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ABSTRACT

We introduce a novel alignment method for diffusion models from distribution
optimization perspectives while providing rigorous convergence guarantees. We
first formulate the problem as a generic regularized loss minimization over proba-
bility distributions and directly optimize the distribution using the Dual Averaging
method. Next, we enable sampling from the learned distribution by approximat-
ing its score function via Doob’s h-transform technique. The proposed framework
is supported by rigorous convergence guarantees and an end-to-end bound on the
sampling error, which imply that when the original distribution’s score is known
accurately, the complexity of sampling from shifted distributions is independent of
isoperimetric conditions. This framework is broadly applicable to general distri-
bution optimization problems, including alignment tasks in Reinforcement Learn-
ing with Human Feedback (RLHF), Direct Preference Optimization (DPO), and
Kahneman-Tversky Optimization (KTO). We empirically validate its performance
on synthetic and image datasets using the DPO objective.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) have recently
emerged as powerful tools for learning complex distributions and performing efficient sampling.
Within the framework of foundation models, a common approach involves pre-training on large-
scale datasets, followed by adapting the model to downstream tasks or aligning it with human
preferences (Ouyang et al., 2022). This alignment is typically formalized as nonlinear distribu-
tion optimization, with a regularization term that encourages proximity to the pre-trained distribu-
tion. Examples of such alignment methods include Reinforcement Learning with Human Feedback
(RLHF) (Ziegler et al., 2020), Direct Preference Optimization (DPO) (Rafailov et al., 2023; Wallace
et al., 2024), and Kahneman-Tversky Optimization (KTO) (Ethayarajh et al., 2024; Li et al., 2024).

Specifically, there methods solve the minimization problems of a regularized functional F (q) +
βDKL(q∥pref) over q in the probability space P , where pref is the probability density corresponding
to the pretrained diffusion model. However, this type of distributional optimization problem over
the density q is challenging because the output density governed by the reference model cannot be
evaluated and neither is the aligned model q. They are accessible only through samples generated
from their corresponding generative models. Existing distributional optimization methods such as
mean-field Langevin dynamics (Mei et al., 2018) and particle dual averaging (Nitanda et al., 2021)
resolved this problem by adapting a Langevin type sampling procedure to calculate a functional
derivative of the objective without explicitly evaluating the densities. However, the distributions q
and pref are highly complex and multimodal from which it is extremely hard to generate data by a
standard MCMC type methods including the Langevin dynamics. This difficulty can be mathemati-
cally characterized by isoperimetric conditions, such as logarithmic Sobolev inequality (LSI) (Bakry
et al., 2014), that has usually exponential dependency on the data dimension d for multimodal data
yielding the curse of dimensionality. Unfortunately, the existing distribution optimization methods
mentioned above are sensitive to the LSI constant, so they suffer from severely slow convergence,
failing to align diffusion models.

That is to say, alignment of diffusion models has two challenges: (i) inaccessibility of the output
densities and (ii) muitimodality of the densities. This naturally leads to a fundamental question:
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Can we develop an alignment algorithm for diffusion models from distribution optimization
perspectives, while ensuring rigorous convergence guarantees without isoperimetric conditions?

We address this question by developing a diffusion-model based distribution optimization method
and providing rigorous convergence and sampling error guarantees, and demonstrate its applicability
to several tasks involved with diffusion model alignment. Our method represents the aligned model
by a diffusion model that can be described by merely adding a correction term to the score function
of the original reference model. During optimizing the model, we don’t rely on any MCMC sampler
but only use samples generated by the original reference model (and the aligned diffusion model).
This characteristics is helpful to resolve the issue of isoperimetric condition.

Figure 1: Overview of the proposed method integrating Dual Averaging and Doob’s h-transform.

1.1 OUR CONTRIBUTIONS

To tackle the two challenges mentioned above: absence of (i) sampling guarantee and (ii) isoperime-
try, we propose a general framework that integrates dual averaging (DA) method (Nesterov,
2009) and diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021). The DA
method is an iterative algorithm that constructs the Gibbs distribution converging to the optimal
distribution (i.e., alignment). A key advantage of this DA scheme is its ability to bypass isoperimet-
ric conditions with the help of high sampling efficiency of the reference diffusion model, enabling
isoperimetry-free sampling from an aligned distribution. Specifically, an aligned diffusion process
that approximately generates the Gibbs distribution obtained by DA method can be constructed
through the Doob’s h-transform (Rogers & Williams, 2000) and density ratio estimation with re-
spect to a reference distribution using neural networks (see Figure 1 for illustration).

We summarize our contribution below.

• We establish a model alignment method to align diffusion models, with convergence guaran-
tees for both convex and nonconvex objectives, based on distribution optimization theory and
Doob’s h-transform. Notable distinctions from other mean-field optimization methods are that
our method works without isoperimetry conditions such as LSI and allows for sampling from
multimodal distributions.

• We also analyze the sampling error due to the approximation of the drift estimators with neural
networks and the discretization of the process, and evaluate how these errors affect the final
sampling accuracy.

• Our general framework encompasses several major alignment problems such as RLHF, DPO,
and KTO, establishing a provable alignment method for these scenarios. We demonstrate
the applicability of our framework to these settings and empirically validate its performance
on both synthetic and image datasets, aiming at data augmentation for a specific mode of
distribution, using DPO objective.

We also emphasize that our method has the potential to be applied to general distribution opti-
mization problems beyond alignment tasks such as density ratio estimation under the covariate shift
setting (Sugiyama et al., 2008; Tsuboi et al., 2009) and climate change tracking (Ling et al., 2024).
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1.2 RELATED WORK.

Mean-field optimization. PDA method (Nitanda et al., 2021; Nishikawa et al., 2022), an exten-
sion of DA method (Nesterov, 2009) to the distribution optimization setting, was the first method
that proves the quantitative convergence for minimizing entropy regularized convex functional. Sub-
sequently, P-SDCA method (Oko et al., 2022), inspired by the SDCA method (Shalev-Shwartz &
Zhang, 2013), achieved the linear convergence rate. Mean-field Langevin dynamics (Mei et al.,
2018) is the most standard particle-based distribution optimization method, derived as the mean-
field limit of the noisy gradient descent, and its convergence rate has been well studied by Mei
et al. (2018); Hu et al. (2021); Nitanda et al. (2022); Chizat (2022); Suzuki et al. (2023); Nitanda
(2024). Additionally, several mean-field optimization methods such mean-field Fisher-Rao gradient
flow (Liu et al., 2023b) and entropic fictitious play (Chen et al., 2023a; Nitanda et al., 2023) have
been proposed with provable convergence guarantees. We note that the convergence rates of these
methods were established under isoperimetric conditions such as log-Sobolev and Poincaré inequal-
ities, which ensure concentration of the probability mass. IKLPD method (Yao et al., 2024) shares
similarities with our method, as it employs the normalizing flow to solve intermediate subproblems
in the distributional optimization procedure, and its convergence does not depend on isoperimet-
ric conditions. However, the applicability of IKLPD to alignment tasks remains uncertain since
handling the proximity to the reference distribution is non-trivial.
Fine-tuning of diffusion models. Recently, alignment of diffusion models have been investigated,
inspired by LLM fine-tune methods, such as RLHF (Ziegler et al., 2020), DPO (Rafailov et al.,
2023), and KTO (Ethayarajh et al., 2024). Applying them to diffusion models entails additional
difficulty since the output density pref of the diffusion model is not available, and hence several
techniques have been developed to circumvent the explicit calculation of pref . For instance, Fan
et al. (2023); Black et al. (2024); Clark et al. (2024) invented the maximization algorithm of the
reward in each diffusion time step. Uehara et al. (2024b) used Doob’s h-transform to compute the
correction term that can be automatically derived from the density ratio between the generated and
the reference distributions. Instead of optimizing original DPO and KTO objectives, Wallace et al.
(2024) considered the evidence lower bound (ELBO) and Li et al. (2024) defined a new objective
function to replicate KTO. Marion et al. (2024) also studied fine-tuning of diffusion models as
distributional optimization within the RLHF framework and conducted convergence analysis for the
one-dimensional Gaussian distribution.

2 PROBLEM SETTING

Distributional Optimization. Let P be the space of probability density functions with respect
to the Lebesgue measure on (Rd,B(Rd)). Let F : P → R be a functional and pref ∈ P be the
reference density. In this work, we consider the regularized loss minimization problem over P:

min
q∈P
{L(q) := F (q) + βDKL(q∥pref)} , (1)

whereDKL(q∥pref) := Eq[log
q

pref
] is the Kullback-Leibler divergence, and β > 0 is a regularization

coefficient. We assume that F is differentiable. That is, the functional F has first order variation
δF
δq : P × Rd ∋ (q, x)→ δF

δq (q, x) ∈ R such that for all q, q′ ∈ P ,

dF (q + ϵ(q′ − q))
dϵ

∣∣∣∣
ϵ=0

=

∫
δF

δq
(q, x)(q′ − q)(x)dx.

In the following we assume that there exists a unique minimizer q̂opt := argminq∈P L(q).

Diffusion Models. pref is the output density of a pre-trained diffusion model (Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021; Vahdat et al., 2021), while p∗ ∈ P is
the target distribution of pre-training. A “noising” process {X̄t}t≥0 denotes the Ornstein-Uhlenbeck
(OU) process from p∗(x). The law of X̄t can be written as pt(x) =

∫
N (mtX̄0, σt)dp∗(X̄0) with

mt = e−t, σ2
t = 1− e−2t. Then, the reverse process {X̄←t }0≤t≤T (T ≥ 0) can be defined as

X̄←t ∼ pt, dX̄←t = {X̄←t + 2∇ log pT−t(X̄
←
t )}dt+

√
2dBt.

Then it holds that Law(X̄←t ) = Law(X̄T−t), which enables us to sample from p∗. In practice, we
approximate the score ∇ log pT−t(X̄

←
t ) function by a score network s : Rd+1 → Rd : (x, t) 7→

3
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s(x, t). In addition, we initialize X←0 ∼ N (0, Id) ≃ pT and the process is time-discretized. The
random variable generated by the following dynamics with step size h is denoted by {X←t }0≤t≤T .

X←0 ∼ N (0, Id), dX
←
t = {X←lh+2s(X←lh , lh)}dt+

√
2dBt, t ∈ [lh, (l+1)h], l = 1, ..., L = T/h.

In the same way, we define qt as the density of the diffusion process corresponding to q∗, and
{X̄t}t≥0 and {X̄←t }0≤t≤T as the corresponding noising and the backward process.

Now we have two challenges in this problem (1):

(A). Multimodality of pref and q̂opt. Our goal is to obtain samples from q̂opt. Now we tackle
with the case that pref and q̂opt have high multimodality: pref and q̂opt have multiple modes
or maxima, in other words, the potentials − log pref and − log q̂opt are extremely far from
concave. Probability distributions of real-world data like images often have such complex
structures, which implies that LSI is significantly weak.

(B). Inaccesibility to the density pref . We cannot directly calculate the density pref because
diffusion models only have the score network. We only have information of pref as samples
from pref .

Inapplicability of Mean-Field Langevin Dynamics. Mean-field Langevin dynamics
(MFLD) (Mei et al., 2018) is the most standard particle-based optimization method tailored
to solve the special case of the problem (1) where F is convex functional and pref is a strongly
log-concave distribution such as Gaussian distribution. The convergence rate of MFLD (Nitanda
et al., 2022; Chizat & Bach, 2018) has been established under the condition where the proximal
distribution: pq ∝ pref exp

(
−β−1 δF

δq (q, ·)
)

associated with MFLD iteration q satisfies logarithmic
Sobolev inequality (LSI), which says sufficient concentration of pq . Typically, LSI for pq should
rely on the isoperimetry of the reference distribution pref with Holley-Strook argument (Holley &
Stroock, 1987) since δF

δq (q, ·) is not expected to encourage it in general. Therefore, the replacement
of pref to a pre-trained distribution, which is highly complex and has multi-modality, leads to
failure or weak satisfaction of LSI. As a result, the convergence of MFLD is significantly slowed
down. Additionally, MFLD is practically implemented so that finite particles approximately follow
the ideal dynamics of MFLD, and it is not intended for resampling from the final distribution
represented by these particles. In short, the lack of (i) a sampling guarantee and (ii) a isoperimetric
condition limits the applicability of MFLD in our problem setting.
To address these challenges, we employ the following strategy, which will be detailed in Section 4.

(A). Modifications of diffusion models for sampling from a multimodal distribution. First,
we obtain samples from pref using a diffusion model which works for a broad range of
probability distributions that have complex structures such as multimodality. Then, we
reconstruct the diffusion model to sample from q̂opt by simply adding a correction term.

(B). A distributional optimization algorithm that does not require the density pref . Sec-
ond, following the dual averaging (DA) method in the distribution optimization setting,
we constract a sequence of distributions q̂(k) converging to the optimum, which guides an
aligned diffusion process in combination with the density ratio estimation using neural net-
works with Doob’s h-transform. We only have to calculate the density ratio between q̂(k)
and pref and the samples from pref to run our algorithm.

3 APPLICATIONS

Our framework of the distributional optimization for the pre-trained diffusion models includes im-
portant fine-tuning methods for diffusion models. The first term F (q) in (1) represents the human
preference, acting as feedback from the outputs of pref . Note that F (q) can be dependent of pref .
The second term βDKL(q∥pref) in (1) provides regularization to prevent q from collapsing.
Example 1 (Reinforcement Learning). Our study includes the case F is limited to be a linear
functional:

min
q∈P
{Eq[−r(x)] + βDKL(q∥pref)} ,

where r(x) is a reward function. In this case, the optimal distribution is obtained as q∗(x) ∝
exp

(
r(x)
β

)
pref(x). This type of the problems has been studied as the Reinforcement Learning (Fan

et al., 2023; Black et al., 2024; Clark et al., 2024; Uehara et al., 2024b).

The following two examples have not been directly solved via diffusion models:

4
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Example 2 (DPO). Direct Preference Optimization (DPO) (Rafailov et al., 2023) is an effective ap-
proach for learning from human preference for not only language models but also diffusion models.
Our algorithm can directly minimize the DPO objective, while Wallace et al. (2024) tried applying
DPO to diffusion models via minimization of an upper bound of the original objective. In DPO,
humans decide which sample is more preferred given two samples from pref . Let xw and xl be “win-
ning” and “losing” samples from pref . xw ≻ xl denote the event that xw is preferred to xl. The
DPO objective can be written as

LDPO(q) := −Exw∼pref
Exl∼pref

[
log σ

(
γ log q(xw)

pref (xw) − γ log
q(xl)

pref (xl)

)
1xw≻xl

(xw, xl)
]
,

where Ex∼p denotes expectation with respect to x whose probability density is p ∈ P , σ is a sigmoid
function, 1x≻y(x, y) is one if x ≻ y and is zero otherwise. Precisely, the functional derivative of
LDPO(q) is calculated as

δLDPO

δq (q, x) =− γExl∼pref

[
(1− σ (−γf(x) + γf(xl)))

∫
e−fdpref

e−f(x) 1x≻xl
(x, xl)

]
+ γExw∼pref

[
(1− σ (−γf(xw) + γf(x)))

∫
e−fdpref

e−f(x) 1xw≻x(xw, x)
]
, (2)

where q = e−fpref/
∫
e−fdpref . See Appendix B for the derivation. Therefore, we only need

samples from pref and the log-density ratio or the potential f to calculate the functional derivatives.
Example 3 (KTO). Our algorithm can also minimize LKTO directly. Assume that the whole data
space Rd is split into a desirable domain DD and an undesirable domain DU. The objective of the
original KTO (Ethayarajh et al., 2024) is formulated as

LKTO(q) =Ex∼pref

[
γD

(
1− σ

(
κ log q

pref
−DKL(q∥pref)

))
1{x∈DD}

+γU

(
1− σ

(
DKL(q∥pref)− κ log q

pref

))
1{x∈DU}

]
,

where γD, γU , κ are hyper parameters, and σ is a sigmoid function. Li et al. (2024) defined
objectives compatible with diffusion models based on KTO, but our algorithm can directly minimize
LKTO. Like the DPO objective, we only have to calculate samples from pref and the potential f of
the density ratio (f is defined as q = e−fpref/

∫
e−fdpref ) to calculate the functional derivatives.

Please refer to Appendix B for the concrete formulation of δLKTO

δq .

4 THE NONLINEAR DISTRIBUTIONAL OPTIMIZATION ALGORITHM

Now we make a concrete introduction of our proposed approach. Our goal of the distribution opti-
mization (1) is to train a neural network that approximates f̂opt = log

q̂opt
pref

+ (const.). To achieve
this, we utilize the Dual Averaging (DA) algorithm (Nesterov, 2009; Nitanda et al., 2021; Nishikawa
et al., 2022), and we iteratively construct a tentative local potential fk by approximating the update
the DA algorithm. After we obtain fK , we estimate the diffusion model that generates the desired
output (approximately) following q∗, through Doob’s h-transform technique.

Phase 1: Dual Averaging. Let f1 be a randomly initialized potential. First, we initialize q(1) ∝
exp(−f1)pref , where f1 is a randomly initialized neural network. Then, the distribution q(k) is
updated recursively by pulling back the weighted sum of gradients from the dual space to the primal
space. There are two options of DA methods. For a given hyper-parameter β′ > 0, the update of
Option 1 is given as

(Opt. 1) q̂(k+1) = argmin
q∈P

{
2

k(k+1)

k∑
j=1

j
(
Eq

[
δF
δq (q

(j))
]
+ βDKL(q∥pref)

)
+ 2β′

k DKL(q∥pref)
}

=: exp (−ḡ(k))pref , (3)

where ḡ(k)(x) =
∑k

j=1 w
(k)
j

δF
δq (q

(j), x), w
(k)
j = j

βk(k+1)/2+β′(k+1) (j = 1, . . . , k). By Lemma 4

in Appendix A.2, ḡ(k) can be explicitly determined. We train a neural network fk+1 to approximate
ḡ(k)1 and define the next step as q(k+1) ∝ exp (−fk+1)pref . Similarly, the update of Option 2 is

1For DPO and KTO, it suffices to obtain the neural network ḡ(k) to minimize Epref [(f − ḡ(k))2] where
the expectation with respect to pref is simulated by generating data from pref , while obtaining ḡ(k) for general
settings requires Doob’s h-transform similar to Phase 2. Please also refer to Section 6.
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given as

(Opt. 2) q̂(k+1)=argmin
q∈P

{
2

k(k+1)

k∑
j=1

j
(
Eq

[
δF
δq (q

(j))− βḡ(j)
])

+ 2β′

k DKL(q∥pref)
}
. (4)

Here, we again express as q̂(k+1)(x) ∝ exp(−ḡ(k)(x))pref(x) where ḡ(k)(x) =∑k
j=1 w

(k)
j ( δFδq (q

(j), x) − βḡ(j)(x)) with w(k)
j = j

β′(k+1) . Then, q(k+1) is obtained in the same
manner as Option 1. This phase of DA update is summarized in Algorithm 4. For the more detailed
algorithm in Option 1, please refer to Algorithm D.1.

Algorithm 4.1 Dual Averaging (DA)
Input: s: pre-trained score, f1: initialized neural networks
Output: fK : a trained potential.

Set q(1) ∝ exp(−f1)pref .
for k = 1, ...,K − 1 do

Obtain ḡ(k) via the DA algorithm with Option 1 (Eq. (3)) or Option 2 (Eq. (4)) using the
recurrence formula (47), where q̂(k+1) ∝ exp(−ḡ(k))pref is the ideal update.
Train a neural network fk+1 to approximate ḡ(k), and set q(k+1) ∝ exp (−fk+1)pref .

end for

Phase 2: Sampling with Doob’s h-transform. After we obtain the solution fK , we want to sam-
ple from qK ∝ exp(−fK)pref , which approximates the optimal solution of (1). When sampling
from qK , it is necessary to obtain the score function related to this distribution. However, con-
structing the score function of q∗ only from the score function of pref and fK requires a particular
technique. Specifically, we apply Doob’s h-transform (Rogers & Williams, 2000; Chopin et al.,
2023; Uehara et al., 2024b; Heng et al., 2024). By introducing the correction term u∗ : Rd+1 → Rd

defined by
u∗(y, t) = ∇ logE[exp(−f∗(X̄←T )) | X̄←t = y],

the score function of q∗ at (x, t) is written as∇ log qt(y) = ∇ log pt(X
←
t , T − t) + u∗(y, t), where

qt is the law of the backward process at time t whose output distribution is the optimal solution q∗.
We provide the derivation in Lemma 12 and refer readers to Rogers & Williams (2000); Chopin
et al. (2023) for more details and a formal treatment of Doob’s h-transform. By approximating
log pt(X

←
t , T − t) by the score network s(x, t) and the correction term u∗(x, t) by u(x, t) and

discretizing the dynamics, we obtain the following update

Y←0 ∼ N (0, Id), dY
←
t = {Y←t + 2(s(Y←lh , lh) + u(Y←lh , lh))}dt+

√
2dBt, t ∈ [lh, (l + 1)h],

where u(x, t) can be computed as u(x, t) = ∇x logE[exp(−fK(X←T ))|X←t = x], which can be es-
timated by running the reference diffusion model (X←t ). The practical treatment for this is discussed
in Appendix C. For experimental information, please have a look at Section 6 and Algorithm D.2 in
Appendix D.2.

5 THEORETICAL ANALYSIS

In this section, we give theoretical justification of our proposed algorithm. More concretely, we
show the rate of convergence of the (inexact) DA method and give an approximation error bound on
the diffusion model based on the h-transform.

5.1 CONVERGENCE RATE OF THE DA METHOD

We give the convergence rate of the DA algorithm in the two settings: when F is (I) convex and (II)
non-convex, respectively.

(I): Convex objective F . First, we show the rate when F is convex. We basically follow the proof
technique of Nitanda et al. (2021); Nishikawa et al. (2022). In the analysis, we put the following
assumption on F .

Assumption 1. The loss function F satisfies the following conditions:

(i) δF
δq is bounded: There exists BF > 0 such that ∥ δFδq (q)∥∞ ≤ BF for any q ∈ P ,

6
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(ii) δF
δq is Lipshitz continuous with respect to the TV distance: There exists LTV > 0 such that
∥ δFδq (q)−

δF
δq (q

′)∥∞ ≤ LTVTV(q, q′) for any q, q′ ∈ P .

(iii) F is convex: F (q) ≥ F (q′) +
∫

δF
δq (q

′)d(q − q′) for any q, q′ ∈ P ,

Then, we can show that the (inexact) DA algorithm achieves the following convergence rate that
yields O(K−1) convergence of the objective.
Theorem 1 (Convergence of the objective in Option 1 ). Suppose that β′ ≥ β and we train the
potential fk+1 so that it is sufficiently close to ḡ(k) as TV(q̂(k), q(k)) ≤ ϵTV for all k. Then, under
Assumption 1, Option 1 satisfies the following convergence guarantee:

2

K(K + 1)

K∑
k=1

k
[
L(q̂(k))− L(q̂opt)

]
≤ 2LTVϵTV+

(
2BF

K(K + 1)
+

2β′DKL(q∗∥pref) + 2B2
Fβ
−1

K

)
.

See Appendix A.1 for the proof. From this theorem, we see that the DA algorithm with Option
1 achieves O(1/K) convergence. The assumption (ii) in Assumption 1 is required to bound an
expectation of ḡ(k) in the bound. The assumption (iii) is required to bound the difference between the
exact update q̂(k) and the inexact update q(k). If the update is exact, we don’t need this assumption.

(II): Non-convex objective F . We also give a convergence for a non-convex loss F . Here, we put
the following assumption.
Assumption 2. The loss function F satisfies the following conditions:

(i) δF
δq is bounded: There exists BF > 0 such that ∥ δFδq (q)∥∞ ≤ BF for any q ∈ P ,

(ii) δF
δq is Lipshitz continuous with respect to the TV distance: ∥ δFδq (q)−

δF
δq (q

′)∥∞ ≤ LTVTV(q, q′)

for any q, q′ ∈ P ,
(iii) F is lower bounded.

Assumptions (i) and (ii) are the same as the convex case (Assumption 1), and lower boundedness (iii)
is weaker than convexity in Assumption 1. Assumption (ii) induces the following type of smoothness
commonly observed in standard optimization: (ii)’ There exists SF ≥ 0 such that F (q) ≤ F (q′) +∫

δF
δq (q

′)d(q − q′) + SF

2 DKL(q∥q′). When the inner-loop error is ignored, it is possible to prove
convergence using only the smoothness assumption (ii)’ instead of assumption (ii). For details,
please refer to Appendix A.1.1.

Under this assumption, we can show the following convergence guarantee with respect to the se-
quence (q̂(k))Kk=1 even in a non-convex setting.

Theorem 2. Suppose that β′ > β+LTV and TV(q̂(k), q(k)) ≤ ϵTV for all k, then under Assumption
2, both Option 1 and 2 yield the following convergence:

(i) limk→∞DKL(q̂
(k+1)∥q̂(k)) = 0.

(ii) For all K, it holds that

min
k=1,...,K

{
ckDKL(q̂

(k+1)∥q̂(k)
)
} ≤ (L̃1(q̂

(1) − L(q̂opt)) + (LTV +BF )KϵTV

Kβ′
=: ΨK ,

where ck = βk+2β′

2 for Option 1 and ck = 1 for Option 2.

See Appendix A.1.1 for the proof. The proof utilizes an analogous argument with Liu et al. (2023a)
that analyzed convergence of a DA method in a finite dimensional non-convex optimization problem.
However, we need to reconstruct a proof because we should work on the probability measure space,
which is not a vector space, and carefully make use of the property of the KL-divergence. We
see that ΨK = O(1/K) if ϵTV is sufficiently small as ϵTV = O(1/K), and thus the discrepancy
between q̂(k+1) and q̂(k) converges. Especially, the convergence of DKL(q̂

(k+1)∥q̂(k)) yields the
convergence of the “dual variable” for Option 2 as in the following corollary. For that purpose, we
define L̃k(q) := L(q)+ β′

k DKL(q∥pref) (see its similarity to the inner objective of the DA update (3)
and (4)), and define ψq (g) = log (Eq[exp(−g + Eq[g])]) which is a “moment generating function”
of a dual variable g.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Corollary 1 (Convergence in Option 2 ). Under the same condition as Theorem 2, we have that

min
1≤k≤K

ψq̂(k)

(
k

β′(k+1)
δL̃k

δq (q̂(k))
)
≤ ΨK .

Roughly speaking, this corollary indicates that the variance of the gradient δL̃k

δq (q̂(k)) converges as

Varq̂(k)

(
δL̃k

δq (q̂(k))
)
= O(1/K) because we may approximate ψq(g) ≃ 1

2Varq(g) when |g−Eq[g]|
is sufficiently small. Therefore, we have a convergence guarantee of the dual variable (gradient)
δL̃k

δq (q̂(k), x) → 0 (up to a constant w.r.t. x) even in a non-convex setting, which justifies usage of
our method for general objective functions.

5.2 DISCRETIZATION ERROR OF DOOB’S H-TRANSFORM

We now provide the sampling error analysis after obtaining the approximate solution fK . In the
analysis of Dual Averaging, pref was assumed to be known, and the goal was to obtain the optimal
solution of (1) that corresponds to q̂opt = exp(−f̂opt)pref . From here, considering that pref esti-
mates p∗, we shift our focus to sample from the optimal alignment q∗ ∝ ρ∗p∗, while the dynamics
we implement involves several approximations: (i) time discretization approximation, (ii) approx-
imation of the score ∇x log pt by s(x, T − t), (iii) approximation of ρ∗ by ρ = exp(−fK), (iv)
approximation of u∗ by u.

To evaluate how such approximation affects the final quality of our generative model, we will give
a bound of the TV-distance between q∗ and q̂ = ρpref by putting all those errors together. To do so,
we put the following assumption.
Assumption 3. 1. ∇ log pt is Lp-smooth at every time t and it has finite second moment

E[∥X̄t∥22] ≤ m <∞ for all t ∈ R+ and x ∈ Rd.
2. ∇ log ρ∗ is Lρ-smooth and bounded as C−1ρ ≤ ρ∗ ≤ Cρ for a constant Cρ.

3. The score estimation error is bounded by EX̄←·
[∥s(X̄←t , t)−∇ log pT−t(X̄

←
t )∥2] ≤ ε at each

time t.
4. EX̄←·

[∥u∗(X̄←t , t)− u(X̄←lh , lh)∥2] ≤ ε2ρ,l for any 1 ≤ l ≤ T/h and t ∈ [lh, (l + 1)h).

This assumption is rather standard, for example, Chen et al. (2023c) employed these conditions
except the last condition on u and u∗. The fourth assumption in Assumption 3 is imposed to mathe-
matically formulate the situation: q̂opt/pref ≃ q∗/p∗. Then, we obtain the following error bound:
Theorem 3. Suppose that Assumption 3 is satisfied. Then, we have the following bound on the
distribution q̂ of Y←T :

TV(q∗, q̂)
2 ≲ Tε2 +

∑T/h
l=1 hε

2
ρ,l + T (LpC

2
ρ + Lρ)

2(dh+mh2) + exp(−2T )DKL(q∗∥N(0, I)).

The proof is given in Appendix C.1. It basically follows Chen et al. (2023c;b), but we have derived
the smoothness of ∇ log(q∗,t) from that of ∇ log(pt). In this bound, we did not give any evaluation
on ε2ρ,l, however, this error term can be bounded as follows with additional conditions.

Assumption 4. (i)∇xs(·, ·) isHs-Lipschitz continuous in a sense that ∥∇xs(x, t)−∇ys(y, t)∥op ≤
Hs∥x − y∥ for any x, y ∈ Rd and 0 ≤ t ≤ T and E[∥s(X̃←kh, kh)∥2] ≤ Q2 for any k, (ii) There
exists R > 0 such that supt,x{∥∇2

x log pt(x)∥op, ∥∇2
x log s(x, t)∥op} ≤ R.

Theorem 4. Suppose that Assumptions 3 and 4 hold and ∥ρ∗−ρ∥∞ ≤ ε′ and ∥ρ∥∞ ≤ Cρ. We also
assume∇ρ∗ is bounded and Lipschitz continuous. Then, for any choice of 0 ≤ h ≤ δ ≤ 1/(1+2R),
we have that

ε2ρ,l ≲C
3
ρ

{
Ξδ,ε +R2

φ

(
ε2 + L2

pd(δ +mδ2)
)
+ [L2

φ(m+Q2 + dh) +R2
φ(1 + 2R)2]h2

}
+min{T − lh, 1/(2 + 2R)}−1ε′2,

where Ξδ,ε := C2
ρ(1 + 2R)2δ + C2

ρ
1+δR2

φ

δ [ε2 + L2
pd(h + mh2)], and Rφ and Lφ are constants

introduced in Lemma 10.

The proof is given in Appendix C.3. We applied the so-called Bismut-Elworthy-Li integration-by-
parts formula (Bismut, 1984; Elworthy & Li, 1994) to obtain the discretization error. By substituting
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δ ←
√
h to balance the terms related to h and δ, we obtain a simplified upper bound of

∑T/h
l=1 hε

2
ρ,l

as
∑T/h

l=1 hε
2
ρ,l ≲

(
1 + 1√

h

)
ε2T + T

√
h + (T + log(1/h))ε′2. These results can be seen as h-

Transform extension of the approximation error analysis given in Chen et al. (2023c). However, the
approximation error corresponding to u has worse dependency on h. This is because the computation
of u uses the discretized process pref and is affected by its error while the ordinary diffusion model
does not require sampling to obtain the score.

6 NUMERICAL EXPERIMENTS

We conducted numerical experiments to confirm the effectiveness of minimizing nonlinear objec-
tives. We used Option 1 and β was set to be 0.04. We also compared the DPO objective (Rafailov
et al., 2023) we minimized with the upper-bound (Wallace et al., 2024) using a toy case, Gaussian
Mixture Model (GMM). For detailed experimental setting, please refer to Appendix D.

Alignment for Gaussian Mixture Model. We aligned a score-based diffusion model to sam-
ple from a 2-dimensional GMM using the DPO objective. The reference density was defined as
1
2 (N (µ1,Σ) +N (µ2,Σ)), µ1 = [−2.5, 0], µ2 = [2.5, 0], Σ = [[1, 0], [0, 5]]. The target point was
µw := µ2. The preference of points xw and xl was determined by the Euclidean distance d(·, µw)
from µw. xw ≻ xl if and only if d(xw, µw) < d(xl, µw). We describe the implementation details
below:

Dual Averaging. We set the hyperparameter β′ in [0.04, 0.2], which controls the learning speed
illustrated at the middle in Figure 2. In kth DA iteration (k = 1, ...,K), using empirical samples
{xi = (x1,i, x2,i)}1000i=1 from pref and the previous potential fk−1 (q(k−1) ∝ e−fk−1pref ) imple-
mented by neural networks, we prepare {(xi, δFδq (q

(k−1), xi))}1000i=1 to construct fk ≃ ḡ(k−1) with
the recurrence formula (47) in Appendix D. Please note that, to calculate δF

δq for DPO, we only need
the fk and empirical samples from pref to calculate the expectation Ex∼pref

[·] as described in Eq. (2).
The convergence of the true DPO loss is depicted in Figure 2, compared to Diffusion-DPO (Wal-
lace et al., 2024). The true DPO loss, upperbound, and metric loss (mean of the Euclidean distance
of the particles from µw) attained by Diffusion-DPO and our method, with optimization time and
GPU memory consumption, are summarized in Table 1. Diffusion-DPO optimizes the approximate
upperbound instead of the true loss, and therefore it failed to completely control the true loss. Com-
pared to Diffusion-DPO, our algorithm allowed us to optimize the loss to a smaller value within an
acceptable computational budget.

Doob’s h-transform. We constructed the aligned model by calculating the correction terms. The
conditional expectations were calculated using naive Monte Carlo method with 30000 samples. The
number of the diffusion steps was 50. The histograms of aligned samples are shown at the right of
Figure 2. In the simplest phase 2 that we present (Algorithm D.2), we used significant computa-
tional resources, with O(L2) time complexity. To estimate the correction term u for each sample
simultaneously by Monte Carlo with N samples, O(N) memory space is required. However, this
Doob’s h-transform technique itself has been used in image generation (Uehara et al., 2024a;b),
Bayesian samping (Heng et al., 2024), and filtering (Chopin et al., 2023). In particular, computa-
tional resources can be saved by approximating the correction term using a neural ODE (Uehara
et al., 2024b).

Table 1: The quantitative comparison between Diffusion-DPO and our method.

Ref. Diffusion-DPO
(50 iter., w/o reg.)

Diffusion-DPO
(200 iter., w/ reg.)

Ours
(β′ = 0.04)

True DPO loss 0.346 0.340 0.343 0.328
(Approx.) Upperbound - 0.342 0.337 -
Metric loss 3.226 2.828 3.283 2.098
Opt. time (s) - 509.99 2039.99 1166.00
GPU memory (%) - 6.540 6.540 8.710

Image Generation Alignment based on a Target Color. We aligned the image generation of
the basic pre-trained model available Diffusion Models Course (source: HuggingFace (2022)) to
simulate specific generations for data augmentation. The pre-trained model generates RGB-colored
32×32 pixel images of butterflies. In this experiment, the model was aligned based on a target color,
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Figure 2: Left and Middle. The loss during optimization for Gaussian Mixture Model in
Diffusion-DPO with/without regularization (left) and ours (middle). “True Objective”: the true
DPO loss (Rafailov et al., 2023) whose target point was µw = [2.5, 0]. “Upperbound”: An upper-
bound of “Objective” optimized by Diffusion-DPO (Wallace et al., 2024). Right. Aligned samples
by Doob’s h-transform. “Ref.” represents the empirical density of pref .

which is (R,G,B)= (0.9, 0.9, 0.9) while (1,1,1) corresponds to white, using the DPO objective. Please
refer to Figure 6 for an illustration of the preference indicated by DPO. We leveraged 1024 images
generated by the pre-trained model to train fk in each DA iteration. We see that the (regularized)
objective went down during DA and the generated images reflected the target density more, on the
right side of Figure 3. Please refer to Figure 7 in Appendix for the convergence results.

Tilt Correction for Image Generation. The goal of this experiment is data augmentation of im-
ages facing the same direction, given only a dataset of rotated images. We used 10000 images of
Head CT in Medical MNIST (Lozano, 2017) and augmented it by rotating images up to 40000. Data
augmentation of brain images is useful for tumor analysis and anomaly detection (Shen et al., 2024;
Fontanella et al., 2024). In each DA iteration, 6400 images were generated to train fk. The results
are in Figure 3. For the convergence results, please refer to Figure 11 in Appendix. From the results,
we see that the (regularized) objective decreased during DA and the generated images became more
preferred.

Figure 3: Left. Examples of aligned image generation. Our goal was to generate light-colored
butterflies. “iter=2”: ours with k = 2 DA iterations, “iter=2”: ours with k = 1 DA iteration. “Ref.”:
samples from pref . Right. Tilt-corrected Head CT image generation. “iter=3”: ours with k = 3 DA
iterations, “iter=1”: ours with k = 1 DA iteration. “Ref,”: samples from pref .

7 CONCLUSION

We proved that the distributional optimization can be solved even if pref and q̂opt are mutilmodal
and we only have access to the score, not the density. This setting includes important fine-tuning
methodologies for diffusion models: Reinforcement Learning, DPO, and KTO. Our algorithms are
based on the DA algorithm and Doob’s h-transform technique and it can solve them more directly
than previous works. They are guaranteed to be useful for general objective functions, the dual
variable converges even in a non-convex setting. While our framework has potential applications in
general distributional optimization problems, such as density ratio estimation under covariate shift
and climate change tracking, further exploration of these applications is left for future work.
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ematics. Birkhäuser Boston, Inc., Boston, MA, 1984.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning, 2024. URL https://arxiv.org/abs/2305.13301.

Fan Chen, Zhenjie Ren, and Songbo Wang. Entropic fictitious play for mean field optimization
problem. Journal of Machine Learning Research, 24(211):1–36, 2023a.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
User-friendly bounds under minimal smoothness assumptions. In International Conference on
Machine Learning, pp. 4735–4763. PMLR, 2023b.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru Zhang. Sampling is as easy as
learning the score: theory for diffusion models with minimal data assumptions. In The Eleventh
International Conference on Learning Representations, 2023c. URL https://openreview.
net/forum?id=zyLVMgsZ0U_.
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NOTATIONS

Table 2: List of commonly used symbols

Symbol Description
d dimension of the sample space Rd.

B(Rd) Borel set on Rd.

P The space of probability density functions to the Lebesgue
measure on (Rd,B(Rd)).

F : Rd : P → R A functional.

δF
δq (q, x) The functional derivative of F . We often abbreviate this as

δF
δq (q).

DKL(q∥p) Kullback-Leibler divergence between q and p.

TV(q, p) Total Variation between q and p.

L(q) The regularized loss F (q) + βDKL(q∥pref).

β The regularization coefficient of L(q).

p∗ ∈ P The target distribution of pre-training.

pref ∈ P The output distribution at the final denoising step of the
pre-trained model.

q∗ = ρ∗p∗ ∝
exp(−f∗)p∗ ∈ P

The target distribution of alignment.

q̂opt = ρ̂optpref ∝
exp(−f̂opt)pref ∈ P

The unique minimizer of L(q), that corresponds to q∗ when
pref = p∗. We assume that ρ∗ ∝ exp(−f∗) can be estimated by
minimizing L(q), i.e. ρ̂opt ≃ ρ∗.

q̂(k) ∝
exp(−ḡ(k))pref

The optimal solution of the subproblem solved iteratively
during Dual Averaging.

q(k) ∝ exp(−fk)pref The implemented density that estimates q̂(k).

β′ The hyperparameter of Dual Averaging that controls the
optimization speed.

u∗ The optimal correction term to sample from q∗.

u The implemented correction term using the estimated output
density ratio ρ ≃ ρ̂opt.

N (µ, σ) Gaussian with mean = µ and variance = σ2

T > 0 The diffusion time.

{Bt}t∈[0,T ] Brownian motion on Rd.

{X̄t}t∈[0,T ] The Ornstein-Uhlenbeck (OU) process starts from p∗.
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{X̄←t }t∈[0,T ] The reversed Ornstein-Uhlenbeck (ROU) process of
{X̄t}t∈[0,T ], initialized at pT .

{X←t }t∈[0,T ] The time-discretized, and score-estimated ROU process of
{X̄t}t∈[0,T ], initialized as X←0 ∼ N (0, Id).

{Ȳt}t∈[0,T ] The Ornstein-Uhlenbeck (OU) process starts from q∗.

{Ȳ←t }t∈[0,T ] The reversed Ornstein-Uhlenbeck (ROU) process starts from
qT .

{Y←t }t∈[0,T ] The time-discretized dynamics using s and u.

pt The law of X̄t, and the law of X̄←T−t.

qt The law of the OU process Ȳt corresponding to q∗ = ρ∗p∗.

h > 0 The discretized time step of {X←t }t∈[0,T ].

L The number of steps of {X←t }t∈[0,T ].

s : Rd × R→ Rd A score network to implement {X←t }t∈[0,T ]

BF A constant that bounds δF
δq .

LTV Lipschitz constant of δF
δq .

SF Smoothness constant of the weaker smoothness of F .

∇xf(x) Gradient of f with respect to x

∇2
xf(x) Hessian matrix of f

∥ · ∥ Euclid norm

∥ · ∥∞ L∞ norm

∥ · ∥op The operator norm

E[·|X] the conditional expectation given a randam variable X .

E[·|X = x] the conditional expectation given a randam variable X ,
evaluated at X = x.

O Big-O notation

≲, ≳ inequalities ignoring constants.
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A CONVERGENCE ANALYSIS OF DUAL AVERAGING

Overview for convex loss

In Section A.1, we are interested in the convergence of Option 1 when the objective functional F is
convex in a distributional sense:

F (q) ≥ F (q′) +
∫
δF

δq
(q′)d(q − q′), for any q, q′ ∈ P.

Then, the regularized objective L(q) = F (q)+βDKL(q∥pref) becomes strongly convex with β > 0.
Formally, we assume that

(i) δF
δq is bounded: There exists BF > 0 such that ∥ δFδq (q)∥∞ ≤ BF for any q ∈ P ,

(ii) δF
δq is Lipshitz continuous with respect to the TV distance: There exists LTV > 0 such that
∥ δFδq (q)−

δF
δq (q

′)∥∞ ≤ LTVTV(q, q′) for any q, q′ ∈ P .
(iii) F is convex: F (q) ≥ F (q′) +

∫
δF
δq (q

′)d(q − q′) for any q, q′ ∈ P ,

In the update of Option 1, we iteratively use the distributional proximal operator. We minimize

Eq

 k∑
j=1

2j

k(k + 1)
g(j)

+ βDKL(q∥pref) + β′
2

k
DKL(q∥pref) (5)

by the minimizer q̂(k), where g(k) denotes δF
δq (q

(k)) with q(k) ≃ q̂(k) (q(k) is constructed by neural
networks and samples from pref , while we do not directly compute q(k).). Intuitively, with k →∞,
we hope that q is almost converged around the minimizer q̂opt, i.e. q ≃ q̂opt. Then, from the
differentiability of F , each Eq[g

(j)] in the first term would be a linear functional that well approxi-
mates F (q(j)), with suficiently large j. In addition, β′ 2kDKL(q∥pref) vanishes, so the equation (5)
is roughly written as

k∑
j=1

2j

k(k + 1)

[
Eq

[
g(j)
]
+ βDKL(q∥pref)

]
+ β′

2

k
DKL(q∥pref)

≃
k∑

j=1

2j

k(k + 1)
(F (q(j)) + βDKL(q∥pref)) + β′

2

k
DKL(q∥pref)

≃
k∑

j=1

2j

k(k + 1)
(F (q̂(j)) + βDKL(q̂

(j)∥pref)).

This is the weighted average of the regularized losses L(q) = F (q) + βDKL(q∥pref). From this
concept, we will show that the convergence represented as[

Weighted average of L(q̂(k))
]
= [Weighted average of L(q̂opt)] +O

(
1

k

)
.

Overview for nonconvex loss

In Section A.2, we are interested in the case that F is not necessarily convex (mainly) in Option 2.
Alternatively, we use the assumption that F is smooth in terms of KL-divergence:

(ii)’ (The weaker smoothness derived from (ii)). There exists SF ≥ 0 such that

F (q) ≤ F (q′) +
∫
δF

δq
(q′)d(q − q′) + SF

2
DKL(q∥q′) for any q, q′ ∈ P, (6)

This is induced by Lipschitz continuity of δF
δq ((ii) of Assumption 1 and 2) and Pinsker’s inequality.

When the inner-loop error is ignored, it is possible to prove convergence using only the smoothness
(6) instead of Lipschitz continuity of δF

δq . Please note that KL-divergence would be the “quadratic
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term” in the ordinary definition of smoothness. Following the theoretical analysis of standard non-
convex optimization, our goal is to show that the “derivative” of the (regularized) objective L(q)
goes to zero in the form of functional derivative:

δL

δq
(q̂(k), x)→ 0 (up to constant w.r.t. x.)

Please note that we can ignore δL
δq (q̂

(k), x) if it is a constant because of the definition of the functional
derivatives.

At the first step, both in Option 1 and 2, the regularized objective L(q) (roughly) monotonically
decrease during the Dual Averaging. Ignoring some terms, we want to show that

L(q̂(k+1))− L(q̂(k)) ≲ −DKL(q̂
(k)∥q̂(k+1)) < 0.

Next, by taking a telescoping sum, we obtain that

1

K

K∑
k=1

(weight)kDKL(q̂
(k)∥q̂(k+1)) = O

(
1

K

)
.

From the above equation, it is immediately shown that

min
k=1,...,K

(weight)kDKL(q̂
(k)∥q̂(k+1)) = O

(
1

K

)
,

where (weight)k ≃ k in the Option 1, while (weight)k ≃ 1 in the Option 2. Therefore, when we
choose the Option 2, it holds that

min
k=1,...,K

DKL(q̂
(k)∥q̂(k+1)) = O

(
1

K

)
Finally, we get the conclusion δL(q̂(k))

δq → 0 (up to constant w.r.t. x) because DKL(q̂
(k)∥q̂(k+1)) is

the approximate “moment generation function” of δL(q̂(k))
δq ; when k →∞,

min
k=1,..,K

(
“Variance” of

δL(q̂(k))

δq

)
≃ min

k=1,..,K
DKL(q̂

(k)∥q̂(k+1)) = O
(

1

K

)
.

This result aligns with the result for standard, non-distributinal Dual Averaging (Liu et al., 2023a),
mink=1,...,K ∥(gradient of the objective)k∥2 = O(1/K) because the variance is the second moment.

A.1 WHEN F IS CONVEX

We will show that, when F is convex in the distributional sense, the convergence of the Option 1
can be written as[

Weighted average of L(q̂(k))
]
− [Weighted average of L(q̂opt)] = O

(
1

K

)
.

We require β to be positive to make the regularized objective F (q)+βDKL(q∥pref) strongly convex.
In addition, one of the necessary conditions β′ ≥ β implies that the “learning rate” should be
controlled to converge.
Theorem (restated - Theorem 1). Assume that F is convex, | δFδq | ≤ BF , δF

δq is LTV-Lipshitz with
respect to q in TV distance, TV(q̂(k), q(k)) ≤ ϵTV, and β′ ≥ β. Then,

2

K(K + 1)

K∑
k=1

k
[
F (q̂(k)) + βDKL(q̂

(k)∥pref)− F (q̂opt)− βDKL(q̂opt∥pref)
]

≤ 2

K(K + 1)

K∑
k=1

k
[
2LTVϵTV + Eq̂(k) [g(k)]− Eq̂opt [g

(k)] + β(DKL(q̂
(k)∥pref)−DKL(q̂opt∥pref))

]
≤2LTVϵFD +

2

K(K + 1)

[
BF + β(K + 3)DKL(q̂opt∥pref) + Eq̂opt [g

(1)] +
B2

FK

β

]
.
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First, we want to show that theDKL regularization term plays a role of the “quadratic” regularization,
which makes the regularized objective F (q) + βDKL(q∥pref) strongly convex. We observe that the
sum of the linear (convex and concave) objective and the DKL regularization term

F̃ (q) = Eq[r(x)] + βDKL(q∥p)

is strongly convex in the distributional sense. In particular, if q is the minimizer of F̃ , then

F̃ (q) +
β

2
TV(q, q′)2 ≤ F̃ (q′) for all q′ ∈ P.

This result is useful to prove Lemma 2, which controls the regularized and linearized objective
Eq[

δF
δq ] + βDKL(q∥pref):

Lemma 1 (Nitanda et al. (2021)). F̃ : P → R, F̃ (q) = Eq[r(x)] + βDKL(q∥p). Assume that r is
bounded. We put r1 := dq

dp , r
′
2 := dq′

dp ,

F̃ (q) ≤ F̃ (q′) + Eq[(r1 − r2)(r(x) + β log r1)]−
β

2
∥r1 − r2∥2L1(p).

Especially, if q ∝ exp(− r
β )p,

F̃ (q) ≤ F̃ (q′)− β

2
∥r1 − r2∥2L1(p).

Proof. Omitted. See Nitanda et al. (2021). We use Pinsker’s inequality TV(q, q′)2 ≲ DKL(q∥q′).

Given that F (q) + βDKL(q∥pref) is strongly convex, let us prove Theorem 1:

Proof. The main parts of the proof follow existing papers (Nitanda et al., 2021; Nishikawa et al.,
2022). The key difference lies in that we are not using Langevin sampler in the inner loop, which
slightly changes how the error of q(k) is handled.

We begin by linearizing the weighted sum of the losses. g(k) denotes δF
δq (q

(k)), and q̂opt denotes the
minimizer of F . From the convexity of F ,

2

K(K + 1)

K∑
k=1

k
[
F (q̂(k)) + βDKL(q̂

(k)∥pref)− F (q̂opt)− βDKL(q̂opt∥pref)
]

≤ 2

K(K + 1)

K∑
k=1

k

[∫
δF

δq
(q̂(k))d(q̂(k) − q̂opt) + β(DKL(q̂

(k)∥pref)−DKL(q̂opt∥pref))
]

≤ 2

K(K + 1)

K∑
k=1

k

[∣∣∣∣∫ δF

δq
(q̂(k))− δF

δq
(q(k))d(q̂(k) − q̂opt)

∣∣∣∣+ Eq̂(k) [g(k)]− Eq̂opt [g
(k)]

+β(DKL(q̂
(k)∥pref)−DKL(q̂opt∥pref))

]
.

Here, we bound the estimation error of g(k) = δF
δq (q

(k)) using the Lipschitz continuity of δF
δq with

respect to q: ∣∣∣∣∫ δF

δq
(q̂(k))− g(k)d(q̂(k) − q̂opt)

∣∣∣∣
≤TV(q̂(k), q̂opt) sup

x

∣∣∣∣δFδq (q̂(k), x)− g(k)(x)
∣∣∣∣

≤2LqϵTV.
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Then we obtain

2

K(K + 1)

K∑
k=1

k
[
F (q̂(k)) + βDKL(q̂

(k)∥pref)− F (q̂opt)− βDKL(q̂opt∥pref)
]

≤ 2

K(K + 1)

K∑
k=1

k
[
2LqϵTV + Eq̂(k) [g(k)]− Eq̂opt [g

(k)]

+β(DKL(q̂
(k)∥pref)−DKL(q̂opt∥pref))

]
. (7)

This implies that it is sufficient to bound the weighted sum of the (regularized) linearized objectives
Eq̂(k) [g(k)] + β(DKL(q̂

(k)∥pref), k = 1, ...,K.

In each update of Option 1, q̂(k+1) is obtained by maximizing

Vk+1(q) = −Eq

 k∑
j=1

jg(j)

− βk(k + 1)

2
DKL(q∥pref)− β′(k + 1)DKL(q∥pref).

We also define

r
(k+1)
∗ =

dq̂(k+1)

dpref
, V ∗k+1 = Vk+1(q̂

(k+1)).

Then, we can show that V ∗k has the following recursive relation. Lemma 2 approximately implies

kEq̂(k) [g(k)] + kβDKL(q̂
(k+1)∥pref)) ≲ V ∗k − V ∗k+1 +O(1),

then, summing from k = 1 to K, we roughly obtain,

2

K(K + 1)

[
K∑

k=1

k(Eq̂(k) [g(k)] + βDKL(q̂
(k)∥pref)) + V ∗K+1

]
≲ O

(
1

K

)
. (8)

So, as long as we prove Lemma 2, we can connect this inequality (8) to the inequality (7) because
V ∗K+1 ≳ −

∑K
k=1 k(Eq̂opt

[g(k)] + βDKL(q̂opt∥pref)):
Lemma 2. For k ≥ 1,

V ∗k+1 ≤ V ∗k − kEq̂(k) [g(k)]− (βk + β′)DKL(q̂
(k+1)∥pref) +

B2
F k

β(k − 1) + 2β′
. (9)

For the proof of Lemma 2, please refer to Section A.1.1, in which we use Lemma 1.

From here, we will rigorously explain the result derived from Lemma 2. When k = 1, because
∥g(k)∥∞ ≤ BF ,

V ∗1 ≤ BF − βDKL(q̂
(1)∥pref).

By taking a telescoping sum of (9),

V ∗K+1 ≤BF −
K∑

k=1

k
(
Eq̂(k) [g(k)] + βDKL(q̂

(k)∥pref)
)
− [β(K + 1) + β′]DKL(q̂

(k+2)∥pref)

+

K∑
k=1

B2
F k

β(k − 1) + 2β′

≤BF −
K∑

k=1

k
(
Eq̂(k) [g(k)] + βDKL(q̂

(k)∥pref)
)
+
B2

FK

β
, (10)

where we used β′ ≥ β in the last inequality. On the other hand, we see that

V ∗K+1 ≥− Eq̂opt

[
K∑

k=1

kg(k)

]
− βK(K + 1) + 2β′(K + 1)

2
DKL(q̂opt∥pref)

=− Eq̂opt

[
K∑

k=1

k(g(k) + βDKL(q̂opt∥pref))

]
− β′(K + 1)DKL(q̂opt∥pref) (11)
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because V ∗K+2 is the maximal value. Combining the upper bound (Eq. 10) and the lower bound
(Eq. 11),

K∑
k=1

k
(
Eq̂(k) [g(k)]− Eq̂opt [g

(k)] + β(DKL(q̂
(k)∥pref)−DKL(q̂opt∥pref))

)
≤BF + β′(K + 1)DKL(q̂opt∥pref) +

B2
FK

β
.

Finally we get the convergence rate:

2

K(K + 1)

K∑
k=1

k
[
F (q̂(k)) + βDKL(q̂

(k)∥pref)− F (q̂opt)− βDKL(q̂opt∥pref)
]

≤ 2

K(K + 1)

K∑
k=1

k
[
2LTVϵTV + Eq̂(k) [g(k)]− Eq̂opt [g

(k)] + β(DKL(q̂
(k)∥pref)−DKL(q̂opt∥pref))

]
≤2LTVϵFD +

2

K(K + 1)

[
BF + β′(K + 1)DKL(q̂opt∥pref) +

B2
FK

β

]
.

This concludes the assertion.

A.1.1 PROOF OF LEMMA 2

Proof. We can calculate the relation between V ∗k+1 = Vk+1(q̂
(k+1)) and Vk(q̂(k+1)) as

V ∗k+1 =− Eq̂(k+1)

 k∑
j=1

jg(j)

− (k + 1)(βk + 2β′)

2
DKL(q̂

(k+1)∥pref)

=− Eq̂(k+1)

k−1∑
j=1

jg(j)

− βk(k − 1)

2
DKL(q̂

(k+1)∥pref)− β′kDKL(q̂
(k+1)∥pref)

− kEq̂(k+1) [g(k)]− (βk + β′)DKL(q̂
(k+1)∥pref)

=Vk(q̂
(k+1))− kEq̂(k) [g(k)] + k(Eq̂(k) [g(k)]− Eq̂(k+1) [g(k)])− (βk + β′)DKL(q̂

(k+1)∥pref),
(12)

where we used the definitions of Vk and Vk+1. Next, we upper bound the RHS of Eq. (12) using
Lemma 1 about the convexity of DKL:

(RHS of Eq. (12))

≤V ∗k −
βk(k − 1) + 2β′k

4
∥r(k+1)
∗ − r(k)∗ ∥2L1(pref )

− kEq̂(k) [g(k)] + k(Eq̂(k) [g(k)]− Eq̂(k+1) [g(k)])

− (βk + β′)DKL(q̂
(k+1)pref) (∵ the second equation in Lemma 1 and the optimality of V ∗k )

≤V ∗k −
βk(k − 1) + 2β′k

4
∥r(k+1)
∗ − r(k)∗ ∥2L1(pref )

− kEq̂(k) [g(k)] + k
∣∣∣Eq̂(k) [g(k)]− Eq̂(k+1) [g(k)]

∣∣∣
− β(k + 1)DKL(q̂

(k+1)∥pref)

≤V ∗k −
βk(k − 1) + 2β′k

4
∥r(k+1)
∗ − r(k)∗ ∥2L1(pref )

− kEq̂(k) [g(k)] +BF k∥r(k+1)
∗ − r(k)∗ ∥L1(pref )

− β(k + 1)DKL(p
(t+1)
∗ ∥q) (∵ ∥g(k)∥∞ ≤ BF )

≤V ∗k − kEq̂(k) [g(k)]− β(k + 1)DKL(q̂
(k+1)∥pref) +

B2
F k

β(k − 1) + 2β′
,

where we used the arithmetic-geometric mean inequality in the last inequality. This concludes the
proof.
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A.2 CONVERGENCE PROOF FOR NON-CONVEX LOSS F

Here, we give the proof of Theorem 2 and Corollary 1. In this section, we always assume Assump-
tion 2 holds. We are mainly interested in the property that F is smooth with respect to KL-divergence
instead of convexity:

(ii)’ (A weaker version of (ii)). There exists SF ≥ 0 such that

F (q) ≤ F (q′) +
∫
δF

δq
(q′)d(q − q′) + SF

2
DKL(q∥q′) for any q, q′ ∈ P. (13)

This property can be derived from (ii) in Assumption 2 that is Lipschitz continuity of δF
δq :

Lemma 3. Assume that δF
δq is Lipshitz continuous with respect to the TV distance: There exists

LTV > 0 such that ∥ δFδq (q)−
δF
δq (q

′)∥∞ ≤ LTVTV(q, q′) for any q, q′ ∈ P . Then,

F (q) ≤ F (q′) +
∫
δF

δq
(q′)d(q − q′) + LTV

2
TV(q, q′)2 for any q, q′ ∈ P.

From Pinsker’s inequality,

F (q) ≤ F (q′) +
∫
δF

δq
(q′)d(q − q′) + LTVDKL(q∥q′) for any q, q′ ∈ P.

Proof. The proof is almost identical to the proof of LTV-smoothness commonly discussed in the
context of standard optimization. For q, q′ ∈ P , we define qt = q′ + t(q − q′) ∈ P . Then,

F (q)− F (q′)−
∫
δF

δq
(q′)d(q − q′)

=

∫ t=1

t=0

∫
δF

δq
(qt)d(q − q′)dt−

∫
δF

δq
(q′)d(q − q′)

=

∫ t=1

t=0

∫ [
δF

δq
(qt)−

δF

δq
(q′)

]
d(q − q′)dt

≤
∫ t=1

t=0

tLTVTV(q, q′)2dt (LTV-Lipshitz continuity of
δF

δq
)

=
LTV

2
TV(q, q′)2,

while we used the fundamental theorem of calculus in the first equation and the assumption in the
inequality.

We emphasize that when the inner-loop error is ignored, it is possible to prove convergence using
only the smoothness (13) instead of (ii) in Assumption 2. Therefore, we will use the notation SF for
the parts that can be derived using Assumption (ii)’ instead of Assumption (ii).

Under the assumptions, our goal is to show that the functional derivative of L(q) = F (q) +
βDKL(q∥pref) goes to a constant:

δL

δq
→ 0 (up to constant w.r.t. x)

We prepare the following Lemma about the convexity of DKL:
Lemma 4. The following equations hold:

(i) DKL(q∥p) = DKL(q
′∥p) +

∫
δ
δqDKL(q

′∥p)d(q − q′) +DKL(q∥q′),

(ii) Let r : Rd → R be a smooth function. For F̃ (q) = Eq[r(x)]+DKL(q∥p), q′ = exp(−r)q,
it holds that

F̃ (q) = F̃ (q′) +DKL(q∥q′).
F̃ (q) is uniquely minimized at q = q′.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We omit its proof because it is straight forward. Lemma 4 implies that DKL also plays a important
role as a “quadratic” penalty term of the proximal operator whose output is

argmin
q∈P

{H(q) +DKL(q∥pref)} , for any functional H.

This property allows for the use of standard nonconvex convergence analysis of Dual Averaging
based on the proximal operator (Liu et al., 2023a).

Roughly speaking, the intermediate goal is to show that L(q) monotonically decreases in each kth
iteration:

L(q̂(k+1))− L(q̂(k)) ≲ 0.

By the weaker smoothness of F (Eq.(13)), the left hand side is approximately bounded as

L(q̂(k+1))− L(q̂(k)) ≲
∫
δF

δq
(q̂(k))d(q̂(k+1) − q̂(k)) +DKL(q̂

(k+1)∥q̂(k))

≲
∫
δL

δq
(q̂(k))d(q̂(k+1) − q̂(k)) +DKL(q̂

(k+1)∥q̂(k)), (14)

ignoring various minor terms and constants. To bound the right hand side in (14), we show the
following inequality regarding the Option 2 using Lemma 4.

Lemma 5. Assume that TV(q̂(k), q(k)) ≤ ϵTV/2 for all k. Then, the Option 2 achieves∫
δL

δq
(q(k))d(q̂(k+1) − q̂(k))

≤BF ϵTV +
β′

k

(
DKL(q̂

(k)∥pref)−DKL(q̂
(k+1)∥pref)− kDKL(q̂

(k+1)∥q̂(k))− (k + 1)DKL(q̂
(k)∥q̂(k+1))

)
Proof. In the Option 2, q̂(k+1) minimizes

rk+1(q) :=

k∑
j=1

∫
j
δL

δq
(q(j))d(q − q̂(j)) + β′(k + 1)DKL(q∥pref).

We interpret that Option 2 computes the proximal operator of the weighted sum of δL
δq and this

concept is justified by Lemma 4. By the definition of rk and rk+1, it holds that

rk+1(q) = rk(q) +

∫
k
δL

δq
(q(k))d(q − q̂(k)) + β′DKL(q∥pref). (15)

From Lemma 4, we also have

rk(q)− rk(q̂(k)) = β′kDKL(q∥q̂(k)), for all q ∈ P (16)

because rk(q) is just the sum of the linear functional of q and the KL-divergence ignoring the
constant. Letting q = q̂(k+1) and we obtain

0 ≤rk(q̂(k+1))− rk(q̂(k))− β′kDKL(q̂
(k+1)∥q̂(k)) (17)

=rk+1(q̂
(k+1))−

∫
k
δL

δq
(q(k))d(q̂(k+1) − q̂(k))− β′DKL(q̂

(k+1)∥pref)

− rk(q̂(k))− β′kDKL(q̂
(k+1)∥q̂(k)).

In the last equality, we decomposed the sum using the equation (15). Thus,∫
k
δL

δq
(q(k))d(q̂(k+1) − q̂(k))

≤rk+1(q̂
(k+1))− rk(q̂(k))− β′DKL(q̂

(k+1)∥pref)− β′kDKL(q̂
(k+1)∥q̂(k)).

By using the same argument as Eq. (16) for k ← k + 1, we have

rk+1(q̂
(k+1)) + β′(k + 1)DKL(q̂

(k)∥q̂(k+1)) =rk+1(q̂
(k))

=rk(q̂
(k)) + β′DKL(q̂

(k)∥pref).

Substituting this relation to Eq. (17) and noticing | δFδq | ≤ BF , we obtain the assertion.
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We also show the result for Option 1 that is similar to Lemma 5:
Lemma 6. Assume that TV(q̂(k), q(k)) ≤ ϵTV/2 for all k. Then, Algorithm 1 achieves∫

δF

δq
(q(k))d(q̂(k+1) − q̂(k))

≤BF ϵTV +
βk + β′

k

(
DKL(q̂

(k)∥pref)−DKL(q̂
(k+1)∥pref)

)
−
(
β(k − 1) + 2β′

2

)
DKL(q̂

(k+1)∥q̂(k))−
(
β(k + 1) + 2β′(1 + 1/k)

2

)
DKL(q̂

(k)∥q̂(k+1))

Proof. Please refer to Appendix A.2.1. The proof is almost identical to the proof of Lamma 5.

We mentioned that our rough intermediate goal was to show that L(q) monotonically decreases in
each kth iteration:

L(q̂(k+1))− L(q̂(k)) ≲ 0.

Rigorously, we will show that

L̃k(q) := L(q) +
β′

k
DKL(q∥pref)

decreases. This is an objective function with additional regularization imposed by the hyperparam-
eter β′. From Lemma 5, we prove that L̃k(q̂

(k)) decreases as in the following lemma.
Lemma 7. Assume that TV(q̂(k), q(k)) ≤ ϵTV/2 for all k and 2β + SF ≤ 2β′. Then, Option 2
satisfies

L̃k+1(q̂
(k+1))− L̃k(q̂

(k)) ≤(LTV +BF )ϵTV −
β′(k + 1)

k
DKL(q̂

(k)∥q̂(k+1)), (18)

and Option 1 satisfies

L̃k+1(q̂
(k+1))− L̃k(q̂

(k)) ≤(LTV +BF )ϵTV −
βk(k + 1) + 2β′(k + 1)

2k
DKL(q̂

(k)∥q̂(k+1)),

(19)

By this lemma, it can be shown that the sum of the KL divergences DKL(q̂
(k)∥q̂(k+1)) converges to

0 at a rate of O(1/K) through a telescoping sum: we obtain that

1

K

K∑
k=1

(weight)kDKL(q̂
(k)∥q̂(k+1)) = O

(
1

K

)
.

From the above equation, it is immediately shown that

min
k=1,...,K

(weight)kDKL(q̂
(k)∥q̂(k+1)) = O

(
1

K

)
,

where (weight)k ≃ k in Option 1, while (weight)k ≃ 1 in Option 2. In Option 2, we will be able to
show that minkDKL(q̂

(k)∥q̂(k+1)) → 0, which implies that q̂(k) converges to some point (in fact,
this is the stationary point).

Now let us prove Lemma 7:

Proof. We only prove the inequality for Option 2. By the smoothness of F (the weaker smoothness
(ii)’ in Eq.(13)), the Lipschitz continuity of δF

δq and the property of the KL-divergence (Lemma 4),
we have

L(q̂(k+1))− L(q̂(k)) ≤
∫
δF

δq
(q̂(k))d(q̂(k+1) − q̂(k)) + SF

2
DKL(q̂

(k+1)∥q̂(k))

+ βDKL(q̂
(k+1)∥q̂(k)) +

∫
(−βḡ(k−1))d(q̂(k+1) − q̂(k))

≤
∫ (

δF

δq
(q(k))− βḡ(k−1)

)
d(q̂(k+1) − q̂(k))

+
SF

2
DKL(q̂

(k+1)∥q̂(k)) + βDKL(q̂
(k+1)∥q̂(k)) + LTVϵTV. (20)
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We have used the induced smoothness of F (Eq.(13)) in the first inequality, and
used the Lipschitz continuity in the second inequality. By Lemma 5, we can bound∫ (

δF
δq (q

(k))− βḡ(k−1)
)
d(q̂(k+1)− q̂(k)) =

∫
δL
δq (q̂

(k))d(q̂(k+1)− q̂(k)). Thus the RHS of Eq. (20)
can be bounded as

(RHS) ≤β
′

k

(
DKL(q̂

(k)∥pref)−DKL(q̂
(k+1)∥pref)− kDKL(q̂

(k+1)∥q̂(k))− (k + 1)DKL(q̂
(k)∥q̂(k+1))

)
+

2β + SF

2
DKL(q̂

(k+1)∥q̂(k)) + (LTV +BF )ϵTV

≤β
′

k

(
DKL(q̂

(k)∥pref)−DKL(q̂
(k+1)∥pref)− (k + 1)DKL(q̂

(k)∥q̂(k+1))
)

+
(2β + SF − 2β′)

2
DKL(q̂

(k+1)∥q̂(k)) + (LTV +BF )ϵTV,

which gives the assertion in Option 2 by noting β′

k DKL(q̂
(k+1)∥pref) ≥ β′

k+1DKL(q̂
(k+1)∥pref). As

for Option 1, we repeat the same argument to show the desired result.

Combining Lemma 5 and Lemma 7, we will prove that

1

K

K∑
k=1

(weight)kDKL(q̂
(k)∥q̂(k+1)) = O

(
1

K

)
where (weight)k ≃ k in Option 1 and (weight)k ≃ 1 in Option 2. When we take Option 2, it
holds that minkDKL(q̂

(k)∥q̂(k+1)) = O(1/K). It is important that DKL(q̂
(k)∥q̂(k+1)) is also the

approximate “moment generation function” ψq(g) = log(Eq[exp(−g + Eq[g]]) of δL̃k(q̂
(k))

δq ; when
k →∞,

min
k=1,..,K

(
“Variance” of

δL̃k

δq

)
(q̂(k), x) ≃ min

k=1,..,K
DKL(q̂

(k)∥q̂(k+1)) = O
(

1

K

)
.

This can be interpreted as δL̃k

δq (q̂(k), x)→ 0 (up to constant w.r.t. x).

This result is consistent with the findings for standard, non-distributional Dual Averaging (Liu et al.,
2023a), where mink=1,...,K ∥(gradient of the objective)k∥2 = O(1/K) as the variance corresponds
to the second moment..

We rigorously formulate the above discussion as the following proposition.
Proposition 1. Let

ΨK :=
1

Kβ′
(L̃1(q̂

(1))− L∗) + (LTV +BF )

Kβ′

K∑
k=1

ϵTV.

Then, Algorithm 1 satisfies

1

K

K∑
k=1

βk + 2β′

2
DKL(q̂

(k)∥q̂(k+1)) ≤ ΨK

and Algorithm 2 satisfies

1

K

K∑
k=1

DKL(q̂
(k)∥q̂(k+1)) ≤ ΨK .

This also yields that the following bound holds for Algorithm 2:

min
1≤k≤K

ψq̂(k)

(
k

β′(k + 1)

δL̃k

δq
(q̂(k))

)
≤ Ek∼Univ([K])

[
ψq̂(k)

(
k

β′(k + 1)

δL̃k

δq
(q̂(k))

)]
≤ ΨK ,

where the expectation in the middle term is taken over a random index k uniformly chosen from
[K] = {1, . . . ,K}.
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Proof. Summing up (19) for k = 1, . . . ,K, we have that

L̃K+1(q̂
(K+1))− L̃1(q̂

(1)) ≤(LTV +BF )

K∑
k=1

ϵTV − β′
K∑

k=1

k + 1

k
DKL(q̂

(k)∥q̂(k+1)).

This yields that

β′

K

K∑
k=1

k + 1

k
DKL(q̂

(k)∥q̂(k+1)) +
1

K
(L̃K+1(q̂

(K+1))− L∗)

≤ 1

K
(L̃1(q̂

(1))− L∗) + (LTV +BF )

K

K∑
k=1

ϵTV. (21)

Please note that

β′

K

K∑
k=1

DKL(q̂
(k)∥q̂(k+1)) ≤ β′

K

K∑
k=1

k + 1

k
DKL(q̂

(k)∥q̂(k+1)) +
1

K
(L̃K+1(q̂

(K+1))− L∗)

by the optimality of L∗ and that the RHS in (21) is O(1/K). Here, we see that

DKL(q̂
(k)∥q̂(k+1))

=Eq̂(k) [−ḡ(k−1) + ḡ(k)]− log(Epref
[exp(−ḡ(k−1))]) + log(Epref

[exp(−ḡ(k))])
=Eq̂(k) [−ḡ(k−1) + ḡ(k)] + log(Eq̂(k) [exp(−ḡ(k) + ḡ(k−1))])

= log
{
Eq̂(k)

[
exp

(
−ḡ(k) + ḡ(k−1) − Eq̂(k)

[
−ḡ(k) + ḡ(k−1)

])]}
,

Now, the term ḡ(k) − ḡ(k−1) can be evaluated as

ḡ(k) − ḡ(k−1) = k

β′(k + 1)

δL

δq
(q̂(k))− 1

k + 1
ḡ(k−1) =

k

β′(k + 1)

δL̃k

δq
(q̂(k)),

which yields the assertion because

DKL(q̂
(k)∥q̂(k+1))

= log

{
Eq̂(k)

[
exp

(
k

β′(k + 1)

δL̃k

δq
(q̂(k))− Eq̂(k)

[
k

β′(k + 1)

δL̃k

δq
(q̂(k))

])]}
,

which is the “moment generating function” ψq̂(k) of k
β′(k+1)

δL̃k

δq (q̂(k)).

A.2.1 PROOF OF LEMMA 6

Proof. The proof is almost identical to Lemma 5. In Algorithm 1, q̂(k+1) is defined as the minimizer
of the following quantity:

rk+1(q) :=

k∑
j=1

j

(∫
δF

δq
(q(j))d(q − q̂(j)) + βDKL(q∥pref)

)
+ β′(k + 1)DKL(q∥pref).

Hence, we have

rk+1(q) = rk(q) +

∫
k
δF

δq
(q(k))d(q − q̂(k)) + (βk + β′)DKL(q∥pref) (22)

by the definition of rk. Moreover, Lemma 4 and the optimality of q̂(k) gives that

rk(q)− rk(q̂(k)) =
(
βk(k − 1)

2
+ β′k

)
DKL(q∥q̂(k)), for all q ∈ P . (23)
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Substituting q ← q̂(k+1), we obtain

0 ≤rk(q̂(k+1))− rk(q̂(k))−
(
βk(k − 1)

2
+ β′k

)
DKL(q̂

(k+1)∥q̂(k))

=rk+1(q̂
(k+1))−

∫
k
δF

δq
(q(k))d(q̂(k+1) − q̂(k))− (βk + β′)DKL(q̂

(k+1)∥pref) (used (22))

− rk(q̂(k))−
(
βk(k − 1)

2
+ β′k

)
DKL(q̂

(k+1)∥q̂(k)). (24)

This is equivalent to∫
k
δF

δq
(q(k))d(q̂(k+1) − q̂(k))

≤rk+1(q̂
(k+1))− rk(q̂(k))− (βk + β′)DKL(q̂

(k+1)∥pref)−
(
βk(k − 1)

2
+ β′k

)
DKL(q̂

(k+1)∥q̂(k)).

By using the same argument as Eq. (23) for k ← k + 1, we have

rk+1(q̂
(k+1)) +

(
βk(k + 1)

2
+ β′(k + 1)

)
DKL(q̂

(k)∥q̂(k+1))

=rk+1(q̂
(k))

=rk(q̂
(k)) + (βk + β′)DKL(q̂

(k)∥pref).
Substituting this relation to Eq. (24) and noticing | δFδq | ≤ BF , we obtain the assertion.

B DERIVATIONS OF FUNCTIONAL DERIVATIVES

B.1 DIRECT PREFERENCE OPTIMIZATION

We can apply the proposed algorithm to the (populational) objective of Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023). DPO is an effective approach for learning from human preference
for not only language models but also diffusion models.

Original DPO objective Let xw, xl be “winning” and “losing” outputs independently sampled
from the reference model pref . The event {xw ≻ xl} is determined by the human preference. The
original DPO objective is formulated as

LDPO,original(q) = −Exw,xl

[
log σ

(
γ log

q(xw)

pref(xw)
− γ log q(xl)

pref(xl)

)]
,

where γ > 0 is a hyperparameter. The expectation is taken by xw, xl, that are “winning” and
“losing” samples from pref . Wallace et al. (2024) derived a new objective that is the upper bound
of LDPO,original(q), but it is a specialized derivation of the optimization method for DPO.

Reformulating of the DPO Objective The goal is to directly minimizeLDPO,original(q), however,
in the above expression, we cannot apply DPO to diffusion models directly because the expectaion
with tuple (xw, xl) is not formulated well. We start with another expression of the objective of DPO:

LDPO(q) := −Exw∼pref
Exl∼pref

[
log σ

(
γ log

q(xw)

pref(xw)
− γ log q(xl)

pref(xl)

)
1xw≻xl

(xw, xl)

]
,

1x≻y(x, y) is 1 if x ≻ y, 0 otherwise. ThisLDPO is in the regime of our algorithm and the functional
derivative can be derived:
Proposition 2. The functional derivative of LDPO(q) is calculated as

δLDPO

δq
(q, x)

=− γExl∼pref

[
(1− σ (−γf(x) + γf(xl)))

∫
e−fdpref
e−f(x)

1x≻xl
(x, xl)

]
+ γExw∼pref

[
(1− σ (−γf(xw) + γf(x)))

∫
e−fdpref
e−f(x)

1xw≻x(xw, x)

]
,

where q = e−fpref/
∫
e−fdpref . This functional derivative is tractable in our settings.
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Proof. In this proof, we use the following notations:

• pref : the output distribution of a pre-trained model,

• q := e−fpref/
∫
e−fdpref : the output distribution of an aligned model,

• LSL(q1, q2) := log σ(γ log q1/pref − γ log q2/pref),

• ∂1LSL(q1, q2) = γ(1− σ(γ log q1/pref − γ log q2/pref)) 1
q1

,

• ∂2LSL(q1, q2) = −(1− σ(γ log q1/pref − γ log q2/pref)) 1
q2

,

• ψ(r1, r2) := γ(log r1 − log r2),

• Inv(f, x) =
∫
e−fdpref

e−f(x) .

The objective of DPO is written as

LDPO(q) := −Exw∼pref
Exl∼pref

[LSL(q(xw), qp(xl))1xw≻xl
(xw, xl)] .

We obtain the first variation of the objective as follows:

LDPO(q + ϵ(q̃ − q))
=LDPO(q)− ϵExw∼pref

Exl∼pref
[(∂1LSL(q(xw), q(xl))(q̃ − q)(xw)

+∂2LSL(q(xw), q(xl))(q̃ − q)(xl))1xw≻xl
(xw, xl)] +O(ϵ2)

=LDPO(p)

− ϵ
[
Exl∼pref

[∫
γ(1− σ(ψ( q(xw)

pref(xw)
,
q(xl)

pref(xl)
)))(q̃ − q)(xw)Inv(f, xw)dxw1xw≻xl

]
+Exw∼pref

[∫
γ(1− σ(ψ( q(xw)

pref(xw)
,
q(xl)

pref(xl)
)))(q̃ − q)(xl)Inv(f, xl)dxl1xw≻xl

]]
+O(ϵ2).

Then, the first derivative of F is

δLDPO

δp
(p, x) =− Exl∼pref

[
γ

(
1− σ

(
ψ(

q(x)

pref(x)
,
q(xl)

pref(xl)
)

))
1x≻xl

(x, xl)

]
Inv(f, x)

+ Exw∼pref

[
γ

(
1− σ

(
ψ(

q(xw)

pref(xw)
,
q(x)

pref(x)
)

))
1xw≻x(xw, x)

]
Inv(f, x).

B.2 KAHNEMAN-TVERSKY OPTIMIZATION

Assume that the whole data space Rd is split into a desirable domainDD and an undesirable domain
DU. The objective of original KTO (Ethayarajh et al., 2024) is formulated as

LKTO(q) =Ex∼pref

[
γD

(
1− σ

(
κ log

q

pref
−DKL(q∥pref)

))
1{x∈DD}

+γU

(
1− σ

(
DKL(q∥pref)− κ log

q

pref

))
1{x∈DU}

]
,

where γD, γU , κ are hyper parameters, and σ is a sigmoid function.
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Proposition 3. The functional derivative of LKTO is calculated as
δLKTO

δq
(q, x)

=− κγDσderiv(ϕ(x))
∫
e−fdpref
e−f(x)

1{x∈DD}

+ (−f(x)− log

∫
e−f(x)dpref)Ey∼pref

[
γDσderiv (ϕ(y))1{y∈DD}

]
+ κγUσderiv(−ϕ(x))

∫
e−fdpref
e−f(x)

1{x∈DU}

− (−f(x)− log

∫
e−f(x)dpref)Ey∼pref

[
γUσderiv (−ϕ(y))1{y∈DU}

]
where σderiv(·) := σ(·)(1− σ(·)), ϕ(x) := κ log q(x)

pref (x)
−DKL(q∥pref), q = e−fpref∫

e−fdpref
.

The functional derivative of KTO can be calculated if you have f(x) and the samples from pref .
Note that log q(x)/pref(x) = −f(x)− log

∫
e−f(x)dpref .

Proof. The first variation of LKTO is

LKTO(q + ϵ(q̃ − q))− LKTO(q)

≃ϵEx∼pref

[
−κγDσderiv(ϕ(x))

(
q̃(x)− q(x)

q(x)
+

∫
log

q(y)

pref(y)
d(q̃ − q)(y)

)
1{x∈DD}

]
+ ϵEx∼pref

[
κγUσderiv(−ϕ(x))

(
q̃(x)− q(x)

q(x)
−
∫

log
q(y)

pref(y)
d(q̃ − q)(y)

)
1{x∈DU}

]
=ϵ

∫ {
−κγDσderiv(ϕ(x))Inv(f, x)1{x∈DD}

+ log
q(x)

pref(x)
E
[
κγDσderiv(ϕ(y))1{y∈DD}

]}
d(q̃ − q)(y)

+ϵ

∫ {
κγUσderiv(−ϕ(x))Inv(f, x)1{x∈DD}

− log
q(x)

pref(x)
E
[
κγDσderiv(−ϕ(y))1{y∈DU}

]}
d(q̃ − q)(y),

where Inv(f, x) =
∫
e−fdpref

e−f(x) . Now the desired result immediately follows.

C ERROR ANALYSIS OF DIFFUSION MODEL

C.1 OVERVIEW

Here, we analyze the sampling error caused by the diffusion model. Let us organize the settings and
notations used in this section.

Target distribution. The target distribution is q∗ = q0, which is decomposed as q∗(x) =
ρ∗(x)p∗(x) with p∗ = p0 and ρ∗. Here p∗ and ρ∗ represent the distribution of the original model
and the density ratio obtained by fine-tuning, respectively.

Sampling with score-based diffusion model. In the score-based diffusion model, we start with
the forward process, which is written as a stochastic differential equation (SDE). Choosing the
Ornstein–Uhlenbeck (OU) process, {X̄t}t≥0 follows the following SDE:

X̄0 ∼ p∗, dX̄t = −X̄tdt+
√
2dBt, (25)

where {Bt}t≥0 is the standard Brownian motion. At each time t, the law of Xt is written as

pt(x) =

∫
p∗(y) exp

(
− 1

2σ2
t

∥mty − x∥2
)
dx,
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where mt = e−t and σ2
t = 1− e−2t. In the same way, define {Ȳt}t≥0 by replacing p∗ by q∗ in (25)

and let qt be the law of Ȳt.

Then, for some T ≥ 0, we can define the reverse process for {X̄←t }0≤t≤T . (LetBt below be distinct
from the one in (25).)

X̄←0 ∼ pT , dX̄←t = {X̄←t + 2∇ log pT−t(X̄
←
t )}dt+

√
2dBt. (26)

Then, the law of X̄←t equals pT−t, which is why we call (26) as the reverse process. In the same
way, we define {Ȳ←t }0≤t≤T as the reverse process of {Ȳt}t≥0.

Doob’s h-transform. By applying Doob’s h-transform to ∇ log qT−t, it can be decomposed into
the original score∇ log pT−t and a correction term.

∇ log qT−t(Ȳ
←
t ) = ∇ log pT−t(Ȳ

←
t ) +∇x log(E[ρ∗(X̄0)|X̄T−t = x])|x=Ȳ←t

. (27)

See Lemma 12 for derivation.

Approximation of the score and correction term. Because we do not have access to the exact value
of pt and ρ∗ and therefore cannot implement (27) exactly, we consider approximating them by, e.g.,
neural networks. We approximate ∇ log pT−t(x) by s(x, t) : Rd+1 → Rd. Also, we approximate
u∗(x, t) = ∇x log(E[ρ∗(X̄0)|X̄T−t = x]) by u(x, t) : Rd+1 → Rd.

Discretization. Also, we need to discretize the stochastic differential equation. We finally obtain
the approximation of (26), denoted by {Y←t }0≤t≤T , as

Y←0 ∼ N (0, Id), dY
←
t = {Y←t + 2s(Y←kh , kh) + 2u(Y←kh , kh)}dt+

√
2dBt, t ∈ [kh, (k + 1)h].

Obtaining the correction term (approximately). Given the score network s(x, t) approximating
∇ log pt(x) and the function h̄ that approximates h∗, we can approximate the correction term u(x, t).
Remind that, for fixed x ∈ Rd, t = kh, s = k(h+ 1) ∈ R, the correction term is calculated as

∇x log(E[ρ∗(X̄0)|X̄T−t = x]|) =
∫
E[ρ∗(X̄0)|X̄T−s = x′] ∂

∂xP[X̄T−s = x′|X̄T−t = x]dx′

E[ρ∗(X̄0)|X̄T−t = x]
.

(28)

One way to approximate (28) starts from approximating E[ρ∗(X̄0)|X̄T−t = x]. If we run the reverse
diffusion process

X̃←t = x, dX̃←τ = {X̃←τ + 2∇ log pT−τ (X̃
←
τ )}dτ +

√
2dBτ ,

we obtain that the law of X̃←T is equal to that of X̄0|X̄T−t = x. Therefore, by running the approxi-
mated reverse process (with a slight abuse of notation)

X̃t = x, dX̃τ = {X̃τ + 2s(X̃lh, lh)}dt+
√
2dBτ , τ ∈ [lh, (l + 1)h],

multiple times, the sample of X̃T , denoted by {x̃T,i}ni=1, can approximate E[ρ∗(X̄0)|X̄T−t = x] as

E[ρ∗(X̄0)|X̄T−t = x] ≈ 1

n

n∑
i=1

ρ′(x̃T,i), (29)

where ρ′ is the approximation of ρ∗.

On the other hand, we approximate ∂
∂xP[X̄T−s = x′|X̄T−t = x] by approximating P[X̄T−s =

x′|X̄T−t = x] with a Gaussian distribution. Specifically, because X̄T−s = x′|X̄T−t = x is obtained
by the following reverse diffusion process

X̃←t = x, dX̃←τ = {X̃←τ + 2∇ log pT−τ (X̃
←
τ )}dτ +

√
2dBτ ,

we approximate∇ log pT−τ (X̃
←
τ ) by s(xkh, kh) to obtain

Ẋ←t = xkh, dẊ
←
τ = {Ẋ←τ + 2s(xkh, kh)}dτ +

√
2dBτ .

The distribution of X̃←s is denoted by

N
(
ehxkh + 2(eh − 1)s(xkh, kh), e

2h − 1
)
. (30)
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Using this, our approximation is
∂

∂x
P[X̄T−s = x′|X̄T−t = x]

≈ ∂

∂x

1

(2π(e2h − 1))
d
2

exp

(
− (x′ − (ehx+ 2(eh − 1)s(xkh, kh)))

2

2(e2h − 1)

)
=
eh(x′ − (ehx+ 2(eh − 1)s(xkh, kh)))

(e2h − 1)(2π(e2h − 1))
d
2

exp

(
− (x′ − (ehx+ 2(eh − 1)s(xkh, kh)))

2

2(e2h − 1)

)
.

This implies that, if we sample {x′j}mj=1 from (30),∫
E[ρ∗(X̄0)|X̄T−s = x′]

∂

∂x
P[X̄T−s = x′|X̄T−t = x]dx′

≈ eh

(e2h − 1)

1

m

m∑
j=1

E[ρ∗(X̄0)|X̄T−s = x′j ](x
′
j − (ehx+ 2(eh − 1)s(xt, t))),

and approximate each E[ρ∗(X̄0)|X̄T−s = x′j ] in the same way as (29), we can approximate the
correction term (28).

Now, our goal is to bound the error of the whole pipeline under the following assumptions of p∗ and
ρ∗ and the score approximation error.
Assumption 5 (Assumption 3, restated). 1. ∇ log pt is Lp-smooth at every time t and it has finite

second moment E[∥X̄t∥22] ≤ m <∞ for all t ∈ R+ and x ∈ Rd.
2. ∇ log ρ∗ is Lρ-smooth and bounded as C−1ρ ≤ ρ∗ ≤ Cρ for a constant Cρ.

3. The score estimation error is bounded by EX̄←·
[∥s(X̄←t , t)−∇ log pT−t(X̄

←
T−t)∥2] ≤ ε at each

time t.
4. Ept [∥u∗(x, lh)− u(x, lh)∥2] ≤ ε2ρ,l for any 1 ≤ l ≤ T/h.

Theorem 5 (Theorem 3, restated). Suppose that Assumption 5 is satisfied. Then, we have the fol-
lowing bound on the distribution q̂ of Y←T :

TV(q∗, q̂)
2 ≲ Tε2 +

T/h∑
l=1

hε2ρ,l + T (LpC
2
ρ + Lρ)

2(dh+m2h2) + exp(−2T )DKL(q̂opt∥N(0, I)).

Proof. Suppose that ∥s(·, t) + u(·, t)−∇ log qT−t∥L∞ ≤ ε′ and∇ log qT−t is Lq-smooth at every
time t. According to Chen et al. (2023c) and Pinsker’s inequality, the distribution q̂ of YT satisfies

KL(q̂∥q∗)2 ≲ Tε2 +

T/h∑
l=1

hε2ρ,l + TL2
p(dh+m2h2) + exp(−2T )DKL(q̂opt∥N(0, I)).

According to Lemma 8, Lq is bounded by

Lq ≲ LpC
2
ρ + Lρ,

which yields the assertion.

In the bound, we assumed that the term ε2ρ,l can be bounded, however this approximation error can
be derived as in the following theorem with additional technical conditions.
Assumption 6 (Assumption 4 restated). (i) ∇xs(·, ·) is Hs-Lipschitz continuous in a sense that
∥∇xs(x, t)−∇ys(y, t)∥op ≤ Hs∥x−y∥ for any x, y ∈ Rd and 0 ≤ t ≤ T and E[∥s(X̃←kh, kh)∥2] ≤
Q2 for any k, (ii) There exists R > 0 such that supt,x{∥∇2

x log pt(x)∥op, ∥∇2
x log s(x, t)∥op} ≤ R.

Theorem 6 (Theorem 4 restated). Suppose that Assumptions 3 and 4 hold. Assume that ∥ρ∗−ρ∥∞ ≤
ε′, ∥ρ∥∞ ≤ Cρ, and supx ∥∇ρ∗(x)∥ ≤ Rρ, ∥∇ρ∗(x)−∇ρ∗(y)∥ ≤ Lρ∥x− y∥ (∀x, y). Then, for
any choice of 0 ≤ h ≤ δ ≤ 1/(1 + 2R), we have that

ε2ρ,l ≲C
3
ρ

{
Ξδ,ε +R2

φ

(
ε2 + L2

pd(δ +mδ2)
)
+ [L2

φ(m+Q2 + dh) +R2
φ(1 + 2R)2]h2

}
+min{T − lh, 1/(2 + 2R)}−1ε′2,

where Ξδ,ε := C2
ρ(1 + 2R)2δ + C2

ρ
1+δR2

φ

δ [ε2 + L2
pd(h + mh2)], and Rφ and Lφ are constants

introduced in Lemma 10.
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C.2 BOUNDING THE SMOOTHNESS

The proof of Theorem 3 (i.e., Theorem 5) utilizes the smoothness of the density qt corresponding to
the aligned model. The following lemma gives its bound.
Lemma 8. Suppose that∇ log pt is Lp-Lipschitz for all t and∇ log ρ∗ is Lρ-Lipschitz, and C−1ρ ≤
ρ∗ ≤ Cρ. Then, ∇ log qt is Lq-Lipschitz for all t, where Lq is bounded by

Lq ≤ min

{
4(Lp + Lρ)

2

2(Lp + Lρ)− 1
, (4 + C2

ρ)Lp + 4Lρ

}
≲ LpC

2
ρ + Lρ.

Proof. We divide the proof into two parts, with σ2
t = 1

2(Lp+Lρ)
as the boundary.

First consider the case when σ2
t ≤ 1

2(Lp+Lρ)
. Remind that

qt(x) =

∫
q∗(y)

1

(2πσ2
t )

d
2

exp

(
− 1

2σ2
t

∥mty − x∥2
)
dy,

with σ2
t = 1− e−2t and mt = e−t. From this, ∇xqt(x) and ∇2

xqt(x) are computed as

∇xqt(x) = ∇x

∫
q∗(y)

1

(2πσ2
t )

d
2

exp
(
− 1

2σ2
t

∥mty − x∥2
)
dy

= m−1t

∫
(∇yq∗(y))

1

(2πσ2
t )

d
2

exp
(
− 1

2σ2
t

∥mty − x∥2
)
dy

and

∇2
xqt(x) = m−2t

∫
(∇2

yq∗(y))
1

(2πσ2
t )

d
2

exp
(
− 1

2σ2
t

∥mty − x∥2
)
dy.

Thus, we can compute∇2
x log qt(x) as

∇2
x log qt(x)

=
∇2

xqt(x)

qt(x)
− ∇xqt(x)(∇xqt(x))

⊤

(qt(x))2

=
m−2t

∫
(
∇2

yq∗(y)

q∗(y)
− ∇yq∗(y)∇yq∗(y)

⊤

q∗(y)2
)q∗(y) exp

(
− 1

2σ2
t
∥mty − x∥2

)
dy∫

q∗(y) exp
(
− 1

2σ2
t
∥mty − x∥2

)
dy

(31)

+
m−2t

∫ ∇yq∗(y)∇yq∗(y)
⊤

q∗(y)2
q∗(y) exp

(
− 1

2σ2
t
∥mty − x∥2

)
dy∫

q∗(y) exp
(
− 1

2σ2
t
∥mty − x∥2

)
dy

(32)

−
m−2t

∫ ∇yq∗(y)
q∗(y)

q∗(y) exp
(
− 1

2σ2
t
∥mty − x∥2

)
dy
∫ ∇yq∗(y)

q∗(y)
q∗(y) exp

(
− 1

2σ2
t
∥mty − x∥2

)
dy

(
∫
q∗(y) exp

(
− 1

2σ2
t
∥mty − x∥2

)
dy)2

.

(33)

Eq. (31) is an expectation of∇2
y log q∗(y) =

∇2
yq∗(y)

q∗(y)
−∇yq∗(y)∇yq∗(y)

⊤

q∗(y)2
with respect to a distribution

A(y|x) ∝ q∗(y) exp
(
− 1

2σ2
t

∥mty − x∥2
)
.

Therefore, (31) is bounded bym−2t (Lp+Lρ) from the assumption. On the other hand, the other two
terms are regarded as the covariance of ∇ log q∗(y) with respect to that distribution. Because σ2

t ≤
1

2(Lp+Lρ)
,A(y|x) is (Lp+Lρ)-strongly concave, and therefore satisfies the Poincaré inequality with

a constant 1
Lp+Lρ

. Therefore, for any a ∈ Rd, we have

a⊤((32) + (33))a

= m−2t a⊤(EA(y|x)[(∇ log q∗(y))(∇ log q∗(y))
⊤]− EA(y|x)[∇ log q∗(y)]EA(y|x)[∇ log q∗(y)]

⊤)a

≤ m−2t

Lp + Lρ
· E[∥a∇2 log q∗(y)∥2] ≤

m−2t

Lp + Lρ
(Lp + Lρ)

2 = m−2t Lp + Lρ.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

This implies that (32)+(33) is m−2t (Lp+Lρ)-smooth and∇2
x log qt(x) is 2m−2t (Lp+Lρ)-smooth.

Because mt =
√

1− σ2
t , we have mt ≥

√
1− 1

2(Lp+Lρ)
. By applying this, we have 2m−2t (Lp +

Lρ) ≤ 4(Lp+Lρ)
2

2(Lp+Lρ)−1 .

Next, let us consider the case when σ2
t ≥ 2

(Lp+Lρ)
. Note that∇xqt(x) and∇2

xqt(x) are also written
as

∇xqt(x) = −
∫
q∗(y)

1

(2πσ2
t )

d
2

exp
(
− 1

2σ2
t

∥mty − x∥2
)x−mty

σ2
t

dy

and

∇2
xqt(x)

= −
∫
q∗(y)

1

(2πσ2
t )

d
2

exp
(
− 1

2σ2
t

∥mty − x∥2
) I
σ2
t

dy

+

∫
q∗(y)

1

(2πσ2
t )

d
2

exp
(
− 1

2σ2
t

∥mty − x∥2
) (x−mty)(x−mty)

⊤

σ4
t

dy.

Thus, we can compute∇2
x log qt(x) as

∇2
x log qt(x)

=
∇2

xqt(x)

qt(x)
− ∇xqt(x)(∇xqt(x))

⊤

(qt(x))2

= −

∫
q∗(y) exp

(
− 1

2σ2
t
∥mty − x∥2

)
I
σ2
t
dy∫

q∗(y) exp
(
− 1

2σ2
t
∥mty − x∥2

)
dy

(34)

+

∫
q∗(y) exp

(
− 1

2σ2
t
∥mty − x∥2

) (x−mty)(x−mty)
⊤

σ4
t

dy∫
q∗(y) exp

(
− 1

2σ2
t
∥mty − x∥2

)
dy

(35)

−

( ∫
q∗(y) exp

(
− 1

2σ2
t
∥mty − x∥2

) (x−mty)
σ2
t

dy
)( ∫

q∗(y) exp
(
− 1

2σ2
t
∥mty − x∥2

) (x−mty)
σ2
t

dy
)⊤( ∫

q∗(y) exp
(
− 1

2σ2
t
∥mty − x∥2

)
dy
)2 .

(36)

Eq. (34) is bounded by σ−2t ≤ 2(Lp + Lρ). On the other hand, (35)+(36) are transformed into

(35)+(36)

=
m2

t

σ4
t

∫
q∗(y) exp

(
− 1

2σ2
t
∥mty − x∥2

)
yy⊤dy∫

q∗(y) exp
(
− 1

2σ2
t
∥mty − x∥2

)
dy

− m2
t

σ4
t

( ∫
q∗(y) exp

(
− 1

2σ2
t
∥mty − x∥2

)
ydy

)( ∫
q∗(y) exp

(
− 1

2σ2
t
∥mty − x∥2

)
ydy

)⊤( ∫
q∗(y) exp

(
− 1

2σ2
t
∥mty − x∥2

)
dy
)2

=
m2

t

σ4
t

Varq0|t(y|x)(y),

where Varq0|t(y|x)(y) means the variance of X0 conditioned on Xt = x, with respect to qt.

Thus, bounding Varq0|t(y|x)(x) yields the conclusion. Lemma 9 implies that

Varq0|t(y|x)(y) ≤ C
2
ρVarp0|t(y|x)(y). (37)

Similarly to ∇2
x log qt(x),∇2

x log pt(x) satisfies

∇2
x log pt(x) = −σ−2t Id +

m2
t

σ4
t

Varp0|t(y|x)(y). (38)
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By combining (37) and (38), we have

m2
t

σ4
t

Varq0|t(y|x)(y) ≤ C
2
ρσ
−2
t Id + C2

ρ∇2
x log pt(x).

Therefore, from the assumption that∇x log pt(x) is Lp-Lipschitz and σ−2t ≥ 2(Lp+Lρ), we obtain

that ∥m
2
t

σ4
t
Varq0|t(y|x)(y)∥ ≤ (2 + C2

ρ)Lp + 2Lρ.

By putting it all together,∇ log qt is ((4 + C2
ρ)Lp + 4Lρ)-Lipschitz.

Lemma 9. When C−1ρ ≤ h∗(x) ≤ Cρ, we have

q0|t(x|x′)
p0|t(x|x′)

≤ C2
ρ

for all x, x′ and t.

Proof. We can write q0|t(x|x′) as

q0|t(x|x′) =
q0,t(x, x

′)∫
q0(x′′)qt|0(x|x′′)dx′′

=
p∗(x)ρ∗(x)qt|0(x

′|x)∫
p∗(x′′)ρ∗(x′′)qt|0(x|x′′)dx′′

.

Because C−1ρ ≤ ρ∗(x) ≤ Cρ and qt|0(x′|x) = pt|0(x
′|x), we have

q0|t(x|x′) ≤ C2
ρ

p∗(x)pt|0(x
′|x)∫

p∗(x′′)pt|0(x|x′′)dx′′
= C2

ρp0|t(x|x′),

which concludes the proof.

C.3 ESTIMATION ERROR OF THE CORRECTION TERM

Since we have shown the time discretization error in the previous section, what we remain to show
is just an upper bound of ε2ρ,l. For that purpose, we put an additional assumption which is almost
same as Assumption 4 except the condition (iii). A bound of ε2TV in the third condition (iii) will be
given as ε2TV = O(ε2 + h) by Chen et al. (2023c).
Assumption 7. (i) ∇xs(·, ·) is Hs-Lipschitz continuous in a sense that ∥∇xs(x, t) −
∇ys(y, t)∥op ≤ Hs∥x− y∥ for any x, y ∈ Rd and 0 ≤ t ≤ T and E[∥s(X̄←kh, kh)∥2] ≤ Q2 for
any k.

(ii) There exists R > 0 such that supt,x{∥∇2
x log pt(x)∥op, ∥∇2

x log s(x, t)∥op} ≤ R.

(iii) EX̄t
[TV(X̄←T , X←T |X̄←T−t = X←T−t = X̄t)

2] ≤ ε2TV for any t ∈ [0, T ].

Theorem 7. Suppose that 0 ≤ h ≤ δ ≤ 1/(1+2R) and Assumptions 7 and 5 hold. Let Lφ and Rφ

be as given in Lemma 10. Then, it holds that

EX̄←·
[∥∇xE[ρ∗(X̄←T )|X̄t]−∇xE[ρ∗(X←T )|X←kh]∥2]

≲R2
φ

(
ε2 + L2

pd(δ +mδ2)
)
+ Ξδ,ε + [L2

φ(m+ 4Q2 + dh) +R2
φ(1 + 2R)2]h2

=O
(
ε2 + δ +

ε2TV

δ

)
,

where

Ξδ,ε :=
4c2ηC

2
ρ(1 + 2R)2

3
δ + 2 exp(2)

{
C2

ρ

ε2TV

δ
+ CR2

φ[ε
2 + L2

pd(δ +mδ2)]

}
,

and cη > 0 is a universal constant.

By Chen et al. (2023c), ε2TV = O(ε2 + h), and thus by substituting δ ←
√
h, we finally obtain an

error estimate as (
1 +

1√
h

)
ε2 +

√
h.
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Proof. Let t ∈ [kh, (k+1)h) and t∗ = kh+ δ where δ is larger than or equal to h: δ ≥ h. We only
consider a situation where T − t ≥ δ. The situation where δ < T − t can be treated in the same
manner by noticing a trivial relation ∇xE[ρ∗(X̄←T )|X̄←T = x] = ∇ρ∗(x). Then, for a given initial
state x ∈ Rd, we define the stochastic processes as

X̄←t = x, dX̄←τ = {X̄←τ + 2∇ log pT−τ (X̄
←
τ )}dτ +

√
2dBτ , (t ≤ τ ≤ T ),

and its numerical approximation as

X←t = x, dX←τ = {X←τ + 2s(X←kτh, kτh)}dτ +
√
2dBτ . (t ≤ τ ≤ T ),

where kτ is the integer such that τ ∈ [kτh, (kτ + 1)h).

Note that

∇xE[ρ∗(X̄←T )|X̄t]−∇xE[ρ∗(X←T )|X←kh]
= (∇xE[ρ∗(X̄←T )|X̄t]−∇xE[ρ∗(X←T )|X←t ])︸ ︷︷ ︸

(a)

+(∇xE[ρ∗(X←T )|X←t ]−∇xE[ρ∗(X←T )|X←kh])︸ ︷︷ ︸
(b)

.

(39)

We first evaluate the term (a):

∇xE[ρ∗(X̄←T )|X̄←t = x]−∇xE[ρ∗(X←T )|X←t = x].

As we have seen above, the derivative can be expressed by the following recursive formula of the
conditional expectation:

∇xE[E[ρ∗(X̄←T )|X̄t∗ ]|X̄←t = x].

For a notation simplicity, we let φX(x) := E[ρ∗(X̄←T )|X̄←t∗ = x] and φY (x) := E[ρ∗(X←T )|X←t∗ =
x]. Then, the Bismut-Elworthy-Li formula (Bismut, 1984; Elworthy & Li, 1994) yields that, for any
v ∈ Rd,

v⊤∇xE[ρ∗(X̄←0 )|X̄←t = x] = E

[
1

δ

∫ δ

0

⟨ηX̄,τ ,dBτ ⟩φX(X̄←t∗ ) | X̄←t = x

]
,

where ηX̄,τ is the solution of

dηX̄,τ = (I + 2∇2 log pT−t−τ (X̄
←
t+τ ))ηX̄,τdτ,

ηX̄,0 = v.

Similarly, we define ηX,τ for the process X←τ as

dηX,τ = (ηX,τ + 2∇⊤x s(X←kτh, kτh)ηX,kτh−t)dτ,

ηX,0 = v.

Then,

v⊤∇xE[ρ∗(X̄←T )|X̄←t = x]− v⊤∇xE[ρ∗(X←T )|X←t = x]

=E

[
1

δ

∫ δ

0

⟨ηX̄,τ − ηX,τ ,dBτ ⟩φY (X
←
t∗ ) | X̄←t = X←t = x

]

+ E

[
1

δ

∫ δ

0

⟨ηX̄,τ ,dBτ ⟩(φX(X̄←t∗ )− φY (X
←
t∗ )) | X̄←t = X←t = x

]
. (40)
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By the Ito isometry, the first term of the right hand side can be bounded as(
E

[
1

δ

∫ δ

0

⟨ηX̄,τ − ηX,τ ,dBτ ⟩φY (Xt∗) | X̄←t = X←t = x

])2

≤E

(1

δ

∫ δ

0

⟨ηX̄,τ − ηX,τ ,dBτ ⟩φY (Xt∗)

)2

| X̄←t = X←t = x


≤C2

ρE

(1

δ

∫ δ

0

⟨ηX̄,τ − ηX,τ ,dBτ ⟩

)2

| X̄←t = X←t = x


=C2

ρE

[
1

h2

∫ h

τ

∥ηX̄,τ − ηX,τ∥2dτ | X̄←t = X←t = x

]

≤2C2
ρE

[
1

δ2

∫ δ

0

(∥ηX̄,τ − v∥2 + ∥ηX,τ − v∥2)dτ | X̄←t = X←t = x

]
.

Hence, we just need to bound ∥ηX̄,τ −v∥2 in the right hand side. We note that it obeys the following
differential equation:

d∥ηX̄,τ − v∥2

dτ

=2(ηX̄,τ − v)⊤
dηX̄,τ

dτ
=2(ηX̄,τ − v)⊤(I + 2∇2 log pT−t−τ (X̄

←
T−t−τ ))ηX̄,τ

=2(ηX̄,τ − v)⊤(I + 2∇2 log pT−t−τ (X̄
←
T−t−τ ))[(ηX̄,τ − v) + v]

≤2(1 + 2R)∥ηX̄,τ − v∥2 + 2(1 + 2R)∥v∥∥ηX̄,τ − v∥,

which also yields that

2∥ηX̄,τ − v∥
d∥ηX̄,τ − v∥

dτ
≤ 2(1 + 2R)∥ηX̄,τ − v∥2 + 2(1 + 2R)∥v∥∥ηX̄,τ − v∥

⇒
d∥ηX̄,τ − v∥

dτ
≤ 2(1 + 2R)(∥ηX̄,τ − v∥+ ∥v∥)

⇒ ∥ηX̄,τ − v∥ ≤ [exp(2(1 + 2R)τ)− 1]∥v∥
⇒ ∥ηX̄,τ − v∥2 ≤ [exp(2(1 + 2R)τ)− 1]2∥v∥2.

Therefore, if δ is sufficiently small (such as δ ≤ 1/(1 + 2R)), then we arrive at

∥ηX̄,τ − v∥2 ≤ cη(1 + 2R)2τ2∥v∥2,

with a universal constant cη , for any 0 ≤ τ ≤ δ. In the same vein, we also have

∥ηX,τ − v∥2 ≤ cη(1 + 2R)2τ2∥v∥2,
∥ηX̄,τ∥2 ≤ exp(4(1 + 2R)τ)∥v∥2, ∥ηX,τ∥2 ≤ exp(4(1 + 2R)τ)∥v∥2,

for 0 ≤ τ ≤ δ. These bounds yield that

2C2
ρE

[
1

δ2

∫ δ

0

(∥ηX̄,τ − v∥2 + ∥ηX,τ − v∥2)dτ | X̄←t = X←t = x

]

≤4c2ηC2
ρ(1 + 2R)2

∫ δ

0
τ2dτ
δ2

=
4c2ηC

2
ρ(1 + 2R)2

3
δ.
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Next, we bound the second term of the right hand side in Eq. (40):

E

[
1

δ

∫ δ

0

⟨ηX̄,τ ,dBτ ⟩(φX(X̄←t∗ )− φY (X
←
t∗ )) | X̄←t = X←t = x

]2

≤E

[
1

δ2

∫ δ

0

∥ηX̄,τ∥2dτ | X̄←t = X←t = x

]
E
[
(φX(X̄←t∗ )− φY (X

←
t∗ ))

2 | X̄←t = X←t = x
]

≤exp(2(1 + 2R)δ)∥v∥2

δ
E
[
(φX(X̄←t∗ )− φY (X

←
t∗ ))

2 | X̄←t = X←t = x
]
. (41)

Otherwise, we also have the following inequality:

E

[
1

δ

∫ δ

0

⟨ηX̄,τ ,dBτ ⟩(φX(X̄←t∗ )− φY (X
←
t∗ )) | X̄←t = X←t = x

]2

≤2E

[
1

δ

∫ δ

0

⟨ηX̄,τ ,dBτ ⟩(φY (X̄
←
t∗ )− φY (X

←
t∗ )) | X̄←t = X←t = x

]2
+ 2E

[
η⊤X̄,δ∇(φX(X̄←t∗ ))− φY (X̄

←
t∗ )) | X̄←t = X←t = x

]2
≤exp(2(1 + 2R)δ)∥v∥2

δ
E
[
(φY (X̄

←
t∗ )− φY (X

←
t∗ ))

2 | X̄←t = X←t = x
]

+ 2E
[
∥ηX̄,δ∥∥∇(φX(X̄←t∗ ))− φY (X̄

←
t∗ ))∥ | X̄←t = X←t = x

]2
. (42)

For bounding these quantities, we need to bound the discrepancy ∥X̄←τ − X←τ ∥2. Note that this
quantity follows the following ODE:

d∥X̄←τ −X←τ ∥2

dτ
=2(X̄←τ −X←τ )⊤[(X̄←τ − 2∇x log pT−τ−t(X̄

←
τ ))− (X←τ − 2s(x, kh))]

=2∥X̄←τ −X←τ ∥2 − 4(X̄←τ −X←τ )⊤(∇x log pT−τ−t(X̄
←
τ )− s(x, kh))

≤4∥X̄←τ −X←τ ∥2 + 2∥∇x log(pT−τ−t(X̄
←
τ ))− s(x, kh)∥2.

Therefore, it satisfies that

∥X̄←τ −X←τ ∥2 ≤ 4

∫ τ

0

∥X̄←s −X←s ∥2ds+ 2

∫ τ

0

∥∇x log(pT−τ−t(X̄
←
s ))− s(x, kh)∥2ds.

Taking its expectation, we see that

E[∥X̄←τ −X←τ ∥2] ≤ 4

∫ τ

0

E[∥X̄←s −X←s ∥2]ds+ 2

∫ τ

0

(ε2 + L2
pds+ L2

pms
2)ds︸ ︷︷ ︸

=O(ε2τ+L2
pd(τ

2+mτ3))=:ξ(τ)

,

where we used Theorem 10 (and its proof) of Chen et al. (2023b) for obtaining ξ(τ). Then, Gronwall
inequality yields

E[∥X̄←τ −X←τ ∥2] ≤ ξ(τ) +
∫

4ξ(s)e4(τ−s)ds ≲ ε2τ + L2
pd(τ

2 +mτ3),

(see Mischler (2019) for example). Then, the Lipschitz continuity of φY (Lemma 10) yields that
E
[
(φY (X̄

←
t∗ )− φY (X

←
t∗ ))

2 | X̄←t = X←t = x
]
≲ L2

φ[ε
2τ + L2

pd(τ
2 +mτ3)].

Bound for t = kh: First, we show a bound for t = kh. The right hand side of Eq. (41) with δ = h
can be bounded by
exp(2(1 + 2R)δ)∥v∥2

δ
EX̄←t

[
E
[
(φX(X̄←t∗ )− φY (X

←
t∗ ))

2 | X̄←t = X←t
]]

≤exp(2(1 + 2R)δ)∥v∥2

δ
2EX̄←t

[
E
[
(φX(X̄←t∗ )− φY (X̄

←
t∗ ))

2 + (φY (X̄
←
t∗ )− φY (X

←
t∗ ))

2 | X̄←t = X←t
]]

≤exp(2(1 + 2R)δ)∥v∥2

δ
2
{
C2

ρε
2
TV +R2

φEX̄←t

[
E
[
(X̄←t∗ −X←t∗ )2 | X̄←t = X←t

]]}
,

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

where we used
E
[
(φX(X̄←t∗ )− φY (X̄

←
t∗ ))

2
]
≤C2

ρEX̄T−t∗

[
TV(X̄←T , X←T |X←t∗ = X̄←t∗ = X̄T−t∗)

2
]

≤C2
ρεTV.

Here, by using Theorem 10 of Chen et al. (2023c) again, the right hand side can be bounded as

2
exp(2(1 + 2R)δ)∥v∥2

δ

{
C2

ρε
2
TV + CR2

φ[ε
2δ + L2

pd(δ
2 +mδ3)]

}
=2 exp(2(1 + 2R)δ)∥v∥2

{
C2

ρ

ε2TV

δ
+ CR2

φ[ε
2 + L2

pd(δ +mδ2)]

}
.

Then, with the contraint h ≤ 1/(1 + 2R), it can be further simplified as

2 exp(2)∥v∥2
{
C2

ρ

ε2TV

δ
+ CR2

φ[ε
2 + L2

pd(δ +mδ2)]

}
.

Therefore, by taking maximum with respect to v ∈ Rd with a constraint ∥v∥ = 1,
EX̄←t

[∥∇xE[ρ∗(X̄←T )|X̄←t ]−∇xE[ρ∗(X←T )|X←t = X̄←t ]∥2]

≤
4c2ηC

2
ρ(1 + 2R)2

3
δ + 2 exp(2)

{
C2

ρ

ε2TV

δ
+ CR2

φ[ε
2 + L2

pd(δ +mδ2)]

}
=: Ξδ,ε. (43)

We see that Ξδ,ε = O(δ + ε2 + ε2TV/δ).

Bound for general t ∈ (kh, (k + 1)h): In this setting, we utilize the inequality (42). Using the
constraint δ ≤ 1/(1 + 2R) and ∥v∥ = 1, the right hand side of (42) can be bounded by

exp(2)

δ
E
[
(φY (X̄

←
t∗ )− φY (X

←
t∗ ))

2 | X̄←t = X←t = x
]

+ 2E
[
exp(2)∥∇(φX(X̄←t∗ ))− φY (X̄

←
t∗ ))∥ | X̄←t = X←t = x

]2
≤exp(2)

δ
R2

φE
[
(X̄←t∗ −X←t∗ )2 | X̄←t = X←t = x

]
+ 2 exp(2)Ξδ,ε (∵ Eq. (43)).

By taking the expectation with respect to x = X̄←t , we arrive at
EX̄←t

[∥∇xE[ρ∗(X̄←T )|X̄←t ]−∇xE[ρ∗(X←T )|X←t ]∥2]

≤C exp(2)

δ
R2

φ

(
ε2δ + L2

pd(δ
2 +mδ3)

)
+ 2 exp(2)Ξδ,ε

≤C exp(2)R2
φ

(
ε2 + L2

pd(δ +mδ2)
)
+ 2 exp(2)Ξδ,ε. (44)

This gives an upper bound of the term (a) in Eq. (39). Then, we just need to bound the remaining
term (b) in Eq. (39):

EX̄←t ,X̄←kh
[∥∇xE[ρ∗(X←T )|X←t ]−∇xE[ρ∗(X←T )|X←kh]∥2].

For that purpose, we define φY,t(x) = E[ρ∗(X←T )|X←t = x]. Then, using the Bismut-Elworthy-Li
formula again,
v⊤(∇φY,t(x)−∇φY,kh(x))

=v⊤∇φY,t(x)− E[η⊤X,h(k+1)−t∇φY,t(X
←
t )|X←kh = x]

=E[v⊤(∇φY,t(x)−∇φY,t(X
←
t )) + (η⊤X,(k+1)h−t − v)∇φY,t(X

←
t )|X←kh = x]

≤E[Lφ∥x−X←t ∥+Rφ∥η⊤X,(k+1)h−t − v∥ | X
←
(k+1)h−t = x]

≤E[Lφ∥((k + 1)h− t)(x− 2s(x, kh)) +
√
(h− δ)Bkh∥+Rφ∥η⊤X,(k+1)h−t − v∥ | X

←
kh = x],

which yields that
EX̄←·

[∥∇φY,t(X̄
←
t )−∇φY,kh(X̄

←
(k+1)h−t)∥

2]

≤2L2
φ((k + 1)h− t)2EX̄←·

[∥X̄←kh∥2 + 4∥s(X̄←kh, kh)∥2 + d((k + 1)h− t)]
+R2

φcη(1 + 2R)2((k + 1)h− t)2

≤2L2
φh

2(m+ 4Q2 + dh) +R2
φcη(1 + 2R)2h2

=[2L2
φ(m+ 4Q2 + dh) +R2

φcη(1 + 2R)2]h2. (45)
Combining (44) and (45) gives the assertion.
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Lemma 10. Suppose that supx ∥∇ρ∗(x)∥ ≤ Rρ, ∥∇ρ∗(x) −∇ρ∗(y)∥ ≤ Lρ∥x − y∥ (∀x, y), and
∇xs(·, ·) is Hs-Lipschitz continuous with respect to x. Let φY,t(x) = E[ρ∗(X←T )|X←t = x]. Then,
∇xφY,t(x) is bounded by Rφ and Lφ-Lipschitz continuous for any 0 ≤ t ≤ T , where

Rφ = max{Cρ2
√

(1 + 2R)e, e1/2Rρ},

Lφ = max


(
2C2

ηH
2
sC

2
ρ

1 + 2R
+ 2(1 + 2R) exp(6)R2

φ

)1/2

,
(
2C2

ηH
2
sR

2 + e2L2
ρ

)1/2 ,

for a universal constant Cη > 0.

Proof. We show it only when t = kh for a positive integer k just for simplicity. The proof for a
general t can be obtained in the same manner.

(i) First, we assume that T − t ≥ 1/4(1 + 2R). In the following, we let v ∈ Rd be an arbitrary
vector with ∥v∥ = 1. We again utilize the Bismut-Elworthy-Li formula:

v⊤∇φY,t(x)

= v⊤∇xE[ρ∗(X←T ) | X←t = x]

= E

[
1

S

∫ S

0

⟨ητ , dBτ ⟩φY,S(X
←
S ) | X←t = x

]
.

Hence,

(v⊤∇φY,t(x))
2

≤C2
ρE

 1

S2

(∫ S

0

⟨ητ , dBτ ⟩

)2

| X←t = x


≤C2

ρE

[
1

S2

∫ S

0

∥ητ∥2dτ | X←t = x

]
.

Here, we know that ∥ητ∥2 ≤ exp(4(1 + 2R)τ)∥v∥2, and thus

(v⊤∇φY,t(x))
2 ≤ C2

ρ

1

S
exp(4(1 + 2R)S)∥v∥2.

Hence, by taking S = 1
4(1+2R) , we have that

(v⊤∇φY,t(x))
2 ≤ C2

ρ4(1 + 2R)e∥v∥2.

This shows that ∥∇φY,t(x)∥ is bounded by Rφ = Cρ2
√

(1 + 2R)e.

Next, we show its Lipschitz continuity. For that purpose, we define two stochastic processes

X←t = x, dX←τ = {X←τ + 2s(X←kh, kh)}dτ +
√
2dBτ (τ ∈ [kh, k(h+ 1)]),

Z̃←t = y, dZ̃←τ = {Z̃←τ + 2s(Z̃←kh, kh)}dτ +
√
2dBτ (τ ∈ [kh, k(h+ 1)]),

where x, y ∈ Rd with ∥x− y∥ ≤ ε. Accordingly, we also define

ηX,0 = v,
dηX,τ

dτ
= (I + 2∇⊤x s(X←kh, kh))ηX,τ ,

ηZ,0 = v,
dηZ,τ

dτ
= (I + 2∇⊤x s(Z̃←kh, kh))ηZ,τ .

Thus,

X←(k+1)h − Z̃
←
(k+1)h = X←kh − Z̃←kh + h[X←kh − Z̃←kh + 2(s(X←kh, kh)− s(Z̃←kh, kh))],

which yields

∥X←(k+1)h − Z̃
←
(k+1)h∥ ≤(1 + h(1 +R))∥X←kh − Z̃←kh∥

≤(1 + h(1 +R))k+1∥x− y∥.
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Now, we assume k ≤ S/h so that we have ∥X←(k+1)h − Z̃
←
(k+1)h∥ ≤ exp(S(1 + R))∥x − y∥ for

k = 1, . . . , S/h. Hence,

d(ηX,τ − ηZ,τ )

dτ
=(ηX,τ − ηZ,τ ) + 2∇⊤x s(X←kh, kh))ηX,τ − 2∇⊤x s(Z̃←kh, kh))ηZ,τ

=(ηX,τ − ηZ,τ ) + 2(∇⊤x s(X←kh, kh)−∇⊤x s(Z̃←kh, kh))ηX,τ − 2∇⊤x s(Z̃←kh, kh)(ηZ,τ − ηX,τ ),

which also yields that

d∥ηX,τ − ηZ,τ∥2

dτ
=2∥ηX,τ − ηZ,τ∥2 + 4(ηX,τ − ηZ,τ )

⊤(∇⊤x s(X←kh, kh)−∇⊤x s(Z̃←kh, kh))ηX,τ

− 4(ηX,τ − ηZ,τ )
⊤∇⊤x s(Z̃←kh, kh)(ηZ,τ − ηX,τ )

≤2∥ηX,τ − ηZ,τ∥2 + 4∥ηX,τ − ηZ,τ∥Hs exp(S(1 +R))ε exp(2(1 + 2R)S)

+ 4R∥ηX,τ − ηZ,τ∥2.
Therefore,

d∥ηX,τ − ηZ,τ∥
dτ

≤(1 + 2R) [∥ηX,τ − ηZ,τ∥+ 2Hs exp(S(1 +R)) exp(2(1 + 2R)S)ε/(1 + 2R)] ,

and thus by noticing ∥ηX,0 − ηZ,0∥ = 0, we have

∥ηX,τ − ηZ,τ∥ ≤ [exp(S(1 + 2R))− 1]
2Hs exp(S(1 +R)) exp(2(1 + 2R)S)

1 + 2R
ε,

for any τ ≤ S. Then, by setting S = 1/(1 + 2R), the right hand side can be rewritten as

∥ηX,τ − ηZ,τ∥ ≤ Cη
Hs

1 + 2R
ε,

for an absolute constant Cη . Therefore, we arrive at

(v⊤(∇φY,t(x)−∇φY,t(y)))
2

=E

[
1

S

∫ S

0

⟨ηX,τ , dBτ ⟩φY,S(X
←
S )− 1

S

∫ S

0

⟨ηZ,τ , dBτ ⟩φY,S(Z̃
←
S )

]2

≤2E

[
1

S2

∫ S

0

(ηX,τ − ηZ,τ )
2dτ

]
E
[
φY,S(X

←
S )2

]
+ 2E

[
1

S2

∫ S

0

η2Z,τdτ

]
E
[
(φY,S(X

←
S )− φY,S(Z̃

←
S ))2

]
≤ 2

S
C2

η

H2
s

(1 + 2R)2
ε2 · C2

ρ +
2

S
exp(4(1 + 2R)S)∥v∥2R2

φ exp(2S(1 +R))ε2.

Then, for the choice of S = 1/(1 + 2R), the right hand side can be bounded by(
2C2

ηH
2
sC

2
ρ

1 + 2R
+ 2(1 + 2R) exp(6)R2

φ

)
ε2.

This implies that ∇φY,t(·) is Lipschitz continuous with a constant Lφ =(
2C2

ηH
2
sC

2
ρ

1+2R + 2(1 + 2R) exp(6)R2
φ

)1/2
.

(ii) Next, we assume that T − t ≤ S = 1/4(1 + 2R). In this situation, we may use the following
relation:

v⊤∇φY,t(x) = E[ηT−tτ ∇ρ∗(X←T ) | X←t = x].

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

And, tracing an analogous argument by replacing φY,S with h, we obtain the assertion with

Rφ = e1/2Rρ, Lφ =
(
2C2

ηH
2
sR

2 + e2L2
ρ

)1/2
.

Lemma 11. If ∥ρ∗ − ρ∥∞ ≤ ε′, then

∥∇xE[ρ∗(X←T )|X←t = x]−∇xE[ρ(X←T )|X←t = x]∥ ≤ e√
min{T − t, 1/(2 + 2R)}

ε′.

Proof. It can be proved by the Bismut-Elworthy-Li formula again. We omit the details.

Combining all inequalities, we arrive at (the formal version of) Theorem 4.
Theorem 8 (Formal statement of Theorem 4). Assume that Assumptions 7 and 5 hold and the
conditions in Lemma 10 are satisfied. and ∥ρ∗ − ρ∥∞ ≤ ε′ and ∥ρ∥∞ ≤ Cρ. Let Lφ and Rφ be as
given in Lemma 10. Then, for 0 ≤ h ≤ δ ≤ 1/(1 + 2R), we have that

EȲ←·
[∥u∗(Ȳ←t , t)− u(Ȳ←kth, t)∥

2]

≲C3
ρ

{
R2

φ

(
ε2 + L2

pd(δ +mδ2)
)
+ Ξδ,ε + [(R2

φ + L2
φ)(m+ 4Q2 + dh) +R2

φ(1 + 2R)2]h2
}

+
e2

min{T − t, 1/(2 + 2R)}
ε′2 + Cρ(1 + 2R)

√
log(T/(hδ))

nh
,

where

Ξδ,ε :=
4c2ηC

2
ρ(1 + 2R)2

3
δ + 2 exp(2)

{
C2

ρ

(
R2

φ +
1

δ

)
ε2TV + CR2

φ[ε
2 + L2

pd(δ +mδ2)]

}
,

and cη > 0 is a universal constant.

Proof. Define
ρ∗,t(x) = E[ρ∗(X̄←T )|X̄←t = x], ρt(x) = E[ρ(X←T )|X←t = x].

First, note that

∥u∗(x, t)− u(x, t)∥2 =

∥∥∥∥∇ρ∗,t(x)−∇ρt(x)ρ∗,t(x)
+
∇ρt(x)(ρ∗,t(x)− ρt(x))

ρ∗,t(x)ρt(x)

∥∥∥∥2
≤2
∥∥∥∥∇ρ∗,t(x)−∇ρt(x)ρ∗,t(x)

∥∥∥∥2 + 2

∥∥∥∥∇ρt(x)(ρ∗,t(x)− ρt(x))ρ∗,t(x)ρt(x)

∥∥∥∥2
≤2C2

ρ ∥∇ρ∗,t(x)−∇ρt(x)∥
2
+ 2
∥∇ρt(x)∥2 |ρ∗,t(x)− ρt(x)|2

(ρ∗,t(x)ρt(x))2

≤2C2
ρ ∥∇ρ∗,t(x)−∇ρt(x)∥

2
+ 2R2

φC
2
ρ |ρ∗,t(x)− ρt(x)|2.

Therefore, the expectation of the right hand side with respect to X̄←t can be bounded by

EX̄←t

[
∥u∗(X̄←t , t)− u(X̄←t , t)∥2

]
≤2C2

ρEX̄←t

[
∥∇ρ∗,t(x)−∇ρt(x)∥2

]
+ 2RφC

2
ρEX̄←t

[
|ρ∗,t(x)− ρt(x)|2

]
≤2C2

ρEX̄←t

[
∥∇ρ∗,t(x)−∇ρt(x)∥2

]
+ 2RφC

2
ρEX̄←t

[
TV(X̄←T , X←T |X̄←t = X←t = x)|2x=X̄←t

]
.

The first term of the right hand side can be bounded by Theorem 7 and Lemma 11. The second term
can be bounded by ε2TV by Assumption 7.

In the same vein, we can bound the difference
∥u(x, t)− u(x, kth)∥2

≤2C2
ρEX̄←t

[
∥∇ρt(x)−∇ρkth(x)∥

2
]
+ 2RφC

2
ρEX̄←t

[|ρt(x)− ρkth(x)|]

≤[2L2
φ(m+ 4Q2 + dh) +R2

φcη(1 + 2R)2]h2

+ 2R2
φh

2(m+ 4Q2 + dh)

≤[2(L2
φ +R2

φ)(m+ 4Q2 + dh) +R2
φcη(1 + 2R)2]h2,
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where we used (45) and the same argument as (45) in the last inequality withRφ Lipschitz continuity
of ρt.

Finally, we convert the expectation w.r.t. X̄t
← to that w.r.t. X̄t

←. However, the density ratio
between pt and qt is bounded by Cρ, which yields the assertion.

C.4 DOOB’S H-TRANSFORM

Lemma 12. For all t ∈ [0, T ], the following relationship holds.

∇x log qt(x) = ∇x log pt(x) +∇x log(E[ρ∗(X̄0)|X̄t = x]).

Proof. Let us denote the joint distribution of X̄0 and X̄t as p0,t(X̄0, X̄t), the conditional dis-
tributions of X̄0 given X̄t as p0|t(X̄0|X̄t), and the conditional distributions of X̄t given X̄0 as
pt|0(X̄t|X̄0). Define qt|0 in the same way. It is straightforward to see that

log pt(x) + log(E[ρ∗(X̄0)|X̄t = x]) = log(pt(x)E[ρ∗(X̄0)|X̄t = x])

= log pt(x)

∫
x′
ρ∗(x

′)p0|t(x
′|x)dx′

= log

∫
x′
ρ∗(x

′)p0,t(x
′, x)dx′

= log

∫
x′
ρ∗(x

′)p0(x
′)pt|0(x|x′)dx′

= log

∫
x′
q0(x

′)pt|0(x|x′)dx′. (46)

Note that pt|0(x|x′) and qt|0(x|x′) are the same in (46). Therefore,

log pt(x) + log(E[ρ∗(X̄0)|X̄t = x]|) = log

∫
x′
q0(x

′)qt|0(x|x′)dx′

= log qt(x),

which concludes the proof.

D DETAILS OF NUMERICAL EXPERIMENTS

D.1 ALIGNMENT FOR GAUSSIAN MIXTURE MODELS

We explain how to align the pre-trained diffusion model for Gaussian Mixture Models and the tech-
nical details of our algorithm. Almost the same algorithm was used for the other experiments.

A Pre-Trained Score-Based Diffusion Model We pre-trained a score-based diffusion model to
sample from the 2 dimensional mixture of Gaussian Mixture Models. The target density was
1
2 (N (µ1,Σ) +N (µ2,Σ)), µ1 = [−2.5, 0], µ2 = [2.5, 0], Σ = [[1, 0], [0, 5]]. The score model
was implemented as simple 4 layer neural networks. The learning rate of pre-train was 0.0005, the
batch size was 100, the number of epochs was 1000. The pre-train MSE loss is shown in the left side
in Figure 4. The minimum losses until the current epoch were plotted. The histogram of 20000 sam-
ples from the pre-trained score-based diffusion model is the right figure in Figure 4. For sampling,
T was set to be 10 and the number of sampling steps was 100.

The objective The target was the mean of the Gaussian in the right side, µw := µ2 = [2.5, 0].
The preference of point xw and xl were determined by the Euclidean distance d(·, µw) from µw :=
[2.5, 0]. xw ≻ xl if and only if d(xw, µw) < d(xl, µw). The DPO objective was used in this setting.
2000 points from pref were sampled to calculate the expectation of the functional derivative. The
regularization terms β and γ were 0.04 and 0.1.

As a counter method, Diffusion-DPO (Wallace et al., 2024) was implemented with the learning rate
= 0.0005, batch size = 5000. In practice, it is hardly realistic to compute the true DPO loss during
Diffusion-DPO, but in this case, we forcefully carried out the computation by estimating the density
ratio q(x)/pref(x) with 100 samples.
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Figure 4: Left. Pre-train MSE loss of denoising score matching. The minimum losses until the
current epoch were plotted. Right. The histogram of 20000 samples from the pre-trained DDPM.

Dual Averaging in Option 1 We implemented Option 1 for the experiment. We used 8 NVIDIA
V100 GPUs with 32GB memory. We estimated the log-density ratio ḡ(k−1) = − log q̂(k)/pref +
const. with neural networks fk ≃ ḡ(k−1). In each loop, the potential was trained by 1000 points in
x1, x2 ∈ [−5, 5], the learning rate was 0.0005, the number of epochs was 1000. We kept ḡ(k−1) as
neural networks and generate the dataset for ḡ(k) from the equation (β = β′ for simplicity)

ḡ(k) =
2

β(k + 1)(k + 2)

[
βk(k + 1)

2
ḡ(k−1) + k

δF

δq
(q(k))

]
=

k

k + 2
ḡ(k−1) +

2k

βk(k + 2)

δF

δq
(q(k)). (47)

So, we only need one model to store for DA loops (we don’t need ḡ(k−2), ..., ḡ(1)). The psudocode
for this phase is described as Algorithm D.1.

Algorithm D.1 Dual Averaging (Option 1)
Input: F : an objective, s: pre-trained score, β: Regularization scale, K: number of loops.
Output: fK : a trained potential.

Initialize NNs f0 randomly
Collect samples (xi)i at the final denoising step from pref by score function s
We define q(0) ∝ exp(−f0)pref (no actual computation)
Construct dataset {(xi, 1

3β
δF
δq (q

(0), xi)}i with (xi)i and f0 using equation (2)
Train f1 to approximate ḡ(0) = 1

3β
δF
δq (q

(0))

for k = 1, ...,K − 1 do
q(k) ∝ exp(−fk)pref (no actual computation)
Construct dataset {(xi, 2k

βk(k+2)
δF
δq (q

(k), xi)}i with (xi)i and fk using equation (2)

Train fk+1 to approximate k
k+2fk + 2k

βk(k+2)
δF
δq (q

(k)) by minimizing MSE.
end for
End

The heat map of the trained potential fk is shown in Figure 5.

Doob’s h-transform We sampled the aligned images with 50 diffusion steps. The guidance
term of Doob’s h-transform was calculated in every diffusion steps. The conditional expectation
E[hT (X←T ) | x] was calculated by Monte Carlo with 30000 samples. The psudocode for this phase
is described as Algorithm D.2. In phase 2 (the sampling phase), our simplest solution (i.e., estimat-
ing the correction term at each time step using Monte Carlo) has a time complexity ofO(L2), where
L represents the number of time steps in the denoising process. When we set N as the number
of particles needed to estimate one correction term, to compute the correction term for each sam-
ple simultaneously, O(N) memory space is required. The sampling error for each correction term
would be O(1/

√
N). This leads to severe computational effort in phase 2. However, this Doob’s
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Figure 5: The heatmap of the potential fk in the kth loop in Dual Averaging for Gaussian Mixture
Model. The target point was [2.5, 0]. Note that fk is the negated log-density ratio: the aligned
density is exp(−fk)pref .

h-transform technique itself has been used in image generation (Uehara et al., 2024a;b), Bayesian
samping (Heng et al., 2024), and filtering (Chopin et al., 2023). As a more practical alternative
of our phase 2, the idea of approximating the correction term using neural ODE solvers for faster
test-time implementation has also been proposed in (Uehara et al., 2024b;a).

Algorithm D.2 Doob’s h-transform (A simplest implementation)
Input: F : an objective, fK : a trained potential, s: pre-trained score,
Output: xT : an output approximately from exp (−fK)pref .

Initialize x0 as white noise
Set number of steps L and the time T .
Set the step size h = T/L
for l = 0, ..., L− 1 do

Initialize N samples (xl,i)i≤N as xl.
for l′ = l, ..., L− 1 do

(denoising step of (xl,i)i≤N )
end for
Store N samples of X←T as (xl,i)i≤N .
Approximate u(xl, lh) = ∇ logE[exp (−fK(X←T ) | X←lh = xl] by Monte Carlo with
(xl,i)i≤N .
Sample white noise ξnoise
xl+1 := xl + δ(xl + 2s(xl, T − lh) + 2u(xl), lh) +

√
2hξnoise

end for
End

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

D.2 IMAGE GENERATION ALIGNMENT

We aligned the image generation of the basic pre-trained model in Diffusion Mod-
els Course (source: HuggingFace (2022)). The pipeline path we utilized was
“johnowhitaker/ddpm-butterflies-32px”. The summarized results are show in
Figure 7.

The pre-trained Model The model samples the images of butterflies of 32× 32 pixels. Number of
the sampling step was 1000.

The objective The target color was [0.9, 0.9, 0.9] in RGB. The reward is visualized in Figure 6.
6400 samples from pref to calculate the expectation of F and δF

δq . β and γ were 0.05 and 1. The
output of the functional derivative was clipped in±20 to stabilize the training step. In calculation of
the DPO objective, the sample that has a higher reward is the “winning” sample.

Dual Averaging In each loop, fk was trained by 1024 images from pooled 6400 images, the learning
rate was 0.0001, the batch size was 64, and the number of epochs was 5. fks were implemented by
Unet2Dmodel in Diffusers library von Platen et al. (2022). How the potential fk learned the reward,
the distance from the target color, was shown in the right side of Figure 6. The DA algorithm
succeeded to extract the target images from the true reward.

Figure 6: Left. Output images of pref sorted by the distance from the target color (= −reward).
Right. Images sorted by the learned potential in k = 2.

Doob’s h-transform We sampled the aligned images with 1000 diffusion steps. The guidance term
of Doob’s h-transform was calculated in every 10 diffusion steps for faster sampling. We calculated
the drift term of Doob’s h-transform once in 10 diffusion steps for faster sampling. In addition,
We defined a decay rate rd = 0.95 and a strongness s = 5 for ∇ log ρt and finally we added
rm
′

d ∇ logE[exp(−sfK(X←T ) | x10mδ] as a drift term in l = 10m +m′th diffusion step to balance
the computational cost and stability. The conditional expectation E[ρT (X←T ) | x] was calculated by
Monte Carlo with 128 samples.

D.3 TILT CORRECTION FOR GENERATION OF MEDICAL IMAGE DATA

Our goal of this experiment was generating images with no rotation with an unconditional pre-
trained model that generates rotated images. The objective was based on DPO. The rotation angle
of each image was predicted with CNN. The summarized results are in Figure 11.

Dataset 10000 images of Head CT (64×64 pixel) in Medical MNIST Lozano (2017) were leveraged.
They include some rotated images, the angles are up to 90°. To aggravate the existing situation, we
augmented the data by rotating images (up to 45°) from this dataset to be 40000. A predictor of
angles were trained with the augmented dataset to define the reward in place of human preference
due to preparation difficulties. The number of epochs was 10, 95% and 5% of the dataset were used
for training and validation, the training MSE loss was 3.79, and the validation MSE loss was 3.25.
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Figure 7: Left. The loss during DA for image generation alignment. “Objective”: DPO objective.
“Regularized Objective”: “Objective” + βDKL(q∥pref), β = 0.05 Right. Examples of aligned
image generation. “iter=2”: ours with k = 2 DA iterations, “iter=2”: ours with k = 1 DA iteration.
“Reference”: samples from pref .

Note that there were rotated images in the original dataset, so the labels of the rotation angles made
in the augmentation were noisy.

Pre-trained Autoencoder We pre-trained autoencoder from scratch. It encodes gray-scaled 64×64
pixels into latent 32 × 32 pixels. It only has convolution layers so that geometrical features were
preserved for simplicity. The training data was 95% of augmented 40000 images and the validation
data was 5% of them. This autoencoder was fed white-noised data to make the model robust with
noise. The pretraining MSE loss is shown in the left side of Figure 8.

Latent Diffusion Model We also pre-trained a (latent) diffusion model based on Unet2DModel
in Diffusers von Platen et al. (2022). Number of sampling steps was 1000. The beta scheduler was
set to be squaredcos cap v2. In pre-training, we leveraged the augmented dataset up to 20000
images, the number of epochs was 15, the batch size was 8, the learning rate was 0.0001. The
pretraining MSE loss is shown in right side of Figure 8 and the generated images are displayed in
Figure 9.

Figure 8: Left. The MSE loss in pretraining the Autoencoder. The solid blue line and the dashed
red represent the validation loss and the train loss. Right. The MSE loss in pretraining the diffusion
model.

The objective The reward was defined to be −|predicted angle| of the pre-trained predictor (in
place of humans), described in the left side of Figure 10. 6400 samples from pref to calculate the
expectation of F and δF

δq . β and γ were 0.01 and 0.1. The output of the functional derivative was
clipped in ±5 to stabilize the training step. In calculation of the DPO objective, the sample that has
a higher reward (in the more vertical direction) is the “winning” sample.

Dual Averaging In each loop, fk was trained by 6400 images from pref . All the generated images
were reused during DA. The learning rate was 0.0001, the batch size was 64, and the number of
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Figure 9: Top. Outputs of pre-trained latent diffusion. Bottom. Decoded images of the outputs.

epochs was 5. We compared the learned potential with the reference reward in Figure 10. We see
that DA iterations worked well to replicate the reference reward.

Figure 10: Left. Output CT images of the pre-trained model, sorted by the absolute values of
estimated angles (= −reward). Right. Output CT Images sorted by the trained potential in the 3rd
loop in DA.

Doob’s h-transform We sampled the aligned images with 1000 diffusion steps. The guidance term
of Doob’s h-transform was calculated once in 10 diffusion steps. Technical settings were the same
with . The conditional expectation was calculated by Monte Carlo with 128 samples.

Figure 11: Left. The loss during DA for tilt correction. “Objective”: DPO objective. The target
point was [2.5, 0]. “Regularized Objective”: “Objective” + βDKL(q∥pref), β = 0.01 Right. Tilt-
corrected Head CT image generation. “iter=3”: ours with k = 3 DA iterations, “iter=1”: ours with
k = 1 DA iteration. “Reference”: samples from pref .
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