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ABSTRACT

We study online leader-follower games where the leader interacts with a myopic
follower using a quantal response policy. The leader’s objective is to design an
algorithm without prior knowledge of her reward function or the state transition
dynamics. Crucially, the leader also lacks insight into the follower’s reward func-
tion and realized rewards, posing a significant challenge. To address this, the
leader must learn the follower’s quantal response mapping solely through strate-
gic interactions — announcing policies and observing responses. We introduce
a unified algorithm, Planning after Estimation, which updates the leader’s poli-
cies in a two-step approach. In particular, we first jointly estimate the leader’s
value function and the follower’s response mapping by maximizing the sum of the
Bellman error of the value function, the likelihood of the quantal response model,
and a regularization term that encourages exploration. The leader’s policy is then
updated through a greedy planning step based on these estimates. Our algorithm
achieves a sublinear regret in the context of general function approximation. More-
over, this algorithm avoids the intractable optimistic planning and thus enhances
implementation simplicity.

1 INTRODUCTION

Stackelberg games are a class of games that feature strategic decision-making under a leader-follower
structure. These games find broad applications in various domains, such as economics, finance,
societal systems, and so on (He et al., 2007; Von Stackelberg, |2010; |[Keyhanil 2003} |Sinha et al.,
2013;|Ghosh & Del 2021};|Koh et al.|[2020; |Q1u et al.,|2021). In the simplest two-player case, the two
players are referred to as the leader and follower, respectively. These two players have misaligned
objectives and different information structures, and their interactions can be sequential and dynamic.

In this game, the leader has more advantages in the sense that she can regularize the follower’s
behavior by announcing her policy before the two players take actions and promising to commit
to it. In that case, the leader’s policy becomes common knowledge. The follower, knowing the
leader’s policy, determines his policy by solving his decision-making problem determined by both
the leader’s policy and the follower’s reward function. As a result, the follower’s policy is a strategic
response to the leader’s policy, and such a mapping (the response model) depends on the follower’s
reward function. From the leader’s point of view, the response model specifies how the followers
strategically interact with the leader, and the leader aims to maximize her cumulative rewards in
expectation. The leader’s policy that maximizes her cumulative rewards in the presence of the
strategic follower, together with the follower’s response policy, constitutes a Stackelberg equilibrium
of the game. This notion characterizes the optimal behavior of such a leader-follower game.

While there have been many existing works proposing sample-efficient multi-agent reinforcement
learning (MARL) algorithms for solving dynamic games, the study of solving Stackelberg equilibria
from data via MARL is relatively scarce. Most of these works focus on Nash-(Perolat et al.,|[2017)),
Correlated-(Cigler & Faltings, 2011)), or coarse correlated equilibria(Sessa et al., [2022) of Markov
games. When it comes to Stackelberg equilibria, the hierarchical and strategic nature make it hard to
learn from data. The main challenge lies in the estimation of the response model of the follower. When
the response model is unknown to the leader, she needs to infer the response model, or equivalently,
estimate the follower’s reward function from data. This entails a challenging exploration problem —
the leader has to find a sequence of policies such that the follower’s responses to them are sufficiently
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informative. Moreover, as shown in|Bai et al.[|(2021]), such a problem is ill-posed when the follower
is fully rational, i.e., returning a deterministic reward-maximizing action. In this case, even if the
follower’s reward function is accurately estimated, the resulting estimated response model still has a
considerable error.

To address this challenge,/Chen et al.|(2023) propose to study Markov Stackelberg games (MSG) with
the follower adopting a quantal response model. That is, the follower solves an entropy-regularized
reward maximization problem and the response policy is stochastic. In this case, after announcing a
policy and observing the action taken by the follower, the leader can estimate the follower’s reward
function via maximum likelihood estimation (MLE). Based on this observation, in the online setting,
Chen et al.|(2023) proposes a sample-efficient algorithm based on optimistic planning, in the context
of general function approximation. In particular, their algorithm constructs a confidence for the
follower’s reward function via MLE, and a confidence set for the leader’s value function using the
Bellman error. However, due to the hierarchical structure, this Bellman error takes the follower’s
reward function as a parameter. As a result, optimistic planning over these coupled confidence sets
is highly intractable. Therefore, the following question remains elusive:

Can we design a sample-efficient and easy-to-implement MARL framework
for Markov Stackelberg games with general function approximation?

In this paper, we provide an affirmative answer to this question. Focusing on the online setting
of Markov Stackelberg games where the follower is myopic and boundedly rational, we propose an
easy-to-implement algorithm, dubbed Planning after Estimation (PES). In particular, in each episode,
the algorithm updates the leader’s policy in two steps. First, in the estimation step, we estimate the
leader’s value function and the follower’s quantal response model together using a combined loss
function. This loss function combines (i) the likelihood loss for estimating the follower’s reward
function, (ii) the Bellman loss for estimating the leader’s value function, and (iii) an additional term
that promotes exploration. Such an exploration-promoting term is defined as the expected rewards
of the leader based on the given value function and response model. In the second step, based
on the estimated value function and response model, we update the leader’s policy by solving the
greedy policy. Compared to the optimistic planning algorithm proposed in|Chen et al.| (2023), our
algorithm circumvents intractable optimistic planning, which involves joint planning of the leader’s
policy, value function, and the follower’s quantal response model. Furthermore, we prove that
PES achieves a sublinear O(d.VT)-regret with general function approximation, where d.. is the
decoupling coefficient (Xiong et al., 2022)) that captures the complexity of the employed function
classes and T is the number of episodes. As a result, our PES is provably sample efficient and
amenable to implementation at the same time. Furthermore, as a concrete example, we instantiate
the leader-follower game to the problem of reinforcement learning with human feedback (RLHF),
demonstrating the efficacy of our algorithm.

2 RELATED WORK

Online Stackelberg Games. Most existing works on learning Stackelberg equilibria in (Markov)
games via online RL assume the follower is myopic and perfectly rational (Bai et al., 2021} [Zhong
et al.,[2023;|Kao et al.| 2022} Zhao et al.,|2023). In specific,Bai et al.|(2021));|Zhao et al.|(2023) focus
on the static setting. [Bai et al.|(2021) consider a centralized setting where the central controller can
determine the actions taken by both the leader and the follower, and [Zhao et al.| (2023) assume the
follower is omniscient in the sense that the follower always plays the best response policy, which is
similar to our setting. They show that when the follower is perfectly rational, the regret of the leader
exhibits different scenarios depending on the relationship between the leader’s and the follower’s
rewards. Besides, Kao et al.|(2022) assume that the leader and follower are cooperative and design a
decentralized algorithm for both the leader and follower, under the tabular setting. [Zhong et al.|(2023)
study online and offline RL for the leader, assuming the follower’s reward function is known, and thus
the best response of the follower is known to the leader. Our work is more related and comparable
to (Chen et al.|(2023). In particular, Chen et al,| (2023) extensively studied Markov Stackelberg
games in the context of general function approximation. They proposed an algorithm framework,
which is provably sample efficient under assumptions that the follower is bounded rational and either
myopic or farsighted. However, they constructed confidence sets for the response model and leader’s
value function and introduced optimistic planning (Auer et al., 2008) to update the leader’s policies.



Under review as a conference paper at ICLR 2025

Such a method involves joint planning of the leader’s policy and value function, and the follower’s
quantal response model, so the planning steps become computationally intractable, which means the
algorithm is very hard to be implemented in practice. In this paper, we propose our PES algorithm
to overcome this drawback. Instead of using tedious optimistic planning, we exploit the benign
property of the Shannon entropy function to recover the follower’s reward function via his policy.
After estimating the reward function, we execute the planning step by solving the “greedy” policy.
Compared with [Chen et al.| (2023), our algorithm is not only easy-to-implement but also easier to
show theoretical guarantee.

Online RL with General Function Approximation. Recently, various works propose RL algo-
rithms in the context of general function approximation (Jiang et al.,|2017;|Sun et al.||2019; Jin et al.,
2021} | Xiong et al., 2022} [Liu et al.| |2024a). Among these works, Our work is most relevant to [Jin
et al.|(2021)); Xiong et al.|(2022); Liu et al.|(20244a). Specifically, Jin et al.|(2021); Xiong et al.|(2022)
introduce the Multi-agent decoupling coefficient that characterizes the exploration difficulty of the
Markov Decision Process (MDP) problems. In Section[5} we introduce similar notions of decoupling
coefficient for learning the leader’s optimal policy. In particular, we introduce two versions of the
decoupling coeflicient that capture the complexity of the leader’s Bellman error and the follower’s
quantal response error. Besides, [Liu et al.| (2024a) proposed an easy-to-implement RL algorithm
framework named Maximize to Explore (MEX) and instantiating MEX on the 2-player zero-sum
game setting. However, their algorithm framework can not be easily instantiated in MSG, because the
follower’s Bellman error is not accessible in our setting, since either the follower’s reward function
or his realized rewards remains unknown.

3 PRELIMINARIES

Notation For a measurable space X, we use A(X) to denote the set of probability measure on X.
For an integer n € N, we use [n] to denote the set {1, ..., n}. For a random variable X, we use E [ X]
and Var [X] to denote its expectation and variance respectively. For two functions f(x) and g(x),
we denote f(x) = O(g(x)) if there is a constant C s.t. f(x) < C - g(x),Vx € Dom(f) N Dom(g)
and we use O(-) to omit all the logarithmic terms. For two functions f,g : A — R, we denote

(f:8)a = Zaca f(a) - g(a).

3.1 LeADER-FOLLOWER MARKOV GAMES

Problem Settings. A leader-follower Markov Game is between two players, referred to as the leader
and the follower, respectively (also called principal and agent in other literature). These two leaders
will interact within an episode of H steps and the states of the game evolve according to a Markov
transition kernel. Let S be the state space, and let A and B be the action sets of the leader and
follower, respectively. Let P = {Pj, : S X A X B — A(S)}ne[n] denotes the transition kernels of
the H steps, and let u = {up, : SXAXB — [0, 1]} heayand r = {r, : SXAXB — [0, 1]} he[a)
be the leader and follower’s reward functions of H steps, respectively.

In contrast to a classic Markov game, the leader-follower game features an additional ’communication
stage”: before the beginning of the game, where the leader announces a policy 7 = {7, : S —
A(A)}nerny and the follower adopts a response policy v” = {vf : S — A(B)}he[n) according to a
response model: 7 — v”. Then the two players play the joint policy (7, v™) and generate a trajectory
{Sh,an, bntne m)- In particular, at step any step 2 € [H], the leader and follower observe the current
state s, € S, take actions a, ~ m,(+|sp) and by ~ v (+|sn), receive rewards up(sp, an, by) and
rn(sn, an, by) respectively, and the environment moves to a new state s, ~ Pp(|sn, an, by). Here,
we could assume the initial state s; is sampled from a fixed distribution pg € A(S) and the game
terminates after sy is generated. At last, we define IT = I1y X 1, X - - - T1g, where I1;, = A(A), as
the domain of the leader’s policy 7.

Quantal Response Model. In the above discussion, we mentioned that after the leader announces
its policy n, the follower will choose its policy v”™ according to this context. We feature this
process as quantal response models: 7 — v”™. In this paper, we mainly discuss the boundedly
rational and myopic follower, where the “myopic” means the follower only tries to maximize his
expected immediate reward and the “boundedly rational” means the follower considers other factors
(represented as a regularization term) when maximizing his rewards. We define the quantal response
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policy of the follower with respect to &, denoted by v”™ as the solution to an entropy regularized
policy optimization problem:

vy (-ls) = argnlix {E”’“”" [7n(sn,an, by)|sp = s] + %7—(()/;2(~|s))} ,Vs €8, 3.1

where E™-Vh[.|s;, = s] means we take expectation with respect to (7, vy). Here H is a strongly
convex regularization function and 7 > 0 is a parameter. In order to solve the corresponding problem
directly and give a closed-form solution of the follower’s policy in equation (3.1)), we further assume
the regularization function H is the Shannon entropy of the follower’s policy. Here we don’t rule
out the possibility of using other regularization functions, and consider such extension as our future
work.

Stackelberg Equilibrium. When the follower adopts the response model v, the goal of the leader is
to find the optimal 7* that maximizes its expected total rewards when the follower’s response model
isv”, ie.,

n*e argm;li(n), J(m) =E”[ZhE[H]uh(sh,ah,bh)]. 3.2)

Here E™ denotes the expectation over the trajectory {sx, an, by} [ner)| generated by the joint policy
(7, v™, P) and the maximization in (3.2)) is over all policies of the leader. The optimal leader’s policy
7* and its response v” constitutes a Stackelberg (Markov perfect) equilibrium. That is, Stackelberg
equilibrium characterizes the leader’s optimal policy, when the follower adopts a particular response
model that maps each a leader’s policy 7« to a follower’s policy v”.

3.2 ONLINE STACKELBERG GAME

In this paper, we consider the learning problem of the leader in the online setting. That is, without any
prior knowledge about the reward functions « and r and transition model P, the leader aims to learn
* by repeatedly playing the same game with a follower and adaptively gathering data, where the
follower adopts the response model v”. Specifically, the leader adaptively constructs a sequence of
policies {x' };»1 where i’ is the policy in the ¢-th episode. The leader’s data consists of the trajectories
and bandit feedback of the follower’s reward generated by playing the game. In particular, when
leader adopts #’, the follower adopts v”™ and they generate a trajectory {s},,al. b} heir). The
leader observes this trajectory as well the bandit feedback of her reward, i.e., {uy, (sfl, a;l, bil) Yhe[H]-
Based on the data generated before the -th episode, the leader constructs ! by a learning algorithm
and uses it to generate new data. Here a key assumption of our setting is that the leader does not
know the follower’s realized rewards or the reward function, which is realistic but also the source of
the major technical challenge.

To evaluate the performance of the learning algorithm, we use the notion of sample complexity.
Let € € (0, 1) be the desired error level, the sample complexity is defined as the smallest integer
Te such that the algorithm constructs an e-optimal policy 7 after T episodes, where 7 satisfies
J(n*) — J(®) < e. Specifically, the performance is measured by the regret, which is as

Reg(T) = 37, (J(x*) = J(x")) . (3.3)

4  ALGORITHM FRAMEWORK: PLANNING AFTER ESTIMATION

4.1 FoRMULATE STACKELBERG GAMES VIA REINFORCEMENT LEARNING

Formulate Stackelberg games into Bilevel Optimization. First, we recall the quantal response
policy of the follower v”™ could be viewed as the solution to an entropy regularized policy optimization
problem, which is given by equation (3.I). Thus, we could write the maximization of the leader’s
reward as a bilevel optimization problem:

= argmax J(r), J(m) = E”[Zhe[H]uh(sh,ah, bh)], 4.1)

nellH

vy (-|s) = argmax G, (7, v), Gp(m,v) = {E™"" [rp(s,apn, bp)|s] + 1/n - H(vp(-|s))},Vs €S,

Yh
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where the leader’s problem is in the upper level: for each leader’s policy 7, we find the follower’s
optimal policy v”™ induced by 7, and then find the optimal 7* that maximizes the leader’s reward.

Leader’s Value Functions. Let U ;7; :SXAXB — R and W;f : S — B to be the leader’s
action-value (U) function and state-value (W) function under policy &, which are defined as:

U (Shy ans bi) = un (s, an, bp) + B [W (5pe1)|5ns an, bi]
=up(sp,an, bp) + (PhW,:rH)(sh,ah,bh), “4.2)
W]:r(sh) = Eﬂ',Un [U;:(Sha Aap, bl’l)] = <U]711(Sh7 K] ‘)’ TTh ® U;lr(" '|S]’l)>ﬂ><3 > (43)

where the expectation in equation (.3)) is taken w.r.t. ap ~ 7w, (-[sp, bp), bp ~ v (-|s). Here we
define P,W(s,a,b) = Yycs Pr(s’]s,a, b)W(s’) and define m;, ® v} (a, b|s) = np(als, b) - vy (b|s)
for Vh € [H].

Intuitively, U;" and W7 are counterparts of the Q-function and V-function in standard RL, respec-
tively. That is, W (s) 1s equal to the expected total rewards starting from s, = s and the two players
follow 7 and v™. Thus, the total reward of the leader is given by J(r) = Eg, 5, [W[" (s1)], where po
is the initial state distribution. For simplicity, we consider the case when the initial state s is fixed.

Bellman Equation By (4.T]), we notice that, since the follower is myopic, his response policy at each
step & could be computed separately, which means v} depends on 7 only through 7. As a result,
to find the optimal policy 7*, it only suffices to optimize ), at each step separately in (@.3)), which
leads to the following Bellman optimal equation for {U), W}, 7™* } e n):

Uy (Shyan, br) = un(sp, an, bp) + PoWy,, (S, an, bp),

Wr(sp) = max Ur(sp, ), ®UT(-,-|s , 4.4
1 (sn) nh(-\sh)eA(ﬂ){< F(Shy s ) th @ U (- olsn) )}

and 7 is the optimal policy that achieves the maximum in (@.4). In other words, 7* is the “greedy”
policy with respect to U* and the quantal response mapping 7 — v”.

Recovering Standard MDPs. A special case of this leader-follower game is when 8 is a singleton.
In this situation, this game reduces to a standard MDP, because b, = b is fixed and v™ degenerates
into 6(b) for any m € II. Then we can recover the classical Bellman equation in (@.4). Thus,
estimating u and P is the same as in standard RL.

4.2 MobEL EsTiIMATION AND GREEDY PLANNING

According to the discussion in Section we know that once the leader knows reward functions
u and r, and the transition kernel P, then they can solve equation @.4) to find the optimal pol-
icy n*. In the online setting, we need to approximately solve equation (.4) using online data
{n?, {SZ’aZ’ va M;,}he[ H]}re[r]- From the leader’s perspective, there are two types of unknown
quantities: (i) the follower’s response model v”, which depends on the follower’s reward function
r = {rp}nem; (ii) the leader’s reward function u = {u, }pe 7 and the transition kernel P = {Pp,}peq.

Estimate the Response Model. To deal with the unknown quantities relevant to the follower, we
need to consider how his policy v™ involves with leader’s value function U, W. A natural way to
tackle this is via estimating the response model 7 — v”. In general, it is an intractable task since
it means we need to estimate a functional mapping from A(A) to A(B). A promising approach to
address this challenge is to directly estimate the follower’s reward function through his announced
policy, instead of estimating the complicated response model. This approach is equivalent to solving
an inverse optimization problem v™ shown in equation {.I)). That is, given a solution (the follower’s
policy) of the optimization problem, could we recover the parameter (the follower’s reward function)
of this problem? This kind of inverse problem is usually ill-posed. However, thanks to the benign
property of the Shannon entropy, we could write the follower’s policy in closed form:

vy (bulsn) = exp (- (A} (sn.br))) Ap (sn, bp) = 1y (sn, bn) = Vi (sn), 4.5)
r;,r(s’ b) = an,r[r(s,a,b)] = <7Th('|S,b),rh(S, ’b)>ﬂ 5
Vit (sn) = 1/n - 1og(Xpeg exp(n - rjy (sp, b)).

Here V" (s) is a normalizing constant ensuring v, (:|s) € A(8), and n > 0 is a parameter. By this
closed-form solution, we know the inverse optimization problem of estimating r is well-posed and
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can be solved simply via maximum likelihood estimation (MLE). In particular, we can view v”™ as a
statistical model with parameter r, and equation (4.5)) enables us to compute the likelihood function
when observing data {x}, s}, b }ic[7]-

To this end, we approximate r using a function class 7 = {r? : S x A x B — [0, 1]} gco, Where 6
is a parameter with respect to r and O is the the parameter space. We further assume the realizability
condition on reward function r:

Assumption 1 ((Realizability of Reward Function)). There exists 0* € © such that rf =r.

Then, we can estimate r} = r;l) ) by using the negative log-likelihood loss:
t—1 . t—1 .
Ly (0r) = = > loguy O (bl | si) == > n- Ax 0 (s}, bl). (4.6)
i=1 i=1
where UZ’H" and AZ’H" are defined in equation (4.5 with rj, replaced by rg”. Let 6 = {On}nerns
we further define v? = {v/" %} ,c g

Estimate the Value Function. To deal with the unknown quantities relevant to the leader, we try to
estimate her value function. We let 6* = {6} },c[1] Where 6} is the parameter of rj,, then we have:

Uy (Shyan, bp) = up(sn, an, by) + PoW,5, (sh, an, by),
W*(sp) = max Ur(sn, ) tn @ v (- s ,
h( h) ﬂh(~|sl,)eA(ﬂ){< h( h ) h h ( | h)>}

and W}, | appears in the above Bellman equation. As a result, instead of estimating uj, alone, we aim
to estimate U;l‘ =up+Py W;l‘ 1 which is known as the Bellman target in online RL. The estimation of
this target is well-studied in the literature. We can either use model-based or model-free approaches.
In this paper, we exploit the model-free approach to minimize our assumptions on the function class
of the leader’s reward function and transition kernel.

To this end, we approximate U* using a function class U = U; X Uy X - X Uy, where Uj, C
(SxX A xB — R). To simplify our discussion, we introduce two types of Bellman operator

{TZ’Q};,E[H],%@, which is common in the literature (Perolat et al., {2015} Jin et al.,[2022):

TZ’QU(SI’L’ aha bh) = uh(Sh, ah’ bh) + ]E’Sh+]~Ph(-|Sh,ah,bh) [(TZ;?U]’!+1)(S}’£+1)]9

where T;’H(Uh)(Sh) = ﬂl,rélAa(Xﬂ) <Uh(Sh, K ')97Th ® UZ’H KN | S”l)> .

The corresponding Bellman error is defined as:
Uy (Ups Unst 0) (s}, @ bl 83,01) = (Upy = ) (535 @l 1) = T Unat () - .7
Then, we estimate U;l‘ by minimizing the Bellman error, and the loss function is defined as

-1 -1
Lo (U,0) = D 15, (Un, Uner, 04e1)’ = inf 5 15 (U, U, O1s1)°. (4.8)
i=1 i=1
Greedy Planning after Estimation. After identifying the loss functions we use to bound the
two types of unknown quantities that are mentioned in Section we propose Planning after
Estimation (PES, Algorithm |I) for solving online Stackelberg Games in the context of general
function approximations. We first give a generic algorithm framework and then compare our
algorithm with other concurrent works.

Algorithm 1 Planning after Estimation (PES)
1: Inmitial: D = 0.
2: fort=1,2,---,T do
3:  Calculate U', 6" = argmaxy 4 (WIU’H(sl) -m ik, L 1 (6n) —m2 i Ly ,(Un, 9h))-

4:  Execute ' = arg maX e <Uf(sl, ), T ® U?,H’(". | S1)>ﬂ 5
><(

Collect data D; = {D} }ne[ ) With D} = (s}, a}, b}, u}, 7)), and update D = D U D;.

6: end for

bed
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In each episode 7 € [T], the agent first estimates the value function U’ and reward function 6" using
historical data {D*}¢[;—1] by maximizing a composite objective given in Algorithm Specifically,
in order to achieve exploiting history knowledge while encouraging exploration, the agent considers
the composite objective that sums: (a) the negative log-likelihood loss L} ,(6"), which represents
the exploitation of the agent’s current knowledge of the follower’s policy’; (b) the Bellman error
Lz,z(Ut’ 0"), which represents the exploitation of the agent’s current knowledge on the Bellman

target; (c) the expected total return of the optimal policy associated with our chosen (U, 6"), i.e.,

1 t
WlU -9 which represents exploration for a higher return. With tuning parameters 11,772, the agent
balances the weight put on the tasks of exploitation and exploration.

Then the agent predicts 7’ via the optimal policy associated with the solved (U?, 6), execute n’ to

collect data D; = {(s}, a}, b}, u}, 7} }ne[m)» and update the loss function Lz’l, LZ’Q.

Comparison with Optimistic Planning (Chen et al.,|2023) The algorithm proposed in|Chen et al.
(2023) first built a confidence set Cqy ¢ for (U*,6*), and then predicts 7 via optimal policy with
solved (U’, 8"). We could formulate their estimation and planning steps as:

(Uf,H‘) = (U%r)gércnax(ﬁ) <U1(S1, L), ® U?,G(_,. | Sl»);z(ng ,
, U0

n'(sp) = argmax <Ui(s1,~, ), T ®vf’9t(-,- | s1)>

ne[A(A)|H AxB

The most important difference between our PES algorithm and their optimistic planning algorithm
is that they need to solve a constrained optimization problem inside the complicated confidence
set, which is often intractable in practice. The reason is that the confidence set Cq,@ is coupled.
Intuitively, it can be written as

Cue={U,0):0€Co,U € Cyb)}.

Here Cp a confidence set for 8*, constructed by the MLE loss in for estimating 6*, and Cq;(0) is
a confidence for U* based on the Bellman error in (#.7)), which involves a parameter 6. Instead, PES
only needs to maximize a composite objective, i.e. solve an unconstrained optimization problem,
which is not only tractable but also easy to implement in practice.

We need to highlight that PES is not a Lagrangian duality of the constrained optimization objectives
within data-dependent level-sets proposed by |Chen et al.| (2023)) or any other optimistic planning
algorithm that could potentially solve this task. In fact, PES could fix the parameter choice 11, 172
across each episode t. Thus 71,7, is independent of data and predetermined, which contrasts
Lagrangian methods that involve an inner loop of optimization for the dual variables.

5 REGRET ANALYSIS FOR PES ALGORITHM

5.1 GENERAL FUNCTION APPROXIMATION

It is well known that RL with function approximation is intractable without any further assumptions
(Krishnamurthy et al., |2016; Weisz et al., [2021). Therefore, it is common to make additional
assumptions over the function class in the literature on general function approximation in MDPs,
especially for the realizability and completeness assumptions (Wang et al., [2020; Jin et al., 2021}
Dann et al., 2021)).

Value Function Approximation. As MSG could be seen as an extension of MDPs, the generalized

realizability and completeness assumptions are also adopted in this work.

Assumption 2 (Realizability of Value Function). For the Stackelberg equilibrium, it holds that

Uy € Uy. Moreover, for any n € Il and any 6 € , it holds that UZ’H € Uy, where we define
Up?(s,a,b) = un(s,a,b) + PaW,0, WiP(s) = (Un ¥ (s ) mn @ vy (o 19))

h+1° AxB *

Assumption 3 (Completeness of Value Function). For any U € U,x € 11, and 6 € ©, we have
TZ’HU € Uy. That is, the Bellman operator TZ’H is closed with respect to U.
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In the previous subsection, we introduced the Bellman errors in equation (4.7). However, our regret
analysis is more related to the squared Bellman errors. Such phenomena have been well studied in the
literature of single-agent setting (Dann et al., 2021) and multiple-agent setting (Xiong et al., [2022).
Following Xiong et al.| (2022), here we define the decoupling coefficient to capture the hardness of
our learning problem.

Definition 1 (Multi-agent Decoupling Coefficient). Given a two-player Stackelberg Game M, a
Sfunction class F and a set of probability measure o, the decoupling coefficient d(M, F, 0) is the
smallest real number d such that for any p > 0 and any {p'};c[1) € 0, we have

H T H T t-1

B Lf" (sn»an bn)] < - Z Z ZEp" [ (snyans br))?] + %,

h=1 t=1 h=1 t=1 i=1

Then we identify the Bellman residual class G, = {Uj — TZ’BU;,H, Up € Uy, Upy1 € Upy1,0 €
©®, h € [H]} and the decoupling coefficient d; = d(M, G, 01) to capture the complexity of leader’s
Bellman error, where

01 ={p eASXAXB):p=P ((sp,an,bn) =(,)}
is the measure set generated by any (r, v”™, P),Vr € I1.

Follower’s Policy Approximation. Here we still use the decoupling coefficient to capture the
complexity of quantal response error. We identify the reward residual class Gr = {rﬁ —rp, 0 €
©®, h € [H]} and the decoupling coefficient d, = d(M, G, 02), where

02 ={P"(an =" 1-)0(s.6) () =P"((an, bp) = (-,-) | )05, (), ¥V € I},
and we define P™(ap, by | sn) = P"(an | bp,sn) - vy (bn | sn), and (s, p,) is the probability
measure that assigns 1 to the pair (sp, by,).

To simplify the notation, we denote the integral operator 7,” as

T, (r)(sn b)) = xn (- | Spabr)s 7 (Spy - bp)) = (mn @ vy (oo | 1), 7 (Shs00)). (5.1)
Then by the definition of o,, for any n € I1, h € [H], there exists one probability measure p € 0
such that 7, (r) (sp, bp) = EP[r(sp, bp)] and vice versa.

5.2 BounDs FOR THE DECOUPLING COEFFICIENT.

Here we provide several examples whose decoupling coefficient is provably small.

Linear MSG The first example is the MSG with linear function approximation, which is generalized
from the definition of linear Markov Game in Xie et al.|(2020)

Definition 2 (Linear MSG). We say a Markov Stackelberg game is linear, if there exists a feature
map ¢(s,a,b) € R such that for any (s,a,b) € SX Ax B, s’ € S, and h € [H], it holds that
up(s,a,b) = ¢(s,a,b) "¢y, Pp(s'|s,a,b) = ¢(s,a,b) up(s’) and ri(s,a,b) = ¢(s,a,b)" 05, for

some unknown @, un(+), 0} € R? satisfying max{“@Z“ enll . ||<p2“} <Vd

We have the following upper bound for the decoupling coefficient:
Proposition 1. For a d-dimensional MSG with the function class U = {(¢;,¢n) : llonll < (H -
h+ 1)Vd} and Fn = {((b;Gh) N6nll < Vd} and ||¢(s,a,b)|| < 1, Y(s,a,b) € S x A x B, then
we have

di,dr < 2dH - (2+1n(2HT)).

Generalized Linear MSG We consider a MSG with generalized linear function approximation.
Definition 3 (Generalized Linear MSG). We say an MSG is generalized linear, if there exists a
feature map ¢(s,a,b) € R? such that for any (s,a,b) € SXAXxB, s’ € S, and h € [H], it
holds that up(s,a,b) = o (¢(s,a,b)"¢}), Pr(s'ls,a,b) = o(¢(s,a,b) " up(s’)) and ry(s,a,b) =
a(¢(s,a,b)"0y), for some unknown @F, up(-), 05 € R4, where o is differentiable and strictly
increasing. We further assume that o’ € (cy, ¢2) for some c1,cy € R.
Proposition 2. For a d-dimensional MSG with the function class U, = {o (¢} ¢n) : llenll <
(H - h+1)Vd} and 7 = {o (¢} 05) : 0]l < Vd} and ||¢(s,a,b)|| < 1, V(s,a,b) € SX Ax B,
then we have

di,dy <2-c3/ct - dH - (2 +n(2HT)).



Under review as a conference paper at ICLR 2025

5.3 THEORETICAL GUARANTEE.

Then we can get the following theorem for the PES algorithm.

Theorem 1. If we choose 111 = 172 = 1/NT, then for any & € (0, 1/3)with probability at least 1 — 36,
the Algorithm[l|achieves a regret

Reg(T) < (H(B) + ) +4Chdy + 16(Co + C1)2da | VT + O(H log(H ), (5.2)

where Cy = O(n™" + Ba), Ba = 2(n""log(|B|) +1), Ci = n* exp(2nBa)(2+1B4 - exp(27Ba)) /2,
and By and B, are defined in Lemma[7]and[8] respectively.

Here we provide a proof sketch for Theorem|l|and defer the detailed proof in Appendix

Step 1. At first, we decompose the regret into two terms: one is from the estimation error between
(U*,0*) and (U', 8"); the other is from the approximation error when we execute the greedy policy
to generate 7/, i.e. the difference between WU'-¢" and ™',

Step 2. To bound the estimation error, we first notice that (U’, #") maximizes of the loss function
defined in Algorithm Thus, we could upper bound this error with the difference between the loss

functions. By lemma and we could bound the difference of L] | and Lj ,, respectively.

Step 3. To bound the approximation error, we introduce the performance difference lemma proposed
by|Chen et al.|(2023)), which decompose the approximation error into the expected Bellman residuals
and the expected estimation error of the follower’s policy.

Step 4. By the decoupling coefficient assumption, we could transfer the errors that we get in Step 3
into terms relevant to Step 2. By choosing the right kind of 11, 172, we could get the regret bound.

The main difference between our algorithm and other concurrent works is that our algorithm not
only circumvents the intractable optimistic planning, but also achieves O (VT)-regret guarantee with

simplest hyper-parameter choice: 77; = 1, = 1/VT, which means our algorithm is easy-to-implement
and does not need to tune or search the best hyper-parameter.

6 CAsE StupY: REINFORCEMENT LEARNING wiTH HUMAN FEEDBACK

Our algorithm can also be applied to the Reinforcement Learning with Human Feedback (RLHF)
setting by formulating the RLHF as a turn-based Stackelberg game. Specifically, given the initial
distribution p and the prompt x ~ p, the Large Language Model (leader) generates two outputs
a = (y1,y2) as the action, and the human agent’s (follower) action is binary, y; > ys or y; < y»,
indicating which output the human prefers. We denote » = 1if y; > y, and b = 0if y; < y,. Finally,
the leader observes the human’s preference and collects the data (x, a, b). Define the reward function
R(x,y) € [0, 1] over the outputs, and the leader’s and follower’s reward functions are given by
u(x,a,b) = R(x,y1) + R(x, y2),Vb € {0, 1}.
r(x,a,b=1) = R(x,y1) - R(x, y2),
r(x5a9b = O) = R(xﬁ yz) - R(x’yl)‘
We can simplify the notation u(x, a, b) as u(x, a) since it is not dependent on the preference b. Using
the reward model above, the quantal response of the follower is given by
P(b=1]x,a)cexp(n-r(x,ab=1))cexpn- (R(x, y1) - R(x,y2)))
P(b=0]x,a)cexp(n-r(x,a,b=0))c«exp(n- (R(x,y2) - R(x,y1))),

which is exactly the Bradley-Terry model (Bradley & Terryl, [1952) in the previous RLHF literature
(Rafailov et al., 2024; [Liu et al., 2024b; Xiong et al.,2024; |Cen et al., 2024).

The objective of the leader is to maximize the human’s reward with a KL regularization:
m;;li(u, ﬂ) = Ex~p,a~7r(-|x) [M(S, a)] — BDxL [ﬂ' ” ﬂ'ref],

where mef is the reference policy that usually trains with supervised fine-tuning, and the parameter
B controls the deviation between the output policy 7 and the reference policy.
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We parameterize the reward function R(x,y) using a function class {R?(x, y)}9co. Note that the
preference feedback is only dependent on the difference R(x, y;) — R(x, y2), hence the reward R* is
only identifiable up to a global shift. Hence, we can construct a base policy mpase and consider the
following reward function class

{Rb‘ : Ex~p,a~ﬂbase [RH(X’ y)] = O}
Now we apply our PES algorithm to the RLHF setting. The pseudo-code is shown in Algorithm
The corresponding reward function of the follower and the leader are denoted as u?(x, a) and
rf (x,a, b). We also denote the ground-truth reward function and the optimal policy as R*, u*, r* and
7* respectively. Now in each episode ¢ € [T], the agent first estimates the reward function 6’ using
the historical data {D*}sc[;—1] = {x*,a’, b*, m*}sc[—1] by maximizing max . Jw? 1) - mL'(9),

where
-1

L'(0) == [b'log(o(n-r’(x',d’,b')))]
i=1
is the cross-entropy loss, and o(z) = 1/(1 + exp(—z)) is the sigmoid function. Then the agent
predicts ' via the optimal policy associated with 6, and executes 7’ to collect data D,. The regret
Reg(T) then can be defined as Equation

Algorithm 2 Planning after Estimation-RLHF (PES-RLHF)
1: Initial: D = 0.
cfort=1,2,---,T do
Calculate 6" = arg max, (max,, Jw?  n) - mL’(H)).

Collect data D, with D, = (s',a’, b, n"), and update D = D U D,.

2
3
4:  Execute n’ = arg MaX e [A(A) |7 J(ugt, ).
5
6: end for

Now we can get the following theoretical result for the RLHF setting.

Theorem 2. If we choose 1 = 1/NT, then with probability at least 1 — 8, the Algorithmlz]achieves
a regret

Reg(T) < 2\Tlog @ +2- 3+ ey 2drexp(2/BNT, (6.1

Toase (¥]X)

where R is the reward hypothesis function class, k = sup, , O
> rel

and d is the multi-agent
decoupling coefficient in Definition [I|with

F={f:fx,(y1,2),b) = (R(x,y1) = R(x,¥2)) = (R*(x,y1) = R*(x,y2))}
o={peP (ay="-,x~p),VYr € I1}.

The result above shows that the PES algorithm framework can handle the RLHF setting as a special
case, and the resulting PES-RLHF algorithm is similar to the online version of RPO (Liu et al.,
2024b), and the reward-based version of VPO (Cen et al., 2024). Moreover, compared to |Cen
et al.| (2024)), we only relies on the decoupling coefficient of the reward function class, rather than
the stronger linear assumption. Compared to [Liu et al.| (2024b)), they study offline setting with the
coverage assumption and pessimism principle, so the first exploration term max, J u? ) changes
the sign (L1u et al.| 2024b).

7 CONCLUSION

In this paper, we propose an easy-to-implement RL algorithm, Planning after Estimation (PES) to
efficiently solve MSG in the context of general function approximation. Compared to the other
concurrent works , our algorithm circumvents intractable optimistic planning, which involves joint
planning of the leader’s policy, value function, and the follower’s quantal response model. In the
theoretical analysis, we prove that with a set of simple hyper-parameter choices, PES achieves a sub-
linear O(d.VT)-regret with general function approximation, where d.. is the decoupling coefficient
and T is the number of episodes. At last, we apply PES to the RLHF setting by formulating the
RLHEF as a turn-based Stackelberg game to demonstrate the efficacy of our algorithm..

10
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A  TecHNICAL LEMMAS

Lemma 1. Let Z; be a sequence of random variables, where each Z; may depend on the previous
observations Si_1 = [Zi,...,Z,-1] € Z'"\. Furthermore, we define a filtration {F; = o(S;)},
which is also the natural filtration of {Z, }. Consider a sequence of real-valued random (measurable)
Sfunctions £,(81), ..., é7(St). Let T < T be a stopping time so that 1(t < ) is measurable in S;. We

have
T T
Es, exp (Z & — Z ln]EZt|3,_le‘f’) =1.
t=1 t=1

Proof. This proof is a revised version of Lemma 13.1 in [Zhang| (2023). We prove this lemma by
induction. When T = 0, the equality apparently holds. We then assume that the claim holds at 7 — 1
for some 7' > 1. Now we will prove the equation at time 7" using the induction hypothesis.

First we define & = &1(r < 7) and notice that £; is measurable in S; so we have

T T
Es, exp (Z & — Z InEz, s, ef')
1=l i=1
T T i
=Es, exp (Z & - Z In ]EZI|3t_le§’)
= i=1

T-1 T-1

:EST" exp Z & = ZlnEZt|3r 1e§t)EZT|ST—1 exp (gT—lnEZzlSr—legT)l
L t=1 i=1

[ T-1 -1
=Bs,, [exp| D& = > InEys, e )

t=1 i=1

min(7,T-1) min(7,T-1)
=Egs, , |exp & — Z lnEZ“g”ef’)l

t=1 i=1

=1,

where the third equality exploits the fact that E ) exp (g?r —InEz, SHEST) = 1; and the last
T

equality is because we could treat min(7, 7 — 1) as a stopping time no more than 7' — 1 and we could
use the induction hypothesis. o

Lemma 2 (Martingale exponential inequality). For a sequence of real-valued random variables
{X;}i<T adapted to a filtration {F;},<r, the following holds with probability at least 1 — 6, for

Vt € [T],

MN

[e_X" |5L§,1] +1In %

v
I
—_

And also

Xs [X|7:S ]+1né.

M-
MN

[
I
—_
©
]
—

Proof. Tt only suffices to show the case when {&;}7 ;— 1s a finite case. The statement implies the
original lemma by pushing 7 — +c0. Let

= ZT: X, — ZT:lnEste_Xs,
s=1 s=1

where 7 is some stopping time. By Lemma [I| we have E(expU) = 1. (In this case, we apply
Z; =& = —X, in Lemmal[T). Now we define the stopping time 7 as

7 =min (7, min (n : U, > —1nd)) .

14
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Then it follows that
P(3n:U; > —-Inéd) <E [V =6E [eV] =0,
where the first inequality is by the famous Markov Inequality.

By considering the complementary event, we know with probability at least 1 — ¢, the following
inequality holds for any 7 € [T]

t
—SZ:XS < > InE [ |7 ] +ln%.

]

Lemma 3 (Freedman’s inequality). Let {X;};<1 be any sequence of real- valued random variables
adapted to filtration {F; }:<7. If |X;| < R almost surely, then for any n € (0, 5] it holds that with
probability at least 1 — 6,

T T T Inl
D X < D BT+ ) Var [Xi|Fioa] + —2.
t=1 t=1 =1 n

Furtheremore, we have
T T T
DUBXIF1) < )Xo+ ) Var [X|Fa] + —
t=1 s=1 s=1

Proof. For any random variable X we assume |X| < R almost surely, and let X’ = X — EX. We then
get |X’| < 2R almost surely, and we have

> 2R

InE [e/lx] = AEX + InEe™

< AEX +Ee™X — 1
AX' -aX' -1

"2
axyz X }
< AEX + A2¢(A2R)Var [X],

= AEX + A’E [

where ¢(x) = & = =L the first inequality uses Inx < x — 1; the second inequality exploits the fact

(e8]

that ¢(x) is non-decreasing. Then, we consider the Taylor expansion: e* = ), and we have

nOn"
xn= 2 1 0
(x)—z;( n! ) EHZ( )
For any A € (0, 2R] we could get a finite upper bound for lnE[e’lX]:
1 — A?Var [X]
InE [e™X] <AEX + %2 ) (AR)" Var [X] = ABX + ————. Al
nE [e*X] < AEX + 2;)( )" Var [X] T (A1)

Similar to Lemmal[2] we let

Ve(d)=2A ZT: X — i InEg, e,

where 7 is some stopping time. By Lemma I we have E(exp”=(V) = 1. (In this case, we apply
Zs = &5 = X, in LemmalI)). Now we define the stopping time 7 as

7 =min (7, min (n : V,(1) > —1nd)).
Then it follows that
P(3n:Ve(d) 2 -Ing) <E[eV" W] =GB [V, (1)] =6

where the first inequality is by the famous Markov Inequality.
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By considering the complementary event, we know with probability at least 1 — ¢, the following
inequality holds
T

=1

X

¢ 1
D mE[e™|F ] +In].
é
K s=1
Then we take 1 =7 € (0, #] and use equation tb to prove the original statement:

T T 1
Qg Var [Xs|Fs—1]  Ing
ZX SZE(X”?"I)JFU BT l e

M'ﬂ 1l

In L
E(X,|%:- ])+nZVar [X,|F5-1] + Tﬁ

s=1

I
—_

t

By letting X] = —X,, we could easily get

T T T
1
DLEXIFi) < 3 Xokn ) Var [Xo|Foa] + =2
t=1 s=1 s=1

]

Lemma 4 (Elliptical Potential Lemma). Let {x,}se[x] be a sequence of vectors with x5 € V for
some Hilbert space V. Let Ay be a positive definite matrix and define A = Ao + Zle xsxy. Then

it holds that k
' 2 det(Ag+1)
;mln{l,”xs”/\sl} Szm(m .

Proof. This proof mainly follows Lemma 11 in|Abbasi-Yadkori et al.{(2011). By simple calculation,
we have

1 _1
det(Ag) = det(Ag_q +xkx,1—) = det(Ag—1) det({ + Ak_zlxk(Ak_zlxk)T)
k
— 2 _ 2
= det(Au) (1 + ol ) = det(ho) [ | (145,020 )

where we use the fact that all eigenvalues of a matrix of the form I +xxT are 1 except one eigenvalue,

which is 1 + ||x||? and which corresponds to the eigenvector x. Using log(1 +7) < ¢, we can bound
log(det(Ag)) by

log det(Ax) < logdet(Ag) + Z ”-xs“/\ 1

s=1
Combining x < 2log(1+x) when x € [0, 1], we get

k n
. det(Ag)
1, YZ_)sz ] (1 YZ_)=21 .
(1) 25 va(1 110 ) -2

]

Lemma 5. (Lemma G.2 of|Chen et al.|(2023)) We consider a fixed policy m and Let Q be an estimate
of Q7. We define a V-function V and an advantage function A by letting

_ 1 ~ - ~ ~
Vi(s) = —log (Z exp(17 - Qn(s, b))) . An(s,a) = On(s. b) = Vi(s).
d beB
Furthermore, we define a follower’s policy © be letting Uy, (b|s) = exp(n - Ay (s, b)). Then we have
2

DH (Uﬂ,ﬁ) 2 d

T

where Bx =2 (7! log |B]| +1).
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Lemma 6. Forany h € [H] and (sp, by) € S X B, using the same notation as in Lemmal[3} we have

- ~ 1
AJ (spsbn) = Ap(sn, b)) = (Bgp p, — Esp) [Qn (5o bn)™ = On(sn, bn)| + EKL (v 11Tn) -

Proof. This proof mainly follows Lemma G.4 in|Chen et al.| (2023). At first,we notice the fact that
] T ] T T T T T
E?—((vh) = —E <Uh ,logvy, >$ =— <vh, 05 (sp, bp) = V) (sh)>$ s (A2)

%W(fzh) = —% (07,1080 ) 5 = = (O On(sn, bn) = Vi(sn)) 5 - (A3)
Then we could write the difference of V-functions as
Vi (sn) = Vi (sn)
= (v,’f,V,f(sh»B - <ﬁh’ Vh(sh)>3
= (V1 Q7 (510 bu) )+ HV) = (50 i)y = H()

= (U, Qf (shsbn) = On(sn.bn)) g + (U — 02 On(sia bn))
— (v OF (shabi) = VT (s1)) g + (Tns On (5o bi) = Vi(sn)) 5 »

where the first equality exploits the fact that Vj,(sy) is constant w.r.t. b, € B and v}’f , Uy are
probability distributions on B; the second equality is by equation (A.2)); the last equality is by simple
algebraic tricks.

Then, by direct calculation and omitting (s, by) for QF, Oy, and (sp,) for Vy, Vi, we have
—(UEOf = VI = (On=V)) g = (v =01 On) g = (V- O = V) g+ {00 On = Vi) 5 »
where we use the fact <UZ, \7;,>B = (ﬁh, Vh)B’ since V), is a constant w.r.t. b;, € B. Therefore, we

can write V7 (sy) — Vi (sp) as
Vi (sn) = Vi(sn)
=(vp. Of (sn»bn) = On(sn> bn)) g = (Vi Qff (s1s b)) = Vi (sn) = (Qn(sns bn) = Vi(sn)))
=(vp, O (sn.bn) = On(sn, bn)) g = (Vs Af (s> bn) = An(sn b)) g
~ 1
= (vl OF (sn, bn) = On(snsbn)) 5 = ;KL (U llon) g -

We notice the fact that KL (v7[|5) = n (vX, AT (s, bn) = An(sn, b)) At last, we could get

beB’

- ~ 1
AJ(snsbn) = Ap(sn. bi) = (B, by, — Es,) [QF (s, bn) — On(sn, bi)| + EKL (villon) .

Lemma 7. We define a distance p; on © by letting

0.0) = {Dr (v Clom. v o)) (14
p1(6,6) . A Clsn)s vy, " Clsn) ) (1 +1)

rZ’H—rZ’éH } (Ad)

Let N, (6, €) be the e-covering number of © with respect to the distance py. For any ¢ € (0, 1), we
set B1 =21In(H - N(®,T~1)/6) + 8. ForV0 € ®,Vh € [H],

t—1 . .
ZE”‘Var;;‘ﬂ* [r;""(sh,bh) —r? (sh,bh)] <4CH(LY, ,(0) - L}, ,(6%)) +B.
i=1

where we define
VarZ:? [Z] = Va0 [ Z|sy] = B [(Z — B [Z)53])2 5]

Sh

1
Cy=—+Ba,Ba=2("log|B|+1).
n

17
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Proof. We first exploit Lemmawith Xh = %(log U”"’g(smb’) — log U (sh|b )). We choose
filtration to be ﬁ;,_l{Xih 11 e [t—1]}. Let N, (©, €) be the covermg number for the e-covering
net of ® with respect to norm p; defined in|A.4] -‘ Let O, be the e-covering net of @. By Lemma[2}
w.p. at least 1 — ¢, for a fixed 6 € O, and a fixed i € [H], we have
-1 |
X{'= 2 (L, (6%) = L, 1(9))

t=1

(a) 'S 1

< D logE(e|Fi) + 5
t=1

(b) v7is0(-|sp)
Zk’ " \om o 5

(©) i *
2 S [02 (27 Clsw), v " Cls) )| + =
i=1

where the first equality is by the definition of L! w1 @ is by Lemma (b) is by the definition of X;;
(c) is by the fact that log(x) < x — 1 and the definition of Hellinger distance.

By taking union bound on § € ®, and i € [H], we have for any § € ©, any h € [H], with probability
at least 1 — §, for Vt € [T]

log (HN, (0, €))

5 (AS5)

-1
é(Lz,l(e*) =L}, (0) < _ZlE |03 (677 Clsw), v Clsw) | +

On the other hand, by the definition of p; in equation (A-4), for any 6,0 € ©, we have
* 0 *

D2 (Uz’e,v;:’e ) - D3 (Uz’e,vzﬂ )

(a )’ ( n, Q’U;lr,é)*) +Dy (UZ,Q,UZ,G*) .

(b)
< 2Dy (UZ’H, UZ’H)

7,0  m,0* 7,0  7m,0*
DH(Uh Uy, )—DH(Uh Uy, )

(c) ~
<2p1(0,0),

where (a) is by the fact that a> —b> = (a+b)(a—b) < |a+b||la—b|; (b) 1sbythefactthatDH( ) <1,
(c) is by the definition of p;. Then noting that L} | (6) = -2 7]A}7lr 6'(sh, h), for any 6,0 € ©,
we have

L, (6) - L} 1(e)| < T, max ATSO(si by = AT O (s b

-1]

< 2T max [r™? - ”.’éH
g ie[r-1] "n "l
< 2T - p1(6,6),
where the second inequality uses the fact that |(V;’6 - V:’é) (sh)) < r;:’e - r”’é” ; and the last

inequality is by the definition of p;. Therefore, all the error terms in D2 (-, -), L;l,l (6*) and L;l’l (9)

induced by e-net could be bounded by 2Te. By adding an extra 47 ¢ in equation (A.5), we have for
allf € ®, h e [H], t € [T],wp. 1-6,

log (HN, (0, €))
0

1 -1 ; 4 .
S (L1 (6%) = L, (9)) < = ) B [Dﬁ (u”"g(.|sh),l}”"9 (.|sh))] + + 4Te.
i=1

(A.6)

18
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In the rest of the proof we take € = % and let 81 = 21log(HN, (O, T-1)/6) + 8. By Lemma we
have

* * * * 2
.7 ((En,e _E;rh,e )[rn,e _ 70 ])

Sh>bn

2
802 (67 Clsn), u™ " (lsw)) (1 +'Z73A) (o ap? - art?)
n 2 * "
2(1+773A) (A7 - A7)
el

VarZ O (170 (s, by) = 0 (s b)),

where the second inequality is by Jensen’s inequality of x2; the last inequality is by Lemma E]; the
last equality is by the definition of Var;;'"’(-). Therefore, by letting C;, = % + B4 and insert the
above result back to equation (A.6), we have

> VarZ [ 70 (5, by) — 17 (sh,bh)] <4C2(LL (0) = L, (6%)) +B.

O
Lemma 8. Let 7, = Uy, X Upyy X ©, we define the following distance on for f, f € Fp:
pa(f.f) = max {[Un = Gall[rfvne no - Trfomeno| . @

Let Ny, (8, €) be the e-covering number of F with respect to the distance p;. For any 6 € (0, 1), we
HN,, (F,
set By = 4H2 In(222 )y 5 Fop V{f;}he[,ﬂ,tem cF

LA - < -1 S e [ (V0= T3 5 07] 4

ML

1
24
Proof. At first we verify our loss [} satisfies generalized Bellman completeness and boundedness,
which is defined as follows:

Assumption 4. The function | : Uy X Upy1 X O X (S X A X B XR X S) — R satisfies:

1. (Generalized Bellman Completeness) There exists a functional operator Py, : Hp+1 — Hy, such
that for any (Up, Upy1,0) € Hy X Hp1 X O and Dy, = (sp, ap, b, Spe1) € (SX A X B XR X S).

H(Un, Ups1,6; D) = L(PLUn+1, Unst, 03 D) = By <y Clsioan b)) [L(Uns Uns1, 05 Dp)]
where we require PyU, | = U and that PpUpy € Hy, for any Upy € Upyy and h € [H];
2. (Boundedness) It holds that |l(Uy, Up+1,0; Dy)| < By for some By > 0 and for any (Uy, Up41,0) €
Hy X Hpey X O and Dy, = (sp,apn, bp, Spe1) € (S XA X B XR X S).

First we verify the Generalized Bellman Completeness:
1, (Un, Uns1, 03 DY) = By, <y lsmoansbn) [y (Uns Une1,0: Dyy) |
= [(Un = un) (snsan, bw) = T (sne)] = [Un (s ans bn) = T (Una)]
= T3 Une)) =T Unat) (s101)
= (Bapor~B(lsman.bm) [T Unet) (sns1)) = wn) (sps ans bi) = T (Unsr) (sne1).

Therefore, the operator Py, is Eg,,, ~B(.|sn,an.bn) [T*9(-)(sp+1)] and the generalized Bellman com-
pleteness holds. To check boundedness, we only need to notice that u, € [0,1],Yh € [H], so
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|1, (Un, Up+1,6; D})| < H,Vh € [H]. Then we generalize the proof of Proposition 5.1 in|Liu et al.
(2024a) to show our wanted result.

We define the random variables X by d

X, 5 = 1,(Un, Ups1,6; D})? = 14 (PrUpns1, Upar, 0; D). (A.8)
For any f = (Up, Up41,0) € Up X Up41 X O and the operator Py, is defined as above. We first show
X, P is an unbiased estimator of the discrepancy function dj, (Up, Up+1; D;)z, which is defined as
d},(f3D})) = By, <2y Clspoan.b) L, (Fs D] = Up = T3 (Upa).

For simplicity we also let fp = (PpUp+1, Un+1, 0)Consider that

I (f; D)2 = (It (f; D) =1 (fp; DY) + 1 (PuUpst, Unsr, 6; DY)
= (d!(f; D) + 11 (fp: DY)’
= (d,(f:D}))* + 1}, (fp; D)* +2d.,(f; DY) - 14, (fp,6; D)), (A.9)

where the second equality is by the generalized Bellman completeness. Exploiting the completeness
again, we have

Eipa1~Bh (-Isnoansbn) [dl (f:Dj - lt (fps D h)]
:dt (f Dh) : Esh+1~Ph(~|Sh ap, bh) [l (PhUh+l Uh+l’9. D;l)]

_dt(f D) EY/,+1~P1,(|Y;, an,byp) [d (f DZ)_lt(f D )]
=0.

Inserting the result back to[A.9] we have
By~ clsmoanb) [Xh 1 = dy (3 D} (A.10)

Then for each time step &, we define the filtration {ﬁ,t}tT=1 with

k H
o[22

s

s=1 h=1
where D’ {s! e h, b’ ;l o }. From the previous arguments, we can derive that
BLX | Tl = B [Esm.wh<-|Sh,a,,,b,,> X, i1 | = B 1} (£ D)1, (A1)

Var [X,i, 5l ﬁl] <B[X(, )* | Fai1] < BIE[X}, , | Faii] = BIE™ [d},(£: D})’], (A.12)

where E™ means the data Dj, is generated by measure (7', v} ‘. P). By Lemmal (| | < 312
and we setn = 232)’ for any fixed h € [H],t € [T],U € U, we have
1

t—1

t—1
DB | Faal = DO X
s=1

I/\

2 [ X5 | 7’7,,s_1] +2B7 log(é)

t—1

IA
| —

2

s=

E™ [d5(f; D35)*] +2B7 log(~ )
1

Rearranging the above terms, we can get
1
Z Xp ;< ——E” [d},(f: D)) + 2B} log(5).
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By the definition of X} . and the loss function L] , in (4.8), we have

-1 k-1 k-1
DX = D LD = Y 1 (PrUner, Uni, 6 D)
s=1 s=1 s=1
k-1
D)2 — inf IS(U.,Upst,0;D5)?
. (f h) U’jrelﬂh h( ho Uh+l h)
22<f>

Then we can derive that, for any fixed & € [H],t € [T], f € Up X Ups1 X O.
Lj,(f) < ——]E” [d} (f;D})*] +2H? log(é). (A.13)
Then we consider L} 2( f*). We first define the random variables Y} s
Yy = 1,(Un, Up,,, 0% D)) = 1, (f*: D))
Similarly, we could show
Bouor~2n Clsnoan.bm) Vi 1 = (d},(Un, Uy, 6% D).

Under the filtration {#7,,}7 ,, we can derive that

t=1°
E[Y}, ;| Fhi-1] = B [d}(Un, Up,y, 0% D)),

Var [Y,;’ ;l ﬂ,,_l] < BXE™ [d' Uy, UL,,. 0% D')2].

By Lemmal(3] (|Y! sBzandwesetn:—lz),foran fixed h € [H],t € [T], f € ¥, we have
y h,f l 2B Yy
> 1

t—1
1 1
Z R ——ZE” [d},(Un. U, 6% D},] + 2B} log() < 2B7 log().

By the definition of ¥} 7 and the loss function Lj, , in @.8), we have

t—1 k-1 k-1
=D Vs = 2 LT D? = Y 1 (U Uy, 6% D).
s=1

s=1 s=1
Since such inequality holds for any Uj, € U}, we have

t—1
Ly ,(f*) = sup (- ZY,ff)<2leog( ).

UneUp s=1

Combining the above result with (A.13)), for any fixed h € [H],t € [T], f € ¥, we have

—_

t—

S 1

Ly 2 (=L (f) < 52 B (U} (st ans b1) =T (Up1) (sman bi) |+4H? log(5). (A.14)
s=1

Then we generalize this result on a e-net ¢ of . By taking union bound over all & € [H], feFe
and a f* € ®, such that po(f*, f*) < €, with probability 1 — § we have for any ¢ € [T]
L, o (f*) = Lj, (/)

Noy (F, €)

). (Al5)

I/\

Z]E” (T3 (sn, an, bn) = T (T3, ) (sn» an, bn)] +4H210g(
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By the definition of p;, we know

Lz,z(f*) - Lzsz(f*)

=D WO = u) (s} 3) = T (53] = [Un (s} b)) = T2 (U]

t
=1
1

©

= Z [(Tn = Un)(s),, a3, by,) - (T, h+l - h+l)(sh+l)]'

s=1
sl = ol + st - 73]

Similarly we could get

Lo (D) = Ly, ()] < 2Tpa(f. ),

15 =70 T3,V 5ms @ bw) = (U = T Uy )] (5 ba)| < 2027 (S .

Then we could generate equation (A.15) from F¢ to F only paying an extra cost of 5T¢. By setting
€ =1/T, forany h € [H],t € [T], f € ¥, with probability 1 — § we have

Ly, (f*) - Lt
1& s HTN,,(F, €)

<-3 E™ [(U; — T (U, )))(s5, a3, b5)] +4H? In( - ) +5.
s=1
HTN » (7,
Let 8, = 4H? ln(#) + 5, then we are done. O

Lemma 9. (Lemma B.2 in (Chen et al., |2023)) For any fixed policy n and a fixed s\, let U be an
estimate of the quantal response v™ and let U and W be estimates of U™ and W™ respectively. Based
on U and W, we can estimate J(rt) by W(s1). Then the error of these estimators can be bounded as
follows:

H H
W(s1)=J(r) < D B [Onlsns an, bn) = (Tp " Opa) | + H Y B[ = 9)Clsw)l,] -
h=1 h=1

where we define
T, HU(Sh,ah, br) = un(sn, an, bp) + By ~py (lspoan.bn) [Ty O Uns1) (sna1)],
U (sn) = (Unsns ) @ U0 (o | sp))
Furthermore, by TZ’ﬁUhH) < TZ’ﬁlth), we have

H H
W(si) = J(x) < D B [Onlsnsan bi) = (T3 Open)| + H Y E[|F =) Clsw],] -
_l _l

Lemma 10. (Lemma B.1 in (Chen et al.}|2023)) We consider a fixed policy m and let 7 be an estimate
of r. We define a V-function V and an advantage function A by letting

Vi(s) = %log (Z exp( - 77 (s, b))), An(s,a) =77 (5,b) = Vi(s).

beB

Furthermore, we define a follower’s policy U be letting ,(b|s) = exp(y - Ap(s,b)). Then the
difference between U and v™ can be bounded by
H

H ) E([[vy = oCIs)]]
h=1

H H
< COZE [|7,7 (7 = r)|] + C ZE [7,7 (7 = rn)?]
h=1 h=1
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where C1 is defined as

_ 1 exp(2nBa)
2

and 7," has been defined in equation (3.1)).

C = (2+T]BA'ZT]BA),

B Proor oF THEOREM[I]

At first, we could decompose the regret into two terms:

T
Reg(T) = ) W% (s1) = W[ (s1)

t=1
T T
< > (W G =W )+ ) (W s - Wi s

=1 t=1

l] 12

By the definition of U’, 6" in algorithm 1} we have

W (s1) - mZth(e) UzZL (U}, 03)

H
RO Z Lj, () =m Y Ly 5(U}. 03),
h=1 h=1
which implies that
H
W (s1) =W sy < D (L (65) = L (6) +mo Z(L LU 603) = L, (U}, 6))).

By the lemma(7] set 81 = 2In N,,(®,1/T)/6 + 8 with the distance p defined in Lemmal 7} and let
Cy, =n""+Ba, B =2(5""log|B| + 1), then with probability at least 1 — &,

H
Z(L;,,1<e;)—L 1(67))

g4‘clz iiwivﬂ;}e" [ (oo o) = 77 (s, o) | + HB1. (B.1)
For the variance term, we have:
E”iVarfhi’g* [r;:i’gt(sh, bn) — rZi,e*(Sh’ bh)]
=" Var™ ¢ [r,’lri’et (Sh, bp) — V;:i’g*(sh, bh)lsh]
(Wgr'gat.or [( PO ) O (s, by) — BT [(F;fi’gr — ") (sno bn) | Sh])z |5h]

®g [(‘T” (r r;‘l))2 (Sh,bh)] )

where (a) follows from the definition of Varg,; ( ), and (b) follows from the definition of 7, (-).
Insert the last term back to equation (B.I)), we have:

Z(L’ (O = L, 6) < ZZE” (7,7 (rf" = ;)] + HB1.

n h=1 i=
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By Lemma set 8, = 4H? ln(HN”ZT((F’E)) + 5 with the distance p; defined in Lemma we have

H t-1
1

=3 2 DB [ (Un = T3 U ) (om0 +HB2. (B2)

h=1 i=1

Z(Lh2<U;,ez>—Lz,z<Unez>> <

‘We then have

T
I SZ(TII

t=1

M=

(Lj, 1(6}) = Lj, (6}, ))+nzZ(L 2(U§,,02)—L;’2(U’,9;)))

=
Il

1

1 T
( 4C2tZ

n

t—1

H . .
SN ¢ -+ HT,Bl)

h=1 i=1

t—1

T H
1 ; o
e (=5 00 20 DB |(Un =Ty Unet) (s ansbi)?| + HT) - (B3)
1=1 h=1 i=1

To bound />, we exploit Lemma 9] and Lemma [I0]

H H

ZE” [(UZ)(Sh’am bp) = T30 UZ+1(S11+1)] + HZE"’ [|@n = v Cls|l,] B4
h=

h=1

T H
(b) . i
- Z;E” [(U’tl)(sh’ah’bh) _Thfl Ut+1(Sh+1)]

T H
> N0 E [ﬁ”’(rg’ - rZ)Z(s;l,b;l)] (B.5)

t=1 h=1
Where (a) is from Lemma|9} (b) is by Lemma | and Notice that X/ = |‘7"r - rh)(s’ byl <1,

by Lemma (setting = 7), we have

T
1
n h h -
§E [x!] sEx Var [ X/ Fi-1 ]+210g6

t

INS
M1~

1 : 1
X"+ EVar” [X,h] +2log 3

~
1l
—_

AT
MH
“‘:

Lt oxh 1
+ 5B [(X)]+210g5

~
Il

INT
MH
“:‘

1
it h -
215 [x] ]+210g6

~
—_

where (a) is by the property of conditional variance; (b) is by Var[X] = E[X?] — E[X]?; (c) is by the
fact that 0 < X, < 1. Hence, we get

T T 1
a [yh h =
;E [X,]SZ;XI +4log 5.

By taking a union bound over all 4 € [H], we know for any i € [H], with probability 1 — &,

T T H
DB X <2 X! +4log .
t=1

t=1
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Summing over h € [H] and considering X' = |7, (r? — r}) (s, b )|, we get

h h h
T H T H
2 2B | o =l bil| <22 DI 01 = ) s} b)) + 4 g
1=1 h=1 r=1 h=l °

Similarly, we could also get

T H T H H
‘ L 2 toot s 2
BT 1T 0 = b <23 3 1T (= ) (s} by + 4k og
t=1 h=1 t=1 h=1
Inserting the above result beck to equation (B.5)), we have
T H

DIl [CAIERRAEL AT E ]

T H
+ 3020 (1T ol = 1) (s b |

=1 h=1
T H
+ 3320 | T G = ) (s} bl | + O(H log(H /).
t=1 h=1
Then using the fact that |7, (r{" - i) (s}, al, b})| < |77 (r?" — r;) (s} a) . b} )|, we can further

have

T H
I < Z ZEnt [(U;,)(Shaah, b) - T8 UL, (Sh+1)]

~
Il

=
Il

T OH -1 A 4
L <y - Z E™ [(Un = Ty 8 Un) (sy an, bp)*1 + —
=1 h=l i=1 H
T H t-1 o &
+2(Co+Cr) 2 ) D T (= i) (53 b))*] +2(Co + ) - -
=1 h=1 i=1
+ O(Hlog(H/6)).

At last, we exploit the Lemma [3| again, and with probability at least 1 — 6, we have
T H -1 d
L < - E™ [(Un - TZ’fltUhH)(sh,ah’ b+ —
=1 h=1 i=l M
TOH -l i ) d
#4(Co+ C) g2 ) D D EF IT7 (3] = ri)] +2Co+ C) -
=1 h=1 i=
+O(Hlog(H/¢)). (B.6)

Now note that ; = 77, = 1/VT, and by choosing | = 4'77'72], Uy = 8(C(T]7—icl)’ combining (B.3), and
(B.6), with probability at least 1 — 36, we can have
Reg(T) =L+

< L -HT - (B1+B2) + ﬂ +2(Co+Cy) - @ + O(Hlog(H/d))
T M 2
= VTH(B1 + f2) +4C2diNT + 16(Co + C1)*d2NT + O(H log(H /)

—

H(B1 + o) +4C3d1 +16(Co + C1)*da | VT + O(H log(H/5))
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C Proor or DeEcouprLING COEFFICIENT BOUNDS

We mainly generalize the proof of Proposition 1-3 in Xiong et al.|(2022)) in this section.

Proof of Proposition [I| We first note that the completeness assumption is satisfied in linear MSG
case whose proof can be found in |Huang et al.| (2021); |Chen et al.[| (2023). Now we consider two

arbitrary vector wp, Wp41 € R4 whose norms are bounded HVd. We define a function U € U such
that U, = ¢ wy, and Uy, = ¢ wpe1. Furthermore more we take arbitrary 6 = {0, }hen © RY
such that ||6,|| < Vd. Then we could find r = {rn}nern) € F and ry, = ¢(s,a,b)"0,,Vh €
[H], (s,a,b) € Sx A xB. Then by Assumption[3] we can find some U € U and the corresponding

vector w;(U) € R? such that [|lw,(U)]] < HVd and T} (¢ (s, a,b) "wpe1) = ¢(s.a,b)Twy,(U) =
Uy, € U,,. Therefore, we have

lh(U’ 0,s,a, b) = Uh(S,a, b) - Tj’];’g(ljh+l) = ¢(S’a’ b)T(wh - U.)h(U)) = ¢(S’a’b)TAh(U’ 0)

where A, (U, U) € R? and ||Ay]| < 2HVd.

For any {p*}se[s] C 01, i.e. we take any sequence of the leader and follower’s joint poli-

cies {(7%,v™ % )}ser) € T, we denote as ¢ = EP’ [¢(sn,an, by)] and denote ®" = AT +
- EP [¢(sp,an, bp)d(sp, an, by)T], where A > 1 is a tuning parameter. We further have

t—1
B [1,(0", 0", 5}, by, bi)] = 1 Y B [1,(0", 6", s, a1
s=1
-1
=An(0", U ¢}, = uAi (U, U)T D B [@(s}, ah b @(shs s 03) 7] (T, Un)
s=1

<AL (U", U ¢}, = uby (0", U)T @ Aw(Ur, Uy) + 4udHd

1 _
s@(zp;)T(@f_l) gt +4pAH*d

where the first inequality uses Jensen’s inequality and ||Ah(U;, U,)H < 2HVd and the second
inequality exploits the fact that

1
a™b < (lallgr 16l ) < 5 (lallyy + 161G )
- - t— t—

Summing over t € [T] and h € [H], we have

T t—1

H
2 (Eps (D", 6", 5o B3] = 1 Y B [14(T", 0", 4ty b

t=1 h=1 s=1
H h
In(det(® —dInAa
SZ( (det(®7)) +4p/1dH2T)
2u

h=1

dHIn(1+ L
_( (+ a7 +4u/ldH3T)

2u

where the first inequality exploit Lemma[d]and the second inequality uses

Indet(®%) < dIn r(@7) where tr(®*) < Ad +T
T) = 4’ T) =

1

m }, we have

By setting 4 = min{1,
dy <2dH(2 +1In(2HT))
Similarly, for ds, notice we could still write

mp(8,s,a,b) = rg(s, b) —rn(s,b) = ¢(s,a,b)"(0), — 0r) = ¢(s,a,b)"6,(0,0)
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Then we could repeat the above process to generate the similar bound. Another way to get an upper

bound for d; is to write rg (s,b) — rp(s, b) as a bilinear form and then use the classical decoupling
coeflicient results on this class. The readers could see [Dann et al.| (2021); |Chen et al.| (2023) for
reference.

Proof of Proposition[2] We first note that the completeness assumption is also satisfied in generalized
linear MSG (Huang et al.| 2021} |Chen et al.| [2023). Similarly, we consider two arbitrary vector

wh, Whe+1 € RY whose norms are bounded H Vd. We define a function U € U such that U, = ¢ wy

and Upy1 = ¢ wp1. Furthermore more we take arbitrary 6 = {6, } ey © R such that |6, < Vd.
Then we could find r € ¥, and r, = o (¢(s,a,b)"0;,),Yh € [H],(s,a,b) € S x A x B. Then
by Assumption [3| we can find some U € U and the corresponding vector wy,(U) € R? such that

lwn(U)|| < HVd and TZ’9(¢(s,a,b)Twh+1) = ¢(s,a,b)Tw,(U) = Uy € Uy,. Therefore, we have
1h(U.6,5,a,b) = Uy(s.a.b) = Ty’ (Una1) = 0 (¢" wp) — 07 (¢T wp (U))

By the Lipschitz condition we have
cl |¢)TAh(U, U)| < |lh(U, 0, s,a,b)i < ’(])TAh(U, U)|
where A, (U, U) € R? and ||Ay|| < 2HVd.

For any {p*}sc[s] C 01, i.ff. we take sequence of {7°}sc,] C I1, we let ¢} = EP’ [¢(sn, an, bn)]
and let ® = AT + X! EP [¢(sh.an, bn)d(sn,an, by)"], where A > 1 is a tuning parameter. We
further have
—1
B [1,(0", 6", 5} by, i) = Y B [14,(0", 6", 53, a, b1
s=1
-1
<ca [An(0", U | - petAn (0, U)T Y B [ (s}, a, b3) (55 @i b3) 7] An(Tr, Uy)
s=1
<20 (U, U)7 ¢}, = uciAn (U, U) T @) A (Ty, Uy) + 4uciAH*d
2
"7 +duciaH?d

ST
ducy

Summing over ¢ € [T] and h € [H], we have

T H -1
ZZ( (1, (U, 6", s}, a),b})] —/,tZE“’ [1n(T", 6", st al, bt)? |
t=1 h=1 s=1
H
In(det(P2 dIna
Zc (( (det(@7)) - +4,u/1c%dH2T )
h=1 2uc;

In(1 +
<dch(%+4 Z/IHQT)
1

By setting 4 = min{1, }, we have

22—HZT
2
dy <2-2dH(2+In(2HT))
C
1
Similarly, for d,, notice we could still write
mu(0,s,a,b) = rf(s, b) —ru(s,b) = ¢(s,a,b)" (6, — 0) = ¢(s,a,b)"5,(6,0)

Then we could repeat the above process to generate the upper bound. Similarly, another way to get

an upper bound for d; is to exploit Lipschitz condition to upper and lower bound rg (s,b) —ry(s,b)
by two bilinear forms and then use the classical decoupling coefficient results on this class. The
readers could see |Dann et al.| (2021)); (Chen et al. (2023)) for reference.
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D Proor oF THEOREM [2

Proof. At first, we could decompose the regret into three terms:

J(n*) = J (")

M=

Reg(T) =

~
1l
—_

M=

Expa~r [ (X, 0)] = Exepamne [1” (x,a)]
( )

1

~
I

I

T
+Z( x~pa~nt | u? (x a)] = Exep,a~nt [u"(x, a)])

t=1

L
T

= > B (Dx (" || ) = (ke || ) -

t=1

I3

First, we compute the upper bound of ;. By the definition of 7’ and 6", we can get
Ex~p,a~7r*(-\x) [u*(x, a)] - IBDKL [ﬂ* ” 7rref] - 771Lt (9*)
< Eavpuamnt ([ (0. @)] = BDRL[A" || mrer] = mi L (61),
which is equivalent to
Erepamn [0 (1, 0)] = Bxepaemt [u” (x, )]
< BDKL[R* | mres] — BDkL [ﬂ't | mres] + n - (Lt(g*) - Lt(gt)) .
Now we introduce the Lemma 2 and Lemma 4 in|Cen et al.|(2024)) to further bound the cross-entropy
loss:

Lemma 11 (Lemma 2 and 4 in Cen et al.| (2024) when O < R(x,y) < 1). The following inequality
holds with probability at least 1 — ¢ that

-1
R
L) = L'(0") < =B +e) 7 Y Bepant [ ‘(. a) - 6t(xt’at)i2] +2log (%) ’
i=1
where §*(x,a) = R*(x,y1) = R*(x,y2), 6" (x,a) = R? (x,y1) = R? (x, ).

Then, we compute the upper bound of /5.

i( epramrt [17 (5, @)] = B o [ (3, 0)] )

t=1

T
=2 (Baopynt [R” ()] = Bapyme [R5, 2)])

t=1

T
=23 (Beopimae R (5] = Bacpyom [R5 )]

t=1

IA
V)
M1~

(Ex~p,y1~7r’,y2~7rbase [6t (X, Y1, y2) -6 (-x7 Y1, yZ)]) .

~
I
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By Multi-agent Decoupling Coefficient, we can further derive

T
L/2<p- Z

t=11i

hase (¥ [ ) ¥
S 'Su ase
SNSRI Z]

-1

~

. d
( ~p,y1~ﬂi,y2~ﬂbase[(§t(x, )’1, YZ) - 6 (x’ )’17)’2))2]) + @

1l
—_

-1

~

* d
( X~p,y1~nt,yy~mt [(5t(x,y1,y2) -0 (x’)’l’)’Z))z]) + @

EM

—_

t—

T
= - sup ﬂbase(ylx) Z

o w10 L

(Beopran [(6 (@) = 6" (r,0)7] ) +

1

Note that

”base(y | x) _ ﬂbase(y |x) . ﬂref(y | x) —x- ﬂref(y |x)
mi(y [ x) Tt (y | x) 7wl (y [ x) m(y | x)

Then by 7 (y | x) o mer(y | x) exp(R (x, y)/B) in Rafailov et al. (2024), we can derive | log 7' (y |
nref(le)

x) —log ™ (y | x)| < 2||R(x,-)/Bllo < 2/B (Cen et al. (2022), Appendix A.2), then oM S
exp(2/B). Then

sup M = kexp(2/B).
X,y,0 ﬂl(y |x)
Now we sum over Iy, I and /3. Thus, we can get

Reg(T) =hi+h+1
T

(m - (L"(6") = L'(6")) + I
t=1
t—1

T
R
< _(3 + 62)—2771 ' 772 : Z ZEx~p,a~7ri [|6*(xts at) -6 (-xt, at)|2] + 27]1T10g (%)

=1 1

N
I

t—1

(Brcpaer 16" (5.0 = 5", 5

M&

+2p - k- exp(2/B) -

t=1 i=1

2ukexp(2/B) - (3+¢e2)?-n~2 = 1/VT, then the inequality above will become

Reg(T) < 2VT log @ +2-(3+ %) 2deexp(2/B)VT.

Now we choose 171 =
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