
Under review as a conference paper at ICLR 2023

A NEURAL PDE SOLVER WITH TEMPORAL STENCIL
MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Numerical simulation of non-linear partial differential equations plays a crucial
role in modeling physical science and engineering phenomena, such as weather,
climate, and aerodynamics. Recent Machine Learning (ML) models trained on
low-resolution spatio-temporal signals have shown new promises in capturing im-
portant dynamics in high-resolution signals, under the condition that the models
can effectively recover the missing details. However, this study shows that signifi-
cant information is often lost in the low-resolution down-sampled features. To ad-
dress such issues, we propose a new approach, namely Temporal Stencil Modeling
(TSM), which combines the strengths of advanced time-series sequence modeling
(with the HiPPO features) and state-of-the-art neural PDE solvers (with learn-
able stencil modeling). TSM aims to recover the lost information from the PDE
trajectories and can be regarded as a temporal generalization of classic finite vol-
ume methods such as WENO. Our experimental results show that TSM achieves
the new state-of-the-art simulation accuracy for 2-D incompressible Navier-Stokes
turbulent flows: it significantly outperforms the previously reported best results by
19.9% in terms of the highly-correlated duration time, and reduces the inference
latency into 80%. We also show a strong generalization ability of the proposed
method to various out-of-distribution turbulent flow settings.

1 INTRODUCTION

Complex physical systems described by non-linear partial differential equations (PDEs) are ubiqui-
tous throughout the real world, with applications ranging from design problems in aeronautics (Rhie
& Chow, 1983), medicine (Sallam & Hwang, 1984), to scientific problems of molecular modeling
(Lelievre & Stoltz, 2016) and astronomical simulations (Courant et al., 1967). Solving most equa-
tions of importance is usually computationally intractable with direct numerical simulations and
finest features in high resolutions.

Recent advances in machine learning-accelerated PDE solvers (Bar-Sinai et al. 2019; Li et al. 2020c;
Kochkov et al. 2021; Brandstetter et al. 2021, inter alia) have shown that end-to-end neural solvers
can efficiently solve important (mostly temporal) partial differential equations. Unlike classical
finite differences, finite volumes, finite elements, or pseudo-spectral methods that requires a smooth
variation on the high-resolution meshes for guaranteed convergence, neural solvers do not rely on
such conditions and are able to model the underlying physics with under-resolved low resolutions
and produce high-quality simulation with significantly reduced computational cost.

The power of learnable PDE solvers is usually believed to come from the super-resolution ability of
neural networks, which means that the machine learning model is capable of recovering the missing
details based on the coarse features (Bar-Sinai et al., 2019; Kochkov et al., 2021). In this paper,
we first empirically verify such capability by explicitly training a super-resolution model, and then
find that since low-resolution down-sampling of the field can lead to some information loss, a single
coarse feature map used by previous work (Kochkov et al., 2021) is not sufficient enough. We
empirically show that the temporal information in the trajectories and the temporal feature encoding
scheme are crucial for recovering the super-resolution details faithfully.

Motivated by the above observations, we propose Temporal Stencil Modeling (TSM), which com-
bines the best of two worlds: stencil learning (i.e., Learned Interpolation in Kochkov et al. 2021)
as that used in a state-of-the-art neural PDE solver for conservation-form PDEs, and HiPPO (Gu

1

Under review as a conference paper at ICLR 2023

Latest velocity

Velocity trajectory

Classic Stencil Interpolation
Schemes (e.g., WENO) Vanilla Stencil Modeling

(Kochkov et al., 2021)
Temporal Stencil
Modeling (ours)

Divergence

Explicit timestep

Calculating stencil
interpolation coefficients

Convective flux
approximation

Convective flux
approximation

Convective flux
approximation

HiPPO

Pressure projection

New velocity

External forcing F(T)

Raw

Figure 1: Illustration of classic finite volume solvers (in red color), learnable solvers with vanilla
stencil modeling (in blue color) and our temporal stencil modeling (in green color). While the
convective flux approximation methods are different in each method, the divergence operator, the
explicit time-step operator, and the pressure projection (in yellow color) are shared between classic
solvers and learnable methods. Notice that the stencil interpolation coefficients in classic solvers
such as WENO can also be data-adaptive (see Sec. 3.1 for more details).

et al., 2020) as a state-of-the-art time series sequence model. Specifically, in this paper we focus on
trajectory-enhanced high-quality approximation of the convective flux within a finite volume method
framework. As illustrated in Fig. 1, TSM can be regarded as a temporal generalization of classic
finite volume methods such as WENO (Liu et al., 1994; Jiang & Shu, 1996) and recently proposed
learned interpolation solvers (Kochkov et al., 2021), both of which adaptively weight or interpolate
the stencils based on the latest states only. On the other hand, in TSM we use the HiPPO-based
temporal features to calculate the interpolation coefficients for approximating the integrated veloc-
ity on each cell surface. The HiPPO temporal features provide a good representation for calculating
the interpolation coefficients, while the stencil learning framework ensures that the neural system’s
prediction exactly conserves the Conservation Law and the incompressibility of the fluid. With the
abundant temporal information, we further utilize the temporal bundling technique (Brandstetter
et al., 2021) to avoid over-fitting and improve the prediction latency for TSM.

Following the precedent work in the field (Li et al., 2020c; Kochkov et al., 2021; Brandstetter et al.,
2021), we evaluate the proposed TSM neural PDE solver on 2-D incompressible Navier-Stokes
equation, which is the governing equation for turbulent flows with the conservation of mass and
momentum in a Newtonian fluid. Our empirical evaluation shows that TSM achieve both state-
of-the-art simulation accuracy (+19.9%) and inference speed (+25%). We also show that TSM
trained with steady-state flows can achieve strong generalization performance on out-of-distribution
turbulent flows, including different forcings and different Reynolds numbers.

2 BACKGROUND & RELATED WORK

2.1 NAVIER-STOKES EQUATION

A time-dependent PDE in the conservation form can be written as

∂tu+∇ · J(u) = 0 (1)

where u : [0, T] × X → Rn is the density of the conserved quantity (i.e., the solution), t ∈ [0, T]
is the temporal dimension, X ⊂ Rn is the spatial dimension, and J : Rn → Rn is the flux, which

2

Under review as a conference paper at ICLR 2023

represents the quantity that pass or travel (whether it actually moves or not) through a surface or
substance. ∇ · J is the divergence of J. Specifically, the incompressible, constant density 2-D
Navier Stokes equation for fluids has a conservation form of:

∂tu+∇ · (u⊗ u) = ν∇2u− 1

ρ
∇p+ f (2)

∇ · u = 0 (3)
where ⊗ denotes the tensor product, ν is the kinematic viscosity, ρ is the fluid density, p is the
pressure filed, and f is the external forcing. In Eq. 2, the left-hand side describes acceleration and
convection, and the right-hand side is in effect a summation of diffusion, internal forcing source,
and external forcing source. Eq. 3 enforces the incompressibility of the fluid.

A common technique to solve time-dependent PDEs is the method of lines (MOL) (Schiesser, 2012),
where the basic idea is to replace the spatial (boundary value) derivatives in the PDE with algebraic
approximations. Specifically, we discretize the spatial domain X into a grid X = Gn, where G is
a set of grids on R. Each grid cell g in Gn denote a small non-overlapping volume, whose center
is xg , and the average solution value is calculated as ut

g =
∫
g
u(t,x)dx. We then solve ∂tu

t
g for

g ∈ Gn and t ∈ [0, T]. Since g ∈ Gn is a set of pre-defined grid points, the only derivative operator
is now in time, making it an ordinary differential equations (ODEs)-based system that approximates
the original PDE.

2.2 CLASSICAL SOLVERS FOR COMPUTATIONAL FLUID DYNAMICS

In Computational Fluid Dynamics (CFD) (Anderson & Wendt, 1995; Pope & Pope, 2000), the
Reynolds number Re = UL/ν dictates the balance between convection and diffusion, where U
and L are the typical velocity and characteristic linear dimension. When the Reynolds number
Re ≫ 1, the fluids exhibit time-dependent chaotic behavior, known as turbulence, where the small-
scale changes in the initial conditions can lead to a large difference in the outcome. The Direct
Numerical Simulation (DNS) method solve Eq. 2 directly, and is a general-purpose solver with high
stability. However, as Re determines the smallest spatio-temporal feature scale that need to be cap-
tured by DNS, DNS faces a computational complexity as high as O(Re3) (Choi & Moin, 2012) and
cannot scale to large-Reynolds number flows or large-size computation domains.

2.3 NEURAL PDE SOLVERS

A wide range of neural network-based solvers have recently been proposed to at the intersection of
PDE solving and machine learning. We roughly classify them into four categories:

Physics-Informed Neural Networks (PINNs) PINN directly parameterizes the solution u as a
neural network F : [0, T]×X → Rn (Weinan & Yu, 2018; Raissi et al., 2019; Bar & Sochen, 2019;
Smith et al., 2020; Wang et al., 2022). They are closely related to the classic Galerkin methods
(Matthies & Keese, 2005), where the boundary condition date-fitting losses and physics-informed
losses are introduced to train the neural network. These methods suffers from the parametric depen-
dence issue, that is, for any new inital and boundary conditions, the optimization problem needs to
be solved from scratch, thus limit their applications especially for time-dependent PDEs.

Neural Operator Learning Neural Operator methods learn the mapping from any functional
parametric dependence to the solution as F : ([0, T]× X → Rn) → ([T, T +∆T]× X → Rn) (Lu
et al., 2019; Bhattacharya et al., 2020; Patel et al., 2021). These methods are usually not bounded
by fixed resolutions, and learn to directly predict any solution at time step t ∈ [T, T +∆T]. Fourier
transform (Li et al., 2020c; Tran et al., 2021), wavelet transform (Gupta et al., 2021), random fea-
tures (Nelsen & Stuart, 2021), attention mechanism (Cao, 2021), or graph neural networks(Li et al.,
2020a;b) are often used in the neural network building blocks. Compared to neural methods that
mimic the method of lines, the operator learning methods are not designed to generalize to dynam-
ics for out-of-distribution t ∈ [T+∆T,+∞], and only exhibit limited accuracy for long trajectories.

Neural Method-of-Lines Solver Neural Method-of-Lines Solvers are autoregressive models that
solve the PDE iteratively, where the difference from the latest state at time T to the state at time

3

Under review as a conference paper at ICLR 2023

T + ∆t is predicted by a neural network F : ([0, T]×X → Rn) → (X → Rn)t=T+∆t. The
typical choices for F include modeling the absolute difference: ∀g ∈ X = Gn, uT+∆t

g = uT
g +

Fg(u[0,T]) (Wang et al., 2020; Sanchez-Gonzalez et al., 2020; Stachenfeld et al., 2021) and modeling
the relative difference: uT+∆t

g = uT
g +∆t · Fg(u[0,T]) (Brandstetter et al., 2021), where the latter

is believed to have the better consistency property, i.e., lim∆t→0 ∥uT+∆t
g − uT

g ∥ = 0.

Hybrid Physics-ML Physics-ML hybrid models is a recent line of work that uses neural network
to correct the errors in the classic (typically low-resolution) numerical simulators. Most of these
approaches seek to learn the corrections of the numerical simulators’ outputs (Mishra, 2019; Um
et al., 2020; List et al., 2022; Dresdner et al., 2022; Frezat et al., 2022; Bruno et al., 2022), while Bar-
Sinai et al. (2019); Kochkov et al. (2021) learn to infer the stencils of advection-diffusion problems
in a Finite Volume Method (FVM) framework. The proposed Temporal Stencil Modeling (TSM)
method belongs to the latter category.

3 TEMPORAL STENCIL MODELING FOR PDES

3.1 NEURAL STENCIL MODELING IN FINITE VOLUME SCHEME

Finite Volume Method (FVM) is a special MOL technique for conservation form PDEs, and can be
derived from Eq. 1 via Gauss’ theorem, where the integral of u (i.e., the averaged vector field of
volume) over unit cell increases only by the net flux into the cell. Recall that the incompressible,
constant density Navier Stokes equation for fluids has a conservation form of:

∂tu+∇ · (u⊗ u) = ν∇2u− 1

ρ
∇p+ f (4)

We can see that in FVM, the cell-average divergence can be calculated by summing the surface flux,
so the problem boils down to estimating the convective flux u⊗ u on each face. This only requires
estimating u by interpolating the neighboring discretized velocities, called stencils. The beauty of
FVM is that the integral of u is exactly conserved, and it can preserve accurate simulation as long as
the flux u⊗u is estimated accurately. Fig. 1 illustrates an implementation (Kochkov et al., 2021) of
classic FVM for the Navier-Stokes equation, where the convection and diffusion operators are based
on finite-difference approximations and modeled by explicit time integration, and the pressure is
implicitly modeled by the projection method (Chorin, 1967). The divergence operator enforces
local conservation of momentum according to a finite volume method, and the pressure projection
enforces incompressibility. The explicit time-step operator allows for the incorporation of additional
time-varying forces. We refer the readers to (Kochkov et al., 2021) for more details.

Classic FVM solvers use manually designed nth-order accurate method to calculate the interpo-
lation coefficients of stencils to approximate the convective flux. For example, linear interpola-
tion, upwind interpolation (Lax, 1959), and WENO5 method (Shu, 2003; Gottlieb et al., 2006) can
achieve first, second, and fifth-order accuracy, respectively. Besides, adjusting the interpolation
weights adaptively based on the input data is not new in numerical simulating turbulent flows. For
example, given the interpolation axis, the upwind interpolation adaptively uses the value from the
previous/next cell along that axis plus a correction for positive/negative velocity. WENO (weighted
essentially non-oscillatory) scheme also computes the derivative estimates by taking an adaptively-
weighted average over multiple estimates from different neighborhoods. However, the classic FVM
solvers are designed for general cases and can only adaptively adjust the interpolation coefficients
with simple patterns, and thus are sub-optimal when abundant PDE observation data is available.

In this paper, we follow Kochkov et al. (2021) and aim to learn more accurate flux approximation
in the FVM framework by predicting the learnable interpolation coefficients for the stencils with
neural networks. In principle, with 3×3 convolutional kernels, a 1, 2, 3-layer neural network is able
to perfectly mimic the linear interpolation, Lax-Wendroff method, and WENO method, respectively
(Brandstetter et al., 2021). Such observation well connects the learnable neural stencil modeling
methods to the classical schemes. However, previous work (Bar-Sinai et al., 2019; Kochkov et al.,
2021) investigates the learned interpolation scheme that only adapts to the latest state uT , which still
uses the same information as classical solvers. In this paper, we further generalize both classical and
previous learnable stencil interpolation schemes by predicting the interpolation coefficients with the
abundant information from all the previous trajectories {ut|t ∈ [0, T]}.

4

Under review as a conference paper at ICLR 2023

Errors w/ HiPPO features Errors w/ raw features Ground truth

Figure 2: 64× 64 → 2048× 2048 super-resolution errors with
32∆t-step HiPPO features and 32∆t-step raw features.

Table 1: 64 × 64 → 2048 × 2048
super-resolution MSE with differ-
ent approaches.

Method MSE

Bicubic Interpolation 2.246
CNN w/ 1-step raw features 0.029
CNN w/ 32-step raw features 0.015
CNN w/ 32-step HiPPO features 0.007

3.2 TEMPORAL SUPER-RESOLUTION WITH HIPPO FEATURES

A fundamental question in neural stencil modeling is why ML models can predict more accurate
flux approximations, and previous work (Kochkov et al., 2021) attribute their success to the super-
resolution power of neural nteworks, that is, the machine learning models can recover the missing
details from the coarse features. In this paper, we empirically verify this hypothesis by explicitly
training a super-resolution model.

Specifically, we treat the 2-D fluid velocity map as a H×W×2 image, and train a CNN-based U-Net
decoder (Ronneberger et al., 2015) to generate the super-resolution vorticity results. Our results are
reported in Tab. 1 (right), and we find that the super-resolution results generated by neural networks
is nearly 100× better than bicubic interpolation, which verify the super-resolution power of ML
models to recover the details.

Next, since the temporal information is always available for PDE simulation1, we investigate
whether the temporal information can further reduce the super-resolution errors, i.e., recovering
more details from the coarse features. After preliminary experiments, we decide to keep the convo-
lutional neural networks as the spatial encoder module for their efficient implementation on GPUs
and translation invariant property, and only change the temporal input features. Inspired by the re-
cent progress in time series modeling, we consider the following two types of features as the CNN
model’s inputs:

Raw features Following the previous work on video super-resolution (Liao et al., 2015), we treat
the H×W×T×2 -shaped velocity trajectory as an H×W image with feature channels C = T×2.

HiPPO features HiPPO (High-order Polynomial Projection Operators) (Gu et al., 2020; 2021) is
a recently proposed framework for the online compression of continuous time series by projection
onto polynomial bases. It computes the optimal polynomial coefficients for the scaled Legendre
polynomial basis. It has been shown as a state-of-the-art autoregressive sequence model for raw
images (Tay et al., 2020) and audio (Goel et al., 2022). In this paper, we propose to adopt HiPPO to
encode the raw fluid velocity trajectories. Due to the space limit, we leave the general description of
the HiPPO technique to Appendix C.

Results We report the temporal super-resolution results in Tab. 1. From the table, we can see that
the 32∆t-step raw features can reduce the super-resolution error by half, and using the HiPPO to
encode the time series can further reduce the error scale by half. We also visualize the errors of
32∆t-step HiPPO features and 32∆t-step raw features in Fig. 2. Our temporal super-resolution
results show that plenty of information in the PDE low-resolution temporal trajectories is missed
with vanilla stencil modeling, or will be underutilized with raw features, and HiPPO can better
exploit the temporal information in the velocity trajectories.

3.3 TEMPORAL STENCIL MODELING WITH HIPPO FEATURES

As better super-resolution performance indicate that more details can be recovered from the low-
resolution features, we propose to compute the interpolation coefficients in convective flux with

1Even if we only have access to one step of the ground-truth trajectory, we can still use the high-resolution
DNS to generate a long enough trajectory to initialize the spatial-temporal model.

5

Under review as a conference paper at ICLR 2023

the HiPPO-based temporal information, which should lead to more accurate flux approximation.
Incorporating HiPPO features in the neural stencil modeling framework is straight-forward: with
ground-truth initial velocity trajectories v[0,T], we first recurrently encode the trajectory (step by step
with Eq. 7 in Appendix C), and use the resulted features HiPPO(v[0,T]) to compute the interpolation
coefficients for the stencils. Given model-generated new velocity vT+∆t, due to the recurrence
property of HiPPO, we can only apply a single update on HiPPO(v[0,T]) and get the new encoded
feature HiPPO(v[0,T+∆t]), which is very efficient. Fig. 9 in the appendix illustrates such process.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Simulated data Following previous work (Kochkov et al., 2021), we train our method with 2-
D Kolmogorov flow, a variant of incompressible Navier-Stokes flow with constant forcing f =
sin(4y)x̂ − 0.1u. All training and evaluation data are generated with a JAX-based2 finite volume-
based direct numerical simulator in a staggered-square mesh (McDonough, 2007) as briefly de-
scribed in Sec. 3.1. We refer the readers to the appendix of (Kochkov et al., 2021) for more data
generation details.

We train the neural models on Re = 1000 flow data with density ρ = 1 and viscosity ν = 0.001
on a 2π × 2π domain, which results in a time-step of ∆t = 7.0125 × 10−3 according to the
Courant–Friedrichs–Lewy (CFD) condition on the 64×64 simulation grid. For training, we generate
128 trajectories of fluid dynamics, each starts with different random initial conditions and simulates
with 2048× 2048 resolution for 40.0 time units. We use 16 trajectories for evaluation.

Unrolled training All the learnable solvers are trained with the Mean Squared Error (MSE) loss
on the velocities. Following previous work (Li et al., 2020c; Brandstetter et al., 2021; Kochkov et al.,
2021; Dresdner et al., 2022), we adopt the unrolled training technique, which requires the learnable
solvers to mimic the ground-truth solution for more than one unrolled decoding step:

L(ugt
[0,T]) =

1

N

N∑
i=1

MSE(ugt(ti),u
pred(ti)) (5)

where ti ∈ {T +∆t, . . . , T +N∆t} is the unrolled time steps, ugt and upred are the ground-truth
solution and learnable solver’s prediction, respectively. Unrolled training can improve the inference
performance but makes the training less stable (due to bad initial predictions), so we use N = 32
unrolling steps for training.

Temporal bundling In our preliminary experiments, we found that due to the abundant informa-
tion in the trajectories, the TSM solvers are more prone to over-fit. Therefore, we adopt the tem-
poral bundling technique (Brandstetter et al., 2021) to the learned interpolation coefficients in TSM
solvers. Assume that in step-by-step prediction scheme, we predict u[0,T] → c(T +∆t), where c is
the stencil interpolation coefficients in the convective flux approximation. In temporal bundling, we
predict K steps of the interpolation coefficients u[0,T] → {c(T+∆t), c(T+2∆t), . . . , c(T+K∆t)}
in advance, and then time-step forward the FVM physics model for K steps with pre-computed sten-
cil interpolation coefficients.

Neural network architectures & hyper-parameters In TSM-64× 64 with a T -length trajectory,
the input and output shapes of TSM are 64 × 64 × T × 2 and 64 × 64 × C × 2, while the input
and output shapes of CNN are 64× 64× (C × 2) and 64× 64× (8× (42 − 1)), which represents
that for each resolution, we predict 8 interpolations that need 15 inputs each. For HiPPO3, we set
the hyper-parameters a = −0.5, b = 1.0, dt = 1.0. For CNN, we use a 6-layer network with 3× 3
kernels and 256 channels with periodic padding4.

2https://github.com/google/jax-cfd
3https://github.com/HazyResearch/state-spaces
4https://github.com/google/jax-cfd/blob/main/jax_cfd/ml/towers.py

6

https://github.com/google/jax-cfd
https://github.com/HazyResearch/state-spaces
https://github.com/google/jax-cfd/blob/main/jax_cfd/ml/towers.py

Under review as a conference paper at ICLR 2023

DNS 2048 x 2048
(ground-truth)

LI 64 x 64
(Kochkov et al. 2021)

TSM-HiPPO 64x64
+ 4-bundle (ours)

Figure 3: Qualitative results of predicted vorticity fields for reference (DNS 2048× 2048), previous
learnable sota model (LI 64× 64) (Kochkov et al., 2021), and our method (TSM 64× 64), starting
from the same initial condition. The yellow box denotes a vortex that is not captured by LI.

Figure 4: (left) Comparison of the vorticity correlation between prediction and the ground-truth so-
lution (i.e., DNS 2048×2048). (middle) Energy spectrum scaled by k5 averaged between simulation
time 6.0 to 20.0. (right) Comparison of high vorticity correlation duration v.s. inference latency.

4.2 MAIN RESULTS

The classic and neural methods we evaluated can be roughly classified into four categories: 1) pure
Physics models, i.e., the FVM-based Direct Numerical Simulation (DNS), 2) pure Machine Learning
(ML)-based neural method-of-lines models, 3) Learned Correction (LC) models, which correct the
final outputs (i.e., velocities) of physics models with neural networks (Um et al., 2020), and 4)
Neural Stencil Modeling models, including single-time-step Learned Interpolation (LI) (Kochkov
et al., 2021), and our Temporal Stencil Modeling (TSM).

For neural network baselines, except the periodic5 Convolutional Neural Networks (CNN) (LeCun
et al., 1999; Kochkov et al., 2021) with raw and HiPPO features we already described, we also
compare with Fourier Neural Operators (FNO) (Li et al., 2020c) and Multiwavelet-based model
(MWT), two recent state-of-the-art pure-ML PDE solver based on spectral and wavelet features.

We evaluate all the solvers based on their Pearson correlation ρ with the ground-truth (i.e., DNS
with the highest 2048 × 2048 resolution) flows in terms of the scalar vorticity field ω = ∂xuy −
∂yux. Furthermore, to ease comparing all the different solvers quantitatively, we focus on their
high-correlation duration time, i.e., the duration of time until correlation ρ drops below 0.8.

The comparison between HiPPO-based TSM and 1-time-step raw-feature LI (Kochkov et al., 2021)
is shown in Fig. 3 and Fig. 4 (left). We can see that our HiPPO feature-based TSM significantly
outperforms the previous state-of-the-art ML-physics model, especially when trained with a 4-step
temporal bundling. From Fig. 4 (middle), we can see that all the learnable solvers can better capture
the high-frequency features with a similar energy spectrum E(k) = 1

2 |u(k)|
2 pattern as the high-

resolution ground-truth trajectories. From Fig. 4 (right), we can see that with the help of temporal
5https://github.com/google/jax-cfd/blob/main/jax_cfd/ml/layers.py

7

https://github.com/google/jax-cfd/blob/main/jax_cfd/ml/layers.py

Under review as a conference paper at ICLR 2023

Table 2: Quantitative comparisons with the metric of
high-correlation (ρ > 0.8) duration (w.r.t the reference
DNS-2048 × 2048 trajectories). All learnable solvers
use the 64× 64 grids.

Method Type High-corr. duration

DNS-64× 64 Physics 2.805
DNS-128× 128 Physics 3.983
DNS-256× 256 Physics 5.386
DNS-512× 512 Physics 6.788
DNS-1024× 1024 Physics 8.752

1-step-raw-CNN ML 4.824
4-step-raw-CNN ML 7.517
32-step-FNO ML 6.283
32-step-WMT ML 5.890
1-step-raw-CNN LC 6.900
32-step-FNO LC 7.630
1-step-raw-CNN LI 7.910

32-step-FNO TSM 7.798
4-step-raw-CNN TSM 8.359

+ 4-step temporal-bundle TSM 8.303
32-step-HiPPO-CNN TSM 9.256

+ 4-step temporal-bundle TSM 9.481

Figure 5: Temporal stencil modeling perfor-
mance (high-correlation duration) with dif-
ferent feature types and different initial tra-
jectory steps.

bundling, HiPPO-TSM can achieve high simulation accuracy while reduces the inference latency
into 80% when compared to original LI.

4.3 ABLATION STUDY

We present a quantitative comparison for more methods in Tab. 1. We can see that the learned
correction models are always better than pure-ML models, and neural stencil modeling models are
always better than learned correction models. In terms of neural network architectures, we find that
under the same ML-physics framework, raw-feature CNN is always better than FNO, and HiPPO-
feature CNNs are always better than raw-feature CNNs. Finally, when adopting temporal bundling,
we can see that only HiPPO-TSM can benefit from alleviating the over-fitting problem, while the
performance of raw-feature TSM can be hurted by temporal bundling.

We also study the impact of the trajectory length on raw-feature and HiPPO-feature TSM models
in Fig. 2. Notice that in raw features, the temporal window size is fixed during unrolling, while in
HiPPO features, the temporal window size is expanded during unrolling decoding. From the figure,
we can see that the raw-feature CNN achieves the best performance with a window size of 4, while
HiPPO-feature keep increasing the performance, and reach the peak with 32 initial trajectory length.

4.4 GENERALIZATION TESTS

We evaluate the generalization ability of our HiPPO-TSM (4-step bundle) model and LI trained on
trained on Kolmogorov flows (Re = 1000). Specifically, we consider the following test cases: (A)
decaying flows (starting Re = 1000), (B) more turbulent Kolmogorov flows (Re = 4000), and (C)
2× larger domain Kolmogorov flows (Re = 1000). Our results are shown in Fig. 6, from which
we can see that HiPPO-TSM achieves consistent improvement over LI. HiPPO-TSM also achieves
competitive performance to DNS-1024×1024 or DNS-2048×2048, depending on the ground-truth
(i.e., highest resolution) being DNS-2048× 2048 or DNS-4096× 4096).

5 CONCLUSION & FUTURE WORK

In this paper, we propose a novel Temporal Stencil Modeling (TSM) method for solving time-
dependent PDEs in conservation form. TSM can be regarded as the temporal generalization of
classic finite volume solvers such as WENO and vanilla neural stencil modeling methods (Kochkov
et al., 2021), in that TSM leverages the temporal information from trajectories, instead of only using

8

Under review as a conference paper at ICLR 2023

A

B

C

Highest-resolution DNS
Learned Interpolation
(Kochkov et al. 2021)

Temporal Stencil Modeling
(ours)

Figure 6: Generalization test results of neural methods trained on Kolmogorov flows (Re = 1000)
and evaluated on (A) decaying flows (starting from Re = 1000), (B) more turbulent Kolmogorov
flows (Re = 4000), and (C) 2× larger domain Kolmogorov flows (Re = 1000).

the latest states, to approximate the (convective) flux more accurately. Our empirical evaluation on
2-D incompressible Navier-Stokes turbulent flow data show that both the temporal information and
its temporal feature encoding scheme are crucial to achieve state-of-the-art simulation accuracy. We
also show that TSM have strong generalization ability on various out-of-distribution turbulent flows.

For future work, we plan to evaluate our TSM method on the more challenging and realistic 3-D
turbulent flows, as well as 2-D turbulent flows with non-periodic boundary conditions. We are also
interested in leveraging the Neural Architecture Search (NAS) technique to automatically find better
features and neural architectures for solving Navier-Stokes equation in the TSM framework.

9

Under review as a conference paper at ICLR 2023

ETHIC STATEMENT

We do not see obvious negative social impact of our work.

REPRODUCIBILITY STATEMENT

We release the source code at https://anonymous-url. We plan to open-source all the code
after the acceptance of the manuscript. Since the training and evaluation data in this paper are all
simulated, they can also be faithfully reproduced from our release code.

REFERENCES

Giancarlo Alfonsi. Reynolds-averaged navier–stokes equations for turbulence modeling. Applied
Mechanics Reviews, 62(4), 2009.

John David Anderson and John Wendt. Computational fluid dynamics, volume 206. Springer, 1995.

Leah Bar and Nir Sochen. Unsupervised deep learning algorithm for pde-based forward and inverse
problems. arXiv preprint arXiv:1904.05417, 2019.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven dis-
cretizations for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduc-
tion and neural networks for parametric pdes. arXiv preprint arXiv:2005.03180, 2020.

J Boussinesq. Theorie de l’ecoulement tourbillant. Mem. Acad. Sci., 23:46, 1877.

Johannes Brandstetter, Daniel E Worrall, and Max Welling. Message passing neural pde solvers. In
International Conference on Learning Representations, 2021.

Oscar P Bruno, Jan S Hesthaven, and Daniel V Leibovici. Fc-based shock-dynamics solver with
neural-network localized artificial-viscosity assignment. Journal of Computational Physics: X,
pp. 100110, 2022.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in Neural Information Processing
Systems, 34:24924–24940, 2021.

Haecheon Choi and Parviz Moin. Grid-point requirements for large eddy simulation: Chapman’s
estimates revisited. Physics of fluids, 24(1):011702, 2012.

Alexandre Joel Chorin. The numerical solution of the navier-stokes equations for an incompressible
fluid. Bulletin of the American Mathematical Society, 73(6):928–931, 1967.

Richard Courant, Kurt Friedrichs, and Hans Lewy. On the partial difference equations of mathemat-
ical physics. IBM journal of Research and Development, 11(2):215–234, 1967.

Gideon Dresdner, Dmitrii Kochkov, Peter Norgaard, Leonardo Zepeda-Núñez, Jamie A Smith,
Michael P Brenner, and Stephan Hoyer. Learning to correct spectral methods for simulating
turbulent flows. arXiv preprint arXiv:2207.00556, 2022.

Hugo Frezat, Julien Le Sommer, Ronan Fablet, Guillaume Balarac, and Redouane Lguen-
sat. A posteriori learning for quasi-geostrophic turbulence parametrization. arXiv preprint
arXiv:2204.03911, 2022.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-
space models. arXiv preprint arXiv:2202.09729, 2022.

Sigal Gottlieb, Julia S Mullen, and Steven J Ruuth. A fifth order flux implicit weno method. Journal
of Scientific Computing, 27(1):271–287, 2006.

10

https://anonymous-url

Under review as a conference paper at ICLR 2023

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in Neural Information Processing Systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differen-
tial equations. Advances in Neural Information Processing Systems, 34:24048–24062, 2021.

Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted eno schemes. Journal
of computational physics, 126(1):202–228, 1996.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Peter Lax. Systems of conservation laws. Technical report, LOS ALAMOS NATIONAL LAB NM,
1959.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition with gradient-
based learning. In Shape, contour and grouping in computer vision, pp. 319–345. Springer, 1999.

Tony Lelievre and Gabriel Stoltz. Partial differential equations and stochastic methods in molecular
dynamics. Acta Numerica, 25:681–880, 2016.

Marcel Lesieur and Olivier Metais. New trends in large-eddy simulations of turbulence. Annual
review of fluid mechanics, 28(1):45–82, 1996.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-
ential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020b.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial differential equa-
tions. In International Conference on Learning Representations, 2020c.

Renjie Liao, Xin Tao, Ruiyu Li, Ziyang Ma, and Jiaya Jia. Video super-resolution via deep draft-
ensemble learning. In Proceedings of the IEEE international conference on computer vision, pp.
531–539, 2015.

Björn List, Li-Wei Chen, and Nils Thuerey. Learned turbulence modelling with differentiable fluid
solvers. arXiv preprint arXiv:2202.06988, 2022.

Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-oscillatory schemes. Jour-
nal of computational physics, 115(1):200–212, 1994.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Hermann G Matthies and Andreas Keese. Galerkin methods for linear and nonlinear elliptic stochas-
tic partial differential equations. Computer methods in applied mechanics and engineering, 194
(12-16):1295–1331, 2005.

James M McDonough. Lectures in computational fluid dynamics of incompressible flow: Mathe-
matics, algorithms and implementations. 2007.

Siddhartha Mishra. A machine learning framework for data driven acceleration of computations of
differential equations. Mathematics in Engineering, 1(1):118–146, 2019.

11

Under review as a conference paper at ICLR 2023

Nicholas H Nelsen and Andrew M Stuart. The random feature model for input-output maps between
banach spaces. SIAM Journal on Scientific Computing, 43(5):A3212–A3243, 2021.

Ravi G Patel, Nathaniel A Trask, Mitchell A Wood, and Eric C Cyr. A physics-informed operator re-
gression framework for extracting data-driven continuum models. Computer Methods in Applied
Mechanics and Engineering, 373:113500, 2021.

Stephen B Pope and Stephen B Pope. Turbulent flows. Cambridge university press, 2000.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Chae M Rhie and Wei-Liang Chow. Numerical study of the turbulent flow past an airfoil with trailing
edge separation. AIAA journal, 21(11):1525–1532, 1983.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Ahmed M Sallam and Ned HC Hwang. Human red blood cell hemolysis in a turbulent shear flow:
contribution of reynolds shear stresses. Biorheology, 21(6):783–797, 1984.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International Confer-
ence on Machine Learning, pp. 8459–8468. PMLR, 2020.

William E Schiesser. The numerical method of lines: integration of partial differential equations.
Elsevier, 2012.

Chi-Wang Shu. High-order finite difference and finite volume weno schemes and discontinuous
galerkin methods for cfd. International Journal of Computational Fluid Dynamics, 17(2):107–
118, 2003.

Jeffrey P Slotnick, Abdollah Khodadoust, Juan Alonso, David Darmofal, William Gropp, Elizabeth
Lurie, and Dimitri J Mavriplis. Cfd vision 2030 study: a path to revolutionary computational
aerosciences. Technical report, 2014.

Joseph Smagorinsky. General circulation experiments with the primitive equations: I. the basic
experiment. Monthly weather review, 91(3):99–164, 1963.

Jonathan D Smith, Kamyar Azizzadenesheli, and Zachary E Ross. Eikonet: Solving the eikonal
equation with deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 59
(12):10685–10696, 2020.

Kimberly Stachenfeld, Drummond B Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation. arXiv preprint arXiv:2112.15275, 2021.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
In Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. In International Conference on Learning Representations, 2020.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021.

Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop:
Learning from differentiable physics to interact with iterative pde-solvers. Advances in Neural
Information Processing Systems, 33:6111–6122, 2020.

12

Under review as a conference paper at ICLR 2023

Chuwei Wang, Shanda Li, Di He, and Liwei Wang. Is l2 physics-informed loss always suitable for
training physics-informed neural network? arXiv preprint arXiv:2206.02016, 2022.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1457–1466, 2020.

E Weinan and Bing Yu. The deep ritz method: A deep learning-based numerical algorithm for
solving variational problems. Communications in Mathematics and Statistics, 1(6):1–12, 2018.

13

Under review as a conference paper at ICLR 2023

Temporal super-resolution Vanilla super-resolution

64 x 64 x T 2048 x 2048 64 x 64

Figure 7: Illustration of super-resolution process from a trajectory of frames (i.e., temporal super-
resolution) or a single-frame (vanilla super-resolution).

A ADDITIONAL RELATED WORK

A.1 INDUSTRIAL SOLVERS FOR COMPUTATIONAL FLUID DYNAMICS

Industrial CFD typically relies on either Reynolds-averaged Navier-Stokes (RANS) models (Boussi-
nesq, 1877; Alfonsi, 2009), where the fluctuations are expressed as a function of the eddy viscosity,
or coarsely-resolved Large-Eddy Simulation (LES) (Smagorinsky, 1963; Lesieur & Metais, 1996),
where only the large scales are numerically simulated, and the small ones are modelled (with an
a-priori physics assumption). However, there are severe limits in both methods associated with
their usage for general purpose. For example, RANS is too simple to model complex flows (Slot-
nick et al., 2014) and often exhibit significant errors when dealing with complex pressure-gradient
distributions and complicated geometries. LES can exhibit limited accuracy in their predictions of
high-Re turbulent flows, due to the first-order dependence of LES on the subgrid-scale (SGS) model.

B INFRASTRUCTURES

We train and evaluate all the classic and neural Navier-Stokes solvers in 8 Nvidia Tesla V100-32G
GPUs. The inference latency is measured by unrolling 2 trajectories for 25.0 simulation time on a
single V100 GPU.

C HIPPO FEATURES FOR TEMPORAL STENCIL MODELING

For scalar time series u≤t := u(x)|x≤t, the HiPPO (Gu et al., 2020) projection aims to find a
coefficient mapping for orthogonal polynomials such that

c(t) ∈ RN = argmin ∥u≤t − g(t)∥µ(t) (6)

where g(t) =
∑N

n=1 cn(t)gn(t) and gn(t) is the nth Legendre polynomial scaled to the [0, t] do-
main. µ(t) = 1

t I[0,t] is the uniform weight metric. By solving the corresponding ODE and its
discretization, Gu et al. (2020) showed that the optimal polynomial coefficients cT can be calculated
by the following recurrence:

c(T +∆t) =

(
1− A

T/∆t

)
c(T) +

1

T/∆t
B · u(T) (7)

where Ank =


(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

, Bn = (2n+ 1)
1
2

We refer the readers to (Gu et al., 2020) for the detailed derivations. When dealing with the multi-
variate time series such as temporal PDE, we follow the original recipe and treat each scalar compo-
nent independently, that is, we treat the H ×W × T × 2 -shaped velocity trajectory as H ×W × 2
separate time series of length T . Finally, we concatenate the resulted H ×W × 2 × C features on
the velocity dimension (i.e., H ×W × 2C) as the input to the CNN.

14

Under review as a conference paper at ICLR 2023

DNS-2048x2048
(Ground-truth)

DNS-512x512

HiPPO-TSM-64x64

HiPPO-TSM-32x32

HiPPO-TSM-32x32
+ super-resolution

HiPPO-TSM-16x16

HiPPO-TSM-16x16
+ super-resolution

Figure 8: Qualitative results with TSM evaluating on 32 × 32 and 16 × 16, and their 64 × 64
super-resolution results. From the super-resolution results of the T = 0, we can see that the super-
resolution models actually work quite well.

D SOLVING NAVIER-STOKES WITH 32× 32 AND 16× 16 GRIDS

Since TSM shows significant improvements over vanilla neural stencil modeling on the 64×64 grid,
we are wondering whether TSM can further push the Pareto frontier by accurately approximate the
convective flux in lower resolution grid.

Specifically, we still use DNS-2048×2048 as the ground-truth training data, but train the TSM solver
in the 32× 32 and 16× 16 down-sampled grids. In order to make a fair and direction comparison to
our original 64× 64 model, we additionally train two 32× 32 → 64× 64 and 16× 16 → 64× 64
super-resolution model, and evaluate (on 64× 64 vorticity) their super-resolved results.

We report the results in Fig. 8 and Tab. 3. We can see that the super-resolution models actually work
quite well for 32 × 32 → 64 × 64 and 16 × 16 → 64 × 64. Besides, though the lower-resolution
neural solvers’ performance is significantly worse than 64 × 64, we can see that the improvement
from temporal information in the trajectories is more significant in lower resolutions.

15

Under review as a conference paper at ICLR 2023

Table 3: Quantitative comparisons with the metric of high-correlation (ρ > 0.8) duration (w.r.t
the reference DNS-2048 × 2048 trajectories). The results of TSM-32 × 32 and TSM-16 × 16 are
evaluated on their corresponding 64 × 64 super-resolution results with additionally trained super-
resolution models.

Method High-corr. duration

DNS-64× 64 2.805
DNS-128× 128 3.983
DNS-256× 256 5.386
DNS-512× 512 6.788
DNS-1024× 1024 8.752

LI-64× 64 7.910
TSM-64× 64 9.481 (+19.86%)

LI-32× 32 5.400
TSM-32× 32 6.802 (+25.96%)

LI-16× 16 2.805
TSM-16× 16 3.576 (+27.50%)

H x W x T x 2

HiPPO feature
initial encoding

H x W x (C x 2)

CNN

H x W x C’

Physics Model

CNN

H x W x C’

Physics Model

HiPPO feature
recurrent update

…

H x W x (C x 2)

Figure 9: Illustration of using HiPPO features as the CNN inputs for neural stencil modeling. After
encoding the HiPPO features for the initial velocity trajectory v[0,T], given model-generated new
velocity, we only need an additional recurrent update step to get the HiPPO features for v[0,T+∆t]

(with Eq. 7). Notice that in TSM, we use the fixed optimal HiPPO recurrence for temporal encoding
and only the CNN part is learnable.

Table 4: The p-values in one-sample T-test for the differences between TSM and other baseline
models. The differences on all 16 test trajectories are used for each significance test. We evaluate
the significance for four high-correlation thresholds: 0.95, 0.9, 0.8, and 0.7.

p-value in one-sample T-test
Baseline ρ > 0.95 ρ > 0.9 ρ > 0.8 ρ > 0.7

DNS 64x64 1.06× 10−11 1.14× 10−10 1.20× 10−10 1.26× 10−10

DNS 128x128 8.80× 10−11 2.23× 10−10 6.75× 10−10 6.63× 10−10

DNS 256x256 1.22× 10−10 2.39× 10−09 4.78× 10−09 1.56× 10−09

DNS 512x512 2.38× 10−09 1.49× 10−07 2.27× 10−06 1.65× 10−06

DNS 1024x1024 6.63× 10−03 6.91× 10−03 1.53× 10−02 1.65× 10−02

LI 64x64 (Kochkov et al. 2021) 9.06× 10−04 1.65× 10−03 3.63× 10−03 3.08× 10−03

16

Under review as a conference paper at ICLR 2023

Figure 10: Qualitative comparison of TSM and other baselines on 1D KS equation. The solutions
are down-sampled to 32 grid in the space dimension for comparison. The dashed vertical yellow line
denotes the time-step where the Pearson correlation between the model prediction and ground-truth
(i.e., DNS-1024) is lower than threshold (ρ < 0.8).

E GENERALIZATION ON 1D KURAMOTO–SIVASHINSKY (KS) EQUATION

To verify the generalization ability of TSM, we further evaluate it on 1D equations. Following
previous work (Bar-Sinai et al., 2019; Stachenfeld et al., 2021), we choose Kuramoto–Sivashinsky
(KS) equation as a representative 1D PDE that can generate unstable and chaotic dynamics. While
KS-1D is not technically turbulent, it is a well-studied chaotic equation that can be used to assess
the generalization ability of our models in 1D cases.

Specifically, the KS equation can be written in the conservation form of
∂v

∂t
+

∂J

∂x
= 0, v(x, t = 0) = v0(x) (8)

where

J =
v2

2
+

∂v

∂x
+

∂3v

∂x3
(9)

Following previous work (Bar-Sinai et al., 2019), we consider the 1D KS equation with periodic
boundaries. The domain size is set to L = 20π, and the initial condition is set to

v0(x) =

N∑
i=1

Ai sin (2πℓix/L+ ϕi) (10)

where N = 10, and A, ϕ, ℓ are sampled from the uniform distributions of [−0.5, 0.5], [−π, π], and
{1, 2, 3}, respectively.

17

Under review as a conference paper at ICLR 2023

Figure 11: Qualitative comparison of TSM and other baselines on 1D KS equation. The solutions
are down-sampled to 64 grid in the space dimension for comparison. The dashed vertical yellow line
denotes the time-step where the Pearson correlation between the model prediction and ground-truth
(i.e., DNS-1024) is lower than threshold (ρ < 0.8).

Similar to the NS solution, we solve the nonlinear convection term by advecting all velocity compo-
nents simultaneously, using a high order scheme based on Van-Leer flux limiter or with a learnable
interpolator, while the second and forth order diffusion are approximated using a second order cen-
tral difference approximations. The Fourier spectral method is not used because of the precision
issues in JAX FFT and IFFT 6.

We use DNS-1024 as the ground-truth training data, and train TSM solver and LI solver in the 32
and 64 down-sampled grids. A time-step of ∆t = 1.9635×10−2 and ∆t = 9.81748×10−3 is used
for 32 and 64 grids, respectively. Following Bar-Sinai et al. (2019), the interpolation coefficients of
a 6-point stencil are predicted by TSM and LI. For training, we generate 1024 trajectories of fluid
dynamics, each starts with different random initial conditions and simulates with 1024 resolution
for 200.0 time units (after 80.0 time unit warmup). We use 16 trajectories for evaluation.

When comparing with other DNS baselines, all solutions are down-sampled to 32 or 64 for com-
parison. Fig. 10 and Fig. 11 show the results of TSM and LI compared with other baselines in the
32 and 64 grids, respectively. A quantitative comparison of various solvers under 64-resolution is
also presented in Fig. 12. We can see that TSM can outperforms LI with the same resolution, and
outperform DNS with 4× ∼ 8× resolutions.

6https://github.com/google/jax/issues/2952

18

https://github.com/google/jax/issues/2952

Under review as a conference paper at ICLR 2023

Figure 12: Quantitative comparison of TSM and other baselines on the velocity correlation of 1D
KS equation. The solutions are down-sampled to 64 grid in the space dimension for comparison.

F GENERALIZATION ON 3D NAVIER-STOKES (NS) EQUATION

To verify the generalization ability of TSM, we further evaluate it on 3D Navier Stokes equations.
Recall that the incompressible, constant density Navier Stokes (NS) equation for fluids has a con-
servation form of:

∂tu+∇ · (u⊗ u) = ν∇2u− 1

ρ
∇p+ f (11)

We train our method with 3D incompressible Navier-Stokes flow with a linear forcing f = 0.05u to
avoid the decaying of flows7. The viscosity of the fluid is set to ν = 6.65 × 10−4 and the density
ρ = 1. For training, we generate 128 trajectories of fluid dynamics, each starts with different random
initial conditions and simulates with 128× 128× 128 resolution for 10.0 time units (after 80.0 time
unit warmup). We use 16 trajectories for evaluation.

Following previous work (Stachenfeld et al., 2021; Takamoto et al.), the ground-truth solution is
obtained by simulation on 128×128×128 grid. According to the Courant–Friedrichs–Lewy (CFD)
condition, we have time-step ∆ = 1.402497 × 10−2 on the 32 × 32 × 32 simulation grid. For
TSM-32 × 32 × 32 and LI-32 × 32 × 32, most of the settings in 3D NS follows our setup for the
2D case, except that the interpolation coefficients is only calculated for a 2× 2× 2-point stencil to
avoid out-of-memory issues.

When comparing with other DNS baselines, all solutions are down-sampled to 32 × 32 × 32 for
comparison. A quantitative comparison of various solvers under 32×32×32-resolution is presented
in Fig. 13. The qualitative results on the planes of x = 0, y = 0, z = 0 are presented in Fig. 14,
Fig. 15, and Fig. 16, respectively. We can see that TSM can outperforms LI and DNS with the
same resolution, but cannot beat DNS with 2× higher resolution. This is consistent with the results
reported in previous work (Stachenfeld et al., 2021).

7https://github.com/google/jax-cfd/blob/main/jax_cfd/ml/physics_
configs/linear_forcing.gin

19

https://github.com/google/jax-cfd/blob/main/jax_cfd/ml/physics_configs/linear_forcing.gin
https://github.com/google/jax-cfd/blob/main/jax_cfd/ml/physics_configs/linear_forcing.gin

Under review as a conference paper at ICLR 2023

Figure 13: Quantitative comparison of TSM and other baselines on the vorticity correlation (aver-
aged over three directions) of 3D incompressible Navier-Stokes equation.

Figure 14: Qualitative 3D incompressible Navier-Stokes equation results of predicted vorticity fields
on the plane of x = 0.

20

Under review as a conference paper at ICLR 2023

Figure 15: Qualitative 3D incompressible Navier-Stokes equation results of predicted vorticity fields
on the plane of y = 0.

21

Under review as a conference paper at ICLR 2023

Figure 16: Qualitative 3D incompressible Navier-Stokes equation results of predicted vorticity fields
on the plane of z = 0.

22

	Introduction
	Background & Related Work
	Navier-Stokes Equation
	Classical Solvers for Computational Fluid Dynamics
	Neural PDE Solvers

	Temporal Stencil Modeling for PDEs
	Neural stencil modeling in finite volume scheme
	Temporal Super-resolution with HiPPO features
	Temporal Stencil Modeling with HiPPO Features

	Experiments
	Experimental setup
	Main results
	Ablation Study
	Generalization tests

	Conclusion & Future Work
	Additional related work
	Industrial Solvers for Computational Fluid Dynamics

	Infrastructures
	HiPPO features for Temporal Stencil Modeling
	Solving Navier-Stokes with 3232 and 1616 grids
	Generalization on 1D Kuramoto–Sivashinsky (KS) equation
	Generalization on 3D Navier-Stokes (NS) equation

