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Abstract

Optimal Transport has sparked vivid interest in recent years, in particular thanks to the
Wasserstein distance, which provides a geometrically sensible and intuitive way of comparing
probability measures. For computational reasons, the Sliced Wasserstein (SW) distance was
introduced as an alternative to the Wasserstein distance, and has seen uses for training gen-
erative Neural Networks (NNs). While convergence of Stochastic Gradient Descent (SGD)
has been observed practically in such a setting, there is to our knowledge no theoretical
guarantee for this observation. Leveraging recent works on convergence of SGD on non-
smooth and non-convex functions by Bianchi et al. (2022), we aim to bridge that knowledge
gap, and provide a realistic context under which fixed-step SGD trajectories for the SW loss
on NN parameters converge. More precisely, we show that the trajectories approach the set
of (sub)-gradient flow equations as the step decreases. Under stricter assumptions, we show
a much stronger convergence result for noised and projected SGD schemes, namely that the
long-run limits of the trajectories approach a set of generalised critical points of the loss
function.

1 Introduction

1.1 The Sliced Wasserstein Distance in Machine Learning

Optimal Transport (OT) allows the comparison of measures on a metric space by generalising the use of the
ground metric. Typical applications use the so-called 2-Wasserstein distance, defined as

∀ν1, ν2 ∈ P2(Rd), W2
2(ν1, ν2) := inf

π∈Π(ν1,ν2)

∫
Rd×Rd

‖x1 − x2‖2dπ(x1, x2), (W2)

where P2(Rd) is the set of probability measures on Rd admitting a second-order moment and where Π(ν1, ν2)
is the set of measures of P2(Rd×Rd) of first marginal ν1 and second marginal ν2. One may find a thorough
presentation of its properties in classical monographs such as Peyré & Cuturi (2019); Santambrogio (2015);
Villani (2009)

The ability to compare probability measures is useful in probability density fitting problems, which are a
sub-genre of generation tasks. In this formalism, one considers a probability measure µu, parametrised by
u which is designed to approach a target data distribution µ (typically the real-world dataset). In order
to determine suitable parameters, one may choose any probability discrepancy (Kullback-Leibler, Ciszar
divergences, f-divergences or Maximum Mean Discrepancy), or in our case, the Wasserstein distance. In
the case of Generative Adversarial Networks, the optimisation problem which trains the "Wasserstein GAN"
(Arjovsky et al., 2017) stems from the Kantorovitch-Rubinstein dual expression of the 1-Wasserstein distance.

A less cost-intensive alternative to W2
2 is the Sliced Wasserstein (SW) Distance introduced by Bonneel et al.

(2015), which consists in computing the 1D Wasserstein distances between projections of input measures,
and averaging over the projections. The aforementioned projection of a measure ν on Rd is done by the
push-forward operation by the map Pθ : x 7−→ θ · x. Formally, Pθ#ν is the measure on R such that
for any Borel set B ⊂ R, Pθ#ν(B) = ν(P−1

θ (B)). Once the measures are projected onto a line Rθ, the
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computation of the Wasserstein distance becomes substantially simpler numerically. We shall illustrate this
fact in the discrete case, which arises in practical optimisation settings. Let two discrete measures on Rd:
γX := 1

n

∑
k δxk , γY := 1

n

∑
k δyk with x1, · · · , xn, y1, · · · , yn ∈ Rd. Their push-forwards by Pθ are simply

computed by the formula Pθ#γX =
∑
k δPθ(xk), and the 2-Wasserstein distance between their projections can

be computed by sorting their supports: let σ a permutation sorting (θTx1, · · · , θTxn), and τ a permutation
sorting (θT y1, · · · , θT yn), one has the simple expression

W2
2(Pθ#γX , Pθ#γY ) =

1
n

n∑
k=1

(θTxσ(k) − θT yτ(k))2. (1)

The SW distance is the expectation of this quantity with respect to θ ∼ �, i.e. uniform on the sphere:
SW2

2(γX , γY ) = Eθ∼�

[
W2

2(Pθ#γX , Pθ#γY )
]
. The 2-SW distance is also defined more generally between two

measures µ, ν ∈ P2(Rd):
SW2

2(µ, ν) :=
∫
θ∈Sd−1

W2
2(Pθ#µ, Pθ#ν)d�(θ). (SW)

The implicit generative modelling framework is a formalisation of the training step of generative Neural
Networks (NNs), where a network T of parameters u is learned such as to minimise the discrepancy between
Tu#x 1 and y, where x is a low-dimensional input distribution (often chosen as Gaussian or uniform noise),
and where µ is the target distribution. Our case of interest is when the discrepancy is measured with the
SW distance, which leads to minimising SW2

2(Tu#x, y) in u. In order to train a NN in this manner, at each
iteration one draws n samples from x and y (denoted γX and γY as discrete measures with n points), as well
as a projection θ (or a batch of p projections) and performs an SGD step on the sample loss

L(u) = SW2
2(Pθ#Tu#γX , Pθ#γY ) =

1
n

n∑
k=1

(θTTu(xσ(k))− θT yτ(k))2, (2)

with respect to the parameters u (see Algorithm 1 for a precise formalisation). In order to compute this
numerically, the main complexity comes from determining the permutations σ and τ by sorting the numbers
(θTTu(xk))k and (yk)k, and summing the results, while the Wasserstein alternative W2

2(Tu#γX , γY ) is done
by solving a Linear Program, which is substantially costlier.

In this paper, we shall study this training method theoretically and prove convergence results. Theoretical
guarantees for this optimisation problem are welcome, since this question has not yet been tackled (to our
knowledge), even though its use is relatively widespread: for instance, Deshpande et al. (2018) and Wu et al.
(2019) train GANs and auto-encoders with this method. Other examples within this formalism include the
synthesis of images by minimising the SW distance between features of the optimised image and a target
image, as done by Heitz et al. (2021) for textures with neural features, and by Tartavel et al. (2016) with
wavelet features (amongst other methods).

In practice, it has been observed that SGD in such settings always converges (in the loose numerical sense),
yet this property is not known theoretically, since the loss function defined in (2) is not differentiable nor
convex in general, because X 7−→ SW2

2(γX , γY ) and the neural network do not have such regularities.
Several efforts have been made to prove the convergence of SGD trajectories within this theoretically difficult
setting: Bianchi et al. (2022) show the convergence of fixed-step SGD schemes on a function F with some
technical regularity assumptions, Majewski et al. (2018) show the convergence of diminishing-step SGD
schemes assuming stronger regularity results on F . Another notable theoretical work is by Bolte & Pauwels
(2021), which leverages conservative field theory to prove convergence for back-propagated SGD on deep
NNs with definable activations and loss functions. In the case of Optimal Transport losses, the only work
(that we are aware of) that has tackled this problem is by Fatras et al. (2021), proving strong convergence
results for minibatch variants of classical OT distances, namely the Wasserstein, Entropic Wasserstein and
Gromov Wasserstein distances. The aim of this work is to bridge the gap between theory and practical
observation by proving convergence results for SGD on Sliced Wasserstein generative losses of the form
F (u) = SW2

2(Tu#x, y).
1Tu#x is the push-forward measure of x by Tu, i.e. the law of Tu(x) when x ∼ x.
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1.2 Contributions

Convergence of Interpolated SGD Under Practical Assumptions Under practically realistic as-
sumptions, we prove in Theorem 1 that piece-wise affine interpolations (defined in Equation (6)) of constant-
step SGD schemes on u 7−→ F (u) (formalised in Equation (4)) converge towards the set of sub-gradient
flow solutions (see Equation (5)) as the gradient step decreases. This results signifies that with very small
learning rates, SGD trajectories will be close to sub-gradient flows, which themselves converge to critical
points of F (omitting serious technicalities).

The assumptions needed for this result are practically reasonable: the input measure x and the true data
measure y are assumed to be compactly supported. As for the network (u, x) 7−→ T (u, x), we assume that
for a fixed datum x, T (·, x) is piecewise C2-smooth and that it is Lipschitz jointly in both variables on any
compact. We require additional assumptions on T which are more costly, but are verified as long as T is of the
form T (u, x) = T̃ (u, x)1B(u), where T̃ is any typical NN composed of compositions of definable activations
(as is the case for all typical activations, see (Bolte & Pauwels, 2021), §6.2), and of linear units; and where
1B(u) is the indicator that the parameter u be in a fixed ball B. This form for T is a strong theoretical
assumption, but in practice makes little difference, as one may take a fixed ball B to be arbitrarily large.

Stronger Convergence Under Stricter Assumptions In order to obtain a stronger convergence result,
we consider a variant of SGD where each iteration receives an additive noise (scaled by the learning rate)
which allows for better space exploration, and where each iteration is projected on a ball B(0, r) in order
to ensure boundedness. This alternative SGD scheme remains within the realm of practical applications,
and we show in Theorem 2 that long-run limits of such trajectories converge towards a set of generalised
critical points of F , as the gradient step approaches 0. This result is substantially stronger, and can serve as
an explanation of the convergence of practical SGD trajectories, specifically towards a set of critical points
which amounts to the stationary points of the energy (barring theoretical technicalities).

Unfortunately, we require additional assumptions in order to obtain this stronger convergence result, the
most important of which is that the input data measure x and the dataset measure y are discrete. For
the latter, this is always the case in practice, however the former assumption is more problematic, since it
is common to envision generative NNs as taking an argument from a continuous space (the input is often
Gaussian of Uniform noise), thus a discrete setting is a substantial theoretical drawback. For practical
concerns, one may argue that the discrete x can have an arbitrary fixed amount of points, and leverage
strong sample complexity results such as those of Nadjahi et al. (2020) to ascertain that the discretisation
is not costly if the number of samples is large enough.

2 Stochastic Gradient Descent with SW as Loss

Training Sliced-Wasserstein generative models consists in training a neural network

T :
{

Rdu × Rdx −→ Rdy
(u, x) 7−→ Tu(x) := T (u, x)

by minimising u 7−→ SW2
2(Tu#x, y) through Stochastic Gradient Descent (as described in Algorithm 1). The

probability distribution x ∈ P2(Rdx) is the law of the input of the generator T (u, ·). The distribution y ∈
P2(Rdy ) is the data distribution, which T aims to simulate. Finally, � will denote the uniform measure on the
unit sphere of Rdy , denoted by Sdy−1. Given a list of points X = (x1, · · · , xn) ∈ Rn×dx , denote the associated
discrete uniform measure γX := 1

n

∑
i δxi . By abuse of notation, we write Tu(X) := (Tu(x1), · · · , Tu(xn)) ∈

Rn×dy .

In the following, we will apply results from (Bianchi et al., 2022), and we pave the way to the application of
these results by presenting their theoretical framework. Consider a sample loss function f : Rdu × Ξ −→ R
that is locally Lipschitz in the first variable, and ζ a probability measure on Ξ ⊂ Rd which is the law of
the samples drawn at each SGD iteration. Consider ϕ : Rdu × Ξ −→ Rdu an almost-everywhere gradient of
f , which is to say that for almost every (u, S) ∈ Rdu × Ξ, ϕ(u, S) = ∂uf(u, S) (since each f(·, S) is locally
Lipschitz, it is differentiable almost-everywhere by Rademacher’s theorem). The complete loss function is
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Algorithm 1: Training a NN on the SW loss with Stochastic Gradient Descent
Data: Learning rate α > 0, noise level a ≥ 0, convergence threshold β > 0, probability

distributions x ∈ P2(Rdx) and y ∈ P2(Rdy ).
1 Initialisation: Draw u(0) ∈ Rdu ;
2 for t ∈ J0, Tmax − 1K do
3 Draw θ(t+1) ∼ �, X(t+1) ∼ x⊗n Y (t+1) ∼ y⊗n. SGD update:

u(t+1) = u(t) − α

[
∂

∂u
W2

2(Pθ(t+1)#Tu#γX(t+1) , Pθ(t+1)#γY (t+1))
]
u=u(t)

4 end

F := u −→
∫

Ξ f(u, S)dζ(S). An SGD trajectory of step α > 0 for F is a sequence (u(t)) ∈ (Rdu)N of the
form:

u(t+1) = u(t) − αϕ(u(t), S(t+1)),
(
u(0), (S(t))t∈N

)
∼ ν ⊗ ζ⊗N,

where ν is the distribution of the initial position u(0). Within this framework, we define an SGD scheme
described by Algorithm 1, with ζ := x⊗n ⊗ y⊗n ⊗ � and

f :=
{

Rdu × Rn×dx × Rn×dy × Sdy−1 −→ Rdy
(u,X, Y, θ) 7−→ W2

2(Pθ#Tu#γX , Pθ#γY ) .

With this definition for f , we have F (u) = E(X,Y,θ)∼ζ
[
W2

2(Pθ#Tu#γX , Pθ#γY )
]

= SW2
2(Tu#x, y): the

complete loss compares the data y with the model’s generation Tu#x using SW. We now wish to define an
almost-everywhere gradient of f . To this end, notice that one may write f(u,X, Y, θ) = wθ(T (u,X), Y ),
where for Z, Y ∈ Rn×dy and θ ∈ Sdy−1, wθ(Y, Z) := W2

2(Pθ#γZ , Pθ#γY ). The differentiability properties of
wθ(·, Y ) are already known (Tanguy et al., 2023; Bonneel et al., 2015), in particular one has the following
almost-everywhere gradient of wθ(·, Y ) :

∂wθ

∂Z
(Z, Y ) =

(
2
n
θθT (zk − yσZ,Y

θ
(k))
)
k∈J1,nK

∈ Rn×dy ,

where the permutation σZ,Yθ ∈ Sn is τθY ◦ (τθZ)−1, with τθY ∈ Sn being a sorting permutation of the list
(θ · y1, · · · , θ · yn). The sorting permutations are chosen arbitrarily when there is ambiguity. To define an
almost-everywhere gradient, we must differentiate f(·, X, Y, θ) = u 7−→ wθ(T (u,X), Y ) for which we need
regularity assumptions on T : this is the goal of Assumption 1. In the following, A denotes the topological
closure of a set A, ∂A its boundary, and λRdu denotes the Lebesgue measure of Rdu .
Assumption 1. For every x ∈ Rdx , there exists a family of disjoint connected open sets (Uj(x))j∈J(x) such

that ∀j ∈ J(x), T (·, x) ∈ C2(Uj(x),Rdy ),
⋃

j∈J(x)

Uj(x) = Rdu and λRdu
( ⋃
j∈J(x)

∂Uj(x)
)

= 0.

Note that for measure-theoretic reasons, the sets J(x) are assumed countable.

Assumption 1 implies that given X,Y, θ fixed, f(·, X, Y, θ) is differentiable almost-everywhere, and that one
may define the following almost-everywhere gradient (3).

ϕ :=


Rdu × Rn×dx × Rn×dy × Sdy−1 −→ Rdu

(u,X, Y, θ) 7−→
n∑
k=1

2
n

(
∂T

∂u
(u, xk)

)T
θθT (T (u, xk)− y

σ
T (u,X),Y
θ

(k))
, (3)

where for x ∈ Rdx ,
∂T

∂u
(u, x) ∈ Rdy×du denotes the matrix of the differential of u 7−→ T (u, x), which is

defined for almost-every u. Given u ∈ ∂Uj(x) (a point of potential non-differentiability), take instead 0.
(Any choice at such points would still define an a.e. gradient, and will make no difference).
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Given a step α > 0, and an initial position u(0) ∼ ν, we may now define formally the following fixed-step
SGD scheme for F :

u(t+1) = u(t) − αϕ(u(t), X(t+1), Y (t+1), θ(t+1)),(
u(0), (X(t))t∈N (Y (t))t∈N (θ(t))t∈N

)
∼ ν ⊗ x⊗N ⊗ y⊗N ⊗ �⊗N.

(4)

An important technicality that we must verify in order to apply Bianchi et al. (2022)’s results is that
u 7−→ f(u,X, Y, θ) and F are locally Lipschitz. Before proving those claims, we reproduce a useful Property
from (Tanguy et al., 2023). In the following, ‖X‖∞,2 denotes max

k∈J1,nK
‖xk‖2 given X = (x1, · · · , xn) ∈ Rn×dx ,

and BN (x, r) for N a norm on Rdx , x ∈ Rdx and r > 0 shall denote the open ball of Rdx of centre x and
radius r for the norm N (if N is omitted, then B is an euclidean ball).

Proposition 1. The (wθ(·, Y ))θ∈Sdy−1 are uniformly locally Lipschitz (Tanguy et al., 2023).

Let κr(Z, Y ) := 2n(r+ ‖Z‖∞,2 + ‖Y ‖∞,2), for Z, Y ∈ Rn×dy and r > 0. Then wθ(·, Y ) is κr(Z, Y )-Lipschitz
in the neighbourhood B‖·‖∞,2(Z, r):

∀Y ′, Y ′′ ∈ B‖·‖∞,2(Z, r), ∀θ ∈ Sdy−1, |wθ(Y ′, Y )− wθ(Y ′′, Y )| ≤ κr(Z, Y )‖Y ′ − Y ′′‖∞,2.

In order to deduce regularity results on f and F from Proposition 1, we will make the following assumption,
which under Assumption 1 only requires additional regularity with respect to the data argument.

Assumption 2. For any compacts K1 ⊂ Rdu and K2 ⊂ Rdx , there exists LK1,K2 > 0 such that
∀(u1, u2, x1, x2) ∈ K2

1 ×K2
2, ‖T (u1, x1)− T (u2, x2)‖ ≤ LK1,K2 (‖u1 − u2‖+ ‖x1 − x2‖).

Proposition 2 (Regularity of u 7−→ f(u,X, Y, θ)). Under Assumption 2, for ε > 0, u0 ∈ Rdu , X ∈
Rn×dx , Y ∈ Rn×dy and θ ∈ Sdy−1, let κε(u0, X, Y ) := 2Ln(εL + ‖T (u0, X)‖∞,2 + ‖Y ‖∞,2), with L :=
LB(u0,ε),B(0Rdx ,‖X‖∞,2). Then f(·, X, Y, θ) is κε(X,Y )-Lipschitz in B(u0, ε):

∀u, u′ ∈ B(u0, ε), |f(u,X, Y, θ)− f(u′, X, Y, θ)| ≤ κε(X,Y )‖u− u′‖2.

Proof. Let ε > 0, u0 ∈ Rdu , X ∈ Rn×dx , Y ∈ Rn×dy and θ ∈ Sdy−1. Let u, u′ ∈ B(u0, ε). Using
Assumption 2, we have T (u,X), T (u′, X) ∈ B‖·‖∞,2(T (u0, X), r), with r := εLB(u0,ε),B(0Rdx ,‖X‖∞,2).

By Proposition 1, we have, with L := LB(u0,ε),B(0Rdx ,‖X‖∞,2)

|f(u,X, Y, θ)− f(u′, X, Y, θ)| = |wθ(T (u,X), Y )− wθ(T (u′, X), Y )|
≤ κr(T (u0, X), Y )‖T (u,X)− T (u′, X)‖∞,2
≤ 2n(εL+ ‖T (u0, X)‖∞,2 + ‖Y ‖∞,2)L‖u− u′‖2.

Proposition 2 shows that f is locally Lipschitz in u. We now assume some conditions on the measures x and
y in order to prove that F is also locally Lipschitz.

Assumption 3. x and y are Radon probability measures on Rdx and Rdy respectively, supported by the
compacts X and Y respectively. Denote Rx := sup

x∈X
‖x‖2 and Ry := sup

y∈Y
‖y‖2.

Proposition 3. Assume Assumption 2 and Assumption 3. For ε > 0, u0 ∈ Rdu , let C1(u0) :=∫
Xn
‖T (u0, X)‖∞,2dx⊗n(X), C2 :=

∫
Yn
‖Y ‖∞,2dy⊗n(Y ) and L := LB(u0,ε),B(0,Rx).

Let κε(u0) := 2Ln(εL+ C1(u0) + C2). We have ∀u, u′ ∈ B(u0, ε), |F (u)− F (u′)| ≤ κε(u0)‖u− u′‖2.
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Proof. Let ε > 0, u0 ∈ Rduu, u′ ∈ B(u0, ε). First, notice that for any X ∈ Xn, ‖X‖∞,2 ≤ Rx, thus
LB(u0,ε),B(0Rdx ,‖X‖∞,2) ≤ LB(u0,ε),B(0,Rx) =: L. We have

|F (u)− F (u′)| ≤
∫
Xn×Yn×Sdy−1

|f(u,X, Y, θ)− f(u)|dx⊗n(X)dy⊗n(Y )d�(θ)

≤
∫
Xn×Yn

κε(u0, X, Y )‖u− u′‖2dx⊗n(X)dy⊗n(Y )

≤
∫
Xn×Yn

2Ln(εL+ ‖T (u0, X)‖∞,2 + ‖Y ‖∞,2)‖u− u′‖2dx⊗n(X)dy⊗n(Y ).

Now by Assumption 2, X 7−→ ‖T (u0, X)‖∞,2 is continuous on the compact Xn, allowing the definition of

the constant C1(u0) :=
∫
Xn
‖T (u0, X)‖∞,2dx⊗n(X) (x is a Radon probability measure by Assumption 3,

thus C1 is finite.). Likewise, let C2 :=
∫
Yn
‖Y ‖∞,2dy⊗n(Y ) < +∞.

Finally, |F (u)− F (u′)| ≤ 2Ln(εL+ C1(u0) + C2)‖u− u′‖2.

Having shown that our losses are locally Lipschitz, we can now turn to convergence results. These conclusions
are placed in the context of non-smooth and non-convex optimisation, thus will be tied to the Clarke sub-
differential of F , which we denote ∂CF . The set of Clarke sub-gradients at a points u is the convex hull of
the limits of gradients of F :

∂CF (u) := conv
{
v ∈ Rdu : ∃(ui) ∈ (DF )N : ui −−−−−→

i−→+∞
u and ∇F (ui) −−−−−→

i−→+∞
v

}
,

where DF is the set of differentiability of F . At points u where F is differentiable, ∂CF (u) = {∇F (u)}, and
if F is convex in a neighbourhood of u, then the Clarke differential at u is the set of its convex sub-gradients.

3 Convergence of Interpolated SGD Trajectories on F

In general, the idea behind SGD is a discretisation of the gradient flow equation u̇(s) = −∇F (u(s)). In our
non-smooth setting, the underlying continuous-time problem is is instead the Clarke differential inclusion
u̇(s) ∈ −∂CF (u(s)). Our objective is to show that in a certain sense, the SGD trajectories approach the set
of solutions of this inclusion problem, as the step size decreases. We consider solutions that are absolutely
continuous (we will write u(·) ∈ Cabs(R+,Rdu)) and start within K ⊂ Rdu , a fixed compact set. We can now
define the solution set formally as

S−∂CF (K) :=
{
u ∈ Cabs(R+,Rdu) | ∀s ∈ R+, u̇(s) ∈ −∂CF (u(s)); u(0) ∈ K

}
, (5)

where we write ∀ for "almost every". In order to compare the discrete SGD trajectories to this set continuous-
time trajectories, we interpolate the discrete points in an affine manner: Equation (6) defines the piecewise-
affine interpolated SGD trajectory associated to an SGD trajectory (u(t)

α )t∈N of learning rate α.

uα(s) = u(t)
α +

( s
α
− t
)

(u(t+1)
α − u(t)

α ), ∀s ∈ [tα, (t+ 1)α[, ∀t ∈ N. (6)

In order to compare our interpolated trajectories with the solutions, we consider the metric of uniform
convergence on all segments

dc(u, u′) :=
∑
k∈N∗

1
2k min

(
1, max
s∈[0,k]

‖u(s)− u′(s)‖∞,2
)
. (7)

In order to prove that the interpolated trajectories, we will leverage the results of Bianchi et al. (2022) which
hinge on three conditions on the loss F that we reproduce and verify successively.
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Condition 1.

i) There exists κ : Rdu × Ξ −→ R+ measurable such that each κ(u, ·) is ζ-integrable, and:

∃ε > 0, ∀u, u′ ∈ B(u0, ε), ∀S ∈ Ξ, |f(u, S)− f(u′, S)| ≤ κ(u0, S)‖u− u′‖2.

ii) There exists u ∈ Rdu such that f(u, ·) is ζ-integrable.

Our regularity result on f Proposition 2 allows us to verify Condition 1, by letting ε := 1 and κ(u0, S) :=
κ1(u0, X, Y, θ). Condition 1 ii) is immediate since for all u ∈ Rdu , (X,Y, θ) 7−→ wθ(T (u,X), Y ) is continuous
in each variable separately, thanks to the regularity of T provided by Assumption 2, and to the regularities
of w (as implied by (Tanguy et al., 2023), Lemma 2.2.2, for instance). This continuity implies that all f(u, ·)
are ζ-integrable, since ζ = x⊗n ⊗ y⊗n ⊗ � is a compactly supported Radon measure under Assumption 3.
Condition 2. The function κ of Condition 1 verifies:

i) There exists c ≥ 0 such that ∀u ∈ Rdu ,
∫

Ξ
κ(u, S)dζ(S) ≤ c(1 + ‖u‖2).

ii) For every compact K ⊂ Rdu , sup
u∈K

∫
Ξ
κ(u, S)2dζ(S) < +∞.

Condition 2.ii) is verified by κ given its regularity. However, Condition 2.i) requires that T (u, x) increase
slowly as ‖u‖ increases, which is more costly.
Assumption 4. There exists an x-integrable function g : Rdx −→ R+ such that ∀u ∈ Rdu , ∀x ∈
Rdx , ‖T (u, x)‖ ≤ g(x)(1 + ‖u‖2).

Assumption 4 is satisfied in particular as soon as T (·, x) is bounded (which is the case for a neural network
with bounded activation functions), or if T is of the form T (u, x) = T̃ (u, x)1B(0,R)(u), i.e. limiting the
network parameters u to be bounded. This second case does not yield substantial restrictions in practice,
yet vastly simplifies theory.

Under Assumption 4, we have for any u ∈ Rdu , with κ from Proposition 2 and C2 from Proposition 3,∫
Xn×Yn×Sdy−1

κ1(u,X, Y, θ)dx⊗n(X)dy⊗n(Y )d�(θ) ≤ 2Ln
(
εL+ (1 + ‖u‖2)

∫
Xn

max
k∈J1,nK

g(xk)dx⊗n(X) + C2

)
≤ c(1 + ‖u‖2).

As a consequence, Condition 2 holds under our assumptions. We now consider the Markov kernel associated
to the SGD schemes:

Pα :

 Rdu × B(Rdu) −→ [0, 1]
u,B 7−→

∫
Ξ
1B(u− αϕ(u, S))dζ(S) .

With λRdu denoting the Lebesgue measure on Rdu , let Γ := {α ∈ ]0,+∞[ | ∀ρ� λRdu , ρPα � λRdu}. We
will verify the following condition:
Condition 3. The closure of Γ contains 0.

In order to satisfy Condition 3, we require an additional regularity condition on the neural network T which
we formulate in Assumption 5.
Assumption 5. There exists a constant M > 0, such that (with the notations of Assumption 1 and As-
sumption 3) ∀x ∈ X , ∀j ∈ J(x), ∀u ∈ Uj(x), ∀(i1, i2, i3, i4) ∈ J1, duK2 × J1, dyK2,∣∣∣∣∣ ∂2

∂ui1∂ui2

(
[T (u, x)]i3 [T (u, x)]i4

)∣∣∣∣∣ ≤M, and

∥∥∥∥∥ ∂2T

∂ui1∂ui2
(u, x)

∥∥∥∥∥
2

≤M.
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The upper bounds in assumption bear strong consequences on the behaviour of T for ‖u‖2 � 1, and are
only practical for networks of the form T (u, x) = T̃ (u, x)1B(0,R)(u), similarly to Assumption 4.
Proposition 4. Under Assumption 1, Assumption 3 and Assumption 5, for the SGD trajectories (4), Γ ⊃

]0, α0[, where α0 :=
1

(dy2 + 2Ry)duM
.

Proof. Let ρ � λ and B ∈ B(Rdy ) such that λ(B) = 0. We have, with α′ := 2α/n, S := (X,Y, θ), ζ :=
x⊗n ⊗ y⊗n ⊗ � and Ξ := Xn × Yn × Sdy−1,

ρPα(B) =
∫
Rdu×Ξ

1B

u− α′ n∑
k=1

(
∂T

∂u
(u, xk)

)T
θθT (T (u, xk)− y

σ
T (u,X),Y
θ

(k))

dρ(u)dζ(S) ≤
∑
τ∈Sn

∫
Ξ
Iτ (S)dζ(S),

where Iτ (S) :=
∫
Rdu

1B (φτ,S(u)) dρ(u), with φτ,S := u− α′
n∑
k=1

(
∂T

∂u
(u, xk)

)T
θθT (T (u, xk)− yτ(k))︸ ︷︷ ︸

ψτ,S :=

.

Let τ ∈ Sn and (X,Y, θ) ∈ Ξ. Using Assumption 1, separate Iτ (S) =
∑
j∈J

∫
Uj(X)

1B (u− ψτ,S(u)) dρ(u),

where the differentiability structure (Uj(X))j∈J(X) is obtained using the respective differentiability struc-
tures: for each k ∈ J1, nK, Assumption 1 yields a structure (Ujk(xk))jk∈Jk(xk) of u 7−→ T (u, xk), which
depends on xk, hence the k indices.

To be precise, define for j = (j1, · · · , jn) ∈ J1(x1) × · · · × Jn(xn), Uj(X) :=
n⋂
k=1
Ujk(xk), and J(X) :=

{(j1, · · · , jn) ∈ J1(x1)× · · · × Jn(xn) | Uj(X) 6= ∅}. In particular, for any k ∈ J1, nK, T (·, xk) is C2 on
Uj(X). Notice that the derivatives are not necessarily defined on the border ∂Uj(X), which is of Lebesgue
measure 0 by Assumption 1, thus the values of the derivatives on the border do not change the value of the
integrals (the integrals may have the value +∞, depending on the behaviour of φτ,s, but we shall see that
they are all finite when α is small enough).

We drop the S, τ index in the notation, and focus on the properties of φ and ψ as functions of u. Our first
objective is to determine a constant K > 0, independent of u, S, τ , such that ψ is K-Lipschitz on Uj(X).

First, let χ := u ∈ Uj(X) 7−→
(
∂T

∂u
(u, xk)

)T
θθTT (u, xk). χ is of class C1, therefore we determine its Lips-

chitz constant by upper-bounding the ‖ · ‖2-induced operator norm of its differential, denoted by

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∂χ∂u(u)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

.

Notice that χ(u) =
1
2
∂

∂u
(θ · T (u, xk))2.

Now

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∂2

∂u2 (θ · T (u, xk))2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ du max
(i1,i2)∈J1,duK2

∣∣∣∣∣ ∂2

∂ui1∂ui2
(θ · T (u, xk))2

∣∣∣∣∣, with by Assumption 5,

∣∣∣∣∣ ∂2

∂ui1∂ui2
(θ · T (u, xk))2

∣∣∣∣∣ ≤ ∑
(i3,i4)∈J1,dyK2

∣∣∣∣∣θi3θi4 ∂2

∂ui1∂ui2

(
[T (u, xk)]i3 [T (u, xk)]i4

)∣∣∣∣∣ ≤ dy2M.

We obtain that χ is 1
2dudy

2M -Lipschitz.

Second, let ω : u ∈ Uj(X) 7−→
(
∂T

∂u
(u, xk)

)T
θθT yτ(k), also of class C1. We re-write

[
∂ω

∂u
(u)
]
i1,i2

=

yTτ(k)θθ
T

∂2T

∂ui1∂ui2
(u, xk), and conclude similarly by Assumption 5 that ω is ‖yτ(k)‖2duM -Lipschitz.
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Finally, ψ =
n∑
k=1

(χk − ωk), and is therefore K := ( 1
2dy

2 +Ry)dunM -Lipschitz, with Ry from Assumption 3.

We have proven that

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∂ψ∂u(u)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ K for any u ∈ Uj(X), and that K does not depend on X,Y, θ, j or u.

We now suppose that α′ < 1
K , which is to say α < n

2K . Under this condition, φ : Uj(X) −→ Rdu is injective.
Indeed, if φ(u1) = φ(u2), then ‖u1−u2‖2 = α′‖ψ(u1)−ψ(u2)‖2 ≤ α′K‖u1−u2‖2, thus u1 = u2. Furthermore,

for any u ∈ Uj(X),
∂φ

∂u
(u) = IdRdu − α′

∂ψ

∂u
(u), with

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α′ ∂ψ∂u(u)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

< 1, thus the matrix
∂φ

∂u
(u) is invertible

(using the Neumann series method). By the global inverse function theorem, φ : Uj(X) −→ φ(Uj(X)) is a
C1-diffeomorphism.

Re-writing
∫
Uj(X)

1B(φ(u))dρ(u) = φ#ρ(B), we have now shown that φ is a C1-diffeomorphism, thus since

ρ� λ, φ#ρ� λ. It then follows that the integral is 0, then Iτ (S) = 0 and finally ρPα(B) = 0.

Now that we have verified Condition 1, Condition 2 and Condition 3, we can apply (Bianchi et al., 2022),
Theorem 2 to F . Let α1 < α0 (see Proposition 4).
Theorem 1 (Convergence of the interpolated SGD trajectories). Consider a neural network T and measures
x, y satisfying Assumption 1, Assumption 2, Assumption 3, Assumption 4 and Assumption 5.

Let (u(t)
α ), α ∈]0, α1], t ∈ N a collection of SGD trajectories associated to (4). Consider (uα) their associated

interpolations. For any compact K ⊂ Rdu and any ε > 0, we have:

lim
α−→0

α∈ ]0,α1]

ν ⊗ x⊗N ⊗ y⊗N ⊗ �⊗N (dc(uα, S−∂CF (K)) > ε) = 0. (8)

The distance dc is defined in (7). As the learning rate decreases, the interpolated trajectories approach
the trajectory set S−∂CF , which is essentially a solution of the gradient flow equation u̇(s) = −∇F (u(s))
(ignoring the set of non-differentiability, which is λRdu -null). To get a tangible idea of the concepts at play,
if F was C2 and had a finite amount of critical points, then one would have the convergence of a solution
u(s) to a critical point of F , as s −→ +∞. These results have implicit consequences on the value of the
parameters at the "end" of training for low learning rates, which is why we will consider a variant of SGD
for which we can say more precise results on the convergence of the parameters.

4 Convergence of Noised Projected SGD Schemes on F

In practice, it is seldom desirable for the parameters of a neural network to reach extremely large values during
training. Weight clipping is a common (although contentious) method of enforcing that T (u, ·) stay Lipschitz,
which is desirable for theoretical reasons. For instance the 1-Wasserstein duality in Wasserstein GANs
(Arjovsky et al., 2017) requires Lipschitz networks, and similarly, Sliced-Wasserstein GANs (Deshpande
et al., 2018) use weight clipping and enforce their networks to be Lipschitz.

Given a radius Ru > 0, we consider SGD schemes that are restricted to u ∈ B(0, r) =: Br, by performing
projected SGD. At each step t, we also add a noise aε(t+1), where ε(t+1) is an additive noise of law η � λRu ,
which is often taken as standard Gaussian in practice. These additions yield the following SGD scheme:

u(t+1) = πr

(
u(t) − αϕ(u(t), X(t+1), Y (t+1), θ(t+1)) + αaε(t+1)

)
,(

u(0), (X(t))t∈N (Y (t))t∈N, (θ(t))t∈N, (ε(t))t∈N
)
∼ ν ⊗ x⊗N ⊗ y⊗N ⊗ �⊗N ⊗ η⊗N,

(9)

where πr : Ru −→ Br denotes the orthogonal projection on the ball Br := B(0, r). Thanks to Condition 1,
Condition 2 and the additional noise, we can verify the assumptions for (Bianchi et al., 2022) Theorem
4, yielding the same result as Theorem 1 for the noised projected scheme (9). In fact, under additional
assumptions, we shall prove a stronger mode of convergence for the aforementioned trajectories. The natural

9
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context in which to perform gradient descent is on functions that admit a chain rule, which is formalised in
the case of almost-everywhere differentiability by the notion of path differentiability, as studied thoroughly in
(Bolte & Pauwels, 2021). We formulate this condition from (Bianchi et al., 2022) before presenting sufficient
conditions on T under which path differentiability shall hold.
Condition 4. F is path differentiable, which is to say that for any u ∈ Cabs(R+,Rdu), for almost all
t > 0, ∀v ∈ ∂CF (u(s)), v · u̇(s) = (F ◦ u)′(s).

Note that by (Bolte & Pauwels, 2021) Corollary 2, F is path differentiable if and only if ∂CF is a conservative
field for F (in the sense of (Bolte & Pauwels, 2021), Definition 1) if and only if F has a chain rule for ∂C
(which is the formulation chosen in Condition 4 by (Bianchi et al., 2022)).

In order to satisfy Condition 4, we need to make the assumption that the NN input measure x and the data
measure y are discrete measures, which is the case for y in the case of generative neural networks, but is less
realistic for x in practice. We define Σn the n-simplex: its elements are the a ∈ Rn s.t. ∀i ∈ J1, nK, ai ≥ 0
and

∑
i ai = 1.

Assumption 6. One may write x =
nx∑
k=1

akδxk and y =
ny∑
k=1

bkδyk , with the coefficient vectors a ∈ Σnx , b ∈

Σny , X = {x1, · · · , xnx} ⊂ Rdx and Y = {y1, · · · , yny} ⊂ Rdy .

There is little practical reason to consider non-uniform measures, however the generalisation to any discrete
measure makes no theoretical difference. Note that Assumption 3 is clearly implied by Assumption 6.

In order to show that F is path differentiable, we require the natural assumption that each T (·, x) is path
differentiable. Since T (·, x) is a vector-valued function, we need to extend the notion of path-differentiability.
Thankfully, Bolte & Pauwels (2021) define conservative mappings for vector-valued locally Lipschitz functions
(Definition 4), which allows us to define naturally path differentiability of a vector-valued function as the
path-differentiability of all of its coordinate functions.
Assumption 7. For any x ∈ Rdx , T (·, x) is path differentiable.

Assumption 7 holds as soon as each T (·, x) is semi-algebraic (i.e. piecewise polynomial, where the pieces are
in finite number and can be written through polynomial equations) or more generally definable (see (Davis
et al., 2020), Definition 5.10), as proven by (Davis et al., 2020), Theorem 5.8. This is the case for iterated
compositions of linear maps and definable activation functions (such as the widespread sigmoid and ReLU),
see (Davis et al., 2020), Corollary 5.11, as well as (Bolte & Pauwels, 2021), §6.2 for further explanations on
suitable NNs.
Proposition 5. Under Assumption 2, Assumption 6 and Assumption 7, F is path differentiable.

Proof. We shall use repeatedly the property that the composition of path differentiable functions remains
path differentiable, which is proved in (Bolte & Pauwels, 2021), Lemma 6.

Let E :
{

Rn×dy × Rn×dy −→ R+
Y, Y ′ 7−→ SW2

2(γY , γY ′)
. By (Tanguy et al., 2023), Proposition 2.4.3, each E(·, Y )

is semi-concave and thus is path differentiable (by (Tanguy et al., 2023), Proposition 4.3.3).

Thanks to Assumption 6, x⊗n and y⊗n are discrete measures on Rn×dx and Rn×dy respectively, allowing
one to write x⊗n =

∑
k akδXk and y⊗n =

∑
l blδYl . Then F = u 7−→

∑
k,l akblE(T (u,Xk), Yl) is path

differentiable as a sum ((Bolte & Pauwels, 2021), Corollary 4) of compositions ((Bolte & Pauwels, 2021),
Lemma 6) of path differentiable functions.

We have now satisfied all the assumptions to apply (Bianchi et al., 2022), Theorem 6, showing that trajectories
of (9) converge towards Zr, the set of Karush-Kahn-Tucker points related to the differential inclusion tied
to the discrete scheme (9):

Zr :=
{
u ∈ Rdu | 0 ∈ −∂CF (u)−Nr(u)

}
, Nr(u) =

 {0} if ‖u‖2 < r
{λu | λ ≥ 0} if ‖u‖2 = r

∅ if ‖u‖2 > r
, (10)

10
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whereNr(u) refers to the normal cone of the ball B(0, r) at x. The termNr(u) in (10) only makes a difference
in the pathological case ‖u‖2 = r, which never happens in practice since the idea behind projecting is to do
so on a very large ball, in order to avoid gradient explosion, to limit the Lipschitz constant and to satisfy
theoretical assumptions. Omitting the Nr(u) term, and denoting D the points where F is differentiable, (10)
simplifies to Zr ∩ D = {u ∈ D | ∇F (u) = 0}, i.e. the critical points of F for the usual differential. Like in
Theorem 1, we let α1 < α0, where α0 is defined in Proposition 4.
Theorem 2 (Bianchi et al. (2022), Theorem 6 applied to (9)). Consider a neural network T and measures
x, y satisfying Assumption 1, Assumption 2, Assumption 4, Assumption 5, Assumption 6 and Assumption 7.
Let (u(t)

α )t∈N be SGD trajectories defined by (9) for r > 0 and α ∈]0, α1]. One has

∀ε > 0, lim
t−→+∞

ν ⊗ x⊗N ⊗ y⊗N ⊗ �N ⊗ η⊗N
(
d(u(t)

α ,Zr) > ε
)
−−−−−→
α−→0
α∈]0,α1]

0.

The distance d above is the usual euclidean distance. Theorem 2 shows essentially that as the learning rate
approaches 0, the long-run limits of the SGD trajectories approach the set of Zr in probability. Omitting
the points of non-differentiability and the pathological case ‖u‖2 = r, the general idea is that u(∞)

α −−−−→
α−→0

{u : ∇F (u) = 0}, which is the convergence that would be achieved by the gradient flow of F , in the simpler
case of C2 smoothness.

5 Conclusion and Outlook

Under reasonable assumptions, we have shown that SGD trajectories of parameters of generative NNs with a
SW loss converge towards the desired sub-gradient flow solutions, implying in a weak sense the convergence
of said trajectories. Under stronger assumptions, we have shown that trajectories of a mildly modified SGD
scheme converge towards a set of generalised critical points of the loss, which provides a missing convergence
result for such optimisation problems.

The core limitation of this theoretical work is the assumption that the input data measure x is discrete
(Assumption 6), which we required in order to prove that the loss F is path differentiable. In order to
generalise to a non-discrete measure, one would need to apply or show a result on the stability of path
differentiability through integration: in our case, we want to show that

∫
Xn E(T (u,X), Y )dx⊗n(X) is path

differentiable, knowing that u 7−→ E(T (u,X), Y ) is path differentiable by composition (see the proof of
Proposition 5 for the justification). Unfortunately, in general if each g(·, x) is path differentiable, it is not
always the case that

∫
g(·, x)dx is path differentiable (at the very least, there is no theorem stating this,

even in the simpler case of tame functions, see (Bianchi et al., 2022), Section 6.1). However, there is such a
theorem for Clarke regular functions (specifically (Clarke, 1990), Theorem 2.7.2 with Remark 2.3.5), sadly
the composition of Clarke regular functions is not always Clarke regular, it is only known to be the case
in excessively restrictive cases (see (Clarke, 1990), Theorems 2.3.9 and 2.3.10). As a result, we leave the
generalisation to a non-discrete input measure x for future work.

Another avenue for future study would be to tie the flow approximation result from Theorem 1 to Sliced
Wasserstein Flows (Liutkus et al., 2019; Bonet et al., 2022). The difficulty in seeing the differential inclusion
(5) as a flow of F lies in the non-differentiable nature of the functions at play, as well as the presence of the
composition between SW and the neural network T , which bodes poorly with Clarke sub-differentials.
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