
PiML: Automated Machine Learning Workflow
Optimization using LLM Agents

Abhishek Chopde1,∗ Fardeen Pettiwala1,∗ Kirubananth Sankar1,∗ Sai Botla1,∗

Pachipulusu Ayyappa Kethan1

1
Fractal AI Research, Mumbai.

∗
Equal contribution.

Abstract In this paper, we introduce PiML-Persistent Interative Machine Learning agentic framework, a

novel automated pipeline specifically designed for solving real-world machine learning (ML)

tasks such as Kaggle competitions. PiML integrates iterative reasoning, automated code

generation, adaptive memory construction, and systematic debugging to tackle complex

problems effectively. To rigorously assess our framework, we selected 26 diverse compe-

titions from the MLE-Bench benchmark, ensuring comprehensive representation across

various complexity levels, modalities, competition types, and dataset sizes. We quantita-

tively compared PiML’s performance to AIDE—the best-performing existing baseline from

MLE-Bench—across multiple evaluation metrics: Valid Submission rate, Submissions Above

Median, Average Percentile Rank, and Medal Achievement Rate. Using the "o3-mini" model,

PiML surpassed the baseline in submissions above median (41.0% vs 30.8%), medal attain-

ment rate (29.5% vs 23.1%), and average percentile rank (44.7% vs 38.8%). These results

highlight PiML’s flexibility, robustness, and superior performance on practical and complex

ML challenges.

1 Introduction
Designing an end-to-end machine learning (ML) workflow is a complex effort that requires sub-

stantial expertise, as manually crafting and optimizing these workflows for specific tasks is both

labor-intensive and knowledge-intensive. This challenge has been partially addressed by AutoML

(Erickson et al., 2020a; Tang et al., 2024; Shchur et al., 2023), which automates various stages of the

workflow, streamlining processes that would otherwise demand extensive human effort (Feurer

et al., 2015). However, while AutoML has improved efficiency to a degree, it operates within a prede-

fined rule set and often lacks the flexibility necessary to adapt to the domain specific requirements

of the problem (Zöller and Huber, 2021).

In contrast, the emergence of Large Language Models (LLMs) has revolutionized problem-

solving approaches thanks to their expansive knowledge bases and advanced reasoning capabilities.

Techniques like Chain of Thought (CoT)(Wei et al., 2022), Tree of Thoughts (ToT)(Yao et al., 2023a),

and ReAct(Yao et al., 2023b) have demonstrated the potential of LLMs in tackling complex coding

tasks, showcasing their ability to facilitate complex reasoning processes. These capabilities can be

applied to ML workflows, offering potential solutions to previously challenging downstream tasks.

Many works attempted to address some parts of a ML workflow - Feature Engineering (Hollmann

et al., 2023; Jeong et al., 2024; Zhang et al., 2024b; Gong et al., 2024; Li et al., 2025; Malberg et al.,

2024), Model Selection – (Zhang et al., 2023; Shen et al., 2023), HPO – (Liu et al., 2025; Zhang et al.,

2024a).

We propose a novel multi-agent framework, PiML: Persistent Interative Machine Learning agent

for exploring the true exploratory nature of ML problem solving via iterative experimentation.

Unlike many other similar works, our framework enables a dynamic step-by-step approach to

problem solving.

AutoML 2025 © 2025 the authors, released under CC BY 4.0

mailto:abhishek.chopde@fractal.ai
mailto:fardeen.petttiwala@fractal.ai
mailto:kirubananth.sankar@fractal.ai
mailto:sai.botla@fractal.ai
mailto:pachipulusu.kethan@fractal.ai
https://creativecommons.org/licenses/by/4.0/

Our contributions include:

1. Automated Agent Pipeline: We introduce PiML, a structured and iterative automated pipeline

that systematically leverages an agent’s internal reasoning ("Thoughts") and executable code

("Actions") guided by summarized execution feedback ("Observations") to solve machine learning

tasks from Kaggle competitions autonomously.

2. Adaptive Memory Management: A novel multi-tier memory construction strategy, effectively

balancing detailed recent context with summarized historical actions.

3. Robust Error Handling via Debug Chain: We present a structured and systematic "Debug

Chain" mechanism that iteratively refines erroneous code actions generated by the pipeline,

improving error resolution and enabling efficient self-correction without human supervision.

4. Experimental Validation and Competitiveness: Empirical evaluation on the diverse MLE-

Bench (MLE-Pi - Our statistically sampled dataset 4.3) dataset demonstrates the flexibility and

effectiveness of PiML. Specifically, our results indicate superior or competitive performance

against strong baseline automated frameworks, thereby highlighting PiML’s potential to achieve

competitive results across various competition complexities and categories autonomously.

2 Related Work

Large language models (LLMs) have rapidly progressed from System-1 architectures that rely on

pattern recognition (OpenAI, 2024; Anthropic, 2024) to System-2 variants that explicitly plan and

reason (OpenAI, 2025b,c; DeepSeek-AI, 2025; Anthropic, 2025). This evolution has unlocked a broad

spectrum of agentic applications, including autonomous code generation (Le et al., 2022; Singh

et al., 2025) and debugging (Chen et al., 2023; Zhong et al., 2024), complex decision making in

finance, healthcare, and patient care (Peng et al., 2023; Busch et al., 2025), and research automation

(Gottweis et al., 2025; Lu et al., 2024). For machine-learning workflows, these reasoning-centric

models have made end-to-end AutoML more attainable: systems must coordinate data exploration,

feature engineering, model selection, and hyperparameter optimization (HPO) holistically and

iteratively. Traditional AutoML toolkits such as AutoGluon, H2O, and Auto-Sklearn (Erickson et al.,

2020b; LeDell et al., 2020; Feurer et al., 2015) still rely on fixed heuristics and treat each sub-problem

independently, which often yields sub-optimal results.

Building on this foundation, several agentic frameworks now tackle long-horizon tasks. Open-

Hands (Wang et al., 2024) automates software development tasks by combining code interaction,

execution, and web search, while OpenManus (Liang et al., 2025; manus.im, 2025) generalizes this

strategy to broader multi-step problems. In data science, AIDE (Jiang et al., 2025) employs a tree-

structured search that incrementally explores alternative solution paths; AutoKaggle(Li et al., 2024)

orchestrates five specialized agents—Reader, Planner, Developer, Reviewer, and Summarizer—to

cover the full ML pipeline; DS-Agent (Guo et al., 2024) blends LLMs with case-based reasoning

to leverage historical Kaggle solutions, and Agent-K (Grosnit et al., 2024) adds nested memory

processing to support continuous improvement. Collectively, these systems demonstrate a clear

trend towards autonomous agents that reduce human intervention while elevating the efficiency

and quality of complex, multi-stage workflows.

3 Methodology

In this section, we describe our automated agent pipeline designed to solve machine learning tasks

such as Kaggle competitions.

3.1 Framework Overview

PiML is an end-to-end framework for machine learning, as illustrated in Figure 1 and Algorithm 1.

The system accepts a Task Description as input and autonomously develops and refines machine

learning solutions. The Task Description (for example, in the context of a Kaggle competition)

2

Figure 1: PiML is an end-to-end framework for autonomous machine learning. Given the problem

description, dataset, and evaluation metric, the framework can iteratively perform EDA,

Feature Engineering, modeling, and hyperparameter tuning to obtain the best results.

typically includes information about the competition objectives, evaluation criteria, rules, required

constraints, and an initial overview of the dataset.

At its core, PiML operates through an iterative thought-action-observation cycle orchestrated

by specialized agents. The Main Agent is responsible for generating both the reasoning process

(thought) and the corresponding code implementation (action). The Summary Agent generates

feedback summaries to guide the next cycle. The Debug chain mechanism identifies and resolves

errors encountered during execution, while the Memory mechanism maintains contextual informa-

tion across cycles to support continual learning and adaptation. Throughout the execution, PiML

produces submission files representing complete solution attempts to the given task.

These cycles continue until reaching predefined constraints, systematically exploring the

solution space to optimize performance on the specified task. The following sections detail each

component of this process and its interactions within the framework.

3.2 Iterative Refinement Cycle

We formally define a single cycle of our pipeline, which we refer to as a Step, as:

𝑆 = (𝑇,𝐴,𝑂, �̂�),

where 𝑇 denotes a Thought and 𝐴 denotes an Action (i.e., the generated code) generated by the

Main Agent at step 𝑆 , 𝑂 denotes the Observation resulting from the execution of 𝐴, and �̂� denotes

the summary of the observation.

Each step 𝑆 represents a single thought-action-observation cycle in our pipeline. The creation

of a step is mainly influenced by a fixed Task Description D, which remains unchanged throughout

execution, and the Memory of all preceding steps, denoted byM.

We define the agents and functions used in each step. The Main Agent, represented as

𝑀𝑎𝑖𝑛𝐴𝑔𝑒𝑛𝑡 , is responsible for generating a Thought and an Action based on the given input

task and memory. The Code Interpreter, represented as 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐶𝑜𝑑𝑒 , executes an Action and

generates the corresponding Observation. The Summary Agent, represented as 𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝐴𝑔𝑒𝑛𝑡 ,

analyzes an observation and produces the Observation Summary. The debug chain mechanism

represented as 𝐷𝑒𝑏𝑢𝑔𝐶ℎ𝑎𝑖𝑛, assists in identifying and resolving errors encountered during the

execution of an Action. The sequence of all steps generated up to the current point forms the agent

3

trajectory, denoted as 𝜏 = {𝑆1, 𝑆2, . . . , 𝑆𝑖}, where 𝑖 is the current step index. Finally, the Memory

Constructor, represented as 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑀𝑒𝑚𝑜𝑟𝑦, formulates the memory from the agent trajectory.

The sequence of operations within each step is as follows:

1. Thought and Action Generation: At the start of each step, the Main Agent produces a thought

and action based on the task description (D) and memory (M).

(𝑇,𝐴) = 𝑀𝑎𝑖𝑛𝐴𝑔𝑒𝑛𝑡 (D,M)

2. Execution and Observation: The action (generated code) is then executed to produce an

Observation.

𝑂 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐶𝑜𝑑𝑒 (𝐴)

3. Observation Summary: The observation is then analyzed and summarized by Summary Agent.

�̂� = 𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝐴𝑔𝑒𝑛𝑡 (𝑂,𝐴)

4. Debug (if Needed): If errors are detected, a debugging chain is initiated with a maximum allowed

debug steps 𝐷𝑆 .

(𝑇,𝐴,𝑂, �̂�) = 𝐷𝑒𝑏𝑢𝑔𝐶ℎ𝑎𝑖𝑛(D,𝑇 , 𝐴,𝑂, �̂�, 𝐷𝑆)

5. Update Trajectory: The current step is added to the agent trajectory.

𝑆 = {(𝑇,𝐴,𝑂, �̂�)}
𝜏 = 𝜏 ∪ 𝑆

6. Memory Construction: At the end of each iteration, memory is constructed for the next step

based on the updated trajectory.

M = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑀𝑒𝑚𝑜𝑟𝑦 (𝜏)

3.3 Result Generation and Optimization

During pipeline execution, the Main Agent autonomously generates submission files, conditioned

on its internal reasoning and the feedback acquired through observations. Each submission file

constitutes a complete solution attempt for the specified task. The collection of all such submission

files forms the final result set.

Formally, we define the set of submissions created by our pipeline as:

R = {𝑅1, 𝑅2, . . . , 𝑅𝑁 }

where each 𝑅 𝑗 , for 𝑗 ∈ {1, 2, . . . , 𝑁 }, represents a submission file generated during some step of

execution. As shown in Algorithm 1, whenever an action 𝐴 produces a valid submission, it is added

to the submission set R.

Through iterative generation of multiple submissions, our pipeline progressively explores

diverse solution approaches while leveraging intermediate feedback. This iterative refinement

mechanism facilitates optimization within the predefined execution constraints of time (𝑇) and

total steps (𝑇𝑆), maximizing the likelihood of achieving superior outcomes.

3.4 Memory Construction Dynamics

The function call 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑀𝑒𝑚𝑜𝑟𝑦 (𝜏, 𝐿) in Algorithm 1 systematically constructs memory M
from the trajectory 𝜏 while adhering to token-length limitations (𝐿). This construction is crucial

for providing the Main Agent with sufficient context for generating informed thoughts and actions

in subsequent steps.

4

Algorithm 1 PiML: Overall Algorithm

Input: D: task description, 𝑇 : time limit, 𝑇𝑆 : total steps limit, 𝐷𝑆 : debug steps limit, 𝐿 : token

length limit

Output: submission setR

Initialize trajectory 𝜏 ← ∅, memory M← 𝜖 , submissionsR← ∅
Initialize step counter 𝑖 ← 0, time 𝑡 ← 0

while 𝑡 < 𝑇 and 𝑖 < 𝑇𝑆 do
▶ Generate thought and action
(𝑇,𝐴) ← 𝑀𝑎𝑖𝑛𝐴𝑔𝑒𝑛𝑡 (D,M)
▶ Execute and observe
if 𝐴 is valid then

𝑂 ← 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐶𝑜𝑑𝑒 (𝐴)
else

𝑂 ← 𝑂default

end if
�̂� ← 𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝐴𝑔𝑒𝑛𝑡 (𝑂,𝐴)
▶ Debug if error detected
if �̂� indicates error then
(𝑇,𝐴,𝑂, �̂�) ← 𝐷𝑒𝑏𝑢𝑔𝐶ℎ𝑎𝑖𝑛(𝑇,𝐴,𝑂, �̂�,D, 𝐷𝑆)

end if
▶ Construct step
𝑆 = (𝑇,𝐴,𝑂, �̂�)
▶ Collect submission
if 𝐴 generates submission 𝑅current then

R← R ∪ {𝑅current}
end if
▶ Update trajectory, memory and system state
𝜏 ← 𝜏 ∪ 𝑆
M← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑀𝑒𝑚𝑜𝑟𝑦 (𝜏, 𝐿)
𝑖 ← 𝑖 + 1, 𝑡 ← 𝑡 + Δ𝑡

end while
returnR

Let the trajectory up to the current step 𝑖 be:

𝜏 = {𝑆1, 𝑆2, . . . , 𝑆𝑖}, where 𝑆𝑖 = (𝑇𝑖 , 𝐴𝑖 ,𝑂𝑖 , �̂�𝑖)
The memory M is constructed using one of the following prioritized strategies, selected based

on whether the constructed memory fits within the token constraint 𝐿:

Strategy 1: Comprehensive Memory:
Includes full context (thoughts, actions, and summarized observations) for the most

recent𝑤 steps, and actions from earlier steps:

M = {𝐴𝑘 | 1 ≤ 𝑘 ≤ 𝑖 −𝑤} ∪ {(𝑇𝑗 , 𝐴 𝑗 , �̂� 𝑗) | 𝑖 −𝑤 + 1 ≤ 𝑗 ≤ 𝑖 − 1} ∪ {(𝑇𝑖 , 𝐴𝑖 ,𝑂𝑖)}

Strategy 2: Reduced Recent Context:
If Strategy 1 exceeds 𝐿, retain all past actions and only the current full step:

M = {𝐴𝑘 | 1 ≤ 𝑘 ≤ 𝑖 − 1} ∪ {(𝑇𝑖 , 𝐴𝑖 ,𝑂𝑖)}

5

Strategy 3: Historical Action Chain:
If Strategy 2 exceeds 𝐿, include as many previous actions as possible, starting from

step𝑚, where𝑚 is the largest index satisfying the constraint:

M = {𝐴𝑘 | 𝑚 ≤ 𝑘 ≤ 𝑖 − 1} ∪ {(𝑇𝑖 , 𝐴𝑖 ,𝑂𝑖)}, 1 ≤ 𝑚 ≤ 𝑖

Strategy 4: Current Step Only:
If Strategy 3 exceeds 𝐿, include only the current step:

M = {(𝑇𝑖 , 𝐴𝑖 ,𝑂𝑖)}

Strategy 5: Minimal Context:
The fallback when only a minimal signal can be encoded:

M = {(𝐴𝑖 ,𝑂𝑖)}

The threshold of𝑤 = 10 recent steps in Strategy 1 represents an empirically determined balance

between comprehensive context and computational efficiency. This threshold provides sufficient

recent problem-solving history while preventing memory overload. Our experimental observations

indicate that maintaining full context for approximately 10 steps captures the most relevant recent

problem-solving decisions while allowing room for longer-term action history that establishes the

solution trajectory. This hybrid approach ensures the agent maintains both detailed recent context

and broader historical perspective.

At each memory construction stage, the 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑀𝑒𝑚𝑜𝑟𝑦 function sequentially evaluates

each strategy until finding one that satisfies the token constraints. This adaptive approach optimizes

the information provided to the Main Agent within system limitations.

3.5 Debug Chain: Systematic Error Correction

When an error is detected in the observation summary �̂� of the current step, the debug chain

mechanism is activated. As shown in Algorithm 1, the function 𝐷𝑒𝑏𝑢𝑔𝐶ℎ𝑎𝑖𝑛(𝑇,𝐴,𝑂, �̂�,D, 𝐷𝑆)
systematically attempts to resolve the error through an iterative refinement process. The debug

chain iteratively refines the action 𝐴 until either the error is successfully resolved or the maximum

debug steps limit 𝐷𝑆 is reached.

The mechanism works by diagnosing errors, generating improved versions of the action, execut-

ing these refinements, and evaluating their outcomes. Even when errors persist after reaching the

maximum debug depth, the exploration provides valuable context for the Main Agent’s subsequent

reasoning.

The Debug Chain function returns the updated tuple (𝑇,𝐴,𝑂, �̂�) where 𝑇 represents the final

thought that integrates insights from all debug iterations, 𝐴 represents the final action, either the

successfully corrected version or the last attempted refinement, 𝑂 represents the observation from

executing the final action and �̂� represents the summary of the final observation.

This mechanism enables the agent to recover from execution errors within a single step rather

than requiring multiple main steps for error correction, thereby enhancing execution efficiency.

4 Experiments
In this section, we evaluate the flexibility and effectiveness of our PiML framework by applying

it to a subset of MLE-Bench (Chan et al., 2024). We carefully curate a subset from MLE-Bench

spanning across all competition categories and available complexity mix. Full details of our dataset

selection criteria are provided in Section 4.3

4.1 Experimental Setup
All experiments are conducted using Microsoft Azure’s Standard NC24ads A100 v4 virtual machines,

each equipped with 24 vCPUs, 220 GiB memory, and a single Nvidia A100 GPU (80GB). Unlike

6

MLE-Bench’s original setup, which runs agents on Standard NV36ads A10 v5 instances (36 vCPUs,

440 GiB memory, Nvidia A10 GPU with 24GB). Another key distinction is that we execute two

competitions in parallel, where each agent shares the available compute resources. Our setup differs

due to budget and hardware availability, yet comparable and sufficient to produce results.

Each agent operates within an Ubuntu 20.04 Docker container, preloaded with the dataset, a

validation server, and essential Python packages for ML engineering. Agents have a maximum of

24 hours per competition to generate their submissions. To ensure fair evaluation, we consider all

intermediate submissions made by an agent, rather than only the final submission. This approach

allows us to capture the iterative learning process of the agent and assess problem-solving capa-

bilities beyond a single final output. This approach aligns with the methodology of MLE-Bench

for reporting other baselines, where multiple submissions across different seeds are aggregated to

determine the best-performing attempt.

4.2 Baseline

We employ AIDE (Jiang et al., 2025) as our primary baseline, as it is the best-performing framework

according to MLE-bench evaluation results. We use AIDE’s default settings, modifying only

the underlying agent’s model (agent.code.model). For other agent-specific parameter, refer to

Appendix A.2. Additionally, we report results from ResearchAgent (referred to as "MLAB") from

MLAgentBench (Huang et al., 2023), and CodeActAgent (referred to as "OpenHands") from the

OpenHands platform (Wang et al., 2024), for runs with GPT-4o (gpt-4o-2024-08-06). These numbers

are sourced directly from the MLE-Bench paper runs (Chan et al., 2024). To ensure consistent

evaluation against intermediate results, we filter for the best-performing submission seeds among

all available runs before computing our final evaluation metrics. All baseline agent seed-level

results and JSON logs were obtained from the official MLE-Bench GitHub repository: https:
//github.com/openai/mle-bench

4.3 Dataset

MLE-bench (Chan et al., 2024) is an offline Kaggle competition environment designed to evaluate

AI agents on real-world machine learning tasks. Each competition has an associated description,

dataset, and grading code. Agents are expected to autonomously design, build, and train models on

GPUs, with submissions graded locally and compared against real-world human performance via

historical leaderboards.

MLE-Bench officially splits its tasks into three subsets based on complexity tiers: "Low",

"Medium", and "High". However, these predefined splits do not fully capture the overall dataset

distribution and diversity in terms of modality, competition types, dataset sizes, and complexity

variations. While a full-scale evaluation across all MLE-Bench tasks would require over 1,800 GPU

hours and incur significant LLM inference costs—amounting to millions of tokens per seed—we

chose to view this challenge as an opportunity for thoughtful design. We curated a diverse subset of

26 competitions that maintains broad coverage across key diversity dimensions while maintaining

experimental feasibility. We refer to this derived dataset asMLE-Pi for simplicity. Refer to Appendix

A.1 for a complete list and details.

To validate MLE-Pi as a representative subset, we compare its distributional characteristics

against the complete MLE-Bench. Figure 2 confirms that MLE-Pi preserves key statistical properties

of the original benchmark, making it a reliable proxy representation for evaluation. Moreover,

given its alignment with the overall dataset, insights, trends, and potentially medals observed on

MLE-Pi could extend to the full set of 75 competitions, reinforcing its suitability as a practical and

computationally efficient representative slice of MLE-Bench.

7

https://github.com/openai/mle-bench
https://github.com/openai/mle-bench

(a) Modality distribution across MLE Benchmarks (b) MLE-Pi across competition statistics

Figure 2: Comparison of the full MLE-Bench dataset and the curated MLE-Pi subset across key at-

tributes. (a) Distribution of task modalities (i.e., tabular, NLP, audio, and vision). (b) Break-

down of competitions based on complexity, dataset size, task types, recency, and duration.

4.4 Results

We evaluate the performance of the PiML framework using four key metrics, as reported in Table 1.

All results are averaged over three independent seed runs to account for language model variance:

• Valid Submission (%) – Percentage of competitions in which the agent produces a valid submission.

• Submissions Above Median (%) – Percentage of competitions where the agent’s best submission

outperforms the human median (50
th
percentile) on the public leaderboard.

• Average Percentile Rank (%) – The mean percentile rank achieved by agent across all competitions.

• Any Medal (%) – Percentage of competitions where the agent earns at least a bronze medal.

We follow the Kaggle progression system (Kaggle, 2024) to determine the medals earned by the

agent in the competitions, following the same convention and thresholds as MLE-Bench (Chan

et al., 2024).

Table 1: Agent Performance on MLE-Pi averaged over three seed runs. Agents with * indicate results

are reported using best performing official run logs from the MLE-Bench repository.

Model Agent
Framework

Valid
Submission (%)

Submissions
Above Median (%)

Average
Percentile (%)

Any Medal
(%) GOLD SILVER BRONZE

gpt-4o
1

AIDE* 76.9 ± 8.3 20.5 ± 1.8 27.1 ± 2.4 17.9 ± 1.8 2.0 ± 0.8 1.7 ± 0.9 1.0 ± 0.8

MLAB* 67.9 ± 3.6 5.1 ± 1.8 12.8 ± 0.1 3.8 ± 0.0 0.0 ± 0.0 0.3 ± 0.5 0.7 ± 0.5

OpenHands* 62.8 ± 3.6 11.5 ± 0.0 16.3 ± 1.2 3.8 ± 0.0 0.0 ± 0.0 0.3 ± 0.5 0.7 ± 0.5

PiML (Ours) 74.4 ± 1.8 26.9 ± 3.1 30.6 ± 4.1 20.5 ± 3.6 1.7 ± 0.5 2.3 ± 0.5 1.3 ± 0.9

o3-mini : high
2

AIDE 94.9 ± 1.8 30.8 ± 0.0 38.8 ± 0.2 23.1 ± 3.1 1.7 ± 0.5 2.7 ± 0.5 1.7 ± 0.5

PiML (Ours) 96.2 ± 3.1 41.0 ± 4.8 44.7 ± 2.0 29.5 ± 3.6 3.7 ± 0.5 2.3 ± 0.5 1.7 ± 0.5

PiML proves to be the most effective framework on MLE-Pi. It consistently achieves the

highest average percentile across settings—30.6% under gpt-4o
1
(OpenAI, 2024) and 44.7% under o3-

mini
2
(OpenAI, 2025c)—outperforming all other approaches and reaching closer to median human

performance. It also secures the most gold medal average across the seed runs with o3-mini
2
,

reinforcing its competitive strength. All our experiments can be reproduced using scripts available

1
gpt-4o-2024-08-06

2
o3-mini-2025-01-31 with reasoning effort – High

8

at the anonymous repository
3
. We also report results and cost analysis based on the complexity of

the competition in Appendix A.3

We compared traditional AutoML (AutoGluon-Tabular (Erickson et al., 2020b)) with our LLM-

driven PiML framework on four tabular competitions from the MLE-Pi dataset (Table-7). The

goal was to evaluate their adaptability to downstream task constraints and generalization across

domains. Results (Table-2) show PiML outperforms AutoGluon in 3 out of 4 tasks, thanks to its

iterative refinement strategy. See Appendix A.5 for details.

Table 2: Agent Performance on MLE-Pi (Tabular) compared to AutoGluon-Tabular

Model Framework Average
Percentile (%) Number of Medals GOLD SILVER BRONZE

- AutoGluon-Tabular 25.922 1 0 1 0

gpt-4o
1 PiML (Ours) 29.064 1 0 1 0

o3-mini : high
2 PiML (Ours) 56.861 2 1 1 0

4.5 Discussion

Our study highlights the strengths of the PiML methodology over AIDE (Jiang et al., 2025), par-

ticularly in its interactive and human-readable approach. Built on the ReAct framework (Yao

et al., 2023b), PiML enables real-time data interpretation, facilitating early error detection and

adaptive decision-making. Its Jupiter-style coding environment enhances transparency by exposing

intermediate results, creating an iterative feedback loop essential for dynamic analysis.

In contrast, AIDE (Jiang et al., 2025) employs an automated, iterative refinement process to

construct end-to-end solutions. While this ensures methodical progression, it slows response

to immediate data feedback. Its reliance on atomic code changes maintains rigor but hinders

rapid error correction or strategic pivots, making it less efficient in navigating NP-hard search

spaces. Additionally, AIDE’s greedy selection process may also limit its creative exploration ability,

especially in dynamic environments. Its inability to persist computations forces a complete re-

execution on error, which becomes inefficient with large datasets due to repeated loading and

processing overheads.

A key trade-off between the two approaches lies in the balance between automation and

interpretability. PiML’s exposure of intermediate states not only promotes transparency but also

empowers users to pivot based on evolving observations and react to them — a crucial capability

when working with large or complex datasets. In contrast, AIDE’s closed-loop refinement process

limits such flexibility, prioritizing stability over adaptability.

In large dataset scenarios, the inefficiencies in AIDE (Jiang et al., 2025) becomemore pronounced.

As shown in the MLE-Bench paper (Chan et al., 2024), AIDE gradually improves—even over 100-

hour runs—indicating that its underlying strategy can lead to strong results. However, this slow

progress is tightly coupled with design limitations like the lack of computation persistence, which

restricts the pace of iteration and exploration. In contrast, PiML avoids these bottlenecks by using

fewer steps and enabling incremental corrections without requiring full re-execution. This allows

greater exploratory bandwidth within time-constrained settings—like the 24-hour window in our

evaluation—making PiML more effective for practical, resource-limited machine learning tasks.

Ultimately, the choice between PiML and AIDE is context-dependent. For scenarios needing

exploratory analysis and rapid prototyping, PiML’s interactive, feedback-driven methodology is

likely to offer significant advantages. However, for applications that demand robust, fully automated

code generation in well-defined settings, the systematic nature of AIDE (Jiang et al., 2025) may be

more appropriate despite its potential drawbacks in flexibility and responsiveness.

3
PiML Anonymous Repository

9

https://anonymous.4open.science/r/piml_agent_repo-EC99/

4.6 Limitations

Reliability on Underlying LLM for ML Code Generation: PiML’s performance is significantly

dependent on the quality and reliability of the underlying large language model (LLM) used for

generating machine learning code. As highlighted in the ML Code Efficiency Report (Appendix

A.4), inconsistencies or biases in the LLM may affect the overall code efficiency and correctness.

Offline Mode of Operation: The methodology currently operates in an offline manner, relying

entirely on the pre-existing knowledge of the LLM. This lack of real-time or online learning

capabilities can limit its adaptability to new data or emerging trends, underscoring the need for an

online, continuously updating approach.

Seed Randomness Impact: The initialization randomness can significantly affect the repro-

ducibility and consistency of results. Variations in random seed values may lead to different

outcomes, which challenge the reliability and repeatability of experiments conducted using PiML.

Hence, results are reported over multiple seed runs to account for variation.

Lack of Visual Clues via Plots Understanding: Although incorporating context from vision-

language models (VLMs) shows promise, the current framework falls short in effectively integrating

visual cues from graphs or other visual data representations. While preliminary experiments

indicate that visual context can be meaningful (Appendix A.6), there remains a pressing problem in

determining how best to leverage these insights to enhance model performance and interpretability.

5 Conclusion

We introduce PiML-PiML-Persistent Iterative Machine Learning agentic framework for efficient,

iterative refinement of real-worldML tasks. PiML combines long-term planning, reasoning, adaptive

memory, and systematic step-by-step debugging to tackle complex problems. We demonstrate its

superior performance over AIDE (Jiang et al., 2025), OpenHands (Wang et al., 2024), MLAB (Huang

et al., 2023) on a challenging MLE-Pi Dataset (a subset of MLE-Bench dataset), highlighting the

importance of adaptive, context-aware reasoning in various complex ML tasks.

Ethics Statement. Our results show LLMs can meaningfully aid data science workflows,

specifically o3-mini with PiML achieving an average percentile of 44.7% against real leaderboard

submissions. This underlines the potential of LLMs as it nears the median human ranks, to support

practitioners in a variety of ML engineering tasks, lowering entry barriers and speeding up iteration.

However, as AI systems become capable of tasks traditionally reserved for skilled professionals, it

calls for responsible use, balancing productivity and innovation with thoughtful governance.

6 Future Directions

The quest to solve complex problems that evolve over extended periods remains a central driving

force in artificial intelligence research. Long-horizon tasks inherently require a sequence of deliber-

ate actions and decisions executed over time to achieve specific objectives. This challenge spans

diverse domains such as software development and scientific research, where initiatives like Claude

Code (Anthropic, 2025)and AI Co-Scientist (Gottweis et al., 2025) have made significant strides.

Innovative systems like Manus AI (manus.im, 2025) reflect a growing trend toward generalist

agents that autonomously handle diverse tasks, from web design to stock analysis and travel

planning. These systems showcase AI’s potential to manage multifaceted projects with minimal

human oversight, continuously learning and adapting via trial and error to refine decision-making.

In Machine Learning and Deep Learning, long-term, iterative learning is essential. Success

relies on persistent refinement, where each cycle of trial, error, and reasoning paves the way for

incremental improvements. PiML’s results on MLE-Pi highlight both current capabilities and future

potential for end-to-end ML workflows. Future research can harness large language models for

continuous learning, where insights from one experiment inform the next. Self-evolving techniques

may further enable AI systems to refine their architectures and training processes over time.

10

References

Anthropic. Introducing Claude 3.5 Sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Anthropic. Claude 3.7 Sonnet and Claude Code, 2025. URL https://www.anthropic.com/news/
claude-3-7-sonnet.

Anthropic. Claude Code, 2025. URL https://docs.anthropic.com/en/docs/agents-and-tools/
claude-code/overview. Version 1.0.

Felix Busch, Lena Hoffmann, Christopher Rueger, Elon HC van Dijk, Rawen Kader, Esteban Ortiz-

Prado, Marcus R Makowski, Luca Saba, Martin Hadamitzky, Jakob Nikolas Kather, et al. Current

applications and challenges in large language models for patient care: a systematic review.

Communications Medicine, 5(1):26, 2025.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio

Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and Aleksander Mądry. MLE-

Bench: Evaluating Machine Learning Agents on Machine Learning Engineering. arXiv preprint
arXiv:2410.07095, Accepted at ICLR 2025, 2024. URL https://arxiv.org/abs/2410.07095.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching Large Language Models

to Self-Debug, 2023. URL https://arxiv.org/abs/2304.05128.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,

2025. URL https://arxiv.org/abs/2501.12948.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander

Smola. AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data, 2020a. URL

https://arxiv.org/abs/2003.06505.

Nick Erickson, Jonas Mueller, Zeren Zhang, Alexander Mao, Alex Smola, et al. AutoGluon-Tabular:

Robust and Accurate AutoML for Structured Data. arXiv preprint arXiv:2003.06505, 2020b.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank

Hutter. Efficient and Robust Automated Machine Learning. In Advances in Neural Informa-
tion Processing Systems 28 (NeurIPS 2015), pages 2962–2970, 2015. URL https://proceedings.
neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf.

Nanxu Gong, Chandan K Reddy, Wangyang Ying, Haifeng Chen, and Yanjie Fu. Evolutionary large

language model for automated feature transformation. arXiv preprint arXiv:2405.16203, 2024.

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom

Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, et al. Towards an AI co-scientist.

arXiv preprint arXiv:2502.18864, 2025.

Antoine Grosnit, Alexandre Maraval, James Doran, Giuseppe Paolo, Albert Thomas, Refinath Shahul

Hameed Nabeezath Beevi, Jonas Gonzalez, Khyati Khandelwal, Ignacio Iacobacci, Abdelhakim

Benechehab, Hamza Cherkaoui, Youssef Attia El-Hili, Kun Shao, Jianye Hao, Jun Yao, Balazs

Kegl, Haitham Bou-Ammar, and Jun Wang. Large Language Models Orchestrating Structured

Reasoning Achieve Kaggle Grandmaster Level, 2024. URL https://arxiv.org/abs/2411.03562.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. DS-Agent: Auto-

mated Data Science by Empowering Large Language Models with Case-Based Reasoning, 2024.

URL https://arxiv.org/abs/2402.17453.

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://docs.anthropic.com/en/docs/agents-and-tools/claude-code/overview
https://docs.anthropic.com/en/docs/agents-and-tools/claude-code/overview
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2003.06505
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://arxiv.org/abs/2411.03562
https://arxiv.org/abs/2402.17453

Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data

science: Introducing caafe for context-aware automated feature engineering. Advances in Neural
Information Processing Systems, 36:44753–44775, 2023.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents

on machine learning experimentation. arXiv preprint arXiv:2310.03302, 2023.

Daniel P Jeong, Zachary C Lipton, and Pradeep Ravikumar. Llm-select: Feature selection with large

language models. arXiv preprint arXiv:2407.02694, 2024.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and

Yuxiang Wu. AIDE: AI-Driven Exploration in the Space of Code. arXiv preprint arXiv:2502.13138,
2025.

Kaggle. Kaggle Progression System, 2024. URL https://www.kaggle.com/progression. Accessed:
2024-03-27.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H. Hoi. CodeRL:

Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning, 2022.

URL https://arxiv.org/abs/2207.01780.

Erin LeDell, Sebastian Poirier, et al. H2O AutoML: Scalable Automatic Machine Learning. 19th
Python in Science Conference, pages 111–120, 2020.

Dawei Li, Zhen Tan, and Huan Liu. Exploring large language models for feature selection: A

data-centric perspective. ACM SIGKDD Explorations Newsletter, 26(2):44–53, 2025.

Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, Tuney Zheng, Minghao Liu, Xinyao Niu, Yue Wang,

Jian Yang, Jiaheng Liu, et al. Autokaggle: A multi-agent framework for autonomous data science

competitions. arXiv preprint arXiv:2410.20424, 2024.

Xinbin Liang, Jinyu Xiang, Zhaoyang Yu, Jiayi Zhang, and Sirui Hong. OpenManus: An open-source

framework for building general AI agents. https://github.com/mannaandpoem/OpenManus,
2025.

Siyi Liu, Chen Gao, and Yong Li. Large Language Model Agent for Hyper-Parameter Optimization,

2025. URL https://arxiv.org/abs/2402.01881.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The AI Scientist:

Towards Fully Automated Open-Ended Scientific Discovery, 2024. URL https://arxiv.org/
abs/2408.06292.

Simon Malberg, Edoardo Mosca, and Georg Groh. FELIX: Automatic and interpretable feature

engineering using llms. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 230–246. Springer, 2024.

manus.im. Manus | The general AI agent, March 2025. URL https://manus.im/.

OpenAI. GPT-4o System Card, 2024. URL https://openai.com/index/gpt-4o-system-card/.

OpenAI. GPT-4.5 System Card, 2025a. URL https://openai.com/index/gpt-4-5-system-card/.

OpenAI. OpenAI O1 Model Documentation, 2025b. URL https://platform.openai.com/docs/
models/o1.

12

https://www.kaggle.com/progression
https://arxiv.org/abs/2207.01780
https://github.com/mannaandpoem/OpenManus
https://arxiv.org/abs/2402.01881
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
https://manus.im/
https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/gpt-4-5-system-card/
https://platform.openai.com/docs/models/o1
https://platform.openai.com/docs/models/o1

OpenAI. OpenAI o3-mini System Card, 2025c. URL https://openai.com/index/
o3-mini-system-card/.

Cheng Peng, Xi Yang, Aokun Chen, Kaleb E Smith, Nima PourNejatian, Anthony B Costa, Cheryl

Martin, Mona G Flores, Ying Zhang, Tanja Magoc, et al. A study of generative large language

model for medical research and healthcare. NPJ digital medicine, 6(1):210, 2023.

Oleksandr Shchur, Caner Turkmen, Nick Erickson, Huibin Shen, Alexander Shirkov, Tony Hu, and

Yuyang Wang. AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting, 2023.

URL https://arxiv.org/abs/2308.05566.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yue Ting Zhuang. Hugging-

GPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face. ArXiv, abs/2303.17580,
2023. URL https://api.semanticscholar.org/CorpusID:257833781.

Kunal Singh, Ankan Biswas, Sayandeep Bhowmick, Pradeep Moturi, and Siva Kishore Gollapalli.

SBSC: Step-By-Step Coding for Improving Mathematical Olympiad Performance. arXiv preprint
arXiv:2502.16666, 2025.

Zhiqiang Tang, Haoyang Fang, Su Zhou, Taojiannan Yang, Zihan Zhong, Tony Hu, Katrin Kirchhoff,

and George Karypis. AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML

with Foundation Models, 2024. URL https://arxiv.org/abs/2404.16233.

XingyaoWang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi

Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software developers

as generalist agents. In The Thirteenth International Conference on Learning Representations, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny

Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik

Narasimhan. Tree of Thoughts: Deliberate Problem Solving with Large Language Models, 2023a.

URL https://arxiv.org/abs/2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.

ReAct: Synergizing Reasoning and Acting in Language Models, 2023b. URL https://arxiv.
org/abs/2210.03629.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. MLCopilot: Unleashing

the Power of Large Language Models in Solving Machine Learning Tasks, 2024a. URL https:
//arxiv.org/abs/2304.14979.

Shujian Zhang, Chengyue Gong, LemengWu, Xingchao Liu, andMi Zhou. AutoML-GPT: Automatic

Machine Learning with GPT. ArXiv, abs/2305.02499, 2023. URL https://api.semanticscholar.
org/CorpusID:258480269.

Xinhao Zhang, Jinghan Zhang, Banafsheh Rekabdar, Yuanchun Zhou, Pengfei Wang, and Kunpeng

Liu. Dynamic and adaptive feature generation with llm. arXiv preprint arXiv:2406.03505, 2024b.

Li Zhong, ZilongWang, and Jingbo Shang. Debug like a Human: A Large Language Model Debugger

via Verifying Runtime Execution Step-by-step, 2024. URL https://arxiv.org/abs/2402.16906.

Marc-André Zöller and Marco F. Huber. Benchmark and Survey of Automated Machine Learning

Frameworks. Journal of Artificial Intelligence Research, 70:409–472, 2021. doi: 10.1613/jair.1.11854.
URL https://arxiv.org/abs/1904.12054.

13

https://openai.com/index/o3-mini-system-card/
https://openai.com/index/o3-mini-system-card/
https://arxiv.org/abs/2308.05566
https://api.semanticscholar.org/CorpusID:257833781
https://arxiv.org/abs/2404.16233
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979
https://api.semanticscholar.org/CorpusID:258480269
https://api.semanticscholar.org/CorpusID:258480269
https://arxiv.org/abs/2402.16906
https://arxiv.org/abs/1904.12054

A Appendix and Supplemental Material

A.1 Dataset details: MLE-Pi

MLE-Pi is a curated collection of 26 competitions, sampled from MLE-Bench’s original set of 75.

This subset is carefully constructed to cover all 15 competition categories while incorporating every

available complexity level—Low, Medium, and High. The result is a balanced yet computationally

efficient proxy for MLE-Bench. Table 3 lists the selected competitions for reference.

Table 3: MLE-Pi Dataset Details

Competition Category Size (GB) Complexity
the-icml-2013-whale-challenge-right-

whale-redux

Audio Classification 0.29314 Low

tensorflow-speech-recognition-challenge Audio Classification 3.76 Medium

ventilator-pressure-prediction Forecasting 0.7 Medium

histopathologic-cancer-detection Image (Other) 7.76 Low

petfinder-pawpularity-score Image (Other) 1.04 Medium

rsna-miccai-brain-tumor-radiogenomic-

classification

Image (Other) 135.85 High

leaf-classification Image Classification 0.036 Low

statoil-iceberg-classifier-challenge Image Classification 0.3021 Medium

hms-harmful-brain-activity-classification Image Classification 26.4 High

tgs-salt-identification-challenge Image Segmentation 0.5 Medium

3d-object-detection-for-autonomous-

vehicles

Image Segmentation 125.79 High

denoising-dirty-documents Image to Image 0.06 Low

vesuvius-challenge-ink-detection Image to Image 37.02 High

bms-molecular-translation Image to Text 8.87 High

siim-covid19-detection Object Detection 128.51 High

text-normalization-challenge-english-

language

Sequence to Sequence 0.01 Low

seti-breakthrough-listen Signal Processing 156.02 Medium

predict-volcanic-eruptions-ingv-oe Signal Processing 31.25 High

nomad2018-predict-transparent-

conductors

Tabular 0.00624 Low

champs-scalar-coupling Tabular 1.22 Medium

stanford-covid-vaccine Tabular 2.68 High

us-patent-phrase-to-phrase-matching Text (Other) 0.00214 Medium

spooky-author-identification Text Classification 0.0019 Low

tweet-sentiment-extraction Text Classification 0.003 Medium

google-quest-challenge Training LLMs 0.015 Medium

nfl-player-contact-detection Video Classification 5.01 High

MLE-Bench also provides its own subsets, but they are exclusively based on complexity levels

("Low," "Medium," and "High") for ease of evaluation. As shown in Figure 2(a), these subsets exhibit

similar modality distributions. However, Figure 3 shows MLE-Pi achieves better comprehensive

proportional representation by categories compared to predefined subsets. This makes MLE-Pi

14

an ideal stand-in for the full MLE-Bench, particularly for testing, experimentation, and resource-

constrained scenarios.

Figure 3: MLE data splits, with proportional scaling for fair comparison to MLE-Bench.

The motivation behind this split is the significant resource demands of running MLE-Bench in

full. A single experiment run across 75 competitions (24 hours each) totals 1,800 GPU hours. Beyond

just compute time, the benchmark also incurs substantial infrastructure, memory, and overall system

overhead. Given these issues, MLE-Pi provides a practical yet representative alternative, making

benchmarking more accessible without sacrificing diversity or complexity.

A.2 Agent Settings

Table 4 details the hyperparameters for each of our tested scaffolds:

Table 4: Scaffold hyperparameters. $TARGET_MODEL is the model being evaluated.

AIDE

Parameter Value

agent.code.model $TARGET_MODEL

agent.code.reasoning_effort high

agent.feedback.model $TARGET_MODEL

agent.feedback.reasoning_effort high

agent.steps 500

agent.search.max_debug_depth 4

agent.search.debug_prob 1

agent.time_limit 86400

exec.timeout 32400

PiML

Parameter Value

agent.steps 600

agent.llm.model $TARGET_MODEL

agent.llm.temperature 0.5

agent.llm.reasoning_effort high

agent.debug_steps 10

agent.time_limit 86400

exec.timeout 32400

15

A.3 Analysis of Cost and Results Across Complexity Levels
According to MLE-Bench, the 75 competitions are grouped into three complexity levels: Low (Lite)

for tasks that an experienced ML engineer can reasonably solve in under 2 hours (excluding model

training time), Medium for tasks requiring between 2 and 10 hours, and High for those expected to

take more than 10 hours to complete. We have followed the same convention while constructing

MLE-Pi, to categorize the competitions into respective complexity levels. Further, we report the

performance and cost analysis across different complexities and modalities as shown in the Table-5.

Table 5: Performance and Cost Comparison of PiML and AIDE across Task Complexity and Modalities

on MLE-Pi dataset (3 seed runs each)

Framework (Model) Metric Complexity Modality Total

Low Medium High Vision Audio Tabular NLP

PiML (gpt-4o)

Average Percentile (%) 64.7 ± 10.8 14.5 ± 3.5 21.9 ± 2.0 22.9 ± 7.1 37.5 ± 13.4 39.8 ± 9.3 36.5 ± 11.9 30.6 ± 4.1

Submissions Above Median (%) 66.7 ± 6.7 3.3 ± 4.7 22.2 ± 0.0 12.8 ± 3.6 50.0 ± 0.0 38.9 ± 7.9 40.0 ± 16.3 26.9 ± 3.1

Medal Percentage (%) 47.6 ± 6.7 3.3 ± 4.7 18.5 ± 5.2 10.3 ± 7.3 50.0 ± 0.0 33.3 ± 13.6 20.0 ± 16.3 46.2 ± 38.2

Average Cost ($) 19.0 ± 4.8 25.0 ± 17.6 50.0 ± 3.4 27.8 ± 17.7 30.2 ± 22.9 46.0 ± 11.1 27.0 ± 6.4 32.0 ± 9.3

PiML (o3-mini-high)

Average Percentile (%) 75.7 ± 10.4 27.4 ± 5.7 39.8 ± 1.5 36.9 ± 1.2 57.2 ± 17.8 61.4 ± 9.2 40.1 ± 20.1 44.7 ± 2.0

Submissions Above Median (%) 90.5 ± 13.5 10.0 ± 0.0 37.0 ± 5.2 30.8 ± 6.3 50.0 ± 0.0 50.0 ± 0.0 53.3 ± 9.4 41.0 ± 4.8

Medal Percentage (%) 66.7 ± 13.5 3.3 ± 4.7 29.6 ± 5.2 20.5 ± 7.3 33.3 ± 23.6 44.4 ± 7.9 33.3 ± 18.9 29.5 ± 3.6

Average Cost ($) 19.0 ± 1.4 14.3 ± 3.2 16.9 ± 1.3 18.1 ± 4.3 7.4 ± 4.8 12.9 ± 1.1 20.2 ± 4.9 16.5 ± 1.3

AiDE (o3-mini-high)

Average Percentile (%) 69.2 ± 8.1 19.7 ± 2.0 36.2 ± 6.0 35.4 ± 3.5 41.6 ± 5.0 45.4 ± 6.1 38.3 ± 4.4 38.8 ± 0.2

Submissions Above Median (%) 81.0 ± 6.7 0.0 ± 0.0 25.9 ± 5.2 25.6 ± 7.3 50.0 ± 0.0 38.9 ± 7.9 26.7 ± 9.4 30.8 ± 0.0

Medal Percentage (%) 57.1 ± 11.7 0.0 ± 0.0 22.2 ± 9.1 17.9 ± 3.6 16.7 ± 23.6 38.9 ± 7.9 20.0 ± 0.0 23.1 ± 3.1

Average Cost ($) 14.4 ± 5.7 17.4 ± 3.7 21.3 ± 0.6 18.3 ± 2.2 6.5 ± 1.1 19.6 ± 1.1 19.7 ± 6.3 17.9 ± 2.2

A.4 Understanding and comparing the Coding Efficiency of LLMs
This section tries to understand and compare the coding efficiency of different Large Language

Models for Machine learning problems.

A.4.1 Dataset and LLMs Selection. For this experiment, we use the MLE-Pi dataset, as defined in

Appendix A . This dataset provides a diverse collection of Kaggle Competitions, ensuring a balanced

representation of both complexities and modalities.

The LLMs selected for our experimentation are gpt-4o-2024-08-06 (OpenAI, 2024), gpt-4.5-

preview (OpenAI, 2025a), o1 (OpenAI, 2025b), o3-mini-2025-01-31 (medium reasoning effort) (Ope-

nAI, 2025c), o3-mini-2025-01-31 (high reasoning effort) (OpenAI, 2025c), and deepseek-r1-distill-

qwen-32B (DeepSeek-AI, 2025)

A.4.2 Coding Efficiency Metric. From our experiment logs, we observed that the code generated by

LLMs for Machine Learning problems, like Kaggle competitions, often fails to utilize the available

resources effectively. In several cases, when GPUs were available and explicitly mentioned in the

context, the LLM failed to use them in its generated code. Additionally, in some instances, the LLM

selected suboptimal models for the given modality, such as choosing scikit-learn models for image

competition. To quantify these inefficiencies, we propose the MLCES (ML Code Efficiency Score)

metric.

MLCES metric: The MLCES measures how effectively a machine learning solution gener-

ated by LLM utilizes computational resources and selects appropriate models. It evaluates two key

factors: GPU usage (G) and model architecture quality (M).

If a task requires a GPU (e.g., image or audio processing), the score assigns:

𝐺 =

{
1, if the code correctly utilizes a GPU,

0, if the GPU is ignored despite being available and required.

16

For model selection:

𝑀 =

{
1, if the code employs a competitive model architecture for the task,

0, if the model choice is suboptimal (e.g., using scikit-learn for image processing).

The raw score (S) is calculated as follows:

• For GPU-dependent tasks (e.g., image, audio, GPU-intensive NLP):
𝑆 = 𝐺 +𝑀 (possible values: 0, 1, or 2)

• For non-GPU tasks (e.g., tabular data):
𝑆 = 2 ×𝑀 (possible values: 0 or 2)

To ensure consistency across tasks, the final MLCES is normalized:

MLCES =
𝑆

2

(yielding a value between 0 and 1)

Interpretation of the score:

• 0.0→ Neither GPU utilization nor appropriate model selection was applied.

• 0.5→ Either GPU usage or model selection was correct, but not both.

• 1.0→ The solution efficiently utilizes the GPU (if required) and selects a competitive model.

A.4.3 Experimental Setup. To evaluate and compare the performance of the LLMs, we used a repeated

sampling strategy. For each pair of competition and LLM pair, we conducted 50 independent

sampling trials. Within each trial, we randomly selected 12 candidate solutions generated by

the respective LLM. We calculated the MLCES metric for each solution using a separate gpt-4o-

2024-08-06 (OpenAI, 2024) model. For every trial, we computed the average MLCES score across

the 12 sampled solutions and the mean performance per LLM for each competition by averaging

these scores over the 50 trials. Finally, to summarize and compare overall performance across

competitions, we aggregated these competition level means to obtain a final overall mean and

corresponding standard deviation for each LLM.

Table 6: Comparison of Overall Machine Learning Coding Efficiency Scores (MLCES) for Various LLMs

on the MLE-Pi Dataset over 50 independent trials.

Model
MLCES (mean ± std)

NCS=4 NCS=8 NCS=12

gpt-4o-2024-08-06 0.50 ± 0.30 0.49 ± 0.30 0.50 ± 0.30

gpt-4.5-preview 0.55 ± 0.27 0.55 ± 0.26 0.55 ± 0.27

o1-2024-12-17 0.24 ± 0.29 0.24 ± 0.29 0.24 ± 0.29

o3-mini-medium-2025-01-31 0.44 ± 0.37 0.44 ± 0.37 0.44 ± 0.37

o3-mini-high-2025-01-31 0.50 ± 0.37 0.50 ± 0.36 0.49 ± 0.37

deepseek-r1-distill-qwen-32B 0.45 ± 0.26 0.44 ± 0.24 0.44 ± 0.24

NCS (Number of Candidate Solutions) indicates how many distinct LLM outputs

were generated per trial.

A.4.4 Results and Analysis. From Table 6 and Figure 4a, we observe that most LLMs score below 0.5, with

gpt-4.5-preview (OpenAI, 2025a) performing slightly better at 0.56. Reasoning models, in general,

perform worse, with o1 (OpenAI, 2025b) being significantly low at 0.24. The only exception is o3-

mini-high (OpenAI, 2025c), which scores 0.50, slightly outperforming gpt-4o-2024-08-06 (OpenAI,

17

(a) Bar plot comparing the MLCES metric

across different LLMs on the MLE-Pi

dataset.

(b) Box plot comparing the MLCES metric

across different LLMs on the MLE-Pi

dataset.

Figure 4: ML coding efficiency of different LLMs

2024) at 0.49. deepseek-r1-distill-qwen-32B (DeepSeek-AI, 2025) is comparable to o3-mini-medium

(OpenAI, 2025c) at 0.44, though both still score lower than the GPT models.

This consistent low performance across all the top LLMs indicates that further research is needed

on ML problem-specific optimization within LLMs. The advancements in reasoning models do not

necessarily translate to improved performance in this domain, suggesting that their effectiveness

may be problem-specific and limited. However, further investigation is needed before drawing any

definitive conclusions.

A.5 Comparative Analysis of PiML v/s AutoGluon-Tabular

The main objective of these experiments was to understand the capabilities and generalisation

abilities of AutoML frameworks and put up a side by side comparison with PiML wrt various

aspects such as interpretability of features, context-aware choice of models or HPO techniques,

ability of the framework to work within constraints.

To narrow down the scope of the experiment, we choose AutoGluon-Tabular (Erickson et al.,

2020b) as a reference AutoML framework owing to its popularity in the community and SoTA

performance across different frameworks. Further, we select 4 problem statements from the MLE-Pi

dataset (Appendix-A.1) with Tabular datatype and test them on the AutoGluon-Tabular framework.

Our findings Table-2 suggest PiML, due to its contextual awareness and adaptability towards the

new domain, performs far better than the AutoGluon-Tabular framework in 3 out of 4 problem

statements. In a specific problem classified as "low" in complexity and does not require extensive

exploratory data analysis (EDA), AutoGluon-Tabular performs well. However, PiML achieves

comparable performance as shown in Table-7

Table 7: Comparison of PiML (o3-mini-high-2025-01-31) and AutoGluon on four MLE-Pi tabular

competitions, showing score (Lower the better), medal result, and leaderboard percentile.

Competition Complexity
PiML (o3-mini:high) AutoGluon

Score Results Percentile Score Results Percentile

stanford-covid-vaccine High 0.32071 GOLD 99.938 0.5475 no medal 4.215

champs-scalar-coupling Medium 1.18497 no medal 12.007 3.43939 no medal 0.291

nomad2018-predict-transparent-conductors Low 0.05924 SILVER 96.932 0.0576 SILVER 97.84

ventilator-pressure-prediction Medium 1.28531 no medal 18.573 10.67821 no medal 1.343

18

A.6 Integrating Visual Clues from Plots for Downstream EDA Analysis
Visual analysis is very crucial for obtaining valuable insights from data. It helps in enhancing the

interpretability of results and improving decision-making. The main objective of this experiment is

to understand the impact of visual understanding on key stages of ML Workflow, particularly EDA

and pre-processing.

For this, we sampled 2 ML problem statements from the MLE-Pi (Appendix-A.1) dataset -

champs-scalar-computing and stanford-covid-vaccine. We designed 2 different scenarios - one

where we instruct the model to avoid plotting any visualizations and the other where instructions

are to visualize the plots wherever necessary. (Sub-section A.6.1). We used OpenAI-o1 (OpenAI,

2025b) for our experiments with reasoning_effort set to meddium and max_completion_tokens
to 2048.

A.6.1 Prompts for EDA.
Prompt for EDA code generation

You are an EDA agent assisting the main agent in solving a machine learning
problem. Your task is to perform exploratory data analysis (EDA) on the given
dataset by generating Python code.

Dataset Details:
- Dataset Folder Path: ’{dataset_folder_path}’
- Kaggle Competition: ‘{kaggle_competition}‘
- Dataset Description: ‘{dataset_description}‘
- Domain Info: ’{domain_info}’
- EDA directions: ’{eda_directions}’

<Only if visualizations not required add below text>
Avoid visualization commands - use statistical summaries instead

Prompt for getting observations from code and output

You are an EDA analysis agent tasked with interpreting the results of an
exploratory data analysis (EDA) process. Your goal is to extract key
observations and suggest potential future explorations based on the provided
details.

Provided Information:
- Kaggle Competition: ‘{kaggle_competition}‘
- Domain Information: ‘{domain_info}‘
- Dataset Description: ‘{dataset_description}‘
- EDA Code: ‘{code}‘
- EDA Results: *(Provided below the prompt)*

Guidelines for Analysis:
1. Key Observations:

- Summarize meaningful insights derived from the EDA results.
- Focus on trends, patterns, anomalies, correlations, and distributions.
- Avoid speculation - observe strictly based on the results.

2. Potential Future Explorations:
- Suggest logical next steps based on the EDA findings.

19

- Include further statistical analysis, feature engineering ideas, or
additional data collection strategies.

- Consider possible domain-specific explorations that could enhance model
performance.

Output format:

- Observations (from code and results)
- Potential Future Explorations

Ensure that your analysis is concise, structured, and data-driven.

A.6.2 Analysing Observations. The EDA of champs-scalar-coupling with images has plots like scc vs

distance, scc vs muliken charge, count of coupling types, etc offering a more structural breakdown

and domain-specific analysis whereas, EDA with statistical analysis is more focused on dealing

with aggregated features like mean reactivity. In essence, the statistical analysis offers high level

perspective but lacks structural representation and interpretability resulting in the inability to

obtain insights into the problem. As it operates on aggregated features, it has the characteristic

of looking at a broader perspective. Combining the broader perspective of EDA with image is

expected to improve performance. A similar characteristic is observed in stanford-covid-vaccine

contest too.

Below, we have provided observations(with image and without image). We have also presented

the comparison between observations.

Comparison between observations (champs-scalar-computing)

Note:
1. Observation-1 (w/ Image)
2. Observation-2 (w/o Image)

Assessment Summary
1. Relevance to Competition:

- Observation 1 directly ties chemical and physical factors (bond distance,
Fermi Contact, Mulliken charges) to scalar coupling, aligning closely with NMR
theory and prediction goals.

- Observation 2 provides useful dataset insights but is more focused on broad
statistical summaries rather than deep feature relationships.

2. Scientific Soundness:
- Observation 1 aligns well with established NMR and quantum chemistry
knowledge, particularly the role of Fermi Contact and distancecoupling trends.

- Observation 2 correctly summarizes dataset properties but lacks deeper
chemical interpretation.

3. Actionability:
- Observation 1 suggests direct feature engineering strategies: bond angles,
torsion angles, per-type modeling, and emphasizing Fermi Contact.

- Observation 2 suggests refining Mulliken charge features and handling data
granularity, but with less domain specificity.

4. Domain Alignment:
- Observation 1 maps well to standard NMR principles, explaining why trends
exist.

20

- Observation 2 reaffirms known statistical properties but lacks detailed
physical reasoning.

5. Model Impact:
- Observation 1 offers a clear roadmap for domain-driven features that could
significantly improve predictions.

- Observation 2 provides useful but broader modeling suggestions, such as
handling outliers and per-type separation.

Overall Assessment
- Observation 1 is the stronger foundation for modeling due to its deep physical

insights and feature engineering strategies.
- Merging key ideas from Observation 2 (e.g., refining Mulliken charge features,

outlier handling) with Observation 1s domain-driven approach would create a
well-rounded strategy.

Observations with Images (champs-scalar-computing)

Scalar Coupling Distribution
- Multimodal distribution with a large cluster near zero and a peak at 90100 Hz

(mostly 1JHC).
- 1J couplings (1JHC: ~95 Hz, 1JHN: ~48 Hz) are higher than 2J/3J, which cluster

near zero or negative values.

Contribution Breakdown
- Fermi Contact (fc) dominates scalar coupling (correlation ~0.9999).
- The total coupling is precisely the sum of fc, sd, pso, and dso, though fc is

the primary driver.

Geometry & Coupling
- 1JHC occurs at short distances (~1 Å), while 2J/3J show larger separations and

lower couplings.
- Clear distancecoupling relationship: shorter bonds higher (positive) couplings;

longer bonds smaller/negative.

Mulliken Charges
- Distinct charge clusters influence coupling values, indicating local electron

density effects.
- Higher Mulliken charges (~0.10.2) often associated with stronger 1J couplings

(~100 Hz).

Molecular Properties
- Potential energy (~400 kcal/mol) and dipole moment (~23 Debye) exhibit global

trends but weak direct correlation with scalar coupling.

Observations without Images (champs-scalar-computing)

Dataset Overview
- Train: 4,191,263 rows, Test: 467,813 rows.
- Each row represents an atom pair within a molecule with a scalar coupling

constant (train) or a placeholder (test).

- Scalar Coupling Constant

21

- Ranges from -44.76 to 207.71 (Mean: 15.92, Std: 34.94).
Skewed distribution: 50% below 2.28, but the upper quartile extends beyond 7.39.

Coupling Types
- Most frequent: 3JHC (1.36M), 2JHC (1.03M); Least: 1JHN (39K).
- 1JHC has the highest mean (94.97), 2JHH is negative (-10.28).

Scalar Coupling Contributions
- Dominated by Fermi Contact (fc) (correlation ~0.9999).
- Diamagnetic spin-orbit (dso) shows moderate correlation (~0.56).
- Spin-dipolar (sd) and Paramagnetic spin-orbit (pso) have weaker effects.

Distance & Coupling
- Mean interatomic distance: ~2.36 Å.
- 1J couplings occur at shorter distances (~1.011.09 Å), 3J at >3.0 Å.

Quantum Features
- Potential energy (-0.017 correlation) and Mulliken charge (~0 correlation) show

little direct impact, suggesting the need for localized descriptors.

As the impact of an image may not be clear due to many visualizations in the result; below

we have given one of the images and key observations from that image by performing EDA of

champs-scalar-coupling data to understand the importance of image analysis in Machine Learning.

The prompt for getting observations for an image has a kaggle competition description, domain

information, and dataset description. The observation output first understands the details in the

plot and information in prompt and then dives into the observations needed for modeling. We

present only the observations below.

Key observations from Image (champs-scalar-computing)

Key Insights from distance vs scc(scalar coupling constant) scatterplot
Implications for Modeling
- Distance is clearly an important explanatory variable; however, distance alone

does not capture all of the variability (especially for 2J vs. 3J).
- Angles/torsions can distinguish cases where two atoms might be 3 bonds apart yet

still yield large or small couplings depending on the conformation.
- Quantum-chemical properties (Mulliken charge, shielding tensors, partial bond

orders) add nuance to predict subtle variations.

Cluster Interpretation by coupling type
- 1J (direct bonds): Shortest distances, highest J-coupling (~40200 Hz).
- 2J (2 bonds apart): Intermediate distances (~1.82.2 Å), moderate coupling (~530

Hz).
- 3J (3 bonds apart): Longer distances (>2.4 Å), smallest coupling but

angle-dependent.

Summary
- For the Kaggle task, building features around distances, angles, Mulliken

charges, and shielding tensors will likely improve predictions.

22

- Coupling types naturally cluster by distance ranges and magnitude of
J-couplingthis suggests separate modeling approaches (or a single model with
coupling-type-specific features) could be beneficial.

The prompts, and observations in this section are LLM generated and summarized for brevity.

Figure 5: A scatterplot from EDA of champs-scalar-coupling dataset for understanding the visual

understanding capabilities of LLMs. There are multiple classes in the image with different

colors. The model is able to identify classes and give detailed analysis

A.7 Prompts for our Agents
In this section, we provide all the prompts used in our pipeline.

A.7.1 Main Agent. This subsection provides the ReAct prompt used for our Main Agent, which generates

the Thought and Action of a step.

React Prompt for Main Agent

Answer the following questions as best you can.
You have access to the following tools:
1. {tool_description}

{instruction}

Your task is to create an initial baseline validation metric and generate a
corresponding submission_{{validation_metric.csv}} file. Then, continuously
improve the validation metric and produce updated
submission_{{validation_metric}}.csv files for each improvement.

Always respond in this format exactly:
Thought: What you are currently doing, what actions to perform, and why
Action: the action to take, should be exactly one name of the tool from this list

- [{tool_names}]
Action Input:
‘‘‘python
[the input to the action]

23

‘‘‘
Observation: the result of the action
... (this Thought/Action/Action Input/Observation should continue repeating

indefinitely until instructed to stop)

TASK INSTRUCTIONS:

1. Dataset Management
- Use only the provided dataset; synthetic datasets are strictly prohibited.
Sample datasets may be used for quick validation but must be reverted to the
original dataset afterward

- When resource constraints prevent using the entire dataset for training, use
a portion of the original dataset. Always ensure predictions are made on the
entire test dataset

- Verify dataset correctness before any processing
- Use actual target variables from the data. Never use synthetic target
variables

- Implement efficient data loading using generators or iterators
- Apply appropriate batch sizes and data types for memory efficiency

2. File and Directory Structure
- Write all output files to "./" (current directory)
- Organize input data in an appropriate directory structure based on modality
- Create proper train/validation splits
- Maintain checkpoint registry in the current directory
- Save checkpoints with clear timestamps and metrics

3. Framework and Processing
- Choose an appropriate ML framework for the task, with a preference for
PyTorch when equally suitable

- Implement efficient data loading mechanisms (e.g., PyTorch DataLoader,
TensorFlow tf.data)

- Process different data modalities appropriately:
* Images: Handle different formats, sizes, and channels
* Text: Process different languages, encodings, and lengths
* Tabular: Handle different datatypes, missing values, and categorical
variables
* Sequential: Process variable lengths and temporal dependencies
* Audio: Handle different sampling rates, durations, and formats

- Use appropriate libraries for data loading based on modality (e.g.,
PIL/OpenCV for images, transformers for text, librosa for audio)

- Avoid visualization commands - use statistical summaries instead

4. Data Analysis and Preprocessing
- Conduct appropriate exploratory data analysis based on the dataset
characteristics and modality

- Consider relevant properties that might impact model performance:
* Images: Resolution, channels, aspect ratios
* Text: Length, vocabulary, language characteristics
* Tabular: Feature distributions, correlations, cardinality
* Sequential: Sequence lengths, temporal patterns
* Audio: Duration, frequency characteristics, noise levels

24

- Design and implement preprocessing steps specific to the data modality
- Apply appropriate augmentation techniques where beneficial
- Adapt the preprocessing pipeline based on initial analysis findings

5. Validation Metric and Iteration:
- Every time the validation metric is checked:
- Create a file named ‘submission_metric.csv‘ containing predictions on the
test data, where ‘metric‘ is the current validation score
- Even if the metric shows no improvement, still create the corresponding
submission_metric.csv file

- After each improvement, continue iterating by exploring new strategies (e.g.,
feature engineering, advanced models) until optimal results are achieved

6. Checkpoint Management
- Before loading any checkpoint, verify its existence
- Load the latest checkpoint only if it exists when resuming operations
- Save new checkpoints after significant operations or improvements

7. Stopping Condition
DO NOT STOP processing until one of these explicit conditions is met:
- You receive a direct "stop" instruction
- You reach the specified time limit
- You encounter an unrecoverable error
Even after achieving good results, continue iterating and improving unless a
stop condition is met.

8. Resource Management
- Implement GPU memory cleanup
- Clear cache between training runs
- Monitor memory usage and leaks
- Use appropriate data types to minimize memory consumption
- Stop and reset approach if persistent errors occur

{extra_instructions}
MAKE SURE YOU FOLLOW THE INSTRUCTIONS WHILE EXECUTION.

{agent_scratchpad}

A.7.2 Summary Agent. This subsection provides the prompt and JSON Schema used for the summary

agent.

Prompt for Summary Agent

You are a helpful assistant. You will be given a Python code block and its
corresponding execution output. Your task is to summarize the execution output
in the specified JSON format.

Code block:
{code_block}

Execution output:
{execution_output}

25

Json Schema for Summary Agent

{
"type": "object",
"properties": {

"is_bug": {
"type": "boolean",
"description": "true if the execution output shows that the execution

failed or has some bug, otherwise false.",
},
"has_csv_submission": {

"type": "boolean",
"description": "true if a submission file in the format

‘submission_metric.csv‘ is created, otherwise false",
},
"submission_file_name_list": {

"type": "array",
"items": {"type": "string"},
"description": "List of submission file names if created; an empty

list otherwise.",
},
"summary": {

"type": "string",
"description": (

"Provide a concise overview of the execution output (2-3
sentences). "

"Highlight any key metrics, parameters, or events, such as
performance scores, "

"hyperparameter values, or significant observations from the
execution. "

"If there are errors or failures "
"mention them explicitly. This summary should act as a standalone

description of the output."
),

},
},
"required": [

"is_bug",
"has_csv_submission",
"submission_file_name_list",
"summary",

],
}

A.7.3 Debug Chain. This subsection presents the prompts used in the debug chain, which consists of

two main components:

1. Debug Agent – Refines the action iteratively to resolve the error.

2. Integration – Summarizes the entire debug chain to create the final output thought.

Debug Agent. The prompt and JSON schema for Debug Agent

26

Prompt for Debug Agent

You are an AI assistant tasked with debugging and correcting the error that
occurred in the latest code cell of a Jupyter notebook.

You will be provided with the following information:
1. **Main Code History**: A list of code cells executed in the notebook, in the

order of execution. Each code cell is separated by ’# %%’.
2. **Data Preview**: A preview of the data (e.g., a subset of rows or a

description of the data) used in the current notebook. This helps to
understand potential data-related issues.

3. **Debugging History**: A list of previous debugging attempts, including errors
encountered from previous cells. This history helps identify whether the error
is recurring or if progress is being made.

4. **Current Code**: The latest code cell that raised an error. This is the code
that needs to be debugged and corrected.

5. **Current Error**: The latest error message or traceback. This provides context
on what went wrong and helps identify the specific issue.

Main Code History
{main_history}

Data Preview
{data_preview}

Debugging History
{debug_history}

Current Code
{current_code}

Current Error
{current_error}

Based on the information above, please provide the following:

1. **reflection**: A detailed analysis of the error.
- Identify the root cause.
- Explain why the error occurred.
- Include any patterns or trends observed in previous debugging attempts that
may help explain the issue.

2. **corrected_code**: Provide the corrected Python code cell that should be
executed next.

- **Strictly** provides only the Python code.
- Make sure the code resolves the identified error, fixing the root cause.

3. **is_persistent_error**: Indicate whether the error is recurring.
- If this error has occurred multiple times based on the ‘debugging history‘,
set this value to **True**.

27

- If this error is isolated to the current execution or is a one-time issue,
set this value to **False**.

Give your output in the specified JSON format.

Json Schema for Debug Agent

{
"type": "object",
"properties": {

"reflection": {
"type": "string",
"description": "A detailed analysis of the error, including the

identified cause and an explanation of why the error occurred.",
},
"corrected_code": {

"type": "string",
"description": "The corrected code cell to be executed next that

resolves the identified error and addresses the root cause. STRICTLY ONLY THE
PYTHON CODE WITHOUT ANY ADDITIONAL TOKENS.",

},
"is_persistent_error": {

"type": "boolean",
"description": "Indicates whether the error is recurring based on

previous debugging history. True if the error is persistent across executions,
false if it’s a one-time issue.",

},
},
"required": ["reflection", "corrected_code", "is_persistent_error"],

}

Debug Chain Integration. The prompt and JSON schema for the integration of debug chain

Prompt for debug chain integration

You are an AI assistant helping a **ReAct-based agent** that operates using a
Thought-Code-Observation loop. The agent runs code step by step in a
Jupyter notebook, observing the output at each step.

Whenever an error occurs, a **separate debug chain** is initiated to diagnose and
resolve the issue. This debug chain follows its own
Thought-Code-Observation loop and can take up to **5 steps** to fix the
problem.

Once the debug chain **completes** (either by fixing the issue or reaching the
step limit), you must summarize everything that happened into **a single
Thought-Code-Observation step**. This step will be used as the **current
step** in the main ReAct loop, ensuring a seamless transition for the agent to
continue execution.

28

You will be provided with the following:

1. **Previous React Step**
- The Thought-Code-Observation step where the error first occurred.

2. **Debug Chain**
- The sequence of Thought-Code-Observation steps taken to diagnose and resolve
the error.

Your Task:

Based on the provided information, generate the **current step** in the ReAct loop
using the format below:

1. **Current_Thought**:
- **Narrative Style:** Write in **first-person perspective** to match the ReAct
agent’s style (e.g., I observed..., I encountered...).

- **Content Requirements:**
- Summarize the key debugging actions taken, focusing on what occurred during
the debug chain.
- Clearly describe the error encountered, the debugging attempts made, and
the final state of the code as reflected in the executed code.
- The thought should solely serve as a reflective summary that aligns with
the final code and observation.

- **Tone:** Maintain a reflective, factual tone that mirrors the agent’s
typical thought process.

2. **Current_Code**:
- Provide the **final executed code** from the debug process.
- If the issue was fixed, this should be the corrected version of the original
code.

- If the issue was **not fully resolved**, provide the **last attempted code
version** so the agent can continue from there.

3. **Current_Observation**:
- Summarize the **final outcome** of the debug process.
- If the issue was fixed, indicate that the problem was resolved.
- If the issue was **not fully resolved**, describe what remains problematic so
the agent understands the current state before proceeding.

Previous React Step:**
{previous_thought_code_observation_step}

Debug Chain:**
{debug_chain}

29

based on the given information provide your output in the specified JSON format.

Json Schema for debug chain integration

{
"type": "object",
"properties": {

"current_thought": {
"type": "string",
"description": (

"A first-person narrative summarizing the debugging process. "
"Describe the error encountered, the debugging attempts made,

and the final state as reflected in the code. "
"This should align with the final code and observation without

outlining future steps."
)

},
"current_code": {

"type": "string",
"description": "The final version of the code executed after

debugging. If the error was fixed, this should be the corrected code. If
unresolved, this should be the last attempted version for continuity. STRICTLY
ONLY THE PYTHON CODE WITHOUT ANY ADDITIONAL TOKENS."

},
"current_observation": {

"type": "string",
"description": "A concise summary of the final outcome of the

debugging process. If the issue was resolved, indicate the success. If
unresolved, describe what remains problematic so the agent can take
appropriate next steps."

}
},
"required": ["current_thought", "current_code", "current_observation"]

}

A.8 Examples of Intermediate Results

In this section, we present a concise overview of intermediate results, with many details shortened

for brevity. For complete trajectory details, please refer to our logs.

Memory. A random example of constructed memory. This was the memory for step 5 in one of

our runs.

Example of Constructed Memory

Here is the sequence of all Thought/Action/Action Input/Observation loops you have
done so far for this task:

Full thought-action-action_input-observation loops, with observations summarized
for all except the latest step):

30

--- Step 1 ---
Thought: I will begin by implementing our initial baseline model. The idea is to

use a median-based predictor per coupling type. First, Ill load the training
data and split it into training and validation sets by molecule (using an
80/20 split) to mimic the competitions molecule-based train/test split. On the
training split, I will compute the median scalar_coupling_constant for each
coupling type. Then, for our validation set, I will predict the median (based
on the coupling type) and compute the baseline validation metric using the
competitions metricspecifically, for each coupling type, the log of the mean
absolute error (with a floor of 1e-9) is computed, and the final score is the
average of these per-type scores.

After checking our baseline validation score, I will use the entire training data
to compute the medians (per coupling type) and then predict the provided test
set. Finally, Ill create a submission file named exactly
"submission_{baseline_metric}.csv" (with the metric rounded to 4 decimals)
that contains the test predictions.

Action: python_code_executor
Action Input:
‘‘‘python
import pandas as pd
import numpy as np

Load data
train_df = pd.read_csv("input/train.csv")
test_df = pd.read_csv("input/test.csv")

Create a validation split by grouping on unique molecules (80% training, 20%
validation)

...
[Removed for brevity]
...
‘‘‘
Observation:
The script computed a baseline validation score of approximately 1.1859 by

calculating the mean log MAE from the validation split and then used medians
from the full training data to create predictions for the test set. A
submission file named submission_1.1859.csv was successfully generated, and
the entire process completed without any errors in about 4 seconds.

--- Step 2 ---
Thought: I will now improve the baseline by adding a physics-inspired feature the

distance between the two atoms as computed from the molecular structure (from
the structures.csv file). Ill merge structures with train and test data to
compute the Euclidean distance between the two atoms. Then, for each scalar
coupling type, I will train a simple linear regression model (using distance
as the sole predictor) on a training split (80% of molecules) and evaluate it
on a validation split (20% of molecules) using the competition metric.
Finally, Ill retrain on the full training data and generate predictions for

31

the test set, saving the submission file as "submission_{lr_metric}.csv"
(using the new metric rounded to 4 decimals).

Action: python_code_executor
Action Input:
‘‘‘python
...
[Removed for brevity]
...
‘‘‘
Observation:
The script successfully computed the validation score using Linear Regression

(score: 1.0169) but then encountered a ValueError when predicting on the test
set due to NaN values in the ’distance’ column. This error prevented the
creation of the submission file, and the output message provided suggestions
to handle missing data.

--- Step 3 ---
Thought:
I encountered the error because the test dataset contained NaN values in the

’distance’ feature, stemming from missing coordinate values after the left
merge with the structures dataframe. To resolve this, I imputed the missing
’distance’ values in the test set using the median value computed from the
training data. I then reran the model training and prediction pipeline for
each coupling type, which allowed the LinearRegression model to run without
error and produce a valid submission file.

Action:python_code_executor
Action_input:
‘‘‘python
...
[Removed for brevity]
...
‘‘‘

Observation:
The error was resolved successfully. The final code imputes missing ’distance’

values in the test set using the median value from the training data, which
allowed the LinearRegression model to run without errors. The validation score
was computed (approximately 1.0169) and the submission file
’submission_1.0169.csv’ was created.

Execution summary of the code:
The execution successfully preprocessed the data, computed the Euclidean distances

and validation score (approximately 1.0169), and trained linear regression
models per coupling type. A submission file named ’submission_1.0169.csv’ was
created as expected with no errors.

--- Step 4 ---
Thought: In this step, I will try a new approach: instead of using linear

regression based solely on the distance feature, I will now use a more
flexible model. I will train a HistGradientBoostingRegressor (a fast

32

tree-based method from scikit-learn) for each coupling type using the distance
feature. As before, I will merge the structures dataframe with the train and
test data to compute the interatomic distance, impute any missing values in
the test data using the median distance from the train data, and then split
the train data by molecules (80/20 split) to obtain a validation score.
Finally, I will retrain the HistGradientBoostingRegressor models on the full
training dataset and generate a test-set prediction file named
submission_{hgb_metric}.csv (with the metric rounded to 4 decimals).

Action: python_code_executor
Action Input:
‘‘‘python
...
[Removed for brevity]
...
‘‘‘
Observation:
[SYSTEM NOTIFICATION] Running the above tool with the following response:
Terminal output:
HistGradientBoostingRegressor validation score: 0.7639257173693997
Submission file created: submission_0.7639.csv

Execution time: 21 seconds (time limit is 9 hours).

--- Step 5 ---

Main Agent. An example of a Main Agent response for one of our runs at a random step.

Example of Main Agent response

Competition : rsna-miccai-brain-tumor-radiogenomic-classification
Modality : Image
Result : GOLD medal
Current Step: 18

User Prompt:

Answer the following questions as best you can.
You have access to the following tools:
1. python_code_executor[input]: this tool can help to run python script with

python code as input

You are participating in *MLE-bench*, an offline version of Kaggle competitions
adapted to test the coding ability of agents like yourself.

You will be given a machine learning task. You must solve the task by training a
model and running the model on the test set to produce a submission file. You
may not hand-label the data to produce a submission file.

BENCHMARK INSTRUCTIONS

33

First, please read the instructions below which are specific to our benchmark
setup. Note, these instructions can be found again in ‘instructions.txt‘.

- **Test set**: In general, since we do not have access to the original test
labels, we have constructed our own train/test split for each competition. As
such, the dataset you see in ‘/input‘ may differ slightly from what is
described in the competition instructions. Nevertheless the files available to
you should otherwise be similar to the original and you should proceed with
the competition task on the train/test splits available to you.

- **Cheating**: You are not allowed to view others’ solutions to this competition.
If we detect that your submission is plagiarized from others, the submission
will be disqualified.

Your submission will be graded based on the metric in the competition-specific
instructions. Your goal is to achieve the best score possible on the
competition task.

Wherever there is a conflict between the points above and the competition-specific
instructions, the above points should always take priority since these are
always true for our offline benchmark setup.

ADDITIONAL NOTES

- **Compute**: You have access to 1 NVIDIA A100 80GB PCIe with the appropriate
drivers installed.

- **Use as much of the available time as possible to refine and optimize your
submission**: Your goal is to achieve the best possible score, not just to
submit your first working solution. Unless you are certain that no further
improvements can be made. Manually spot-checking predictions, building custom
validation sets and grading functions, and comparing different algorithms. You
may keep working until the time limit expires -- as long as your best
submission is stored at the designated location at the end of your run, it
will be picked up for grading.

COMPETITION INSTRUCTIONS

RSNA-MICCAI Brain Tumor Radiogenomic Classification

...
[Full Competition Page including Description, Evaluation, Submission File, Code

Requirements, Dataset Description. Removed for brevity]
...

All the required data has been uploaded by the user in the current directory.
IMPORTANT NOTE: If any zip files were uploaded, they have already been
unzipped, and their contents are ready to use.

Data directory preview:
‘‘‘
input/

sample_submission.csv (60 lines)

34

train_labels.csv (527 lines)
test/

00002/
FLAIR/

Image-387.dcm (525.4 kB)
Image-388.dcm (525.4 kB)
Image-389.dcm (525.4 kB)
Image-390.dcm (525.3 kB)
... and 125 other files

T1w/
... (truncated)
‘‘‘
No additional unzipping or extraction is required. Please proceed with the data

as-is.

**Your task is to create an initial baseline validation metric and generate a
corresponding submission_{validation_metric.csv} file. Then, continuously
improve the validation metric and produce updated
submission_{validation_metric}.csv files for each improvement.**

Always respond in this format exactly:
Thought: What you are currently doing, what actions to perform and why
Action: the action to take, should be exactly one name of the tool from this list

- [python_code_executor]
Action Input:
‘‘‘python
[the input to the action]
‘‘‘
Observation: the result of the action
... (this Thought/Action/Action Input/Observation should continue repeating

indefinitely until instructed to stop)

TASK INSTRUCTIONS:
...
[Same task instructions as provided in the appendix for prompts. Removed for

brevity]
...

COMPUTATIONAL AND RESOURCE GUIDELINES:
1. TIME MANAGEMENT:

- TOTAL AVAILABLE TIME: 24h 0m 0.00s
- TIME SPENT: 22h 51m 21.23s
- TIME REMAINING: 1h 8m 38.77s

2. ADAPTIVE STRATEGY:
- If REMAINING TIME < 25% of TOTAL:

* SKIP non-essential steps
* PRIORITIZE core functionality

- Dynamically adjust complexity based on remaining time
- Focus on critical tasks; defer optional enhancements if needed

35

NOTE: Both CPU and GPU is present and most of the necessary libraries are
installed. Efficient use of resources will help ensure task completion within
the allocated limits.

MAKE SURE YOU FOLLOW THE INSTRUCTIONS WHILE EXECUTION.

Steps 8 to 17 (Showing only action inputs. Previous steps truncated due to memory
limits):

%%
#Action:python_code_executor

#Action Input:
import os
import numpy as np
import pandas as pd
import pydicom
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import StratifiedKFold, cross_val_predict
from sklearn.metrics import roc_auc_score

def extract_median_slice_features(subject_path, modality):
"""
Extracts features from the median DICOM slice of the given modality:
"""

...

...
[Rest of the memory removed for brevity]
...
--- Step 18 ---
Thought:
(Begin!)

Main Agent Response:

THOUGHT: I want to improve the CV ROC-AUC by increasing the PCA dimensionality for

the CNN features from 200 to 300. This should better preserve the variance in
the CNN features before fusing with the handcrafted ones. I’ll re-run the
pipeline with PCA(n_components=300) and then perform hyperparameter tuning
using GridSearchCV with XGBoost, followed by generating a new submission file.

ACTION: python_code_executor

ACTION INPUT:‘‘‘python
import os
import numpy as np
import pandas as pd
import pydicom
from PIL import Image
import torch

36

import torchvision.transforms as T
import torchvision.models as models
from xgboost import XGBClassifier
from sklearn.decomposition import PCA
from sklearn.model_selection import StratifiedKFold, GridSearchCV,

cross_val_predict
from sklearn.metrics import roc_auc_score
...
[Removed for brevity]
...
submission_file_name = f"submission_{cv_auc:.3f}.csv"
submission_df.to_csv(submission_file_name, index=False)
print("Submission file created:", submission_file_name)
‘‘‘

Summary Agent. An example of a Summary Agent response for one of our runs at a random step.

Example of Summary Agent response

OBSERVATION

[SYSTEM NOTIFICATION] Running the above tool with the following response:
Terminal output:

tokenizer_config.json: 0%| | 0.00/48.0 [00:00<?, ?B/s]
tokenizer_config.json: 100%|##########| 48.0/48.0 [00:00<00:00, 392kB/s]
...
[Rest of the 389 lines truncated for brevity here]
...
93%|#########3| 115/123 [00:04<00:00, 28.07it/s]
96%|#########5| 118/123 [00:04<00:00, 28.08it/s]
98%|#########8| 121/123 [00:04<00:00, 28.13it/s]
100%|##########| 123/123 [00:04<00:00, 28.43it/s]
Submission file saved as submission_0.3799.csv

Execution time: 8 minutes (time limit is 9 hours).

OBSERVATION SUMMARY

{

’is_bug’: False,
’has_csv_submission’: True,
’submission_file_name_list’: [’submission_0.3799.csv’],
’summary’: "The model, implemented using a BERT-based classifier and a custom
dataset, was successfully trained for 3 epochs, with the final validation log
loss reported as approximately 0.3799. Training and evaluation metrics,
including a training loss of about 0.2832 and high evaluation throughput (~440
samples per second), were output, and a submission CSV file named
’submission_0.3799.csv’ was saved. A minor warning about newly initialized

37

classifier weights was displayed, indicating that further task-specific
fine-tuning is recommended."

}

Debug Chain. An Example of a Debug Chain in one of our runs.

Example of debug chain

OBSERVATION WITH ERROR

[SYSTEM NOTIFICATION] Running the above tool with the following response:
Terminal output:

MC Dropout TTA_v1 Validation Iteration 1/5: 0%| | 0/314 [00:00<?, ?it/s]
MC Dropout TTA_v1 Validation Iteration 1/5: 0%| | 1/314 [00:03<20:43,

3.97s/it]
...
[Rest of the observation was truncated for brevity]
...
MC Dropout TTA_v2 Validation Iteration 5/5: 100%|#########9| 313/314 [03:22<00:00,

1.79it/s]
MC Dropout TTA_v2 Validation Iteration 5/5: 100%|##########| 314/314 [03:22<00:00,

1.55it/s]
Error in line 138: ensemble_val_auc_mcdrop = roc_auc_score(all_val_labels,

ensemble_val_preds)
ValueError: Found input variables with inconsistent numbers of samples: [32, 10033]
Execution time: 41 minutes (time limit is 9 hours).

OBSERVATION SUMMARY

The execution output shows extensive progress of MC Dropout TTA on both validation

and test datasets, but it ultimately fails with a ValueError due to
inconsistent sample sizes (32 vs 10033) when computing the ROC AUC score. As a
result, no CSV submission file was created, and the error halted further
execution after approximately 41 minutes.

---DEBUG MODE (separate chain initiated)---

DEBUG STEP-1

REFLECTION 1:
The error occurred because the ground truth labels (all_val_labels) were being

incorrectly accumulated from only a single batch of the validation data rather
than from the entire validation set. In the original code, the labels were
captured inside the TTA loop using ’if all_val_labels is None: all_val_labels
= np.array(labels.numpy())’, which resulted in all_val_labels having the
length of a single batch (e.g., 32) instead of the full set (e.g., 10033
samples). This mismatch causes the roc_auc_score function to raise a
ValueError for inconsistent number of input samples. This error seems to be

38

isolated to this MC Dropout ensemble TTA block (it has not been a recurring
error in earlier cells).

CORRECTED CODE 1:
‘‘‘python
...
[Removed for brevity]
...
‘‘‘

EXECUTION OUTPUT 1:
Terminal output:

MC Dropout TTA_v1 Validation Iteration 1/5: 0%| | 0/314 [00:00<?, ?it/s]
MC Dropout TTA_v1 Validation Iteration 1/5: 0%| | 1/314 [00:03<18:10,

3.48s/it]
MC Dropout TTA_v1 Validation Iteration 1/5: 2%|1 | 5/314 [00:05<05:24,

1.05s/it]
...
[Rest of the observation was truncated for brevity]
...
MC Dropout TTA_v2 Test Iteration 5/5: 100%|##########| 1121/1121 [15:07<00:00,

1.23it/s]
Submission file with MC Dropout Ensemble TTA saved as:

submission_0.9352_tta_mcdrop.csv

Execution time: 3 hours (time limit is 9 hours).

[HERE ERROR WAS RESOLVED ---> BREAKING OUT OF DEBUG CHAIN]

DEBUG CHAIN INTEGRATED STEP

THOUGHT:
I identified that the ValueError was due to an inconsistent accumulation of

validation labels; originally, I was only capturing labels from a single
batch, leading to a mismatch with the predictions generated from the entire
dataset. To fix this, I modified the code to accumulate all labels from the
full validation set prior to running the TTA loops. I then verified that both
TTA iterations (using transform v1 and v2) work correctly and the final
ensemble AUC calculation now receives matching inputs. The submission file is
generated without errors.

ACTION: python_code_executor

ACTION INPUT:
‘‘‘python
...
[Removed for brevity]
...

39

‘‘‘

OBSERVATION & OBSERVATION SUMMARY:
The script executed a Monte Carlo Dropout with Test Time Augmentation (TTA)

approach for both the validation and test datasets. It iteratively computed
predictions using two different augmentation transforms, ensemble averaged
them, and achieved a validation AUC of approximately 0.9352. Finally, it
successfully saved a submission file named ’submission_0.9352_tta_mcdrop.csv’.

---DEBUG MODE (finished)---

NEXT STEP (by Main Agent)
...

40

Submission Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] [We support our claims with detailed results and analysis

along with the Code and logfiles.]

(b) Did you describe the limitations of your work? [Yes] [We talk about the limitations in

Section [4.6]]

(c) Did you discuss any potential negative societal impacts of your work? [Yes]

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

(see https://2022.automl.cc/ethics-accessibility/) [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources, etc.)? [Yes]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning details and results, etc.)? [Yes]

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] [We have reported evaluations

on different splits of the data to consider for the impact of randomness.]

(d) Did you report the uncertainty of your results (e.g., the standard error across random seeds

or splits)? [Yes]

(e) Did you report the statistical significance of your results? [Yes]

(f) Did you use enough repetitions, datasets, and/or benchmarks to support your claims? [Yes]

(g) Did you compare performance over time and describe how you selected the maximum

runtime? [Yes]

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes]

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes]

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all dependencies (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation instructions, and execution commands (either

in the supplemental material or as a url)? [Yes]

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes] [We show that users can use any of the run groups which are small

subset of the MLE-Pi dataset in the README.md file in the code.]

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes]

(d) Did you include the raw results of running your experiments with the given code, data,

and instructions? [Yes] [We have included all the runtime logfiles and result jsons for our

exeperiments]

41

https://2022.automl.cc/ethics-accessibility/

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes]

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [Yes]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to institutional review board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [Yes]

(b) Did you include complete proofs of all theoretical results? [Yes]

42

	Introduction
	Related Work
	Methodology
	Framework Overview
	Iterative Refinement Cycle
	Result Generation and Optimization
	Memory Construction Dynamics
	Debug Chain: Systematic Error Correction

	Experiments
	Experimental Setup
	Baseline
	Dataset
	Results
	Discussion
	Limitations

	Conclusion
	Future Directions
	Appendix and Supplemental Material
	Dataset details: MLE-Pi
	Agent Settings
	Analysis of Cost and Results Across Complexity Levels
	Understanding and comparing the Coding Efficiency of LLMs
	Dataset and LLMs Selection
	Coding Efficiency Metric
	Experimental Setup
	Results and Analysis

	Comparative Analysis of PiML v/s AutoGluon-Tabular
	Integrating Visual Clues from Plots for Downstream EDA Analysis
	Prompts for EDA
	Analysing Observations

	Prompts for our Agents
	Main Agent
	Summary Agent
	Debug Chain

	Examples of Intermediate Results

