as shown in
Figure[8] This indicates that, during training, the CR loss term may be “activated” or
“deactivated.” This phenomenon can be further explored through the loss landscape.
Figure [0 displays the CR loss landscape for the CR term, where it can be seen that
the CR term is activated suddenly. The transition is notably sharp.

(2). Gradient domination: as p; approaches one, the gradient value escalates towards
negative infinity. This would temper the optimization of the other data points in
the same batch.

(3). Imbalance issue: our observations indicate that the model tends to trade clean
accuracy for increased margin, suggesting a possible imbalance in performance
metrics.

Therefore, instead of using the CR term to train Lipschitz neural networks, we design the
LA loss to help Lipschitz models learn better margin values.
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Figure 9: CR Loss Landscape Analysis. This figure illustrates the loss landscape to investigate
the effects of the CR term. Notably, the CR term can suddenly become “activated” or
“deactivated,” which is vividly depicted in the landscape transitions. These abrupt changes
contribute to unstable optimization during training, potentially affecting the convergence and
reliability of the model. Understanding this behavior is crucial for improving the training
process of Lipschitz neural networks. Regarding the direction of loss landscape, we follow
the setting in |[Engstrom et al.| (2018) and |Chen et al| (2020). We visualize the loss landscape
function z = Logp(z, w + widy + wads), where dy = sign(VyLeor), da ~ Rademacher(0.5),
and w is the grid.

C.3 ANNEALING MECHANISM

We can observe the annealing mechanism in the right subplot of Figure [§] The green curve
is the gradient value of the LA loss. We can observe that the gradient value is gradually
annealed to zero as the p; value approaches one. This mechanism limits the optimization
of the large-margin data points. As mentioned previously, Lipschitz neural networks have
limited capacity, so we cannot maximize the margin indefinitely. Since further enlarging
the margin for data points with sufficiently large margin is less beneficial, we employ the
annealing mechanism to allocate the limited capacity for the other data points.

In addition, we delve deeper into the annealing mechanism of the proposed LA loss function.
As illustrated in Figure we train three different models using three loss functions, and
we plot the histogram of their margin distribution. The red curve represents the proposed
LA loss. Compared to CE loss, the proposed LA loss has more data points with margins
between 0.4 and 0.8. This indicates that the annealing mechanism successfully improves the
small-margin data points to appropriate margin 0.4 and 0.8.

Additionally, as the left subplot in Figure [10]illustrates, the margin exhibits an upper bound;
no data points exceed a value of 2.0, even when a larger « is used in the CR term. This
observation coincides with our theoretical analysis, confirming that the Lipschitz models
cannot learn large margins due to its limited capacity.

D ADDITIONAL EXPERIMENTS
In this section, we present additional experiments and ablation studies.
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Figure 10: Histogram of margin distribution. The left histogram represents margin distri-
bution obtained from the training set, while the right histogram shows margin distribution
from the test set. The x-axis represents the margin values. These visualizations demonstrate
that the LA loss helps the model learn better margins.

Table 8: The clean, certified, and empirical robust accuracy of BRONet-M on CIFAR-10,
CIFAR-100, and Tiny-ImageNet.

Clean Certified / AutoAttack (&)
Datasets Acc. 36 T2 108
255 255 255
CIFAR10 81.1 69.9 /76.1 55.3/69.7 404 /62.6
CIFAR100 54.3 40.0 /473 28.7 /41.0 19.4 /355

Tiny-ImageNet ~ 41.0 29.2 /36.3 19.7 /317 12.3 /275

D.1 EMPIRICAL ROBUSTNESS

In addition to certified robustness, we can validate the empirical robustness of the proposed
method. This further supports our robustness certificate. Theoretically, certified robust
accuracy is the lower bound for the worst-case accuracy, while empirical robust accuracy
is the upper bound for the worst-case accuracy. Thus, empirical robust accuracy must be
greater than certified robust accuracy. We employ AutoAttack (Croce & Hein, |2020) to
assess empirical robustness. The certified and empirical robust accuracy for different attack
budgets are illustrated in Table[8] We observe that all empirical robust accuracy values for
each budget are indeed higher than their corresponding certified accuracy. This indicates
that the certification is correct under the AutoAttack test. Additionally, Table [§] shows that
the proposed method achieves strong empirical robustness without any adversarial training
techniques.

D.2 BRO RANK-N ABLATION EXPERIMENTS

As mentioned earlier, we can control the rank of V' to construct the orthogonal weight matrix.
In this paper, the matrix V is of low rank. Considering the internal term V (VZV)~1V7T in
our method’s parameterization, the concept is similar to that of LoRA (Hu et al., |2021)).
We further investigate the effect of different n values of V. For the unconstrained m x n
parameter V in the backbone and dense blocks of BRONet, we conduct experiments using
different n values. The clean and certified accuracy, as well as training time, on CIFAR-100
are presented in Table[0] Different n values result in slightly different performance. Therefore,
we choose n = m/4 for all CIFAR-10/CIFAR-100 experiments on BRONet-M, and n = m/2
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Table 9: We compare the clean accuracy, certified accuracy, and training time for different
choices of n for the unconstrained parameter V on CIFAR-100 with BRONet L6 W256D4
and L6W512D4. Time is calculated in minutes per training epoch.

L6W256D4 L6W512D4
n Clean 28 12 198 Time Clean 28 12 108 Time
m/8 51.6 39.2 283 19.5 0.66 52.8 40.2 28.6 20.3 1.57
m/4 52.8 39.5 279 19.7 0.73 54.0 40.2 28.3 19.3 1.92
m/2 53.4 39.0 27.3 185 0.94 54.1 39.7 277 18.6 2.82
3m/4 52.7 39.5 28.0 19.2 1.27 53.5 39.8 279 189 3.75

Table 10: The improvement of LA loss with Table 11: The improvement of LA loss with

BRONet-M on different datasets. LipConvNet on different datasets.
Datasets Loss Clean 2& T2 108 Datasets Loss Clean 2% T2 108
crFARlo  CEemma 818 689 536 383  opap.0 CE 775 621 448 29.2

LAgvmma 81.2  69.7 55.6 40.7

CEgmma 54.7 389 26.3 16.7 CE 48.5 34.1 226 144
LAgvmma 54.1 40.1 285 19.6 LA 48.6 354 245 16.1

Tiny- CEgMMA 40.5 269 17.1 10.1 Tiny- CE 38.0 26.3 17.0 10.3
ImageNet LAgMMA 41.2 29.0 19.0 12.1 ImageNet LA 39.4 28.1 182 11.6

LA 76.9 634 472 326

CIFAR100 CIFAR100

for BRONet-L. For TinylmageNet, considering our computational resources, we choose
n = m/8 to save memory, as the n values help control memory usage.

D.3 LA Loss ABLATION EXPERIMENTS

Table [10] presents an ablation study on the effectiveness of the proposed LA loss function.
We train BRONet-M using both the original CE-based EMMA loss, as described in [Hu et al.
(2023)), and the newly proposed LA-based EMMA loss. By switching from CE to LA, we
achieve an improvement in certified accuracy for all £5 perturbations by approximately 1.94%
on average while maintaining the same level of clean accuracy.

Moreover, we verify the LA loss on LipConvNet constructed using BRO, LOT, or SOC.
Table illustrates the improvement achieved by replacing the CE+CR loss, which is
initially recommended for training LipConvNet. The results suggest that using the LA loss
improves the performance of LipConvNet constructed with all three orthogonal layers on
both CIFAR-100 and Tiny-ImageNet.

We also compare LA to CE on LipConvNet. Table [11] shows the results for LipConvNet
constructed with BRO. Our results show that the LA loss encourages a moderate margin
without compromising clean accuracy. Notably, the LA loss is more effective on larger-scale
datasets, suggesting that the LA loss effectively addresses the challenge of models with
limited Rademacher complexity.

D.4 LA Loss HYPER-PARAMETERS EXPERIMENTS

There are three tunable parameters in LA loss: temperature T, offset £, and annealing factor
5. The first two parameters control the trade-off between accuracy and robustness, while
the last one determines the strength of the annealing mechanism. For the temperature and
offset, we slightly adjust the values used in |Prach & Lampert| (2022) to find a better trade-off
position, given the differences between their network settings and ours. Additionally, we
present, the results of LA loss with different § values for CIFAR-100 on LipConvNet in
Table
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Table 12: Experimental results for LipConvNet-10 on CIFAR-100 for different values of 8 in
the LA loss.

36 72 108
255 255 255

1 48.63  35.48 24.36 17.19
3 48.57  35.68 24.78 16.66
5) 49.09 35.58 24.46 16.38
7 49.02  35.72 24.34 16.05

8 value Clean

Table 13: Comparison of clean and certified accuracy, training and inference time (sec-
onds/epoch), and number of parameters with different orthogonal layers in LipConvNet-10.
Instances marked with a dash (-) indicate out of memory during training. In the Time
column, we show the training time, and the inference time is in brackets.

T — e T
Clean 555 355 253 555 255 255

SOC + CR 481 343 235 156 192 374 262 17.3 112 107.7

LA 475 347 240 159 (53) 380 265 17.7 113 (11.1)

32 LOT + CR 488 348 23.6 158 527 387 268 174 11.3 2915
LA 491 355 244 163 (1.4) 402 279 187 118 (7.3)

BRO + CR 484 347 236 154 173 385 271 17.8 11.7 98.6
LA 486 354 245 161 (0.9) 39.4 281 182 11.6 (4.6)

SOC + CR 484 349 23.7 159 354 382 266 17.3 11.0 199.3
LA 482 349 244 162 (8.7) 389 271 176 11.2 (20.3)

48 LOT + CR 493 353 242 163 143.0 - - - -
LA 494 358 248 163 (3.0) - - - -

BRO + CR 494 357 245 163 352 389 272 180 11.6 1969
LA 494 362 249 167 (L1) 400 281 189 123 (4.8)

SOC + CR 484 348 241 160 531 386 269 17.3 11.0 305.1
LA 485 355 244 163 (124) 393 273 176 112 (32.5)

64 LOT + CR 494 354 244 163 301.8 - - - -
LA 496 36.1 247 162 (5.8) . - - -

BRO + CR 497 356 245 164 644 396 279 182 11.9 3553
LA 497 367 252 168 (1.6) 407 284 192 125 (4.9)

Time Clean Time

D.5 LiPCoONVNET ABLATION EXPERIMENTS

More detailed comparison stem from Table {4] are provided in Table demonstrating the
efficacy of LA loss across different model architectures and orthogonal layers. Following the
same configuration as in Table 4] we further investigate the construction of LipConvNet

by conducting experiments with varing initial channels and model depths, as detailed in
Table 14

D.6 StABILITY OF LOT PARAMETERIZATION

During the construction of the LOT layer, we empirically observed that replacing the identity
initialization with the common Kaiming initialization for dimension-preserving layers causes
the Newton method to converge to a non-orthogonal matrix. We check orthogonality by
computing the condition number of the parameterized matrix of LOT in the Fourier domain.
For an orthogonal layer, the condition number should be close to one. However, even after
five times the iterations suggested by the authors, the result for LOT does not converge to
one. Figure [IT]illustrates that, even with 50 iterations, the condition number of LOT does
not converge to one. The orange curve represents the case with Kaiming randomly initialized
parameters, while the blue curve curve corresponds to the case after a few training epochs.
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Table 14: The experiments conducted with varying initial widths and model depths using

the CIFAR-100 and Tiny-ImageNet datasets. The model employed is LipConvNet.

Init.

CIFAR-100

Tiny-ImageNet

Depth  wigth

32 49.04 35.06 24.19 16.06 39.28 27.47 18.23 1147
5 48 49.60 35.80 24.63 16.20 40.12 27.79 1836 11.92
64 4997 36.21 2492 1645 40.82 28.26 18.76 12.31
32 48.62 35.36 24.48 16.11 39.37 28.06 18.16 11.58
10 48 49.39  36.19 24.86 16.68 39.98 28.12 1886 12.17
64 49.74  36.70 25.24 16.80 40.66 28.36 19.24 12.48
32 48.59  35.51 24.42 16.28 39.20 27.66 18.08 11.84
15 48 49.37  36.50 24.93 16.81 39.87 27.96 1849 12.11
64 4991  36.57 25.26 16.81 40.38 28.73 18.78 12.52
32 48.62 35.68 24.66 16.57 38.74 27.23 17.75 11.67
20 48 49.26  36.09 2491 16.62 39.63 27.88 1849 12.07
64 49.60 36.47 25.24 17.09 39.77 28.03 18.53 12.17
Random Initialized Trained
—— Average Condition Number 103 —— Average Condition Number
1034 Max Condition Number Max Condition Number
---- ldeal Condition Number ---- ldeal Condition Number
5 204.2 893
Q 2 N
£ 107} °
z
s 27.0 269 269 269 269 269
% 4 6 1.9 118 11.8 11.8 11.8 118
:‘3 10 10
2.4 2.3 2.3 2.3 2.3 2.3 1.8 1.8 1.8 1.8 1.8 1.8
10° 10°
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Number of Newton Iterations Number of Newton Iterations

Figure 11: Plots of condition number of parameterized matrix in Fourier domain. The left
plot shows the condition number with randomly initialized parameters, whereas the right
plot shows the condition number with trained parameters.

Both exhibit a significant gap compared to the ideal case, indicating that LOT may produce
a non-orthogonal layer.
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