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Abstract

Differential privacy has become the standard system to provide privacy guarantees
for user data in machine learning models. One of the popular techniques to ensure
privacy is the Private Aggregation of Teacher Ensembles (PATE) framework. PATE
trains an ensemble of teacher models on private data and transfers the knowledge to
a student model, with rigorous privacy guarantees derived using differential privacy.
So far, PATE has been shown to work assuming the public and private data are dis-
tributed homogeneously. We show that in the case of high mismatch (non iid-ness)
in these distributions, the teachers suffer from high variance in their individual train-
ing updates, causing them to converge to vastly different optimum states. This leads
to lower consensus and accuracy for data labelling. To address this, we propose
a modification to the teacher training process in PATE, that incorporates teacher
averaging and update correction which reduces the variance in teacher updates. Our
technique leads to improved prediction accuracy of the teacher aggregation mecha-
nism, especially for highly heterogeneous data. Furthermore, our evaluation shows
our technique is necessary to sustain the student model performance, and allows it
to achieve considerable gains over the original PATE in the utility-privacy metric.

1 Introduction

Machine learning (ML) has become ubiquitous and is being used in a vast number of domains. The
range of deployment of machine learning models has expanded to include even sensitive domains
such as healthcare [3, 24] and job interviews [14]. In these domains, the models are trained on
sensitive data such as patient records or candidate profiles, the disclosure of which could be harmful
to the individuals concerned. This might even lead to refusal of consent of data storage which would
in turn hinder the usage of advances in ML. As a result, ensuring privacy and security of data used to
train machine learning models has become an important area of research.
Recently, there have been efforts to use differential privacy [5] for ML models. In particular, two
of the proposed methods have been vastly popular: the model-agnostic method of PATE [22], and
the model-aware method of DP-SGD [1]. We revisit one of the approaches, PATE which uses disjoint
subsets of sensitive private data to train a large ensemble of teacher models; the ensemble is then used
along with Laplacian noise to predict labels on a set of public data. A student model is trained using
these predictions and only this model is made publicly available. This approach has shown to provide
guaranteed levels of (ϵ, δ)-differential privacy [7]. However, the framework has been show to work
for disjoint subsets that are randomly obtained and are homogeneously distributed. This might not be
true always, like in the case of specific, fixed partitions of data provided to the teacher models due to
reasons of secrecy, constraints or the need for isolated training [9]. For example, if the teacher models
are trained separately in different hospitals, the patient records at each hospital might be biased towards
the demographics of the particular region. Thereby, there will be high variance in each of the teacher
models’ update, and if these models are asked to predict labels for records in a central public repository,
they will be in severe disagreement for most of the cases leading to lower prediction accuracy.
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Figure 1: Training of two teachers f1 and f2 with
the same initialization θ will lead them to converge to
different optimums f⋆

1 and f⋆
2 for heterogeneous data.

Adding variance correction during training will help
them to converge to the same global optimum θ∗.

Figure 2: Accuracy of the aggregated teacher models
trained using Conventional training (dashed lines) and
TTAC (solid lines) for three different data similarity
levels, and varying γ per query. Noise scale is in-
versely proportional to the γ value, thereby a low γ
corresponds to high noise and vice versa.

Recently, Karimireddy et al. [10] have shown in distributed learning for different client models trained
on heterogeneous sets of data, the drift in the updates of each client model can be reduced by adding
a correction to their updates using control variates (variance reduction). We show that making use
of such a correction during the training of teacher models leads to improved consensus among the
teachers and improved labelling, which in turn improves the student model performance.
Our contributions in this paper are as follows:
1. We show that the performance of the teacher aggregation mechanism in the PATE framework wors-

ens with increased heterogeneity in the private data subsets. We propose to add a global averager
model and variance correction to the teacher training process that can mitigate such a distribution
shift and sustain the aggregation mechanism performance, even for high levels of heterogeneity.

2. We further compare the student model performance, with knowledge transferred from teachers
trained using the original PATE framework and also our updated training procedure, for different
data heterogeneity and noise levels. We show that our approach consistently provides better
privacy-utility trade-off.

Related Works. There have been recent works to add differential privacy in distributed learning
[16, 20], which is similar to our problem setting. However, we believe ours is the first approach that
makes PATE work on heterogeneous datasets. Though we analyze in terms of general teacher-student
knowledge distillation framework, our method can be extended to the distributed setting.

2 Methodology

We describe the components of our framework built using the student-teacher paradigm of PATE,
with a modified teacher training approach. Similar to the original PATE proposal [22], our framework
consists of three parts: (1) teacher training, (2) an aggregation mechanism and (3) student training.
Teacher training. We assume that the private training dataset (X,Y ) is divided into N partitions
where X is the set of inputs and Y is the set of labels. A separate model is trained on each partition
to obtain N classifiers or teachers, denoted as fi(x, θi), where x denotes an input and θi the model
parameters. Any learning technique can be used to train each fi, such as stochastic gradient descent
(SGD), momentum SGD or ADAM [see e.g. 11]. The conventional approach, also used by the original
PATE work is the SGD, in which mini-batches are drawn randomly and for each step t = 1, 2, ...T
the following update is done to the parameters θi of each teacher i:

θi ← θi − ηf∇tfi(θi) , (1)

where ηf denotes the step size (shared among all the teacher models) and ∇tfi(θi) a mini-batch
gradient computed at iteration t on the data of client i. Suppose each teacher starts from the same
initialisation θ. Then each teacher will drift towards the respective optimum θ⋆i of its loss function.
In case of heterogeneous datasets, each of these θ⋆i will most likely be far from each other as well as
the global optimum θ⋆ as shown in Figure 1.
In order to reduce the variance in the teacher updates, we make use of: (i) Averaging by using
an auxiliary global model θ that averages the teachers’ updates after every round of training and
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Algorithm 1 - Teacher Training with Averaging and Correction (TTAC): an approach to reduce
variance in teachers’ updates due to data heterogeneity. The colored font indicates the updates done
over the original teacher training framework in PATE [22].

1: averaging model inputs: initial θ, step size ηθ and control variate c.
2: teacher i’s inputs: initial parameters θi, dataset partition (Xi, Yi), step size ηf , decay rate γ and

control variate ci.
3: for each round 1, ..., R do
4: for each teacher model 1, ..., N do ▷ training in parallel
5: θi ← θ ▷ initialize teacher model with averaging model
6: for t ∈ [T ] do
7: compute mini-batch gradient∇tfi(θi)
8: θi ← θi − ηf (∇tfi(θi)− ci + c) ▷ update teacher model
9: end for

10: c+i ← ci − c+ 1
Tηf

(θ − θi) ▷ update teacher control variates

11: (∆θi,∆ci)← (θi − θ, c+i − ci)
12: ci ← c+i
13: end for
14: ηf ← ηf · γ ▷ decrease stepsize
15: (∆θ,∆c)← 1

N

∑N
i=1(∆θi,∆ci)

16: θ ← θ + ηθ∆θ and c← c+∆c ▷ update averaging model
17: end for

(ii) Correction by introducing control variates to correct for the drift in the teachers’ updates.
Specifically, we estimate the update direction of the averaging model (c) and the update direction for
each teacher (ci). This mimics the SCAFFOLD training procedure [10]. The variance of each teacher
update is reduced using the difference (c− ci).
Procedure. All the control variate parameters are initialized to zero. In each round of training, every
teacher fi is initialized to the averaging model fi ← θ. Then the SGD update for each fi is modified
using the control variates:

θi ← θi − ηf (∇tfi(θi)− ci + c) . (2)

This is followed by the teacher control variate ci update,

c+i ← ci − c+ 1
Tηf

(θ − θi) , (3)

where T denotes the number of (local) steps. After one round of training is completed for all the
teachers, the teacher updates are accumulated to update the averaging model parameters:

θ ← θ + ηθ

N

∑N
i=1(θi − θ) , (4)

c← c+ 1
N

∑N
i=1(c

+
i − ci) , (5)

where ηθ denotes the step size of the averaging model. The stepsize ηf is decayed in every round of
training. The proposed algorithm for teacher training with variance correction is shown in Alg. 1.
Aggregation mechanism and student training. We keep the remaining parts of our framework
same as the original PATE proposal. Once the teachers are trained, they are deployed as an ensemble
to make predictions on unseen inputs x from the public dataset. Each teacher model is queried for a
label prediction fi(x), the labels are counted for every class and random noise is added to arrive at
the final prediction for the given sample:

f(x) = argmax
j

{
nj(x) + Lap

(
1
γ

)}
, (6)

where nj(x) denotes the vote count for the j-th class (i.e., nj(x) = |{j : fi(x) = j}|) and Lap
(
1
γ

)
denotes the Laplacian distribution with location 0 and scale 1

γ [following the notation in 22].

Each prediction the aggregation mechanism makes induces a privacy cost. A limited number of
labelling is done to limit the privacy cost and the labelled dataset is used to train a student model.
Once the training is completed, only the student model is made to be publicly available.
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Table 1: Public model (student) accuracy scores for different number of queries, inverted noise scale γ, and data
similarity levels. The privacy bound ϵ for respective γ is indicated (for fixed δ = 10−5). We average the results
across 10 runs. TTAC results in a large improvement of student accuracies when data similarity is low (0%
or 1%). This is consistently seen across all values of γ. With increasing similarity levels, both methods result in
comparable student performance.

Number of Queries = 100 Number of Queries = 1000

Training Method Data Similarity γ = 0.1 γ = 0.5 γ = 0.1 γ = 0.5
(s%) (ϵ = 11.75) (ϵ > 20) (ϵ > 20) (ϵ≫ 20)

Conventional [22] 0% 8.77% 9.46% 9.53% 10.54%
TTAC [ours] 0% 21.05% 61.41% 23.36% 70.95%

Conventional [22] 1% 18.41% 56.80% 20.57% 69.59%
TTAC [ours] 1% 25.57% 74.02% 22.64% 82.83%

Conventional [22] 100% 21.91% 77.86% 26.94% 90.73%
TTAC [ours] 100% 21.37% 75.82% 24.69% 90.06%

3 Experimental Evaluation

Experimental setup. We evaluate using the standard MNIST dataset, consisting of 60,000 training
examples and 10,000 testing examples [13]. We create partitions of the training dataset with s%
similar data among the teachers, where s% is i.i.d. data and the remaining (100 - s)% is sorted
according to label [8, 10], with s ∈ [0, 1, 10, 100]. For the test dataset we follow the original PATE
work, and use a subset of the first 9000 samples for aggregation mechanism labelling and student
model training, and the remaining 1000 samples to evaluate student model performance.
Our experiments reuse the teacher models for MNIST from the original PATE, consisting of convo-
lutional layers with max-pooling and one fully connected layer with ReLUs. To reduce the training
complexity, we use the same network of the teacher model for student as well as our averaging model,
and restrict the number of teachers to N = 10. We use SGD to train the student model. The original
PATE method made use of a student model trained using semi-supervised learning with GANs [23]
and experimented upto N = 250 teachers, but we do not need such complexity to show the benefits
of our approach. However, due to these simplifications, we do not report the same student utility
and privacy levels as in the original PATE work. Further, we compute a data-independent and a
data-dependent privacy bound for each prediction, and use composition theorem [6] to arrive at a (ϵ, δ)
differential privacy guarantee [7] (refer Appendix A.3). We report these values in Table 1 for each γ.
Aggregation mechanism evaluation. The labelling accuracies of the teacher aggregation trained
using Conventional method in original PATE and our proposed method TTAC are compared on the
MNIST test set for different s%. We experiment with Laplacian noise of inverted scale γ ranging
from 0.01 to 0.5 (similar values evaluated in [22]) and report the corresponding accuracies in Figure 2.
It can be seen that the teachers never agree for s = 0 in Conventional method, resulting in the labelling
accuracy being equivalent to random guessing (∼10%). This indicates that there is indeed a large
drift in the teachers’ updates. For highly heterogeneous datasets (s ∈ [0, 1]), aggregation mechanism
trained using TTAC consistently outperforms Conventional method, while they remain close for less
heterogeneous datasets (s ∈ [10, 100]).
Student model performance. We compare the student accuracy scores in Table 1. For s ∈ [0, 1],
TTAC outperforms Conventional training for the same number of queries (100 or 1000) experimented
in the original PATE proposal; this is irrespective of the (ϵ, δ) value. The student model in the
Conventional method completely fails for s = 0 with a maximum accuracy score of 10.54%, while
TTAC achieves a maximum accuracy score of 70.95%, indicating the importance of our variance
correction approach. Even for a low privacy budget (ϵ =11.75), TTAC achieves 21.05% accuracy,
meaning our approach can improve the privacy-utility trade off. Though the Conventional method
gives a slight improvement over TTAC in the performance levels for s = 100, it is negligible compared
to TTAC superiority for heterogeneous datasets.

4 Conclusion

Our work revisited the PATE framework and studied the influence of heterogeneity in teacher data
splits. Our experiments showed that such a distribution shift can cause severe issues throughout the
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PATE framework, as we observed random guessing performance of aggregation mechanism and
student model for highly heterogeneous datasets. We then proposed a modification to the teacher
training framework to add correction to the teachers’ updates and reduce variance. Our approach is
able to overcome the distribution shift and improve student performance even for low privacy budgets.
Note that, there could be an additional privacy loss due to the teacher averaging and correction we do
in our method, as these are influenced by teachers being trained on private datasets. Though in this
work, we verified privacy empirically, we do not do it formally. We plan to investigate this further in
future work. Finally, we believe that our work can contribute to real world applications, by making
knowledge transfer possible from teachers trained at separate locations or under different constraints,
while preserving privacy.
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A Appendix

A.1 Framework Overview
We show a complete overview of our approach in Figure 3. Teacher training with our variance
correction approach and aggregation mechanism predictions are done privately and are not accessible
to an external adversary. Only the student model is released publicly.

A.2 Differential Privacy
Differential privacy (DP) is a technique that allows sharing information about features or patterns of
a dataset, without disclosing specific details about each user in the dataset. The outcome of a DP
algorithm will roughly be the same with or without the presence of a specific user data, which makes
DP a reliable standard for privacy. We recall the following popular form of DP [7]:
(ϵ, δ)-Differential Privacy: A randomized algorithm A is (ϵ, δ)-differentially private if for any two
neighboring datasets D and D′ , and any subset S of possible outputs of A,

Pr[A(D) ∈ S] ≤ eϵ Pr [A (D′) ∈ S] + δ . (7)

In our case, neighboring datasets are the training datasets differing by one example, and the random-
ized algorithm is the model training algorithm. ϵ is the upper bound of the privacy loss for each
prediction, and δ is the additional small density of probability for which the upper bound may not
hold.

A.3 Privacy Analysis
In this section, we discuss the privacy guarantees provided by our framework. First we recall some
quantities introduced in earlier work [1, 6, 22].
Privacy loss. For a randomized algorithm A, neighboring databases D and D′, auxilary input aux,
and an outcome o of the algorithm, the privacy loss at o is defined as

L(o;A; aux;D;D′) ≜ log

(
Pr[A(aux;D) = o]

Pr[A(aux;D′) = o]

)
. (8)
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Figure 3: Overview of our approach for preserving privacy with PATE for heterogeneous data distributions
among the teachers. We use teacher averaging and update correction, and modify the Conventional training
method of PATE [22]. This is followed by the aggregation mechanism prediction on public data for student
model training, similar to the original framework.

Privacy loss random variable. The privacy loss random variable L(A; aux;D;D′) is the random
variable defined by evaluating the privacy loss at an outcome sampled from A(D) [22].
Moments accountant [1]: For a randomized algorithm A, neighboring datasets D and D′, auxiliary
input aux, the moments accountant is defined as:

αA(λ) ≜ max
aux,D,D′

αA (λ; aux,D,D′) , (9)

where αA (λ; aux, D,D′) is the moment generating function of L(A; aux;D;D′), and is termed as
the λth moment.
The original PATE proposal [22], used proof from [6] to infer that their aggregation mechanism
satisfies (2γ, 0)-differential privacy for each step. Because of our modifications to the training
mechanism, this property might not hold true. In TTAC the teacher models are in general correlated
and it is not possible to directly apply their theorem in our case. We leave this analysis for future
work.
In the remainder of this section, we discuss the privacy guarantees under the assumption that
(2γ, 0)-DP holds, and reuse these privacy bounds of Papernot et al. [22]:
Data-independent privacy bound: Suppose that on neighboring databases D,D′, the label
counts nj differ by at most 1 in each coordinate. Let A be the mechanism that reports

argmaxj

{
nj + Lap

(
1
γ

)}
. Then A satisfies (2γ, 0)-differential privacy. Moreover, for any l,

aux, D and D′,

α(l; aux;D;D′) ≤ 2γ2l(l + 1) . (10)

Data-dependent privacy bound: Let A be (2γ, 0)-differentially private and q ≥ Pr [A(D) ̸= o⋆]

for some outcome o⋆. Let l, γ ≥ 0 and q < e2γ−1
e4γ−1 . Then for any aux and any neighbor D′ of D,A

satisfies

α (l; aux,D,D′) ≤ log

(
(1− q)

(
1− q

1− e2γq

)l

+ q exp(2γl)

)
. (11)
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Papernot et al. [22] further show that q for the aggregation mechanism can be upper bounded,
depending on the teacher votes (cf. Appendix A in [22] for proof), using which certain moments are
bounded.
Similar to Papernot et al. [22], we use the smaller of the two bounds from equation 10 and equation
11, and the moments are computed for λ values upto 8. We then use the composition theorem from
[6] to calculate the bound over all the queries. Finally, we use the tail bound (cf. Theorem 2 in [1]) to
convert the moments bound to an (ϵ, δ)-differential privacy guarantee. We report some of the (ϵ, δ)
values obtained from this process in Table 1.
We note that it is difficult to quantify the extra privacy loss that can result due to our teacher averaging
and correction in the training process, since they do not directly act on private data. However, we
plan to study in future work, how our modifications might affect the derivation of privacy bounds.

A.4 Related Works
Differential Privacy in Machine Learning: Different variants of DP have been proposed which
provide different advantages and varying levels of privacy guarantees [6, 4, 17], and can be chosen
based on the requirements. Our approach as well as the original PATE proposal is based on the
(ϵ, δ)-DP defined in Equation 7. There have been extensions of PATE which use other variants such
as Rényi-DP [21] and Personalized DP [18].
The same authors from the original PATE work, proposed a modified framework [21] which could
aggregate the teachers’ answers that are more selective and add less noise. This offered better intuitive
privacy, and incurred lower-differential privacy cost. Our approach could easily be extended to this
framework. Moreover, there have been other works too to improve the balance between privacy
and utility. Mühl and Boenisch [18] applied personalized privacy budgets to each training example,
instead of using a single global privacy budget. As far as we know, ours is the first work that focuses
on sustaining privacy-utility tradeoff for heterogeneous datasets.
Apart from PATE, another common approach to apply DP in ML models is the Differentially Private
Stochastic Gradient Descent [1] or DP-SGD. This framework performs noise addition within the ML
training procedure and augments the standard paradigm of gradient based training to be differentially
private. The disadvantage of this approach is that it requires white-box access to the model parameters.
The popularity of these two approaches can be seen from the different works that have used them for
a variety of problems, such as Anil et al. [2] who extend DP-SGD for large-scale pretraining of the
language model BERT-Large, Olatunji et al. [19] who modify the PATE framework for learning on
graph specific data using Graph Neural Networks(GNNs) and so on.
Federated Learning: This has become a popular approach in ML for distributed learning [12, 15].
A Federated Learning system consists of local client models trained on user devices, and a central
server that aggregates user updates to learn a global model. One of the common problems in federated
learning is the variance in client updates that occurs for heterogeneous local datasets, which results in
the clients drifting away from the global objective . Karimireddy et al. [10] address this client-drift
by using control variates on both server and clients. We use a similar variance correction strategy for
our teacher models.

A.5 Algorithm for Conventional Training
The original PATE work uses Conventional training for teacher models, based on SGD update rule
defined in equation 1. We provide an overview of this training process in Algorithm 2.

Algorithm 2 - Conventional training: training procedure for teacher models in the original PATE
proposal [22].

1: teacher i’s inputs: initial parameters θi, dataset partition (Xi, Yi) and step size ηf .
2: for each round 1, ..., R do
3: for each teacher model 1, ..., N do
4: for t ∈ [T ] do
5: compute mini-batch gradient∇tfi(θi)
6: θi ← θi − ηf (∇tfi(θi)) ▷ update teacher model
7: end for
8: end for
9: end for

8


	Introduction
	Methodology
	Experimental Evaluation
	Conclusion
	Appendix
	Framework Overview
	Differential Privacy
	Privacy Analysis
	Related Works
	Algorithm for Conventional Training


