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Abstract
Pre-trained language models are still far from001
human performance in tasks that need under-002
standing of properties (e.g. appearance, measur-003
able quantity) and affordances of everyday ob-004
jects in the real world since the text lacks such005
information due to reporting bias. In this work,006
we study whether integrating visual knowledge007
into a language model can fill the gap. We in-008
vestigate two types of knowledge transfer: (1)009
text knowledge transfer using image captions010
that may contain enriched visual knowledge011
and (2) cross-modal knowledge transfer using012
both images and captions with vision-language013
training objectives. On 5 downstream tasks014
that may need visual knowledge to solve the015
problem, we perform extensive empirical com-016
parisons over the presented objectives. Our ex-017
periments show that visual knowledge transfer018
can improve performance in both low-resource019
and fully supervised settings.1020

1 Introduction021

Pre-trained language models (PTLMs) such as022

BERT (Devlin et al., 2018), RoBERTa (Liu et al.,023

2019), and T5 (Raffel et al., 2020) have shown024

impressive results in various conventional natural025

language understanding (NLU) tasks by capturing026

syntactic and semantic knowledge from the pre-027

training tasks of masked language modeling and028

masked span infilling tasks on massive text corpora.029

Though yielding good performance on various030

NLU downstream tasks, these pre-training objec-031

tives suffer from a lack of out-of-domain knowl-032

edge that is not explicitly present in the pre-training033

corpus (Gururangan et al., 2020a; Petroni et al.,034

2021; Schick and Schütze, 2020). Specifically, one035

type of knowledge that models often struggle with036

is the visual knowledge of common objects such as037

attributes (e.g. appearance, measurable quantity)038

and affordances. This is because this kind of knowl-039

edge is rarely explicitly described in the training040

1Code and data have been uploaded and will be published.

Interesting facts about orange !

1. Orange elevates mood levels.
2. Orange are often grown in the Mediterranean.
3. Oranges facing the sunnier tend to be sweeter.Human

Typical facts about orange …

1. Orange is a shape of circle.
2. Orange is a color of orange.

Report

Already knows... 
May not report

Figure 1: Reporting Bias. People tend to report what
interests them rather than typical and general facts.

text due to reporting bias. For example, as shown 041

in Figure 1, people tend to report what interests 042

them rather than general facts such as a shape or 043

color of oranges they already know. 044

Towards better knowledge-enhanced PTLMs, re- 045

cent works incorporate external knowledge bases 046

(e.g., knowledge graph, dictionary) to inject entity 047

knowledge into PTLMs (Zhang et al., 2019; Peters 048

et al., 2019; Wang et al., 2021; Yu et al., 2021) or 049

retrieve knowledge from external knowledge bases 050

to solve the problem (Lin et al., 2019; Wang et al., 051

2020). However, these approaches still suffer from 052

a lack of visual knowledge that is important to un- 053

derstand the real world. 054

In this paper, we conduct systematic experiments 055

to understand whether such visual knowledge can 056

be transferred into LMs, and if so, how to per- 057

form effective knowledge transfer. Specifically, we 058

look into a series of analysis question as follows: 059

(1) Can intermediate pre-training (Pruksachatkun 060

et al., 2020a) on image-caption pairs help trans- 061

fer the knowledge? (2) What types of knowl- 062

edge sources are more helpful? To answer ques- 063

tions, we explore various intermediate pre-training 064

tasks (Pruksachatkun et al., 2020a) on two different 065

sources: text-only (text knowledge transfer from 066

visual domains) and image-caption pairs (cross- 067

modal knowledge transfer). 068

For the text knowledge transfer, we utilize text 069

corpus from visual domain, e.g., image captions. 070

We leverage two training objectives for the lan- 071
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(a) Masked Language Modeling

(b) Text Contrastive Learning (TCL)
(e) Cross-modal Knowledge Distillation (CMKD)
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Figure 2: Illustration of different methods for transferring visual knowledge into transformer-based language
model. In this example, we assume image-caption pair as an input. (a) masked language model (Devlin et al.,
2018) on image captions. (b) text contrastive learning obtains positive example by dropout representation to learn
better sentence representation while negative augmentation is optional. (c) voken classification employs token-level
text-to-image retrieval to transfer visual knowledge. (d) cross-modal contrastive learning aims to train correct
paring of images and captions. (e) cross-modal knowledge distillation transfers knowledge from the teacher model,
which is trained by cross-modal contrastive learning, into student model.

guage model: (1) masked language modeling fol-072

lows the domain adaptive pre-training scheme (Gu-073

rurangan et al., 2020a), assuming the corpus con-074

tains enriched visual knowledge or physical com-075

monsense knowledge; (2) text contrastive learning076

augments the sentence representation with dropout077

to create positive samples while considering all078

others in the batch as negative samples for the con-079

trastive learning (Gao et al., 2021), assuming train-080

ing better sentence representations leads to better081

understanding of the corpus.082

For the cross-modal knowledge transfer, we ex-083

plore multiple methods to transfer visual-related084

knowledge to LMs: (1) masked language model-085

ing with visual clues incorporates visual clues to086

capture dependencies between visual and linguis-087

tic contents (Su et al., 2019); (2) voken classifica-088

tion contextually aligns language tokens to their089

related images (called "vokens") to transfer visual090

knowledge into LMs (Tan and Bansal, 2020); (3)091

cross-modal contrastive learning aims to improve092

text representations by maximizing the agreement093

between correct image-text pairs versus random (in-094

batch) and adversarial negative pairs by contrastive095

learning between image and text modalities; and096

(4) cross-modal knowledge distillation transfers097

the knowledge from the teacher model, which is098

trained by cross-modal contrastive learning on im-099

age and text modalities, to the student language100

model using knowledge distillation.101

We perform comprehensive comparisons on102

five downstream tasks that may require visual 103

or physical commonsense knowledge, including 104

PIQA (Bisk et al., 2020), Visual Paraphrasing 105

(VP) (Lin and Parikh, 2015), CSQA (Talmor et al., 106

2018), OBQA (Mihaylov et al., 2018), and Rid- 107

dleSense (Lin et al., 2021). Results suggest that: 108

(1) Simple intermediate pre-training on captions 109

can help improving performance on commonsense 110

reasoning that needs physical or visual knowledge. 111

(2) Cross-modal knowledge transfer approaches 112

consistently improve the performance in a large 113

margin when only few train examples are available. 114

(3) Cross-modal contrastive learning shows that it 115

is best for packaging visual knowledge into LMs. 116

2 Analysis Setup 117

In this work, we study how to transfer the visual 118

knowledge into language models. For this study, 119

we introduce our analysis setup: problem formula- 120

tion, analysis questions, and knowledge corpora. 121

2.1 Problem Formulation 122

We focus on a pre-trained text encoder fL and 123

an image encoder fV if images are available. fL 124

and fV are initialized with pre-trained model and 125

we continue to pre-train the models on different 126

sources and tasks, which we call intermediate pre- 127

training (Gururangan et al., 2020b; Pruksachatkun 128

et al., 2020b). After the intermediate pre-training, 129

we fine-tune fL on downstream NLU tasks. Ex- 130

isting NLU benchmarks have been trained against 131
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standard supervised learning paradigms that typi-132

cally require a large number of question answering133

examples which need a large annotation efforts.134

However, in scenarios where the number of labeled135

examples is small, the model tends to overfit the136

training examples and shows poor generalization137

performance on test set. Here, we evaluate the in-138

termediate pre-training objective’s generalization139

ability on test set in both fully supervised and low-140

resource settings.141

2.2 Analysis Questions142

In this paper, we provide a comprehensive study143

for transferring the visual knowledge into LMs.144

Visual knowledge transfer can be done in two ap-145

proaches, depending on the source to be trained:146

(1) Text knowledge transfer using the text corpus147

in the visual domain, e.g., image captions and (2)148

cross-modal knowledge transfer which passes vi-149

sual knowledge about common objects to LMs by150

training over paired image and captions. By evalu-151

ating the model on 5 downstream datasets that re-152

quire physical and visual commonsense knowledge,153

we explore following three research questions.154

Q1: Can intermediate pre-training on external155

knowledge sources help transfer visual knowl-156

edge to augment text encoders? We investigate157

diverse intermediate pre-training methods with ex-158

ternal knowledge sources including caption data to159

inject visual information from images and captions160

into LMs. We first analyze the performance of text161

and cross-modal knowledge transfer methods with162

a image-caption dataset, and we additionally study163

text knowledge transfer methods with other text cor-164

pora such as GenericsKB (Bhakthavatsalam et al.,165

2020), Wiki103 (Merity et al., 2016) and BookCor-166

pus (Zhu et al., 2015a).167

Q2: What types of knowledge sources are more168

helpful for visual knowledge transfer? As men-169

tioned above, we have two categories to exploit170

visual information: (1) text knowledge transfer and171

(2) cross-modal knowledge transfer. Here, we ex-172

plore which type of knowledge transfer is more173

useful to transfer the visual knowledge into LMs.174

Q3: What intermediate pre-training objectives175

are effective for cross-modal knowledge trans-176

fer? We present three pre-training objectives for177

cross-modal knowledge transfer: (1) voken clas-178

sification, (2) contrastive learning, and (3) knowl-179

edge distillation. Here, we want to present which180

strategy is best suited for cross-modal knowledge181

Dataset # Train # Dev # Test # choices

PIQA 14,113 1,838 2,000 2
VP 21,988 2,000 6,057 2
CSQA 8,500 1,221 1,241 5
OBQA 4,957 500 500 4
RiddleSense 3,510 1,021 1,202 5

Table 1: Downstream task data statistics. We create
in-house test set for PIQA and CSQA, and in-house dev
set for VP by splitting the train set.

transfer. Furthermore, we study how to enhance 182

cross-modal contrastive learning with adversarial 183

negative samplings. 184

2.3 Pre-training Data 185

To transfer the visual knowledge, we collect 250K 186

image-caption pairs from MS COCO (Lin et al., 187

2014; Chen et al., 2015). MS COCO contains im- 188

ages reflecting the composition of actual everyday 189

scenes and corresponding captions which describe 190

contextual reasoning between objects in the scene. 191

We only use captions for text knowledge transfer 192

while we use both images and captions for cross- 193

modal knowledge transfer. As an ablation study, 194

we explore other text corpora such as Generic- 195

sKB (Bhakthavatsalam et al., 2020), Wiki103 (Mer- 196

ity et al., 2016) and BookCorpus (Zhu et al., 197

2015a). 198

2.4 Downstream Tasks and Datasets 199

For downstream benchmarks, we find tasks that can 200

benefit from visual knowledge: multiple choice 201

question answering tasks including PIQA (Bisk 202

et al., 2020) which requires physical common- 203

sense reasoning, CSQA (Talmor et al., 2018) for 204

general understanding of commonsense reason- 205

ing, OBQA (Mihaylov et al., 2018) that needs 206

elemenatry-level science knowledge, and Riddle- 207

Sense (RS) (Lin et al., 2021) for complex un- 208

derstanding of figurative language, and binary 209

classification task including Visual Paraphrasing 210

(VP) (Lin and Parikh, 2015) that needs scene un- 211

derstanding. We use in-house test sets made from 212

training sets for PIQA and CSQA since test set 213

is not provided to public. We list the data stat- 214

ics in Table 1. Moreover, We additionally test on 215

GLUE (Wang et al., 2018) to evaluate the general 216

text understanding. 217

2.5 Evaluation Protocol 218

We evaluate the models in both fully supervised 219

and low-resource settings. For both settings, we 220
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consider accuracy for 5 different classification tasks221

and get average performance over tasks to check222

the final performance. In the fully supervised set-223

ting, we evaluate models with 3 different random224

seeds and report the average accuracy. In the low-225

resource setting, we set the size of the train data to226

64 or 128. For each experiment, we run over 5 dif-227

ferent sub-samples and show the average accuracy.228

3 Method229

In this section, we introduce the following two230

approaches to integrate visual knowledge into LMs:231

(1) text knowledge transfer; and (2) cross-modal232

knowledge transfer. Throughout this section, we233

assume the data is a collection of image xv and234

caption xl pairs
{
(xvi , x

l
i)
}m

i=1
(m is the size of the235

pairs) and image encoder fV and text encoder fL236

are given. Note that we use the same text encoder.237

3.1 Text Knowledge Transfer238

For text knowledge transfer, we investigate follow-239

ing pre-training objectives: (1) masked language240

modeling; and (2) text contrastive learning.241

Masked Language Modeling (MLM) Follow-242

ing BERT (Devlin et al., 2018), we select 15% of243

input tokens and replace them with [MASK]. Of244

the selected tokens, 80% are replaced, 10% are not245

changed and 10% are replaced by random vocab-246

ulary token. Here, we employ dynamic masking,247

which performs random masking and replacement248

during training to prevent the same masking for249

the same examples (Liu et al., 2019). MLM ob-250

jective is the cross-entropy loss for masked token251

predictions :252

ℓMLM(xli) = − log p(xli|xmasked), (1)253

where xi is the i-th token and xmasked is a mask.254

Text Contrastive Learning (TCL) Contrastive255

learning aims to learn representations by pulling256

positive pairs closer and pushing negative pairs257

apart. Here, we employ the contrastive framework258

with cross-entropy objective and in-batch negatives259

(Chen et al., 2020a; Gao et al., 2021). Given a260

text encoder fL, and a caption xli, we first get text261

representations using the encoders hli = fL(x
l
i).262

Following Gao et al. (2021), we create identical263

positive sample hl
+

i by different dropout represen-264

tations. The contrastive loss is defined as follows:265

A girl puts an apple in her bag.

A girl puts an [MASK] in her bag.

Mask a token

A girl puts an envelope in her bag.

Top-k predictions 
from LM

Figure 3: LM perturbation. We create adversarial
negatives using language models.

266

ℓli = − log
esim(hl

i,h
l+

i )/τ∑N
j=1 e

sim(hl
i,h

l
j)/τ

, (2) 267

where N is a batch size and sim(·) represents co- 268

sine similarity, i.e., sim(u, v) = u · v/∥u∥∥v∥. τ 269

represents a temperature parameter. 270

3.2 Cross-modal Knowledge Transfer 271

Language models might learn additional informa- 272

tion from visual sources such as images and cap- 273

tions. So we include a variety of vision-based ap- 274

proaches and investigate the approaches whether 275

they can benefit from visual sources. We introduce 276

vision-based approaches as follows. 277

Voken Classification Vokenization (Tan and 278

Bansal, 2020) employs token-level text-to-image 279

retrieval to transfer visual knowledge. It aligns 280

language tokens to their related images (called “vo- 281

kens”) to transfer visual knowledge into LMs, and 282

call it “voken classification”. Given text x and a 283

voken vi for the i-th token, the loss is defined as 284

ℓvoken
i = − log(p(vi|x)). (3) 285

Similar to masked language modeling, it classifies 286

each token to a corresponding voken. Vokenization 287

trains language models with the voken classifica- 288

tion task and MLM. 289

Masked Language Modeling with Visual Clues 290

VL-BERT (Su et al., 2019) adopts masked language 291

modeling with visual clues in which models are 292

given a caption with masked tokens and an im- 293

age and predict the masked tokens using visual 294

clues. VL-BERT is pre-trained on Conceptual Cap- 295

tions (Sharma et al., 2018) as an image-caption 296

corpus, and BooksCorpus (Zhu et al., 2015b) and 297

English Wikipedia as text-only corpora. It shows 298

its effectiveness in many vision-language tasks. We 299

investigate whether this model also succeed in NLP 300

tasks and compare it with others. 301
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Cross-modal Contrastive Learning (CMCL)302

To harness the visual knowledge from image-303

caption datasets, we adopt contrastive loss on im-304

age and text vectors. Given an image encoder fV , a305

text encoder fL, and an image-caption pair (xvi , x
l
i),306

we first get image and text representations using307

the encoders hvi = fV (x
v
i ), h

l
i = fL(x

l
i). Then308

the contrastive learning objective contains two loss309

functions: an image-to-text contrastive loss ℓ(v,l)310

and a text-to-image contrastive loss ℓ(l,v). The311

image-to-text contrastive loss is defined as follows:312

313

ℓ
(v,l)
i = − log

esim(hv
i ,h

l
i)/τ∑N

j=1 e
sim(hv

i ,h
l
j)/τ

, (4)314

where N is a batch size and sim(·) represents co-315

sine similarity. This loss encourages a closer dis-316

tance between representations of aligned image-317

caption pairs than unaligned pairs given an image318

and multiple captions. Similarly, the text-to-image319

contrastive loss ℓ(l,v) is defined as follows:320

ℓ
(l,v)
i = − log

esim(hl
i,h

v
i )/τ∑N

j=1 e
sim(hl

i,h
v
j )/τ

. (5)321

The final loss is defined as322

L =
1

N

N∑
i=1

(ℓ
(v,l)
i + ℓ

(l,v)
i ). (6)323

CLIP (Radford et al., 2021) and ConVIRT (Zhang324

et al., 2020) also adopt contrastive learning, but we325

freeze the image encoder in training and use the326

trained text encoder for downstream tasks.327

CMCL with Adversarial Negative Samples328

(ANS) As in-batch negatives in CMCL are not329

challenging enough for models to distinguish, we330

present adversarial negative sampling strategy to331

improve CMCL. Given an image-caption pair332

(xvi , x
l
i), we define a LM-perturbed sentence xl

−
i ,333

which is a hard negative where n is replaced with a334

different word n′ from a probability distribution of335

PTLMs. We expect the l− is syntactically correct336

and plausible sentence even the word n is replaced337

to n′, while it does not semantically match to the338

corresponding image xvi . With such hard nega-339

tive, we try to make more challenging task so that340

models can effectively learn from the task. For ex-341

ample, we choose a word ‘girl’ in the sentence ‘A342

girl puts an apple in her bag.’ in Figure 3. Then we343

mask the word with [MASK] token to do masked344

token predictions by PTLMs. Then we get top-345

k predictions from language models and replace346

the masked tokens with one of the predicted ones. 347

To avoid false negative sentences which may have 348

the same semantics as the original sentence, we 349

introduce an additional filtering step: if the masked 350

predictions are synonyms or hypernyms of the orig- 351

inal tokens, we discard the predictions. We use 352

WordNet (Miller, 1995) to find synonyms and hy- 353

pernyms. The contrastive loss with hard negative 354

is defined as follows: 355

− log
esim(hv

i ,h
l
i)/τ∑N

j=1 e
sim(hv

i ,h
l
j)/τ +

∑M
k=1 e

sim(hv
i ,h

l−
j )/τ

,

(7) 356

where M is the number of hard negative samples 357

per positive pair. This formula is only for image-to- 358

text contrastive loss ℓ(v,l) and final loss is defined 359

to same as equation (6). 360

CMCL with Positive Sample Augmentation 361

(PSA) In ANS, we filter perturbed sentences 362

where the masked predictions are synonyms or hy- 363

pernyms of the original tokens. Instead of exclud- 364

ing these perturbed sentences, another option is to 365

include them as additional positive samples l+ to 366

the paired images. We name this as positive sample 367

augmentation (PSA). It also adopts LM-perturbed 368

negative samples as in ANS. 369

Cross-modal Knowledge Distillation (CMKD) 370

Cross-modal knowledge distillation is to transfer 371

knowledge between different modalities, e.g., im- 372

age modality and text modality. In this category, 373

CMKD is to transfer knowledge from a teacher 374

model which is knowledgeable about visual infor- 375

mation. VidLanKD (Tang et al., 2021) also uti- 376

lizes a cross-modal knowledge distillation method 377

to help with general language understanding. A 378

teacher model is first trained using contrastive 379

learning on a video-text dataset, and then it trans- 380

fers its knowledge to a student language model 381

using KD on a text corpus. Their contrastive learn- 382

ing loss (hinge loss) is defined as 383
384

L =
N∑
i

[max(0, α−sim(hvi , h
l
i)+sim(hv

′
i , h

l
i)) 385

+max(0, α− sim(hvi , h
l
i) + sim(hvi , h

l′
i ))], (8) 386

where v′ and l′ are a random image and caption text, 387

respectively. α is the margin between the similari- 388

ties of a positive pair and a negative pair. Instead of 389

video datasets, we use a MS COCO dataset to train 390

a teacher model and use two versions of contrastive 391

learning, equations (6) and (8). 392
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Model PIQA VP CSQA OBQA RiddleSense Average

64 128 64 128 64 128 64 128 64 128 64 128

- BERT-base 52.6±0.9 53.8±0.1 85.9±1.1 86.6±0.7 35.8±0.7 37.8±0.3 31.3±1.2 32.0±0.7 24.7±0.1 25.2±0.2 46.1 47.1

C
ap

tio
n MLM 53.1±0.2 54.3±0.3 86.5±0.3 87.3±0.4 35.7±0.3 36.7±0.1 33.4±0.6 34.2±0.3 26.3±0.1 26.5±0.2 47.0 47.8

TCL 52.6±0.5 52.9±0.6 86.4±0.1 88.0±0.1 35.7±0.2 36.1±0.3 34.2±1.4 35.2±0.7 30.3±0.5 30.7±0.4 47.8 48.5
TCL + MLM 53.6±0.7 54.6±0.2 84.2±0.2 87.6±0.3 33.6±2.2 35.1±0.6 31.8±2.3 34.3±0.5 20.6±0.0 20.6±0.0 44.7 46.4
TCL + ANS 50.0±0.7 50.5±0.6 67.3±0.4 68.2±0.7 26.8±1.2 27.5±0.5 33.4±1.1 35.0±1.0 26.1±1.7 26.5±1.8 40.7 41.5
TCL + PSA + ANS 51.1±0.1 51.2±0.4 66.0±0.0 66.0±0.0 22.7±0.9 22.9±0.1 30.2±3.1 31.8±0.4 23.5±1.2 25.2±1.5 38.7 39.4

C
ap

tio
n-

Im
ag

e
Pa

ir
s VL-BERT-base 53.1±0.6 53.9±0.4 88.5±0.3 88.4±0.5 36.2±0.7 36.8±0.8 33.4±1.2 34.6±1.2 26.1±0.8 26.1±0.9 47.7 48.5

Vokenization 50.5±0.5 51.1±0.4 68.8±1.6 78.1±1.9 19.2±1.4 21.5±0.8 31.2±2.7 33.2±2.2 17.1±0.5 16.7±0.7 37.3 40.1
VidLanKD 55.0±0.4 55.6±0.5 86.7±0.5 88.5±0.5 37.1±1.0 38.6±0.5 31.8±1.3 32.6±1.0 24.4±0 24.4±0 47.0 47.9
VidLanKD variant 55.3±0.3 55.2±0.4 87.4±0.1 88.2±0.6 37.3±1.2 38.9±0.5 32.4±2.1 32.2±1.1 24.4±0.0 24.4±0.0 47.3 47.7
CMKD (VL-BERT-large) 54.7±0.5 54.5±0.2 86.5±0.8 88.4±0.4 36.7±0.4 38.5±0.4 29.8±0.8 31.7±0.2 25.2±0.1 25.2±0.0 46.5 47.6
CMCL 54.7±0.4 55.1±0.1 87.9±0.3 88.9±0.2 36.3±0.3 38.4±0.4 31.1±1.1 32.8±0.9 25.0±0.2 25.4±0.4 47.0 48.1
CMCL + ANS 55.4±0.1 55.7±0.2 88.1±0.9 88.9±0.7 37.5±0.8 39.0±0.2 32.2±0.7 32.0±0.6 27.4±0.0 27.5±0.1 48.1 48.6
CMCL + PSA + ANS 55.4±0.2 55.1±0.2 88.8±1.0 88.2±0.2 37.0±0.3 38.1±0.3 34.1±0.4 34.8±0.9 26.7±0.4 28.8±0.7 48.4 49.0

Table 2: Performance (accuracy) in low-resource setting. We test models on diverse datasets with low-resource
learning (64 and 128 training samples). We use captions in the MS COCO dataset for text knowledge transfer
methods and images and captions for cross-modal knowledge transfer methods. We get average performance on 64
and 128 training samples. Bold and underlined numbers refer to the best and second-best performance, respectively.

As another version of CMKD, we consider dis-393

tilling visual knowledge from a pre-trained vision-394

language model, VL-BERT, which is knowledge-395

able about grounded language. We adopt masked396

language modeling on Wikitext103 (Merity et al.,397

2016), a subset of English Wikipedia, in the398

knowledge distillation step. For knowledge dis-399

tillation, we adopt Neuron Selectivity Transfer400

(NST) (Huang and Wang, 2017), which proves the401

effectiveness in VidLanKD (Tang et al., 2021).402

4 Experimental Settings403

For all the approaches, we use404

bert-base-uncased (Devlin et al., 2018)405

as text encoder fL and ResNeXt101 (Xie et al.,406

2017) as an image encoder fV . We continue to407

pre-train the encoders in our experiments. For text408

knowledge transfer, (1) MLM follows the exact409

setting of codebase in huggingface2 which uses410

dynamic masking strategy to conduct language411

modeling task. (2) TCL conducts contrastive412

learning with fL. We choose the best checkpoint413

by the best spearman correlation on STSb (Cer414

et al., 2017). For cross-modal knowledge transfer,415

(1) CMKD explores VL-BERT, Vokenization, and416

VidLanKD approaches. Here, we use VL-BERT-417

large model to do CMKD. We use the VL-BERT418

and Vokenization checkpoints from their official419

codebases3. VidLanKD trains a teacher model by420

two versions of contrastive learning (equations (6)421

and (8)) on MS COCO dataset. We set α = 1 in422

VidLanKD (equation (8)). (2) CMCL conducts423

2
https://github.com/huggingface/transformers/

tree/master/examples/pytorch/language-modeling
3
https://github.com/jackroos/VL-BERT, https:

//github.com/airsplay/vokenization

Model PIQA VP CSQA OBQA RiddleSense Average

- BERT-base 62.5±1.3 93.1±0.4 53.2±1.2 52.2±0.5 38.9±0.9 59.9
C

ap
tio

n
MLM 63.8±0.9 93.5±0.1 52.6±0.3 53.9±1.1 39.3±1.4 60.6
TCL 62.1±0.5 93.5±0.4 49.0±0.5 54.1±1.0 41.2±0.3 60.1
TCL + MLM 62.3±0.7 93.2±0.3 49.0±0.4 49.0±0.8 40.5±0.5 58.8
TCL + ANS 60.1±1.2 93.3±0.1 47.0±0.1 50.2±0.9 36.7±0.8 57.4
TCL + PSA + ANS 59.5±1.0 92.4±0.3 34.0±1.3 44.6±1.4 28.4±2.3 51.7

C
ap

tio
n-

Im
ag

e
Pa

ir
s VL-BERT-base 63.8±1.5 93.6±0.1 50.3±1.1 49.6±2.3 39.1±1.0 59.2

Vokenization 58.4±5.1 92.7±0.3 45.0±0.2 48.1±0.8 33.5±0.7 55.5
VidLanKD 63.1±1.1 93.7±0.4 52.4±0.8 50.6±3.9 39.5±1.7 59.8
VidLanKD variant 64.1±0.2 93.8±0.3 53.6±0.5 47.9±4.3 38.8±2.0 59.6
CMKD (VL-BERT-large) 63.8±0.0 93.7±0.7 53.3±1.4 48.7±3.0 38.7±0.4 59.6
CMCL 62.7±0.1 93.3±0.3 50.8±0.9 52.3±0.7 37.6±1.0 59.2
CMCL + ANS 63.5±0.1 93.3±0.3 50.3±0.1 52.9±0.3 38.4±0.9 59.7
CMCL + PSA + ANS 63.9±0.5 94.3±0.1 50.9±0.3 52.4±1.2 39.0±0.3 60.1

Table 3: Performance (accuracy) in fully supervised
setting. Bold and underlined numbers refer to the best
and second-best performance, respectively.

contrastive learning with fL and fV . Here, we 424

set τ = 0.05 (equations (4) and (5)). (3) CMCL 425

with ANS chooses three noun words or verb 426

words to do masked prediction and use top-5 427

predictions from fL as replacement. We filter out 428

synonyms and hypernyms of original words using 429

WordNet (Miller, 1995). (4) CMCL with PSA 430

includes the perturbed sentences with synonyms 431

and hypernyms as additional positive samples. 432

In CMCL, we adopt ResNeXt101 (Xie et al., 433

2017) as an image encoder fV and BERT as a text 434

encoder fL. TCL and CMCL train with batch size 435

64, maximum sequence length 20, learning rate 436

1e-4 for 3 epochs. For fine-tuning on downstream 437

tasks, we do grid search on learning rates {5e-5, 438

1e-4, 3e-4, 4e-4, 5e-4, 6e-4} and choose the best 439

learning rate. We set maximum epochs to 30 in 440

low-resource and 15 in fully supervised settings. 441

5 Results and Analysis 442

We analyze the main results of intermediate pre- 443

training. Tables 2 and 3 show the main results of 444
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Model RTE MRPC STS-B CoLA SST-2 QNLI QQP Avg.

- BERT-base 70.0 87.9 89.1 57.4 91.3 90.4 89.3 82.3
C

ap
tio

n

MLM 62.8 87.0 89.1 53.9 92.6 91.1 90.9 81.0
TCL 58.4 83.1 88.2 55.5 91.9 91.4 90.9 79.9
TCL + MLM 54.8 81.6 87.2 53.6 91.9 90.9 89.2 78.5
TCL + ANS 56.3 83.9 87.0 51.5 91.3 91.2 89.4 78.6
TCL + PSA + ANS 52.3 75.6 81.5 17.4 90.0 85.8 88.2 70.1

C
ap

tio
n-

Im
ag

e
Pa

ir
s VL-BERT-base 57.4 85.7 89.5 58.1 90.6 89.7 88.7 80.0

Vokenization 53.0 87.0 83.3 51.3 91.4 89.2 88.5 77.7
VidLanKD 67.5 87.8 89.4 57.7 90.7 90.3 88.6 81.7
VidLanKD variant 68.5 87.9 89.7 54.9 91.1 90.5 88.6 81.6
CMKD (VL-BERT-large) 68.5 88.5 89.3 55.4 90.9 89.7 88.6 81.6
CMCL 63.5 82.5 89.5 51.1 90.4 90.0 88.4 79.3
CMCL + ANS 69.6 86.8 89.4 56.1 90.7 90.5 88.6 81.7
CMCL + PSA + ANS 69.8 86.2 89.0 55.3 90.4 90.5 88.6 81.6

Table 4: Performance (accuracy) on GLUE bench-
mark. Bold and underlined numbers refer to the best
and second-best performance, respectively.

low-resource learning and fully supervised learning445

with the MS COCO captioning dataset, respectively.446

We train the models with a few training examples,447

64 and 128, to understand the better initialization.448

We argue that if a model obtains better performance449

in the low-resource setup, then it is a faster learner450

and has better generalization on downstream tasks.451

Can text intermediate pre-training help improve452

text encoders? Text intermediate pre-training us-453

ing MLM and TCL on a caption corpus improves454

the performance on downstream tasks in both low-455

resource and fully supervised settings. In particular,456

TCL shows significant improvement on OBQA and457

RiddleSense over BERT (p-value < 0.01). These458

results suggest that text intermediate pre-training459

on visual-related datasets helps performance on460

commonsense reasoning tasks.461

Can cross-modal intermediate pre-training help462

transfer visual knowledge to augment text en-463

coders? We observe that cross-modal intermedi-464

ate pre-training is helpful in both fully supervised465

and low-resource settings (See Table 2 and 3).466

Specifically, CMKD with VidLanKD variant out-467

performs the baseline by 1.6% point on the PIQA468

dataset in fully supervised setting. CMCL also469

shows its effectiveness. However, we could find470

that it becomes more powerful when equipped with471

PSA and ANS. It suggests that data augmentation472

for positive and negative sampling is an important473

factor for CMCL. In low-resource setting, we find474

that cross-modal knowledge transfer helps better475

initialization and lets models learn new tasks faster.476

What intermediate pre-training objectives are477

effective for cross-modal knowledge transfer?478

Among various cross-modal knowledge transfer479

methods, we study which method is the most effec-480

tive for cross-modal knowledge transfer. Overall,481

CMCL with PSA and ANS shows the best perfor- 482

mance among all cross-modal methods. Interest- 483

ingly, VL-BERT also shows better performance 484

than BERT-base on all datasets in the low-resource 485

setting. This suggests that exploiting images in 486

masked language modeling task help transfer the 487

knowledge to language models. 488

What types of knowledge sources are most help- 489

ful? Here, we investigate whether using an im- 490

age source in addition to a text source can further 491

improve the model. To answer this question, we 492

analyze methods from different types of sources: 493

text-only and text-image pair sources. We focus on 494

the methods that use the contrastive learning objec- 495

tive: TCL and CMCL. Note that these two methods 496

share the same objective but CMCL trains on cross 497

modalities which are images and captions while 498

TCL only trains on captions. Overall, TCL per- 499

forms slightly better than CMCL in low-resource 500

and fully supervised settings. Interestingly, addi- 501

tional negative samples (ANS) and positive sam- 502

ples in TCL decreases the performance while they 503

help CMCL to improve the performance. We con- 504

jecture that perturbed sentences in ANS might not 505

be semantically negative to the original sentence so 506

models learn from wrong labels. 507

5.1 Ablation Study 508

How do models perform on general NLU tasks? 509

Table 4 presents results on GLUE benchmark. 510

In GLUE, text intermediate pre-training methods 511

slightly underperform the original BERT-base. We 512

conjecture that the intermediate pre-training on cap- 513

tion data might sacrifice knowledge of general lan- 514

guage understanding. 515

Analysis on diverse text corpora Table 5 rep- 516

resents text approaches with different pre-training 517

corpora: MS COCO captions (Lin et al., 2014; 518

Chen et al., 2015), GenericsKB (Bhakthavatsalam 519

et al., 2020), BooksCorpus (Zhu et al., 2015a), and 520

WikiText103 (Merity et al., 2016). We sample 250k 521

sentences from each corpus for a fair comparison. 522

We notice that caption datasets are useful on OBQA 523

and RiddleSense datasets while GenericsKB are 524

the most helpful on PIQA datasets. Results are ex- 525

pected since GenericsKB contains a lot of everyday 526

statements that contain various types of common- 527

sense. 528

Different training sizes. We test different train- 529

ing sizes on PIQA in Fig. 4. In the experiment, 530
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Model PIQA VP CSQA OBQA RiddleSense

64 128 Full 64 128 Full 64 128 Full 64 128 Full 64 128 Full

- BERT-base 52.6±0.9 53.8±0.1 62.5±1.3 85.9±1.1 86.6±0.7 93.1±0.4 35.8±0.7 37.8±0.3 53.2±1.2 31.3±1.2 32.0±0.7 52.2±0.5 24.7±0.1 25.2±0.2 38.9±0.9

C
P. MLM 53.1±0.2 54.3±0.3 63.8±0.9 86.5±0.3 87.3±0.4 93.5±0.1 35.7±0.3 37.7±0.1 52.6±0.3 33.4±0.6 34.2±0.3 53.9±1.1 26.3±0.1 26.5±0.2 39.3±1.4

TCL 52.6±0.5 52.9±0.6 62.1±0.5 86.4±0.1 88.0±0.1 93.5±0.4 35.7±0.2 36.1±0.3 49.0±0.5 34.2±1.4 35.2±0.7 54.1±1.0 30.3±0.5 30.7±0.4 41.2±0.3

G
K

. MLM 53.2±0.1 53.6±0.4 64.9±0.1 86.2±0.9 87.6±0.3 93.0±0.3 34.6±0.7 35.3±1.3 51.6±0.5 31.7±0.9 32.3±1.0 53.1±0.9 25.8±0.6 26.3±0.1 39.3±0.7

TCL 56.0±1.0 56.4±0.2 64.4±0.1 88.9±0.7 89.4±0.2 93.3±0.5 37.8±1.2 38.7±0.5 51.0±0.5 31.7±0.9 32.3±1.0 52.6±0.8 27.4±0.2 28.1±0.7 40.9±0.8

B
C

. MLM 54.1±0.3 54.1±0.8 63.3±0.6 86.4±0.8 87.5±0.5 93.0±0.3 29.8±0.8 32.1±0.9 50.8±0.3 29.6±0.8 31.4±0.7 50.2±0.4 22.6±0.0 22.7±0.0 36.7±1.3

TCL 52.4±0.1 53.1±0.4 63.1±0.3 87.1±1.9 89.7±0.1 93.2±0.2 38.0±0.5 38.1±1.1 51.5±0.1 33.8±2.7 34.0 ±2.1 55.6±0.4 28.9±0.4 29.1±0.3 41.2±2.3

W
T. MLM 52.7±0.2 53.0±0.3 63.8±0.6 85.3±2.8 88.1±0.3 93.5±0.1 33.2±1.4 34.6±0.5 52.5±0.2 32.4±2.3 33.0±0.7 52.3±0.3 24.4±0.0 24.4±0.0 39.4±2.0

TCL 52.9±0.9 53.4±0.4 62.7±0.6 67.3±0.6 68.6±0.7 93.3±0.3 31.3±1.6 32.4±0.7 48.2±0.3 31.5±3.5 33.1±0.6 53.0±0.0 24.8±1.3 24.8±0.6 36.3±1.0

Table 5: Results of text knowledge transfer methods with different corpora. We pre-train text knowledge
transfer methods, MLM ans TCL, with different corpora. CP is MS COCO captions, GK is GenericsKB, BC is
BooksCorpus, and WT is WikiText. Bold and underlined numbers refer to the best and second-best performance,
respectively.
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Figure 4: Results on varying training sizes. We test
methods with different training sizes.

we observe that CMCL consistently outperforms531

BERT on all training sizes. Additional negative532

sample (ANS) improves the CMCL on different533

training sizes, and positive sample augmentation534

boosts the performance of CMCL further. This sug-535

gests including perturbed sentences as positive and536

negative samples are useful to cross-modal knowl-537

edge transfer.538

6 Related Work539

Text Knowledge enhanced methods. Recently,540

huge efforts on integrating knowledge into PTLMs541

have been made. One typical form of knowledge542

is a knowledge graph. There have been efforts of543

using knowledge graph to inject entity and rela-544

tion representations, which are pre-computed from545

external source, into PTLMs (Zhang et al., 2019;546

Peters et al., 2019; He et al., 2020; Phang et al.,547

2020). Some other works try to retrieve or gen-548

erate the sub-graph from the graph to solve the549

problem (Lin et al., 2019; Wang et al., 2020). An-550

other existing form of knowledge is extra large-551

scale corpus. Works that use such corpus present552

knowledge-related pre-training objectives such as553

concept order recovering (Zhou et al., 2021), entity554

category prediction (Yu et al., 2020) and source of555

knowledge prediction (Wang et al., 2021; Calixto556

et al., 2021). They are mostly focused on inject-557

ing world knowledge presented in text, rather than 558

physical and visual commonsense knowledge that 559

can be found in images. 560

Cross-modal knowledge enhanced methods. 561

There is a extensive line of works for a variety 562

of vision-language tasks, such as VL-BERT (Su 563

et al., 2019), VisualBert (Li et al., 2019), and 564

Uniter (Chen et al., 2020b). These models aim to 565

improve vision-language tasks, e.g., VQA (Goyal 566

et al., 2017), and they are found to be not effec- 567

tive in improving language tasks (Tan and Bansal, 568

2020). Another line of works is to transfer visual 569

knowledge to language models: Vokenization (Tan 570

and Bansal, 2020) and VidLanKD (Tang et al., 571

2021). Vokenization employs token-level text-to- 572

image retrieval to transfer visual knowledge to lan- 573

guage models. For this, Vokenization introduces 574

30k vokens and matches each token into the lim- 575

ited voken space; it may have approximation errors. 576

VidLanKD adopts contrastive learning to train a 577

teacher model on video datasets and uses distilla- 578

tion approaches to distill visual knowledge from 579

the teacher to a student model. 580

7 Conclusion 581

We study whether intermediate pre-training on vi- 582

sual knowledge can help transfer visual knowledge 583

into LMs. We investigate text knowledge transfer 584

and cross-modal knowledge transfer using images 585

and captions. In our empirical analysis, we observe 586

that intermediate pre-training on captions can help 587

improving performance and cross-modal knowl- 588

edge transfer approaches consistently improve per- 589

formance. When the transfer methods are equipped 590

with additional positive and negative samples, they 591

show better performance. Future works include im- 592

proving both commonsense reasoning and general 593

language understanding. 594
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A Dataset Properties868

PIQA is a multiple-choice question answering task,869

which chooses the most appropriate solution for870

physical commonsense questions, which may need871

illustration or description of physical interaction in872

the real world. VP is to tell if two descriptions are873

describing the same scene or two different scenes.874

While they seem like purely textual tasks, they re-875

quire visual common sense to answer. CSQA is876

a multiple-choice question answering task that re-877

quires commonsense reasoning to answer. It is built878

from ConceptNet (Speer et al., 2017). OBQA is879

a multiple-choice question answering task, which880

is modeled after open book exams on elementary-881

level core science questions. The task generally882

requires open book fact but also additional com-883

monsense which can be learnt from scientific illus-884

tration. RiddleSense is a multiple-choice riddle-885

style question answering which requires complex886

commonsense reasoning ability and understanding887

of figurative language which may benefit from vi-888

sual knowledge.889

12


