
PiML: Automated Machine Learning Workflow 1

Optimization using LLM Agents 2

Anonymous1 3

1
Anonymous Institution 4

Abstract In this paper, we introduce PiML, a novel automated pipeline specifically designed for 5

solving real-world machine learning (ML) tasks such as Kaggle competitions. PiML in- 6

tegrates iterative reasoning, automated code generation, adaptive memory construction, 7

and systematic debugging to tackle complex problems effectively. To rigorously assess our 8

framework, we selected 26 diverse competitions from the MLE-Bench benchmark, ensuring 9

comprehensive representation across various complexity levels, modalities, competition 10

types, and dataset sizes. We quantitatively compared PiML’s performance to AIDE—the 11

best-performing existing baseline from MLE-Bench—across multiple evaluation metrics: 12

Valid Submission rate, Submissions Above Median, Average Percentile Rank, and Medal 13

Achievement Rate. Using the "o3-mini" model, PiML surpassed the baseline in submissions 14

above median (34.61% vs 30.77%), medal attainment rate (26.92% vs 23.08%), and average 15

percentile rank (43.75% vs 39.06%). These results highlight PiML’s flexibility, robustness, and 16

superior performance on practical and complex ML challenges. 17

1 Introduction 18

Designing an end-to-end machine learning (ML) workflow is a complex effort that requires sub- 19

stantial expertise, as manually crafting and optimizing these workflows for specific tasks is both 20

labor-intensive and knowledge-intensive. This challenge has been partially addressed by AutoML 21

(Erickson et al. (2020a), Tang et al. (2024), Shchur et al. (2023)), which automates various stages 22

of the workflow, streamlining processes that would otherwise demand extensive human effort 23

(Feurer et al. (2015)). However, while AutoML has improved efficiency to a degree, it operates 24

within a predefined rule set and often lacks the flexibility necessary to adapt to the domain specific 25

requirements of the problem (Zöller and Huber (2021)). 26

In contrast, the emergence of Large Language Models (LLMs) has revolutionized problem- 27

solving approaches thanks to their expansive knowledge bases and reasoning capabilities. Tech- 28

niques like Chain of Thought (CoT)(Wei et al. (2023)), Tree of Thought (ToT)(Yao et al. (2023a)), 29

and ReAct(Yao et al. (2023b)) have demonstrated the potential of LLMs in tackling complex coding 30

tasks, showcasing their ability to facilitate complex reasoning processes. These capabilities can be 31

applied to ML workflows, offering potential solutions to previously challenging downstream tasks. 32

Many works attempted to address some parts of a ML workflow - feature engineering (Hollmann 33

et al. (2023); Jeong et al. (2024); Zhang et al. (2024b); Gong et al. (2024); Li et al. (2025); Malberg et al. 34

(2024)), Model Selection - (Zhang et al. (2023); Shen et al. (2023)); HPO - (Liu et al. (2025); Zhang 35

et al. (2024a)). 36

We propose a novel multi-agent framework, PiML: Automated Machine Learning Workflow 37

Optimization using LLM Agents for exploring the true exploratory nature of ML problem solving via 38

iterative experimentation. Unlike many other similar works, our framework enables step-by-step 39

approach to problem solving. 40

Submitted to AutoML 2025 © 2025 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Our contributions include: 41

1. Automated Agent Pipeline: We introduce PiML, a structured and iterative automated pipeline 42

that systematically leverages an agent’s internal reasoning ("Thoughts") and executable code 43

("Actions") guided by summarized execution feedback ("Observations") to autonomously solve 44

machine learning tasks from Kaggle competitions. 45

2. Adaptive Memory Management: A novel multi-tier memory construction strategy, effectively 46

balancing detailed recent context with summarized historical actions. 47

3. Robust Error Handling via Debug Chain: We present a structured and systematic "Debug 48

Chain" mechanism that iteratively refines erroneous code actions generated by the pipeline, 49

improving error resolution and enabling efficient self-correction without human supervision. 50

4. Experimental Validation and Competitiveness: Empirical evaluation on the diverse MLE- 51

Bench(MLE-Pi) dataset demonstrates the flexibility and effectiveness of PiML. Specifically, 52

our results indicate superior or competitive performance against strong baseline automated 53

frameworks, thereby highlighting PiML’s potential to autonomously achieve competitive results 54

across various competition complexities and categories. 55

2 Methodology 56

In this section, we describe our automated agent pipeline designed to solve input ML tasks such as 57

Kaggle competitions. 58

Figure 1: PiML is an end-to-end framework for autonomous machine learning. Given the problem

description, dataset and evaluation metric; framework can iteratively perform EDA, Feature

Engineering, modeling and hyper-parameter tuning to obtain the best results.

2.1 Framework Overview 59

We present an overview of our proposed framework in Figure 1 and Algorithm 1. The workflow 60

starts with a clearly defined Task Description, which—for example, in the case of a Kaggle competi- 61

tion contains details about the competition objective, evaluation criteria, rules, required constraints, 62

and an initial preview of the dataset. 63

At each iteration, the Task Description and Memory are provided as input to the Main Agent, 64

to generate a Thought and an Action. The Thought represents the agent’s reasoning for the 65

current step and the Action corresponds to the generated code. This code is then executed in a 66

code interpreter, to produce an Observation. The Summary Agent analyzes the Observation to 67

generate an Observation Summary. The memory for the next iteration is constructed based on all 68

2

the previous iterations. If no errors are detected in the observation summary, then the Main Agent 69

goes to the next iteration using the Task Description and Memory. If an error is detected, then the 70

Debug Chain is activated, which will determine the next iteration. This loop continues until one of 71

the two main constraints is met: Time limit or Maximum steps. 72

2.2 Iterative Refinement Cycle 73

We formally define a single iteration of our pipeline, which we refer to as Step, as: 74

𝑆𝑖 = (𝑇𝑖 , 𝐴𝑖 ,𝑂𝑖)

where 𝑇𝑖 represents a Thought generated by the Main Agent at 𝑆𝑖 , 𝐴𝑖 represents an Action (i.e., 75

generated code), and 𝑂𝑖 represents an Observation obtained after executing the Action 𝐴𝑖 . 76

Hence, each step 𝑆𝑖 represents a single thought-action-observation cycle in our pipeline. The 77

creation of a step is mainly influenced by a fixed Task Description 𝐷 , which remains unchanged 78

throughout execution, and the Memory of all preceding steps, denoted as𝑀𝑖−1. 79

We define the agents and functions used in each step. The Main Agent, denoted as Fmain, is 80

responsible for generating the Thought and Action based on the input task and memory. The 81

Summary Agent, represented as Fsummary, analyzes the observation at each step and produces the 82

Observation Summary denoted as �̂� . The Code Interpreter, denoted by fcode, executes the action 83

and generates the corresponding observation. The Memory Constructor, represented as fmem, 84

formulates memory from previous steps for the Main Agent. Finally, the main agent’s trajectory, 85

𝝉 = {𝑆1, 𝑆2, ..., 𝑆𝑖−1}, represents all the steps up to the previous one. The sequence of operations 86

within each step is as follows: 87

1. Memory Construction: Each iteration begins with memory construction required for the main 88

agent: 89

𝑀𝑖−1 = 𝑓𝑚𝑒𝑚 (𝜏, 𝐿) where 𝐿 is the predefined max token limit.

2. Thought and Action Generation: The Main Agent produces a thought and action based on task 90

description (𝐷) and memory (𝑀). 91

(𝑇𝑖 , 𝐴𝑖) = 𝐹𝑚𝑎𝑖𝑛 (𝐷,𝑀𝑖−1)

3. Execution and Observation: The action (generated code) is executed to produce an Observation. 92

𝑂𝑖 = 𝑓𝑐𝑜𝑑𝑒 (𝐴𝑖)

4. Observation Summary: The observation is analysed and summarized by the Summary Agent to 93

produce Observation Summary. 94

�̂�𝑖 = 𝐹𝑠𝑢𝑚𝑚𝑎𝑟𝑦 (𝐴𝑖 ,𝑂𝑖)

5. Update Trajectory: Finally, the current step is added to the agent trajectory. 95

𝜏 = 𝜏 ∪ 𝑆𝑖

2.3 Result Generation and Optimization 96

During pipeline execution, the Main Agent autonomously generates submission files, conditioned 97

on its internal reasoning and the feedback acquired through observations. Each submission file 98

constitutes a complete solution attempt for the specified Task (Kaggle competition). The collection 99

of all such submission files generated throughout pipeline execution forms the final set of results. 100

Formally, let us define the set of submissions created by our pipeline as: 101

𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑁 }

3

Algorithm 1 Overall procedure of PiML

Require:
• 𝐷 : Task description (Kaggle competition)

• 𝑇 : Maximum time limit

• 𝑇𝑆 : Maximum step limit

• 𝐷𝑆 : Maximum debug-step limit

•𝑀0: Initial (empty) memory

• 𝑅: Initial (empty) submission set

• 𝑂default: Default observation if LLM fails to produce valid code

Ensure:
• 𝑅: Set of submissions {𝑅1, 𝑅2, . . . , 𝑅𝑁 }

1: Initialize 𝑖 ← 0, 𝑡 ← 0, 𝑗 ← 0,𝑅 ← ∅
2: while 𝑡 < 𝑇 and 𝑖 < 𝑇𝑆 do
3: (𝑇𝑖 , 𝐴𝑖) ← MainAgent(𝐷,𝑀𝑖−1) ⊲ (a) Generate next step

4: if isValidCode(𝐴𝑖) then
5: 𝑂𝑖 ← ExecuteCode(𝐴𝑖) ⊲ (b) Execute code and get observation

6: else
7: 𝑂𝑖 ← 𝑂default ⊲ Assign default observation if no valid code

8: end if
9: �̂�𝑖 ← SummaryAgent(𝑂𝑖 , 𝐴𝑖) ⊲ (c) Get observation summary

10: if isValid(𝐴𝑖) and isError(�̂�𝑖) then
11: (𝑇𝑖 , 𝐴𝑖 ,𝑂𝑖) ← DebugChain(𝑇𝑖 , 𝐴𝑖 ,𝑂𝑖 , 𝐷𝑆, 𝐷) ⊲ (d) Debug

12: 𝑖 ← 𝑖 + 1

13: end if
14: if SubmissionGenerated then
15: 𝑅 ← 𝑅 ∪ 𝑅 𝑗 ⊲ (e) Update the submission set

16: 𝑗 ← 𝑗 + 1

17: UpdateSubmissionTracker()

18: end if
19: 𝑀𝑖 ← ConstructMemory(𝑆1, . . . , 𝑆𝑖) ⊲ (f) Construct the memory

20: 𝑖 ← 𝑖 + 1

21: 𝑡 ← 𝑡 + TimeConsumedThisIteration() ⊲ (g) Increment step and time

22: end while
23: return 𝑅

Each submission 𝑅 𝑗 , for 𝑗 ∈ {1, 2, . . . , 𝑁 }, is defined as a sequence of executed steps: 102

𝑅 𝑗 = {𝑆𝑘 , 𝑆𝑘+1, . . . , 𝑆𝑖}, 𝑖 ≤ 𝑇𝑆 − 𝑘 + 1

where 𝑆𝑖 represents the 𝑖
𝑡ℎ

step (current step in the pipeline) executed towards submission 𝑅 𝑗 , 103

and 𝑘 indicates first step executed towards submission 𝑅 𝑗 . 104

Through iterative generation of multiple submissions (𝑅1, 𝑅2, . . . , 𝑅𝑁), our pipeline progressively 105

explores diverse solution approaches and systematically leverages intermediate feedback. This 106

iterative refinement mechanism facilitates optimization, maximizing the likelihood of achieving 107

superior outcomes within the predefined limits. 108

2.4 Memory Construction Dynamics 109

At each pipeline step 𝑆𝑖 , the memory 𝑀𝑖 utilized to inform the subsequent step 𝑆𝑖+1 is constructed 110

systematically from previously executed steps while observing predefined token-length limitations. 111

4

112

Let the cumulative set of recorded historical steps up to current step 𝑖 be denoted as: 113

𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑖}, where 𝑆𝑖 = (𝑇𝑖 , 𝐴𝑖 ,𝑂𝑖 , �̂�𝑖) .

Each step 𝑆𝑖 within the trajectory consists of a Thought 𝑇𝑖 , Action 𝐴𝑖 , Observation 𝑂𝑖 , and 114

summarized Observation �̂�𝑖 . The memory 𝑀𝑖 at step 𝑖 is specifically constructed according to 115

one of the following predefined selection strategies (cases), strictly adhering to the token-length 116

constraint 𝐿: 117

Case 1: Comprehensive Memory: Emphasizes recent context while retaining older actions: 118

𝑀𝑖 = {𝐴𝑘 | 𝑘 = 1, . . . , 𝑖 − 10} ∪ {(𝑇𝑗 , 𝐴 𝑗 , �̂� 𝑗) | 𝑗 = 𝑖 − 9, . . . , 𝑖 − 1} ∪ {(𝑇𝑖 , 𝐴𝑖 ,𝑂𝑖}

Case 2: Reduced Recent Context: Retains older actions but includes only the immediate current 119

step: 120

𝑀𝑖 = {𝐴𝑘 | 𝑘 = 1, . . . , 𝑖 − 1} ∪ {(𝑇𝑖 , 𝐴𝑖 ,𝑂𝑖}

Case 3: Historical Action Chain: Represents an abbreviated action history to meet the strictest 121

token constraints, beginning from the earliest possible step𝑚 within the token limit: 122

𝑀𝑖 = {𝐴𝑘 | 𝑘 =𝑚, . . . , 𝑖 − 1} ∪ {(𝑇𝑖 , 𝐴𝑖 ,𝑂𝑖}, 𝑚 ≥ 1

Case 4: Current Step Context Only: This minimal context involves only the current step details: 123

𝑀𝑖 = {(𝑇𝑖 , 𝐴𝑖 ,𝑂𝑖}

Case 5: Minimal Immediate Memory: The simplest and most concise form: 124

𝑀𝑖 = {(𝐴𝑖 ,𝑂𝑖)}

At each memory-construction stage, we sequentially choose the first case from the ordered 125

list above that satisfies token-limit constraints. This systematic approach ensures an optimal and 126

balanced inclusion of historical and recent context, enabling efficient decision-making in subsequent 127

pipeline iterations. 128

2.5 Debug Chain: Systematic Error Correction 129

When an error is detected in the observation summary �̂�𝑖 of the 𝑖
𝑡ℎ

step the debug chain is activated. 130

The debug chain iteratively refines the Action 𝐴𝑖 from the step until the error is resolved or the 131

maximum debug depth 𝐷𝑆 is reached. In the case, where the maximum debug depth is reached 132

and the error is still not resolved, the enriched context obtained from the exploration of the debug 133

chain will help the main agent tackle the error in a more informed way. Debug chain outputs the 134

current step (𝑆𝑒𝑖) post debugging as follows: 135

𝑆𝑒𝑖 = (𝑇 𝑒
𝑖 , 𝐴

𝑒
𝑖 ,𝑂

𝑒
𝑖)

where 𝑇 𝑒
𝑖 is the final thought that summarizes all debug iterations, 𝐴𝑒

𝑖 is the final action, either 136

the corrected one or the last attempt, and 𝑂𝑒
𝑖 is the corresponding observation of the final action. 137

2.6 Stopping criteria and outcomes 138

The pipeline terminates based on two primary stopping criteria: reaching the maximum time limit 139

𝑇 or the maximum number of steps 𝑇𝑆 . These parameters can be adjusted based on the specific 140

input task. The final outcome of the pipeline is the complete set of submission files 𝑅 generated 141

during the execution. 142

0𝑒 notation denotes the Thought, Action and Observation post Debug Chain

5

3 Experiments 143

In this section, we evaluate the flexibility and effectiveness of our PiML framework by applying 144

it to a subset of MLE-Bench (Chan et al., 2024). We carefully curate a subset from MLE-Bench 145

spanning across all competition category and available complexity mix. Full details of our dataset 146

selection criteria are provided in Section 3.3 147

3.1 Experimental Setup 148

All experiments are conducted using Microsoft Azure’s Standard NC24ads A100 v4 virtual machines, 149

each equipped with 24 vCPUs, 220 GiB memory, and a single Nvidia A100 GPU (80GB). Unlike 150

MLE-Bench’s original setup, which runs agents on Standard NV36ads A10 v5 instances (36 vCPUs, 151

440 GiB memory, Nvidia A10 GPU with 24GB). Another key distinction is that we execute two 152

competitions in parallel, where each agent shares the available compute resources, our setup differs 153

due to budget and hardware availability, yet comparable and sufficient to produce results. 154

Each agent operates within an Ubuntu 20.04 Docker container, preloaded with the dataset, a 155

validation server, and essential Python packages for ML engineering. Agents have a maximum 156

of 24 hours per competition to generate submissions. To ensure fair evaluation, we consider all 157

intermediate submissions made by an agent, rather than only the final submission.This approach 158

allows us to capture the iterative learning process of the agent and assess problem-solving capabili- 159

ties beyond a single final output. This approach aligns with the methodology of MLE-Bench for 160

reporting baselines, where multiple submissions across different seeds are aggregated to determine 161

the best-performing attempt. 162

3.2 Baseline 163

We employ AIDE (Jiang et al., 2025) as our primary baseline, which is the best-performing frame- 164

work in MLE-bench evaluation results. We use AIDE’s default settings, only modifying agent’s 165

(agent.code.model) underlying model. For other agent specific parameter refer Appendix A.2. 166

Additionally, we report numbers from ResearchAgent (referred to as "MLAB") from MLAgentBench 167

(Huang et al., 2023), and CodeActAgent (referred to as "OpenHands") from the OpenHands platform 168

(Wang et al., 2024), specifically for runs using GPT-4o. These results are sourced directly from the 169

MLE-Bench paper (Chan et al., 2024), where we filter for the best submission across all available 170

seeds before computing our final evaluation metrics. This further justifies our decision to consider 171

intermediate submissions, ensuring fairer comparisons across multiple runs. 172

3.3 Dataset 173

MLE-bench (Chan et al., 2024) is an offline Kaggle competition environment designed to evaluate 174

AI agents on real-world machine learning tasks. Each competition has an associated description, 175

dataset, and grading code. Agents are required to design, build, and train models on GPUs, with 176

submissions graded locally and compared against real-world human attempts via the leaderboards. 177

MLE-Bench officially splits its tasks into three subsets based on complexity tiers: "Low", 178

"Medium", and "High". However, these predefined splits do not fully capture the overall dataset 179

distribution across modality, competition types, dataset sizes, and complexity variations. Due 180

to budget and resource constraints, we select a diverse subset of 26 competitions that balances 181

representation across these factors while maintaining computational feasibility. We refer to this 182

derived dataset asMLE-Pi for simplicity. Refer to Appendix A.1 for complete list and details. 183

To validate MLE-Pi as a representative subset, we compare its distributional characteristics 184

against the full MLE-Bench. Figure 2 confirms that MLE-Pi preserves key statistical properties of the 185

complete benchmark, making it a reliable proxy for evaluation. Moreover, given its alignment with 186

the overall dataset, insights and trends observed on MLE-Pi extend to the full set of 75 competitions, 187

reinforcing its suitability as a practical and computationally efficient extension of MLE-Bench. 188

6

(a) Modality distribution across MLE Benchmarks (b) MLE-Pi across competition statistics

Figure 2: Benchmark distribution on competition attributes and modality, comparing complexity,

dataset size, types, recency and duration.

3.4 Results 189

We evaluate the performance of the PiML framework in Table 1 on the following metrics: 190

• Valid Submission (%) – Percentage of competitions where the agent generates a valid submission. 191

• Submissions Above Median (%) – Percentage of competitions where the agent’s best submission 192

outperforms the human median level (50
th
percentile). 193

• Average Percentile Rank (%) – The mean leaderboard percentile achieved across all competitions. 194

• Any Medal (%) – Percentage of competitions where the agent earns at least a bronze medal. 195

We follow Kaggle progression system (Kaggle, 2024) to determine the medals earned by the 196

agent in the competitions following the same convention as MLE-Bench (Chan et al., 2024). 197

Table 1: Agent Performance on MLE-Pi

Model Agent
Framework

Valid
Submission (%)

Submissions
Above Median (%)

Average
Percentile (%)

Any Medal
(%) GOLD SILVER BRONZE

gpt-4o-2024-08-06

AIDE* 80.76 23.08 30.36 19.23 3 1 1

MLAB* 73.07 7.69 16.89 3.85 0 1 0

OpenHands* 80.76 19.23 23.63 7.69 0 1 1

PiML (Ours) 76.92 26.92 33.67 23.08 1 3 2

o3-mini : high

AIDE 92.31 30.77 39.06 23.08 2 2 2

PiML (Ours) 92.31 34.61 43.75 26.92 4 2 1

PiML proves to be the most effective framework on MLE-Pi. It consistently achieves the highest 198

average percentile across settings—33.67% under gpt-4o
1
OpenAI (2024) and 43.75% under o3- 199

mini
2
(OpenAI, 2025c) — outperforming all other approaches and reaching closer to median human 200

performance. It also secures the most gold medals (4) with o3-mini
2
, reinforcing its competitive 201

strength. All our experiments can be reproduced using scripts available at Anonymous Repository
3

202

We also conducted experiments comparing traditional AutoML systems v/s PiML (LLM Driven 203

Framework). Our objective was to analyze the ability of both frameworks to work within the 204

1
gpt-4o-2024-08-06

2
o3-mini-2025-01-31 with reasoning effort - 𝐻𝑖𝑔ℎ

3
PiML Anonymous Repository

7

https://anonymous.4open.science/r/piml_agent_repo-EC99/

constraints of a downstream task and ability to generalize to new domains and assess their per- 205

formance wrt experimentation ability etc. Our findings suggest that PiML’s iterative refinement 206

strategy enhances generalisation and provides deeper insights into the model’s behaviour across 207

different domains. Refer to Appendix [A.4] for more details on experiments. 208

3.5 Discussion 209

In our study, we have observed that the PiML methodology demonstrates several advantages over 210

AIDE (Jiang et al., 2025), particularly in its interactive and human-readable approach. Built on 211

the ReAct framework (Yao et al. (2023b)), PiML enables real-time data interpretation, facilitating 212

early error detection and adaptive decision-making. Its Jupiter-style coding environment enhances 213

transparency by exposing intermediate results, creating an iterative feedback loop essential for 214

dynamic analysis. 215

In contrast, AIDE(Jiang et al., 2025) follows an iterative refinement process to generate end-to- 216

end solutions. While this ensures systematic modifications, it slows response to immediate data 217

feedback. Its atomic changes maintain rigor but hinder rapid error correction or strategic pivots, 218

making it less efficient in navigating NP-hard search spaces. Additionally, AIDE’s(Jiang et al., 2025) 219

greedy selection process may limit creative exploration, especially in dynamic environments. Its 220

inability to persist computations forces full re-execution on error, increasing inefficiency with large 221

datasets. 222

Moreover, the inherent trade-offs between transparency and automation are evident when 223

comparing the two methodologies. PiML’s reliance on intermediate outputs not only enhances 224

interpretability but also promotes a level of creativity and flexibility by allowing for rapid pivots as 225

new observations emerge. PiML truly shines when dealing with large datasets. In such cases, the 226

loading and processing times are substantial, and any error in AIDE(Jiang et al., 2025) necessitates a 227

complete re-execution of all steps because the environment does not persist previous computations. 228

While, PiML enables quick error fixes and the exploration of new methods without the risk of 229

losing prior progress, offering a more human-centric and efficient approach to handling complex 230

data challenges. 231

Ultimately, the choice between PiML and AIDE(Jiang et al., 2025) is context-dependent. In 232

scenarios where exploratory data analysis and rapid prototyping are required, like in Machine 233

Learning, PiML’s interactive, feedback-driven methodology is likely to offer significant advantages. 234

However, for applications that demand robust, fully automated code generation in well-defined 235

settings, the systematic nature of AIDE(Jiang et al., 2025) may be more appropriate despite its 236

potential drawbacks in flexibility and responsiveness. 237

3.6 Limitations 238

Reliability on Underlying LLM for ML Code Generation: PiML’s performance is significantly 239

dependent on the quality and reliability of the underlying large language model (LLM) used for 240

generating machine learning code. As highlighted in the ML Code Efficiency Report (Appendix 241

A.3), inconsistencies or biases in the LLM may affect the overall code efficiency and correctness. 242

Offline Mode of Operation: The methodology currently operates in an offline manner, relying 243

entirely on the pre-existing knowledge of the LLM. This lack of real-time or online learning 244

capabilities can limit its adaptability to new data or emerging trends, underscoring the need for an 245

online, continuously updating approach. 246

Seed Randomness Impact: The initialization randomness can significantly affect the repro- 247

ducibility and consistency of results. Variations in random seed values may lead to different 248

outcomes, which challenge the reliability and repeatability of experiments conducted using PiML. 249

Lack of Visual Clues via Plots Understanding: Although incorporating context from vision- 250

language models (VLMs) shows promise, the current framework falls short in effectively integrating 251

visual cues from graphs or other visual data representations. While preliminary experiments 252

8

indicate that visual context can be meaningful (Appendix A.5), there remains a pressing problem in 253

determining how best to leverage these insights to enhance model performance and interpretability. 254

These limitations highlight areas where future development could focus on improving the 255

adaptability, reliability, and overall robustness of the PiML methodology. 256

4 Related Work 257

4.1 Large Language Models 258

LLMs with their vast amount of prior knowledge and their ability to reason and perform actions; 259

have opened up a variety of agentic applications, such as autonomous code generation (Le et al. 260

(2022), Singh et al. (2025)) and debugging (Chen et al. (2023), Zhong et al. (2024)), complex decision 261

making in domains like finance, healthcare and patient care (Peng et al. (2023), Busch et al. (2025)), 262

and research automation (Gottweis et al. (2025), Lu et al. (2024)). 263

4.2 Impact of advancements in LLM Reasoning on ML Tasks 264

Research in Generative AI domain has been moving from System-1 models (OpenAI (2024), An- 265

thropic (2024)) which rely on fast and intuitive pattern recognition and were majorly relying on 266

their vast knowledge base for solving downstream tasks to System-2 models (OpenAI (2025b), 267

OpenAI (2025c), DeepSeek-AI et al. (2025), Anthropic (2025)) that incorporate reasoning, planning 268

and structured decision making. This shift involves multi-step planning, tool use, search etc, making 269

AI more capable of solving complex problems. These advancements have bolstered the development 270

of end-to-end autonomous machine learning workflows. AutoML requires the system to find the 271

optimal pairing of data preprocessing - EDA, Feature Engineering, Modeling and HPO to get the 272

best results in an efficient manner. Traditional AutoML frameworks (Erickson et al. (2020b), LeDell 273

et al. (2020), Feurer et al. (2015)) rely on predefined algorithms and heuristic strategies to automate 274

machine learning tasks. However, these approaches only give sub-optimal results as they tend to 275

treat the sub-problems independently and lack the holistic overview of the problem, along with 276

iterative experimentation. 277

4.3 Solving Long Complex Task using Agentic Systems 278

Building on top of the frameworks which aimed to solve different stages of ML workflow, many 279

works targated building end-to-end agentic autonomous systems capable of solving general multi- 280

turn challenging problems, machine learning challenges and more. OpenHands (Wang et al., 281

2024) attempted to automate software development tasks of a human developer embedding code 282

interaction, execution and web search into its framework. OpenManus (Liang et al., 2025) the 283

open-source counterpart for (manus.im, 2025) enables automated general AI Agent by leveraging 284

multi-step planning, code execution, tool integration and web search. 285

Weco AI’s AIDE (Jiang et al., 2025) designed a tree based approach for exploring multiple 286

solution paths for a ML problem by introducing atomic changes in an iterative way. AutoKaggle (Li 287

et al., 2024) developed a multi-agent collaborative system of five specialised agents: Reader, Planner, 288

Developer, Reviewer and Summarizer operating across different stages of ML workflow. DS-Agent 289

(Guo et al., 2024) integrates LLMs with case based reasoning (CBR) by leveraging past solutions 290

from Kaggle to generate and refine ML experiment plans. Agent-K (Grosnit et al., 2024) introduced 291

an autonomous data science system using a structured reasoning framework with nested memory 292

processing, enabling continuous improvement and adaptive decision-making. These frameworks 293

highlight the growing trend of employing autonomous agents to enhance diverse workflows, reduce 294

human intervention, and improve the efficiency of complex tasks across multiple domains. 295

9

5 Conclusion 296

We introduce PiML, an iterative refinement framework for solving real-world machine learning 297

tasks. Our framework adopts long term planning and reasoning, adaptive memory and systematic 298

step-by-step debugging to tackle complex problems efficiently. We show performance improvement 299

of PiML over AIDE(Jiang et al., 2025), OpenHands, MLAB on a challenging MLE-Pi Dataset (subset 300

of MLE-Bench dataset). Our findings reveal the importance of adaptive capability towards different 301

domains and the need for context-aware reasoning for solving complex ML tasks. 302

6 Future Directions 303

The quest to solve complex problems that evolve over extended periods remains a central driving 304

force in artificial intelligence research. Long-horizon tasks inherently require a sequence of deliber- 305

ate actions and decisions executed over time to achieve specific objectives. This challenge spans 306

across diverse domains such as software development and scientific research, where initiatives like 307

Claude Code (Anthropic (2025)) and AI Co-Scientist (Gottweis et al. (2025)) have made significant 308

strides. 309

Innovative systems like Manus AI (manus.im (2025)) highlight the emerging trend towards 310

creating generalist agents capable of autonomously handling a wide range of tasks—from design- 311

ing websites and analyzing stock market trends to planning travel itineraries. These examples 312

underscore the potential for AI to manage multifaceted projects with minimal human oversight, 313

continuously learning and adapting through trial and error to refine their decision-making pro- 314

cesses. 315

In the realm ofMachine Learning andDeep Learning, the need for long-term, iterative learning is 316

paramount. Success in these areas depends on persistent refinement, where each cycle of trial, error, 317

and reasoning paves the way for incremental improvements. The promising results demonstrated 318

by PiML on MLE-Pi illustrate both the efficacy of current methods and the untapped potential 319

for developing even more robust, end-to-end machine learning workflows. Future research could 320

leverage large language models to streamline ML workflows by incorporating continuous learning, 321

where insights from one experiment directly subsequent endeavors. By adopting self-evolution 322

techniques, AI systems could iteratively refine their own architectures and training processes. 323

References 324

Anthropic. Introducing claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/ 325

claude-3-5-sonnet. 326

Anthropic. Claude 3.7 sonnet and claude code, 2025. URL https://www.anthropic.com/news/ 327

claude-3-7-sonnet. 328

Anthropic. Claude Code, 2025. URL https://docs.anthropic.com/en/docs/agents-and-tools/ 329

claude-code/overview. Version 1.0. 330

Felix Busch, Lena Hoffmann, Christopher Rueger, Elon HC van Dijk, Rawen Kader, Esteban Ortiz- 331

Prado, Marcus R Makowski, Luca Saba, Martin Hadamitzky, Jakob Nikolas Kather, et al. Current 332

applications and challenges in large language models for patient care: a systematic review. 333

Communications Medicine, 5(1):26, 2025. 334

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio 335

Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and Aleksander Mądry. Mle- 336

bench: Evaluating machine learning agents on machine learning engineering. arXiv preprint, 337

arXiv:2410.07095, 2024. URL https://arxiv.org/abs/2410.07095. 338

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://docs.anthropic.com/en/docs/agents-and-tools/claude-code/overview
https://docs.anthropic.com/en/docs/agents-and-tools/claude-code/overview
https://docs.anthropic.com/en/docs/agents-and-tools/claude-code/overview
https://arxiv.org/abs/2410.07095

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models 339

to self-debug, 2023. URL https://arxiv.org/abs/2304.05128. 340

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, 341

Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, 342

Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao 343

Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, 344

Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, 345

Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, 346

Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang 347

Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, 348

Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, 349

Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, 350

Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng 351

Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, 352

R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, 353

Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng 354

Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng 355

Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan 356

Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, 357

Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, 358

Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, 359

Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, 360

Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, 361

Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia 362

He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong 363

Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, 364

Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, 365

Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, 366

Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen 367

Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. 368

URL https://arxiv.org/abs/2501.12948. 369

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander 370

Smola. Autogluon-tabular: Robust and accurate automl for structured data, 2020a. URL https: 371

//arxiv.org/abs/2003.06505. 372

Nick Erickson, Jonas Mueller, Zeren Zhang, Alexander Mao, Alex Smola, et al. Autogluon-tabular: 373

Robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505, 2020b. 374

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank 375

Hutter. Efficient and robust automated machine learning. In Advances in Neural Information Pro- 376

cessing Systems 28 (NeurIPS 2015), pages 2962–2970, 2015. URL https://proceedings.neurips. 377

cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf. 378

Nanxu Gong, Chandan K Reddy, Wangyang Ying, Haifeng Chen, and Yanjie Fu. Evolutionary large 379

language model for automated feature transformation. arXiv preprint arXiv:2405.16203, 2024. 380

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom 381

Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, et al. Towards an ai co-scientist. 382

arXiv preprint arXiv:2502.18864, 2025. 383

11

https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf

Antoine Grosnit, Alexandre Maraval, James Doran, Giuseppe Paolo, Albert Thomas, Refinath Shahul 384

Hameed Nabeezath Beevi, Jonas Gonzalez, Khyati Khandelwal, Ignacio Iacobacci, Abdelhakim 385

Benechehab, Hamza Cherkaoui, Youssef Attia El-Hili, Kun Shao, Jianye Hao, Jun Yao, Balazs 386

Kegl, Haitham Bou-Ammar, and Jun Wang. Large language models orchestrating structured 387

reasoning achieve kaggle grandmaster level, 2024. URL https://arxiv.org/abs/2411.03562. 388

Siyuan Guo, Cheng Deng, YingWen, Hechang Chen, Yi Chang, and JunWang. Ds-agent: Automated 389

data science by empowering large language models with case-based reasoning, 2024. URL 390

https://arxiv.org/abs/2402.17453. 391

Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data 392

science: Introducing caafe for context-aware automated feature engineering. Advances in Neural 393

Information Processing Systems, 36:44753–44775, 2023. 394

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents 395

on machine learning experimentation. arXiv preprint arXiv:2310.03302, 2023. 396

Daniel P Jeong, Zachary C Lipton, and Pradeep Ravikumar. Llm-select: Feature selection with large 397

language models. arXiv preprint arXiv:2407.02694, 2024. 398

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and 399

Yuxiang Wu. Aide: Ai-driven exploration in the space of code. arXiv preprint arXiv:2502.13138, 400

2025. 401

Kaggle. Kaggle progression system, 2024. URL https://www.kaggle.com/progression. Accessed: 402

2024-03-27. 403

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H. Hoi. Coderl: 404

Mastering code generation through pretrained models and deep reinforcement learning, 2022. 405

URL https://arxiv.org/abs/2207.01780. 406

Erin LeDell, Sebastian Poirier, et al. H2o automl: Scalable automatic machine learning. 19th Python 407

in Science Conference, pages 111–120, 2020. 408

Dawei Li, Zhen Tan, and Huan Liu. Exploring large language models for feature selection: A 409

data-centric perspective. ACM SIGKDD Explorations Newsletter, 26(2):44–53, 2025. 410

Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, Tuney Zheng, Minghao Liu, Xinyao Niu, Yue Wang, 411

Jian Yang, Jiaheng Liu, et al. Autokaggle: A multi-agent framework for autonomous data science 412

competitions. arXiv preprint arXiv:2410.20424, 2024. 413

Xinbin Liang, Jinyu Xiang, Zhaoyang Yu, Jiayi Zhang, and Sirui Hong. Openmanus: An open-source 414

framework for building general ai agents. https://github.com/mannaandpoem/OpenManus, 2025. 415

Siyi Liu, Chen Gao, and Yong Li. Large language model agent for hyper-parameter optimization, 416

2025. URL https://arxiv.org/abs/2402.01881. 417

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist: 418

Towards fully automated open-ended scientific discovery, 2024. URL https://arxiv.org/abs/ 419

2408.06292. 420

Simon Malberg, Edoardo Mosca, and Georg Groh. Felix: Automatic and interpretable feature 421

engineering using llms. In Joint European Conference on Machine Learning and Knowledge 422

Discovery in Databases, pages 230–246. Springer, 2024. 423

12

https://arxiv.org/abs/2411.03562
https://arxiv.org/abs/2402.17453
https://www.kaggle.com/progression
https://arxiv.org/abs/2207.01780
https://github.com/mannaandpoem/OpenManus
https://arxiv.org/abs/2402.01881
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292

manus.im. Manus | The general AI agent, March 2025. URL https://manus.im/. 424

OpenAI. Gpt-4o system card, 2024. URL https://openai.com/index/gpt-4o-system-card/. 425

OpenAI. Gpt-4.5 system card, 2025a. URL https://openai.com/index/gpt-4-5-system-card/. 426

OpenAI. Openai o1 model documentation, 2025b. URL https://platform.openai.com/docs/ 427

models/o1. 428

OpenAI. Openai o3-mini system card, 2025c. URL https://openai.com/index/ 429

o3-mini-system-card/. 430

Cheng Peng, Xi Yang, Aokun Chen, Kaleb E Smith, Nima PourNejatian, Anthony B Costa, Cheryl 431

Martin, Mona G Flores, Ying Zhang, Tanja Magoc, et al. A study of generative large language 432

model for medical research and healthcare. NPJ digital medicine, 6(1):210, 2023. 433

Oleksandr Shchur, Caner Turkmen, Nick Erickson, Huibin Shen, Alexander Shirkov, Tony Hu, and 434

Yuyang Wang. Autogluon-timeseries: Automl for probabilistic time series forecasting, 2023. URL 435

https://arxiv.org/abs/2308.05566. 436

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yue Ting Zhuang. Hugging- 437

gpt: Solving ai tasks with chatgpt and its friends in hugging face. ArXiv, abs/2303.17580, 2023. 438

URL https://api.semanticscholar.org/CorpusID:257833781. 439

Kunal Singh, Ankan Biswas, Sayandeep Bhowmick, Pradeep Moturi, and Siva Kishore Gollapalli. 440

Sbsc: Step-by-step coding for improving mathematical olympiad performance. arXiv preprint 441

arXiv:2502.16666, 2025. 442

Zhiqiang Tang, Haoyang Fang, Su Zhou, Taojiannan Yang, Zihan Zhong, Tony Hu, Katrin Kirchhoff, 443

and George Karypis. Autogluon-multimodal (automm): Supercharging multimodal automl with 444

foundation models, 2024. URL https://arxiv.org/abs/2404.16233. 445

XingyaoWang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi 446

Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software developers 447

as generalist agents. In The Thirteenth International Conference on Learning Representations, 2024. 448

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, 449

and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. 450

URL https://arxiv.org/abs/2201.11903. 451

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik 452

Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023a. 453

URL https://arxiv.org/abs/2305.10601. 454

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. 455

React: Synergizing reasoning and acting in language models, 2023b. URL https://arxiv.org/ 456

abs/2210.03629. 457

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing the 458

power of large language models in solving machine learning tasks, 2024a. URL https://arxiv. 459

org/abs/2304.14979. 460

Shujian Zhang, Chengyue Gong, Lemeng Wu, Xingchao Liu, and Mi Zhou. Automl-gpt: Automatic 461

machine learning with gpt. ArXiv, abs/2305.02499, 2023. URL https://api.semanticscholar. 462

org/CorpusID:258480269. 463

13

https://manus.im/
https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/gpt-4-5-system-card/
https://platform.openai.com/docs/models/o1
https://platform.openai.com/docs/models/o1
https://platform.openai.com/docs/models/o1
https://openai.com/index/o3-mini-system-card/
https://openai.com/index/o3-mini-system-card/
https://openai.com/index/o3-mini-system-card/
https://arxiv.org/abs/2308.05566
https://api.semanticscholar.org/CorpusID:257833781
https://arxiv.org/abs/2404.16233
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979
https://api.semanticscholar.org/CorpusID:258480269
https://api.semanticscholar.org/CorpusID:258480269
https://api.semanticscholar.org/CorpusID:258480269

Xinhao Zhang, Jinghan Zhang, Banafsheh Rekabdar, Yuanchun Zhou, Pengfei Wang, and Kunpeng 464

Liu. Dynamic and adaptive feature generation with llm. arXiv preprint arXiv:2406.03505, 2024b. 465

Li Zhong, Zilong Wang, and Jingbo Shang. Debug like a human: A large language model debugger 466

via verifying runtime execution step-by-step, 2024. URL https://arxiv.org/abs/2402.16906. 467

Marc-André Zöller and Marco F. Huber. Benchmark and survey of automated machine learning 468

frameworks. Journal of Artificial Intelligence Research, 70:409–472, 2021. doi: 10.1613/jair.1.11854. 469

URL https://arxiv.org/abs/1904.12054. 470

A Appendix and Supplemental Material 471

A.1 Dataset details: MLE-Pi 472

MLE-Pi is a curated collection of 26 competitions, sampled from MLE-Bench’s original set of 75. 473

This subset is carefully constructed to cover all 15 competition categories while incorporating every 474

available complexity level—Low, Medium, and High. The result is a balanced yet computationally 475

efficient proxy for MLE-Bench. Table 2 lists the selected competitions for reference. 476

Table 2: MLE-Pi Dataset Details

Competition Category Size (GB) Complexity
the-icml-2013-whale-challenge-right-

whale-redux

Audio Classification 0.29314 Low

tensorflow-speech-recognition-challenge Audio Classification 3.76 Medium

ventilator-pressure-prediction Forecasting 0.7 Medium

histopathologic-cancer-detection Image (Other) 7.76 Low

petfinder-pawpularity-score Image (Other) 1.04 Medium

rsna-miccai-brain-tumor-radiogenomic-

classification

Image (Other) 135.85 High

leaf-classification Image Classification 0.036 Low

statoil-iceberg-classifier-challenge Image Classification 0.3021 Medium

hms-harmful-brain-activity-classification Image Classification 26.4 High

tgs-salt-identification-challenge Image Segmentation 0.5 Medium

3d-object-detection-for-autonomous-

vehicles

Image Segmentation 125.79 High

denoising-dirty-documents Image to Image 0.06 Low

vesuvius-challenge-ink-detection Image to Image 37.02 High

bms-molecular-translation Image to Text 8.87 High

siim-covid19-detection Object Detection 128.51 High

text-normalization-challenge-english-

language

Sequence to Sequence 0.01 Low

seti-breakthrough-listen Signal Processing 156.02 Medium

predict-volcanic-eruptions-ingv-oe Signal Processing 31.25 High

nomad2018-predict-transparent-

conductors

Tabular 0.00624 Low

champs-scalar-coupling Tabular 1.22 Medium

stanford-covid-vaccine Tabular 2.68 High

us-patent-phrase-to-phrase-matching Text (Other) 0.00214 Medium

14

https://arxiv.org/abs/2402.16906
https://arxiv.org/abs/1904.12054

spooky-author-identification Text Classification 0.0019 Low

tweet-sentiment-extraction Text Classification 0.003 Medium

google-quest-challenge Training LLMs 0.015 Medium

nfl-player-contact-detection Video Classification 5.01 High

MLE-Bench also provides its own subsets, but they are exclusively based on complexity levels 477

("Low," "Medium," "High") for ease of evaluation. As shown in Figure 2(a), these subsets exhibit 478

similar modality distributions. However, Figure 3 shows MLE-Pi achieves better comprehensive 479

proportional representation by categories compared to predefined subsets. This makes MLE-Pi 480

an ideal stand-in for the full MLE-Bench, particularly for testing, experimentation, and resource 481

constrained scenarios, with its results being clearer extension in performance to actual benchmark. 482

Figure 3: MLE data splits, with proportional scaling for fair comparison to MLE-Bench

The motivation behind this split is the significant resource demands of running MLE-Bench 483

in its entirety. A single experiment run, with each competition allotted 24 hours, requires a total 484

of 1,800 GPU hours (24 hours × 75 competitions). Beyond just compute time, the benchmark also 485

incurs substantial infrastructure, memory, and overall system overhead. Given these issues, MLE-Pi 486

provides a practical yet representative alternative, making benchmarking more accessible without 487

sacrificing diversity or complexity. 488

A.2 Agent Settings 489

Table 3 details the hyperparameters for each of our tested scaffolds: 490

Table 3: Scaffold hyperparameters. $TARGET_MODEL is the model being evaluated.

AIDE

Parameter Value

agent.code.model $TARGET_MODEL

agent.code.reasoning_effort high

agent.feedback.model $TARGET_MODEL

agent.feedback.reasoning_effort high

agent.steps 500

agent.search.max_debug_depth 4

agent.search.debug_prob 1

agent.time_limit 86400

exec.timeout 32400

15

PiML

Parameter Value

agent.steps 600

agent.llm.model $TARGET_MODEL

agent.llm.temperature 0.5

agent.llm.reasoning_effort high

agent.debug_steps 10

agent.time_limit 86400

exec.timeout 32400

A.3 Understanding and comparing the Coding Efficiency of LLMs 491

This section tries to understand and compare the coding efficiency of different Large Language 492

Models for Machine learning problems. 493

A.3.1 Dataset and LLMs Selection. For this experiment, we use the MLE-Pi dataset, as defined in 494

Appendix A . This dataset provides a diverse collection of Kaggle Competitions, ensuring a balanced 495

representation of both complexities and modalities. 496

The LLMs selected for our experimentation are gpt-4o (OpenAI, 2024), gpt-4.5-preview (OpenAI, 497

2025a) , o1(OpenAI, 2025b), o3-mini (medium reasoning effort) (OpenAI, 2025c), o3-mini (high 498

reasoning effort) (OpenAI, 2025c), and deepseek-r1-distill-qwen-32B (DeepSeek-AI et al., 2025) 499

A.3.2 Coding Efficiency metric. From our experiment logs, we observed that the code generated by 500

LLMs for Machine Learning problems, like Kaggle competitions, often fails to utilize the available 501

resources effectively. In several cases, when GPUs were available and explicitly mentioned in the 502

context, the LLM failed to utilize them in its generated code. Additionally, in some instances, the 503

LLM selected suboptimal models for the given modality, such as choosing scikit-learn models 504

for an image competition. To quantify these inefficiencies, we propose the MLCES (ML Code 505

Efficiency Score) metric. 506

507

MLCES metric: The MLCES measures how effectively a machine learning solution gener- 508

ated by LLM utilizes computational resources and selects appropriate models. It evaluates two key 509

factors: GPU usage (G) and model architecture quality (M). 510

511

If a task requires a GPU (e.g., image or audio processing), the score assigns: 512

𝐺 =

{
1, if the code correctly utilizes a GPU,

0, if the GPU is ignored despite being available and required.

For model selection: 513

𝑀 =

{
1, if the code employs a competitive model architecture for the task,

0, if the model choice is suboptimal (e.g., using scikit-learn for image processing).

The raw score (S) is calculated as follows: 514

• For GPU-dependent tasks (e.g., image, audio, GPU-intensive NLP): 515

𝑆 = 𝐺 +𝑀 (possible values: 0, 1, or 2)

• For non-GPU tasks (e.g., tabular data): 516

𝑆 = 2 ×𝑀 (possible values: 0 or 2)

16

To ensure consistency across tasks, the final MLCES is normalized: 517

MLCES =
𝑆

2

(yielding a value between 0 and 1)

Interpretation of the score: 518

• 0.0→ Neither GPU utilization nor appropriate model selection was applied. 519

• 0.5→ Either GPU usage or model selection was correct, but not both. 520

• 1.0→ The solution efficiently utilizes the GPU (if required) and selects a competitive model. 521

A.3.3 Experimental Setup. To evaluate and compare the performance of the LLMs, we used a repeated 522

sampling strategy. For each pair of competition and LLM pair, we conducted 50 independent 523

sampling trials. Within each trial, we randomly selected 12 candidate solutions generated by the 524

respective LLM. We calculated the MLCES metric for each solution using a separate gpt-4o (OpenAI, 525

2024) model. For every trial, we computed the average MLCES score across the 12 sampled solutions 526

and the mean performance per LLM for each competition by averaging these scores over the 50 527

trials. Finally, to summarize and compare overall performance across competitions, we aggregated 528

these competition level means to obtain a final overall mean and corresponding standard deviation 529

for each LLM. 530

A.3.4 Results and Analysis. From Table 4 and Figure 4a, we observe that most LLMs score below 0.5, 531

with gpt-4.5-preview (OpenAI, 2025a) performing slightly better at 0.56. Reasoning models, in 532

general, perform worse, with o1 (OpenAI, 2025b) being significantly low at 0.24. The only exception 533

is o3-mini-high (OpenAI, 2025c), which scores 0.50, slightly outperforming gpt-4o (OpenAI, 2024) 534

at 0.49. deepseek-r1-distill-qwen-32B (DeepSeek-AI et al., 2025) is comparable to o3-mini-medium 535

(OpenAI, 2025c) at 0.44, though both still score lower than the GPT models. 536

This consistent low performance across all the top LLMs indicates that further research is needed 537

on ML problem-specific optimization within LLMs. The advancements in reasoning models do not 538

necessarily translate to improved performance in this domain, suggesting that their effectiveness 539

may be problem-specific and limited. However, further investigation is needed before drawing any 540

definitive conclusions. 541

Table 4: Comparison of Overall Machine Learning Coding Efficiency Scores (MLCES) for Various LLMs

on the MLE-Pi Dataset

Model
MLCES (mean ± std)

NCS=4 NCS=8 NCS=12

gpt-4o 0.50 ± 0.30 0.49 ± 0.30 0.50 ± 0.30

gpt-4.5-preview 0.55 ± 0.27 0.55 ± 0.26 0.55 ± 0.27

o1 0.24 ± 0.29 0.24 ± 0.29 0.24 ± 0.29

o3-mini-medium 0.44 ± 0.37 0.44 ± 0.37 0.44 ± 0.37

o3-mini-high 0.50 ± 0.37 0.50 ± 0.36 0.49 ± 0.37

deepseek-r1-distill-qwen-32B 0.45 ± 0.26 0.44 ± 0.24 0.44 ± 0.24

NCS (Number of Candidate Solutions) indicates how many distinct LLM outputs

were generated per trial.

A.4 Comparative Analysis of PiML v/s AutoGluon-Tabular 542

The main objective of these experiments was to understand the capabilities and generalisation 543

abilities of AutoML frameworks and put up a side by side comparison with PiML wrt various 544

17

(a) Bar plot comparing the MLCES metric

across different LLMs on the MLE-Pi

dataset.

(b) Box plot comparing the MLCES metric

across different LLMs on the MLE-Pi

dataset.

Figure 4: ML coding efficiency of different LLMs

aspects such as interpretability of features, context-aware choice of models or HPO techniques, 545

ability of the framework to work within constraints. 546

To narrow down the scope of the experiment, we choose AutoGluon-Tabular (Erickson et al. 547

(2020b)) as a reference AutoML framework owing to its popularity in the community and SoTA 548

performance across different frameworks. Further, we select 4 problem statements from the MLE-Pi 549

dataset [Table-2] with Tabular datatype and test them on the AutoGluon-Tabular framework. Our 550

findings [Table-5] suggest PiML, due to its contextual awareness and adaptability towards the 551

new domain, performs far better than the AutoGluon-Tabular framework in 3 out of 4 problem 552

statements. In a specific problem classified as "low" in complexity and does not require extensive 553

exploratory data analysis (EDA), AutoGluon-Tabular performs well. However, PiML achieves 554

comparable performance. 555

Table 5: Agent Performance on MLE-Pi (Tabular) compared to AutoGluon

Model Framework Average
Percentile (%) Number of Medals GOLD SILVER BRONZE

- AutoGluon-Tabular 25.922 1 0 1 0

gpt-4o-2024-08-06 PiML (Ours) 29.064 1 0 1 0

o3-mini : high PiML (Ours) 56.861 2 1 1 0

A.5 Integrating Visual Clues from Plots for Downstream EDA Analysis 556

Visual analysis is very crucial for obtaining valuable insights from data. It helps in enhansing 557

interpretability of results and improving decision-making. The main objective of this experiment is 558

to understand the impact of visual understanding on key stages of ML Workflow particularly EDA 559

and pre-processing. 560

For this, we sampled 2 ML problem statements from the MLE-Pi (Appendix-A.1) dataset - 561

champs-scalar-computing and stanford-covid-vaccine. We designed 2 different scenarios - one 562

where we instruct the model to avoid plotting any visualisations and the other where instructions 563

are to visualise the plots wherever necessary. (Sub-section A.5.1). We used OpenAI-o1 (OpenAI 564

(2025b)) for our experiments with reasoning_effort set to meddium and max_completion_tokens 565

to 2048. 566

18

A.5.1 Prompts for EDA. 567

Prompt for EDA code generation

You are an EDA agent assisting the main agent in solving a machine learning
problem. Your task is to perform exploratory data analysis (EDA) on the given
dataset by generating Python code.

Dataset Details:
- Dataset Folder Path: ’{dataset_folder_path}’
- Kaggle Competition: ‘{kaggle_competition}‘
- Dataset Description: ‘{dataset_description}‘
- Domain Info: ’{domain_info}’
- EDA directions: ’{eda_directions}’

<Only if visualisations not required add below text>
Avoid visualization commands - use statistical summaries instead

568

Prompt for getting observations from code and output

You are an EDA analysis agent tasked with interpreting the results of an
exploratory data analysis (EDA) process. Your goal is to extract key
observations and suggest potential future explorations based on the provided
details.

Provided Information:
- Kaggle Competition: ‘{kaggle_competition}‘
- Domain Information: ‘{domain_info}‘
- Dataset Description: ‘{dataset_description}‘
- EDA Code: ‘{code}‘
- EDA Results: *(Provided below the prompt)*

Guidelines for Analysis:
1. Key Observations:

- Summarize meaningful insights derived from the EDA results.
- Focus on trends, patterns, anomalies, correlations, and distributions.
- Avoid speculation - observe strictly based on the results.

2. Potential Future Explorations:
- Suggest logical next steps based on the EDA findings.
- Include further statistical analysis, feature engineering ideas, or
additional data collection strategies.

- Consider possible domain-specific explorations that could enhance model
performance.

Output format:

- Observations (from code and results)
- Potential Future Explorations

Ensure that your analysis is concise, structured, and data-driven.

569

19

A.5.2 Analysing Observations. The EDA of champs-scalar-coupling with images have plots like scc vs 570

distance, scc vs muliken charge, count of coupling types etc offering a more structural breakdown 571

and domain specific analysis whereas, EDA with statistical analysis is more focused on dealing 572

with aggregated feature like mean reactivity. In essence, the statistical analysis offers high level 573

perspective, but lacks structural representation and interpretability resulting in inability to obtain 574

insights into the problem. As it operates on aggregated features, it has a characteristic of looking 575

at a broader perspective. Combining the broader perspective to EDA with image is expected to 576

improve performance. The similar characteristic is observed in stanford-covid-vaccine contest too. 577

Below, we have provided observations(with image and without image). We have also presented 578

the comparison between observations. 579

Comparison between observations (champs-scalar-computing)

Note:
1. Observation-1 (w/ Image)
2. Observation-2 (w/o Image)

Assessment Summary
1. Relevance to Competition:

- Observation 1 directly ties chemical and physical factors (bond distance,
Fermi Contact, Mulliken charges) to scalar coupling, aligning closely with NMR
theory and prediction goals.

- Observation 2 provides useful dataset insights but is more focused on broad
statistical summaries rather than deep feature relationships.

2. Scientific Soundness:
- Observation 1 aligns well with established NMR and quantum chemistry
knowledge, particularly the role of Fermi Contact and distancecoupling trends.

- Observation 2 correctly summarizes dataset properties but lacks deeper
chemical interpretation.

3. Actionability:
- Observation 1 suggests direct feature engineering strategies: bond angles,
torsion angles, per-type modeling, and emphasizing Fermi Contact.

- Observation 2 suggests refining Mulliken charge features and handling data
granularity, but with less domain specificity.

4. Domain Alignment:
- Observation 1 maps well to standard NMR principles, explaining why trends
exist.

- Observation 2 reaffirms known statistical properties but lacks detailed
physical reasoning.

5. Model Impact:
- Observation 1 offers a clear roadmap for domain-driven features that could
significantly improve predictions.

- Observation 2 provides useful but broader modeling suggestions, such as
handling outliers and per-type separation.

Overall Assessment
- Observation 1 is the stronger foundation for modeling due to its deep physical

insights and feature engineering strategies.
- Merging key ideas from Observation 2 (e.g., refining Mulliken charge features,

outlier handling) with Observation 1s domain-driven approach would create a
well-rounded strategy.

580

20

Observations with Images (champs-scalar-computing)

Scalar Coupling Distribution
- Multimodal distribution with a large cluster near zero and a peak at 90100 Hz

(mostly 1JHC).
- 1J couplings (1JHC: ~95 Hz, 1JHN: ~48 Hz) are higher than 2J/3J, which cluster

near zero or negative values.

Contribution Breakdown
- Fermi Contact (fc) dominates scalar coupling (correlation ~0.9999).
- The total coupling is precisely the sum of fc, sd, pso, and dso, though fc is

the primary driver.

Geometry & Coupling
- 1JHC occurs at short distances (~1 Å), while 2J/3J show larger separations and

lower couplings.
- Clear distancecoupling relationship: shorter bonds higher (positive) couplings;

longer bonds smaller/negative.

Mulliken Charges
- Distinct charge clusters influence coupling values, indicating local electron

density effects.
- Higher Mulliken charges (~0.10.2) often associate with stronger 1J couplings

(~100 Hz).

Molecular Properties
- Potential energy (~400 kcal/mol) and dipole moment (~23 Debye) exhibit global

trends but weak direct correlation with scalar coupling.

581

Observations without Images (champs-scalar-computing)

Dataset Overview
- Train: 4,191,263 rows, Test: 467,813 rows.
- Each row represents an atom pair within a molecule with a scalar coupling

constant (train) or a placeholder (test).

- Scalar Coupling Constant
- Ranges from -44.76 to 207.71 (Mean: 15.92, Std: 34.94).
Skewed distribution: 50% below 2.28, but upper quartile extends beyond 7.39.

Coupling Types
- Most frequent: 3JHC (1.36M), 2JHC (1.03M); Least: 1JHN (39K).
- 1JHC has the highest mean (94.97), 2JHH is negative (-10.28).

Scalar Coupling Contributions
- Dominated by Fermi Contact (fc) (correlation ~0.9999).
- Diamagnetic spin-orbit (dso) shows moderate correlation (~0.56).
- Spin-dipolar (sd) and Paramagnetic spin-orbit (pso) have weaker effects.

Distance & Coupling
- Mean interatomic distance: ~2.36 Å.
- 1J couplings occur at shorter distances (~1.011.09 Å), 3J at >3.0 Å.

582

21

Quantum Features
- Potential energy (-0.017 correlation) and Mulliken charge (~0 correlation) show

little direct impact, suggesting the need for localized descriptors.

583

As the impact of image may not be clear due to many visualisations in the result; below we have 584

given one of the images and key observations from that image by performing EDA of champs-scalar- 585

coupling data to understand the importance of image analysis in Machine Learning. The prompt for 586

getting observations for image has kaggle competition description, domain information and dataset 587

description. The observation output first understands the details in plot and information in prompt, 588

and then dives into the observations needed for modeling. We present only the observations below. 589

Key observations from Image (champs-scalar-computing)

Key Insights from distance vs scc(scalar coupling constant) scatterplot
Implications for Modeling
- Distance is clearly an important explanatory variable; however, distance alone

does not capture all of the variability (especially for 2J vs. 3J).
- Angles/torsions can distinguish cases where two atoms might be 3 bonds apart yet

still yield large or small couplings depending on the conformation.
- Quantum-chemical properties (Mulliken charge, shielding tensors, partial bond

orders) add nuance to predict subtle variations.

Cluster Interpretation by coupling type
- 1J (direct bonds): Shortest distances, highest J-coupling (~40200 Hz).
- 2J (2 bonds apart): Intermediate distances (~1.82.2 Å), moderate coupling (~530

Hz).
- 3J (3 bonds apart): Longer distances (>2.4 Å), smallest coupling but

angle-dependent.

Summary
- For the Kaggle task, building features around distances, angles, Mulliken

charges, and shielding tensors will likely improve predictions.
- Coupling types naturally cluster by distance ranges and magnitude of

J-couplingthis suggests separate modeling approaches (or a single model with
coupling-type-specific features) could be beneficial.

590

The prompts, observations in this section are LLM generated and summarized for brevity. 591

A.6 Prompts for our Agents 592

In this section,we provide all the prompts used in our pipeline. 593

A.6.1 Main Agent. This subsection provides the ReAct prompt used for our Main Agent, which generates 594

the Thought and Action of a step. 595

React Prompt for Main Agent

Answer the following questions as best you can.
You have access to the following tools:
1. {tool_description}

596

22

Figure 5: A scatterplot from EDA of champs-scalar-coupling dataset for understanding the visual

understanding capabilities of LLMs. There are multiple classes in the image with different

colors. The model is able to identify classes and give detailed analysis

{instruction}

Your task is to create an initial baseline validation metric and generate a
corresponding submission_{{validation_metric.csv}} file. Then, continuously
improve the validation metric and produce updated
submission_{{validation_metric}}.csv files for each improvement.

Always respond in this format exactly:
Thought: What you are currently doing, what actions to perform and why
Action: the action to take, should be exactly one name of the tool from this list

- [{tool_names}]
Action Input:
‘‘‘python
[the input to the action]
‘‘‘
Observation: the result of the action
... (this Thought/Action/Action Input/Observation should continue repeating

indefinitely until instructed to stop)

TASK INSTRUCTIONS:

1. Dataset Management
- Use only the provided dataset; synthetic datasets are strictly prohibited.
Sample datasets may be used for quick validation but must be reverted to the
original dataset afterward

- When resource constraints prevent using the entire dataset for training, use
a portion of the original dataset. Always ensure predictions are made on the
entire test dataset

- Verify dataset correctness before any processing
- Use actual target variables from the data. Never use synthetic target
variables

597

23

- Implement efficient data loading using generators or iterators
- Apply appropriate batch sizes and data types for memory efficiency

2. File and Directory Structure
- Write all output files to "./" (current directory)
- Organize input data in appropriate directory structure based on modality
- Create proper train/validation splits
- Maintain checkpoint registry in current directory
- Save checkpoints with clear timestamps and metrics

3. Framework and Processing
- Choose an appropriate ML framework for the task, with a preference for
PyTorch when equally suitable

- Implement efficient data loading mechanisms (e.g., PyTorch DataLoader,
TensorFlow tf.data)

- Process different data modalities appropriately:
* Images: Handle different formats, sizes, and channels
* Text: Process different languages, encodings, and lengths
* Tabular: Handle different datatypes, missing values, and categorical
variables
* Sequential: Process variable lengths and temporal dependencies
* Audio: Handle different sampling rates, durations, and formats

- Use appropriate libraries for data loading based on modality (e.g.,
PIL/OpenCV for images, transformers for text, librosa for audio)

- Avoid visualization commands - use statistical summaries instead

4. Data Analysis and Preprocessing
- Conduct appropriate exploratory data analysis based on the dataset
characteristics and modality

- Consider relevant properties that might impact model performance:
* Images: Resolution, channels, aspect ratios
* Text: Length, vocabulary, language characteristics
* Tabular: Feature distributions, correlations, cardinality
* Sequential: Sequence lengths, temporal patterns
* Audio: Duration, frequency characteristics, noise levels

- Design and implement preprocessing steps specific to the data modality
- Apply appropriate augmentation techniques where beneficial
- Adapt the preprocessing pipeline based on initial analysis findings

5. Validation Metric and Iteration:
- Every time the validation metric is checked:

- Create a file named ‘submission_metric.csv‘ containing predictions on the
test data, where ‘metric‘ is the current validation score
- Even if the metric shows no improvement, still create the corresponding
submission_metric.csv file

- After each improvement, continue iterating by exploring new strategies (e.g.,
feature engineering, advanced models) until optimal results are achieved

6. Checkpoint Management
- Before loading any checkpoint, verify its existence
- Load latest checkpoint only if it exists when resuming operations
- Save new checkpoints after significant operations or improvements

598

24

7. Stopping Condition
DO NOT STOP processing until one of these explicit conditions is met:
- You receive a direct "stop" instruction
- You reach the specified time limit
- You encounter an unrecoverable error
Even after achieving good results, continue iterating and improving unless a
stop condition is met.

8. Resource Management
- Implement GPU memory cleanup
- Clear cache between training runs
- Monitor memory usage and leaks
- Use appropriate data types to minimize memory consumption
- Stop and reset approach if persistent errors occur

{extra_instructions}
MAKE SURE YOU FOLLOW THE INSTRUCTIONS WHILE EXECUTION.

{agent_scratchpad}

599

A.6.2 Summary Agent. This subsection provides the prompt and json Schema used for the summary 600

agent. 601

Prompt for Summary Agent

You are a helpful assistant. You will be given a Python code block and its
corresponding execution output. Your task is to summarize the execution output
in the specified JSON format.

Code block:
{code_block}

Execution output:
{execution_output}

602

Json Schema for Summary Agent

{
"type": "object",
"properties": {

"is_bug": {
"type": "boolean",
"description": "true if the execution output shows that the execution

failed or has some bug, otherwise false.",
},
"has_csv_submission": {

"type": "boolean",
"description": "true if a submission file in the format

‘submission_metric.csv‘ is created, otherwise false",
},
"submission_file_name_list": {

603

25

"type": "array",
"items": {"type": "string"},
"description": "List of submission file names if created; an empty

list otherwise.",
},
"summary": {

"type": "string",
"description": (

"Provide a concise overview of the execution output (2-3
sentences). "

"Highlight any key metrics, parameters, or events, such as
performance scores, "

"hyperparameter values, or significant observations from the
execution. "

"If there are errors or failures "
"mention them explicitly. This summary should act as a standalone

description of the output."
),

},
},
"required": [

"is_bug",
"has_csv_submission",
"submission_file_name_list",
"summary",

],
}

604

A.6.3 Debug Chain. This subsection presents the prompts used in the debug chain, which consists of 605

two main components: 606

1. Debug Agent – Refines the action iteratively to resolve the error. 607

2. Integration – Summarizes the entire debug chain to create the final output thought. 608

Debug Agent. The prompt and json schema for Debug Agent 609

Prompt for Debug Agent

You are an AI assistant tasked with debugging and correcting the error that
occurred in the latest code cell of a Jupyter notebook.

You will be provided with the following information:
1. **Main Code History**: A list of code cells executed in the notebook, in the

order of execution. Each code cell is separated by ’# %%’.
2. **Data Preview**: A preview of the data (e.g., a subset of rows or a

description of the data) used in the current notebook. This helps to
understand potential data-related issues.

3. **Debugging History**: A list of previous debugging attempts, including errors
encountered from previous cells. This history helps identify whether the error
is recurring or if progress is being made.

4. **Current Code**: The latest code cell that raised an error. This is the code
that needs to be debugged and corrected.

610

26

5. **Current Error**: The latest error message or traceback. This provides context
on what went wrong and helps identify the specific issue.

Main Code History
{main_history}

Data Preview
{data_preview}

Debugging History
{debug_history}

Current Code
{current_code}

Current Error
{current_error}

Based on the information above, please provide the following:

1. **reflection**: A detailed analysis of the error.
- Identify the root cause.
- Explain why the error occurred.
- Include any patterns or trends observed in previous debugging attempts that
may help explain the issue.

2. **corrected_code**: Provide the corrected Python code cell that should be
executed next.

- **Strictly** provide only the Python code.
- Make sure the code resolves the identified error, fixing the root cause.

3. **is_persistent_error**: Indicate whether the error is recurring.
- If this error has occurred multiple times based on the ‘debugging history‘,
set this value to **True**.

- If this error is isolated to the current execution or is a one-time issue,
set this value to **False**.

Give your output in the specified json format.

611

Json Schema for Debug Agent

{
"type": "object",
"properties": {

"reflection": {
"type": "string",
"description": "A detailed analysis of the error, including the

identified cause and an explanation of why the error occurred.",
},

612

27

"corrected_code": {
"type": "string",
"description": "The corrected code cell to be executed next that

resolves the identified error and addresses the root cause. STRICTLY ONLY THE
PYTHON CODE WITHOUT ANY ADDITIONAL TOKENS.",

},
"is_persistent_error": {

"type": "boolean",
"description": "Indicates whether the error is recurring based on

previous debugging history. True if the error is persistent across executions,
false if it’s a one-time issue.",

},
},
"required": ["reflection", "corrected_code", "is_persistent_error"],

}

613

Debug Chain Integration. The prompt and json schema for the itegration of debug chain 614

Prompt for debug chain integration

You are an AI assistant helping a **ReAct-based agent** that operates using a
Thought-Code-Observation loop. The agent runs code step by step in a
Jupyter notebook, observing the output at each step.

Whenever an error occurs, a **separate debug chain** is initiated to diagnose and
resolve the issue. This debug chain follows its own
Thought-Code-Observation loop and can take up to **5 steps** to fix the
problem.

Once the debug chain **completes** (either by fixing the issue or reaching the
step limit), you must summarize everything that happened into **a single
Thought-Code-Observation step**. This step will be used as the **current
step** in the main ReAct loop, ensuring a seamless transition for the agent to
continue execution.

You will be provided with the following:

1. **Previous React Step**
- The Thought-Code-Observation step where the error first occurred.

2. **Debug Chain**
- The sequence of Thought-Code-Observation steps taken to diagnose and resolve
the error.

Your Task:

Based on the provided information, generate the **current step** in the ReAct loop
using the format below:

615

28

1. **Current_Thought**:
- **Narrative Style:** Write in **first-person perspective** to match the ReAct
agent’s style (e.g., I observed..., I encountered...).

- **Content Requirements:**
- Summarize the key debugging actions taken, focusing on what occurred during
the debug chain.
- Clearly describe the error encountered, the debugging attempts made, and
the final state of the code as reflected in the executed code.
- The thought should solely serve as a reflective summary that aligns with
the final code and observation.

- **Tone:** Maintain a reflective, factual tone that mirrors the agent’s
typical thought process.

2. **Current_Code**:
- Provide the **final executed code** from the debug process.
- If the issue was fixed, this should be the corrected version of the original
code.

- If the issue was **not fully resolved**, provide the **last attempted code
version** so the agent can continue from there.

3. **Current_Observation**:
- Summarize the **final outcome** of the debug process.
- If the issue was fixed, indicate that the problem was resolved.
- If the issue was **not fully resolved**, describe what remains problematic so
the agent understands the current state before proceeding.

Previous React Step:**
{previous_thought_code_observation_step}

Debug Chain:**
{debug_chain}

based on the give information provide your output in the specified JSON format.

616

Json Schema for debug chain integration

{
"type": "object",
"properties": {

"current_thought": {
"type": "string",
"description": (

"A first-person narrative summarizing the debugging process. "
"Describe the error encountered, the debugging attempts made,

and the final state as reflected in the code. "

617

29

"This should align with the final code and observation without
outlining future steps."

)
},
"current_code": {

"type": "string",
"description": "The final version of the code executed after

debugging. If the error was fixed, this should be the corrected code. If
unresolved, this should be the last attempted version for continuity. STRICTLY
ONLY THE PYTHON CODE WITHOUT ANY ADDITIONAL TOKENS."

},
"current_observation": {

"type": "string",
"description": "A concise summary of the final outcome of the

debugging process. If the issue was resolved, indicate the success. If
unresolved, describe what remains problematic so the agent can take
appropriate next steps."

}
},
"required": ["current_thought", "current_code", "current_observation"]

}

618

A.7 Examples of Intermediate Results 619

In this section, we present a concise overview of intermediate results, with many details shortened 620

for brevity. For complete trajectory details, please refer to our logs. 621

Memory. A random example of constructed memory. This was the memory for step 5 in one of 622

our runs. 623

Example of Constructed Memory

Here is the sequence of all Thought/Action/Action Input/Observation loops you have
done so far for this task:

Full thought-action-action_input-observation loops, with observations summarized
for all except the latest step):

--- Step 1 ---
Thought: I will begin by implementing our initial baseline model. The idea is to

use a median-based predictor per coupling type. First, Ill load the training
data and split it into training and validation sets by molecule (using an
80/20 split) to mimic the competitions molecule-based train/test split. On the
training split I will compute the median scalar_coupling_constant for each
coupling type. Then, for our validation set I will predict the median (based
on the coupling type) and compute the baseline validation metric using the
competitions metricspecifically, for each coupling type, the log of the mean
absolute error (with a floor of 1e-9) is computed, and the final score is the
average of these per-type scores.

After checking our baseline validation score, I will use the entire training data
to compute the medians (per coupling type) and then predict on the provided
test set. Finally, Ill create a submission file named exactly

624

30

"submission_{baseline_metric}.csv" (with the metric rounded to 4 decimals)
that contains the test predictions.

Action: python_code_executor
Action Input:
‘‘‘python
import pandas as pd
import numpy as np

Load data
train_df = pd.read_csv("input/train.csv")
test_df = pd.read_csv("input/test.csv")

Create a validation split by grouping on unique molecules (80% training, 20%
validation)

...
[Removed for brevity]
...
‘‘‘
Observation:
The script computed a baseline validation score of approximately 1.1859 by

calculating the mean log MAE from the validation split and then used medians
from the full training data to create predictions for the test set. A
submission file named submission_1.1859.csv was successfully generated, and
the entire process completed without any errors in about 4 seconds.

--- Step 2 ---
Thought: I will now improve the baseline by adding a physics-inspired feature the

distance between the two atoms as computed from the molecular structure (from
the structures.csv file). Ill merge structures with train and test data to
compute the Euclidean distance between the two atoms. Then, for each scalar
coupling type, I will train a simple linear regression model (using distance
as the sole predictor) on a training split (80% of molecules) and evaluate it
on a validation split (20% of molecules) using the competition metric.
Finally, Ill retrain on the full training data and generate predictions for
the test set, saving the submission file as "submission_{lr_metric}.csv"
(using the new metric rounded to 4 decimals).

Action: python_code_executor
Action Input:
‘‘‘python
...
[Removed for brevity]
...
‘‘‘
Observation:
The script successfully computed the validation score using Linear Regression

(score: 1.0169) but then encountered a ValueError when predicting on the test
set due to NaN values in the ’distance’ column. This error prevented the
creation of the submission file, and the output message provides suggestions
to handle missing data.

625

31

--- Step 3 ---
Thought:
I encountered the error because the test dataset contained NaN values in the

’distance’ feature, stemming from missing coordinate values after the left
merge with the structures dataframe. To resolve this, I imputed the missing
’distance’ values in the test set using the median value computed from the
training data. I then reran the model training and prediction pipeline for
each coupling type, which allowed the LinearRegression model to run without
error and produce a valid submission file.

Action:python_code_executor
Action_input:
‘‘‘python
...
[Removed for brevity]
...
‘‘‘

Observation:
The error was resolved successfully. The final code imputes missing ’distance’

values in the test set using the median value from the training data, which
allowed the LinearRegression model to run without errors. The validation score
was computed (approximately 1.0169) and the submission file
’submission_1.0169.csv’ was created.

Execution summary of the code:
The execution successfully preprocessed the data, computed the Euclidean distances

and validation score (approximately 1.0169), and trained linear regression
models per coupling type. A submission file named ’submission_1.0169.csv’ was
created as expected with no errors.

--- Step 4 ---
Thought: In this step, I will try a new approach: instead of using linear

regression based solely on the distance feature, I will now use a more
flexible model. I will train a HistGradientBoostingRegressor (a fast
tree-based method from scikit-learn) for each coupling type using the distance
feature. As before, I will merge the structures dataframe with the train and
test data to compute the interatomic distance, impute any missing values in
test using the median distance from train, and then split the train data by
molecules (80/20 split) to obtain a validation score. Finally, I will retrain
the HistGradientBoostingRegressor models on the full training dataset and
generate a test-set prediction file named submission_{hgb_metric}.csv (with
the metric rounded to 4 decimals).

Action: python_code_executor
Action Input:
‘‘‘python
...
[Removed for brevity]
...
‘‘‘

626

32

Observation:
[SYSTEM NOTIFICATION] Running the above tool with the following response:
Terminal output:
HistGradientBoostingRegressor validation score: 0.7639257173693997
Submission file created: submission_0.7639.csv

Execution time: 21 seconds (time limit is 9 hours).

--- Step 5 ---

627

Main Agent. An example of Main Agent response for one of our runs at a random step. 628

Example of Main Agent response

Competition : rsna-miccai-brain-tumor-radiogenomic-classification
Modality : Image
Result : GOLD medal
Current Step: 18

User Prompt:

Answer the following questions as best you can.
You have access to the following tools:
1. python_code_executor[input]: this tool can help to run python script with

python code as input

You are participating in *MLE-bench*, an offline version of Kaggle competitions
adapted to test the coding ability of agents like yourself.

You will be given a machine learning task. You must solve the task by training a
model and running the model on the test set to produce a submission file. You
may not hand-label the data to produce a submission file.

BENCHMARK INSTRUCTIONS

First, please read the instructions below which are specific to our benchmark

setup. Note, these instructions can be found again in ‘instructions.txt‘.

- **Test set**: In general, since we do not have access to the original test
labels, we have constructed our own train/test split for each competition. As
such, the dataset you see in ‘/input‘ may differ slightly from what is
described in the competition instructions. Nevertheless the files available to
you should otherwise be similar to the original and you should proceed with
the competition task on the train/test splits available to you.

- **Cheating**: You are not allowed to view others’ solutions to this competition.
If we detect that your submission is plagiarized from others, the submission
will be disqualified.

Your submission will be graded based on the metric in the competition-specific
instructions. Your goal is to achieve the best score possible on the
competition task.

629

33

Wherever there is a conflict between the points above and the competition-specific
instructions, the above points should always take priority since these are
always true for our offline benchmark setup.

ADDITIONAL NOTES

- **Compute**: You have access to 1 NVIDIA A100 80GB PCIe with the appropriate
drivers installed.

- **Use as much of the available time as possible to refine and optimize your
submission**: Your goal is to achieve the best possible score, not just to
submit your first working solution. Unless you are certain that no further
improvements can be made. Manually spot-checking predictions, building custom
validation sets and grading functions, and comparing different algorithms. You
may keep working until the time limit expires -- as long as your best
submission is stored at the designated location at the end of your run, it
will be picked up for grading.

COMPETITION INSTRUCTIONS

RSNA-MICCAI Brain Tumor Radiogenomic Classification

...
[Full Competition Page including Description, Evaluation, Submission File, Code

Requirements, Dataset Description. Removed for brevity]
...

All the required data has been uploaded by the user in the current directory.
IMPORTANT NOTE: If any zip files were uploaded, they have already been
unzipped, and their contents are ready to use.

Data directory preview:
‘‘‘
input/

sample_submission.csv (60 lines)
train_labels.csv (527 lines)
test/

00002/
FLAIR/

Image-387.dcm (525.4 kB)
Image-388.dcm (525.4 kB)
Image-389.dcm (525.4 kB)
Image-390.dcm (525.3 kB)
... and 125 other files

T1w/
... (truncated)
‘‘‘
No additional unzipping or extraction is required. Please proceed with the data

as-is.

630

34

**Your task is to create an initial baseline validation metric and generate a
corresponding submission_{validation_metric.csv} file. Then, continuously
improve the validation metric and produce updated
submission_{validation_metric}.csv files for each improvement.**

Always respond in this format exactly:
Thought: What you are currently doing, what actions to perform and why
Action: the action to take, should be exactly one name of the tool from this list

- [python_code_executor]
Action Input:
‘‘‘python
[the input to the action]
‘‘‘
Observation: the result of the action
... (this Thought/Action/Action Input/Observation should continue repeating

indefinitely until instructed to stop)

TASK INSTRUCTIONS:
...
[Same task instructions as provided in the appendix for prompts. Removed for

brevity]
...

COMPUTATIONAL AND RESOURCE GUIDELINES:
1. TIME MANAGEMENT:

- TOTAL AVAILABLE TIME: 24h 0m 0.00s
- TIME SPENT: 22h 51m 21.23s
- TIME REMAINING: 1h 8m 38.77s

2. ADAPTIVE STRATEGY:
- If REMAINING TIME < 25% of TOTAL:

* SKIP non-essential steps
* PRIORITIZE core functionality

- Dynamically adjust complexity based on remaining time
- Focus on critical tasks; defer optional enhancements if needed

NOTE: Both CPU and GPU is present and most of the necessary libraries are
installed. Efficient use of resources will help ensure task completion within
the allocated limits.

MAKE SURE YOU FOLLOW THE INSTRUCTIONS WHILE EXECUTION.

Steps 8 to 17 (Showing only action inputs. Previous steps truncated due to memory
limits):

%%
#Action:python_code_executor

#Action Input:
import os

631

35

import numpy as np
import pandas as pd
import pydicom
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import StratifiedKFold, cross_val_predict
from sklearn.metrics import roc_auc_score

def extract_median_slice_features(subject_path, modality):
"""
Extracts features from the median DICOM slice of the given modality:
"""

...

...
[Rest of the memory removed for brevity]
...
--- Step 18 ---
Thought:
(Begin!)

Main Agent Response:

THOUGHT: I want to improve the CV ROC-AUC by increasing the PCA dimensionality for

the CNN features from 200 to 300. This should better preserve the variance in
the CNN features before fusing with the handcrafted ones. I’ll re-run the
pipeline with PCA(n_components=300) and then perform hyperparameter tuning
using GridSearchCV with XGBoost, followed by generating a new submission file.

ACTION: python_code_executor

ACTION INPUT:‘‘‘python
import os
import numpy as np
import pandas as pd
import pydicom
from PIL import Image
import torch
import torchvision.transforms as T
import torchvision.models as models
from xgboost import XGBClassifier
from sklearn.decomposition import PCA
from sklearn.model_selection import StratifiedKFold, GridSearchCV,

cross_val_predict
from sklearn.metrics import roc_auc_score
...
[Removed for brevity]
...
submission_file_name = f"submission_{cv_auc:.3f}.csv"
submission_df.to_csv(submission_file_name, index=False)
print("Submission file created:", submission_file_name)
‘‘‘

632

Summary Agent. An example of Summary Agent response for one of our runs at a random step. 633

36

Example of Summary Agent response

OBSERVATION

[SYSTEM NOTIFICATION] Running the above tool with the following response:
Terminal output:

tokenizer_config.json: 0%| | 0.00/48.0 [00:00<?, ?B/s]
tokenizer_config.json: 100%|##########| 48.0/48.0 [00:00<00:00, 392kB/s]
...
[Rest of the 389 lines truncated for brevity here]
...
93%|#########3| 115/123 [00:04<00:00, 28.07it/s]
96%|#########5| 118/123 [00:04<00:00, 28.08it/s]
98%|#########8| 121/123 [00:04<00:00, 28.13it/s]
100%|##########| 123/123 [00:04<00:00, 28.43it/s]
Submission file saved as submission_0.3799.csv

Execution time: 8 minutes (time limit is 9 hours).

OBSERVATION SUMMARY

{

’is_bug’: False,
’has_csv_submission’: True,
’submission_file_name_list’: [’submission_0.3799.csv’],
’summary’: "The model, implemented using a BERT-based classifier and a custom
dataset, was successfully trained for 3 epochs, with the final validation log
loss reported as approximately 0.3799. Training and evaluation metrics,
including a training loss of about 0.2832 and high evaluation throughput (~440
samples per second), were output, and a submission CSV file named
’submission_0.3799.csv’ was saved. A minor warning about newly initialized
classifier weights was displayed, indicating that further task-specific
fine-tuning is recommended."

}

634

Debug Chain. An Example of debug chain in one of our runs. 635

Example of debug chain

OBSERVATION WITH ERROR

[SYSTEM NOTIFICATION] Running the above tool with the following response:
Terminal output:

MC Dropout TTA_v1 Validation Iteration 1/5: 0%| | 0/314 [00:00<?, ?it/s]

636

37

MC Dropout TTA_v1 Validation Iteration 1/5: 0%| | 1/314 [00:03<20:43,
3.97s/it]

...
[Rest of the observation was truncated for brevity]
...
MC Dropout TTA_v2 Validation Iteration 5/5: 100%|#########9| 313/314 [03:22<00:00,

1.79it/s]
MC Dropout TTA_v2 Validation Iteration 5/5: 100%|##########| 314/314 [03:22<00:00,

1.55it/s]
Error in line 138: ensemble_val_auc_mcdrop = roc_auc_score(all_val_labels,

ensemble_val_preds)
ValueError: Found input variables with inconsistent numbers of samples: [32, 10033]
Execution time: 41 minutes (time limit is 9 hours).

OBSERVATION SUMMARY

The execution output shows extensive progress of MC Dropout TTA on both validation

and test datasets, but it ultimately fails with a ValueError due to
inconsistent sample sizes (32 vs 10033) when computing the ROC AUC score. As a
result, no CSV submission file was created, and the error halted further
execution after approximately 41 minutes.

---DEBUG MODE (separate chain initiated)---

DEBUG STEP-1

REFLECTION 1:
The error occurred because the ground truth labels (all_val_labels) were being

incorrectly accumulated from only a single batch of the validation data rather
than from the entire validation set. In the original code, the labels were
captured inside the TTA loop using ’if all_val_labels is None: all_val_labels
= np.array(labels.numpy())’, which resulted in all_val_labels having the
length of a single batch (e.g., 32) instead of the full set (e.g., 10033
samples). This mismatch causes the roc_auc_score function to raise a
ValueError for inconsistent number of input samples. This error seems to be
isolated to this MC Dropout ensemble TTA block (it has not been a recurring
error in earlier cells).

CORRECTED CODE 1:
‘‘‘python
...
[Removed for brevity]
...
‘‘‘

EXECUTION OUTPUT 1:
Terminal output:

MC Dropout TTA_v1 Validation Iteration 1/5: 0%| | 0/314 [00:00<?, ?it/s]

637

38

MC Dropout TTA_v1 Validation Iteration 1/5: 0%| | 1/314 [00:03<18:10,
3.48s/it]

MC Dropout TTA_v1 Validation Iteration 1/5: 2%|1 | 5/314 [00:05<05:24,
1.05s/it]

...
[Rest of the observation was truncated for brevity]
...
MC Dropout TTA_v2 Test Iteration 5/5: 100%|##########| 1121/1121 [15:07<00:00,

1.23it/s]
Submission file with MC Dropout Ensemble TTA saved as:

submission_0.9352_tta_mcdrop.csv

Execution time: 3 hours (time limit is 9 hours).

[HERE ERROR WAS RESOLVED ---> BREAKING OUT OF DEBUG CHAIN]

DEBUG CHAIN INTEGRATED STEP

THOUGHT:
I identified that the ValueError was due to an inconsistent accumulation of

validation labels; originally, I was only capturing labels from a single
batch, leading to a mismatch with the predictions generated from the entire
dataset. To fix this, I modified the code to accumulate all labels from the
full validation set prior to running the TTA loops. I then verified that both
TTA iterations (using transform v1 and v2) work correctly and the final
ensemble AUC calculation now receives matching inputs. The submission file is
generated without errors.

ACTION: python_code_executor

ACTION INPUT:
‘‘‘python
...
[Removed for brevity]
...
‘‘‘

OBSERVATION & OBSERVATION SUMMARY:
The script executed a Monte Carlo Dropout with Test Time Augmentation (TTA)

approach for both the validation and test datasets. It iteratively computed
predictions using two different augmentation transforms, ensemble averaged
them, and achieved a validation AUC of approximately 0.9352. Finally, it
successfully saved a submission file named ’submission_0.9352_tta_mcdrop.csv’.

---DEBUG MODE (finished)---

NEXT STEP (by Main Agent)
...

638

39

Submission Checklist 639

1. For all authors. . . 640

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 641

contributions and scope? [Yes] [We support our claims with detailed results and analysis 642

along with the Code and logfiles.] 643

(b) Did you describe the limitations of your work? [Yes] [We talk about the limitations in 644

Section [3.6]] 645

(c) Did you discuss any potential negative societal impacts of your work? [No] 646

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them? 647

(see https://2022.automl.cc/ethics-accessibility/) [Yes] 648

2. If you ran experiments. . . 649

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same 650

benchmarks, data (sub)sets, available resources, etc.)? [Yes] 651

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing, 652

search spaces, hyperparameter tuning details and results, etc.)? [Yes] 653

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account 654

for the impact of randomness in your methods or data? [Yes] [We have reported evaluations 655

on different splits of the data to consider for the impact of randomness.] 656

(d) Did you report the uncertainty of your results (e.g., the standard error across random seeds 657

or splits)? [No] 658

(e) Did you report the statistical significance of your results? [Yes] 659

(f) Did you use enough repetitions, datasets, and/or benchmarks to support your claims? [Yes] 660

(g) Did you compare performance over time and describe how you selected the maximum 661

runtime? [Yes] 662

(h) Did you include the total amount of compute and the type of resources used (e.g., type of 663

gpus, internal cluster, or cloud provider)? [Yes] 664

(i) Did you run ablation studies to assess the impact of different components of your approach? 665

[Yes] 666

3. With respect to the code used to obtain your results. . . 667

(a) Did you include the code, data, and instructions needed to reproduce the main experimental 668

results, including all dependencies (e.g., requirements.txt with explicit versions), random 669

seeds, an instructive README with installation instructions, and execution commands (either 670

in the supplemental material or as a url)? [Yes] 671

(b) Did you include a minimal example to replicate results on a small subset of the experiments 672

or on toy data? [Yes] [We show that users can use any of the run groups which are small 673

subset of the MLE-Pi dataset in the README.md file in the code.] 674

(c) Did you ensure sufficient code quality and documentation so that someone else can execute 675

and understand your code? [Yes] 676

(d) Did you include the raw results of running your experiments with the given code, data, 677

and instructions? [Yes] [We have included all the runtime logfiles and result jsons for our 678

exeperiments] 679

40

https://2022.automl.cc/ethics-accessibility/

(e) Did you include the code, additional data, and instructions needed to generate the figures 680

and tables in your paper based on the raw results? [Yes] 681

4. If you used existing assets (e.g., code, data, models). . . 682

(a) Did you cite the creators of used assets? [Yes] 683

(b) Did you discuss whether and how consent was obtained from people whose data you’re 684

using/curating if the license requires it? [Yes] 685

(c) Did you discuss whether the data you are using/curating contains personally identifiable 686

information or offensive content? [N/A] 687

5. If you created/released new assets (e.g., code, data, models). . . 688

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes] 689

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g., 690

GitHub or Hugging Face)? [Yes] 691

6. If you used crowdsourcing or conducted research with human subjects. . . 692

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 693

cable? [N/A] 694

(b) Did you describe any potential participant risks, with links to institutional review board 695

(irb) approvals, if applicable? [N/A] 696

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 697

on participant compensation? [N/A] 698

7. If you included theoretical results. . . 699

(a) Did you state the full set of assumptions of all theoretical results? [Yes] 700

(b) Did you include complete proofs of all theoretical results? [Yes] 701

41

	Introduction
	Methodology
	Framework Overview
	Iterative Refinement Cycle
	Result Generation and Optimization
	Memory Construction Dynamics
	Debug Chain: Systematic Error Correction
	Stopping criteria and outcomes

	Experiments
	Experimental Setup
	Baseline
	Dataset
	Results
	Discussion
	Limitations

	Related Work
	Large Language Models
	Impact of advancements in LLM Reasoning on ML Tasks
	Solving Long Complex Task using Agentic Systems

	Conclusion
	Future Directions
	Appendix and Supplemental Material
	Dataset details: MLE-Pi
	Agent Settings
	Understanding and comparing the Coding Efficiency of LLMs
	Dataset and LLMs Selection
	Coding Efficiency metric
	Experimental Setup
	Results and Analysis

	Comparative Analysis of PiML v/s AutoGluon-Tabular
	Integrating Visual Clues from Plots for Downstream EDA Analysis
	Prompts for EDA
	Analysing Observations

	Prompts for our Agents
	Main Agent
	Summary Agent
	Debug Chain

	Examples of Intermediate Results

