EXPLORATION IN THE FACE OF STRATEGIC RESPONSES: Provable Learning of Online Stackelberg Games

Anonymous authors

Paper under double-blind review

Abstract

We study online leader-follower games where the leader interacts with a myopic follower using a quantal response policy. The leader's objective is to design an algorithm without prior knowledge of her reward function or the state transition dynamics. Crucially, the leader also lacks insight into the follower's reward function and realized rewards, posing a significant challenge. To address this, the leader must learn the follower's quantal response mapping solely through strategic interactions — announcing policies and observing responses. We introduce a unified algorithm, *Planning after Estimation*, which updates the leader's policies in a two-step approach. In particular, we first jointly estimate the leader's value function and the follower's response mapping by maximizing the sum of the Bellman error of the value function, the likelihood of the quantal response model, and a regularization term that encourages exploration. The leader's policy is then updated through a greedy planning step based on these estimates. Our algorithm achieves a sublinear regret in the context of general function approximation. Moreover, this algorithm avoids the intractable optimistic planning and thus enhances implementation simplicity.

025 026 027

028

024

000

001

002 003 004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

Stackelberg games are a class of games that feature strategic decision-making under a leader-follower
structure. These games find broad applications in various domains, such as economics, finance,
societal systems, and so on (He et al., 2007; Von Stackelberg, 2010; Keyhani, 2003; Sinha et al.,
2013; Ghosh & De, 2021; Koh et al., 2020; Qiu et al., 2021). In the simplest two-player case, the two
players are referred to as the *leader* and *follower*, respectively. These two players have misaligned
objectives and different information structures, and their interactions can be sequential and dynamic.

In this game, the leader has more advantages in the sense that she can regularize the follower's behavior by announcing her policy before the two players take actions and promising to commit 037 to it. In that case, the leader's policy becomes common knowledge. The follower, knowing the leader's policy, determines his policy by solving his decision-making problem determined by both the leader's policy and the follower's reward function. As a result, the follower's policy is a strategic 040 response to the leader's policy, and such a mapping (the response model) depends on the follower's 041 reward function. From the leader's point of view, the response model specifies how the followers 042 strategically interact with the leader, and the leader aims to maximize her cumulative rewards in 043 expectation. The leader's policy that maximizes her cumulative rewards in the presence of the 044 strategic follower, together with the follower's response policy, constitutes a Stackelberg equilibrium 045 of the game. This notion characterizes the optimal behavior of such a leader-follower game.

While there have been many existing works proposing sample-efficient multi-agent reinforcement learning (MARL) algorithms for solving dynamic games, the study of solving Stackelberg equilibria from data via MARL is relatively scarce. Most of these works focus on Nash-(Perolat et al., 2017), Correlated-(Cigler & Faltings, 2011), or coarse correlated equilibria(Sessa et al., 2022) of Markov games. When it comes to Stackelberg equilibria, the hierarchical and strategic nature make it hard to learn from data. The main challenge lies in the estimation of the response model of the follower. When the response model is unknown to the leader, she needs to infer the response model, or equivalently, estimate the follower's reward function from data. This entails a challenging exploration problem – the leader has to find a sequence of policies such that the follower's responses to them are sufficiently

informative. Moreover, as shown in Bai et al. (2021), such a problem is ill-posed when the follower
 is fully rational, i.e., returning a deterministic reward-maximizing action. In this case, even if the
 follower's reward function is accurately estimated, the resulting estimated response model still has a
 considerable error.

To address this challenge, Chen et al. (2023) propose to study Markov Stackelberg games (MSG) with the follower adopting a quantal response model. That is, the follower solves an entropy-regularized 060 reward maximization problem and the response policy is stochastic. In this case, after announcing a 061 policy and observing the action taken by the follower, the leader can estimate the follower's reward 062 function via maximum likelihood estimation (MLE). Based on this observation, in the online setting, 063 Chen et al. (2023) proposes a sample-efficient algorithm based on optimistic planning, in the context 064 of general function approximation. In particular, their algorithm constructs a confidence for the follower's reward function via MLE, and a confidence set for the leader's value function using the 065 Bellman error. However, due to the hierarchical structure, this Bellman error takes the follower's 066 reward function as a parameter. As a result, optimistic planning over these coupled confidence sets 067 is highly intractable. Therefore, the following question remains elusive: 068

Can we design a sample-efficient and easy-to-implement MARL framework for Markov Stackelberg games with general function approximation?

072 In this paper, we provide an affirmative answer to this question. Focusing on the online setting 073 of Markov Stackelberg games where the follower is myopic and boundedly rational, we propose an easy-to-implement algorithm, dubbed Planning after Estimation (PES). In particular, in each episode, 074 the algorithm updates the leader's policy in two steps. First, in the estimation step, we estimate the 075 leader's value function and the follower's quantal response model together using a combined loss 076 function. This loss function combines (i) the likelihood loss for estimating the follower's reward 077 function, (ii) the Bellman loss for estimating the leader's value function, and (iii) an additional term that promotes exploration. Such an exploration-promoting term is defined as the expected rewards 079 of the leader based on the given value function and response model. In the second step, based on the estimated value function and response model, we update the leader's policy by solving the 081 greedy policy. Compared to the optimistic planning algorithm proposed in Chen et al. (2023), our algorithm circumvents intractable optimistic planning, which involves joint planning of the leader's 083 policy, value function, and the follower's quantal response model. Furthermore, we prove that PES achieves a sublinear $\tilde{O}(d_c\sqrt{T})$ -regret with general function approximation, where d_c is the 084 085 decoupling coefficient (Xiong et al., 2022) that captures the complexity of the employed function classes and T is the number of episodes. As a result, our PES is provably sample efficient and 086 amenable to implementation at the same time. Furthermore, as a concrete example, we instantiate 087 the leader-follower game to the problem of reinforcement learning with human feedback (RLHF), 088 demonstrating the efficacy of our algorithm.

090 091

092

069

071

2 Related Work

Online Stackelberg Games. Most existing works on learning Stackelberg equilibria in (Markov) games via online RL assume the follower is myopic and perfectly rational (Bai et al., 2021; Zhong 094 et al., 2023; Kao et al., 2022; Zhao et al., 2023). In specific, Bai et al. (2021); Zhao et al. (2023) focus 095 on the static setting. Bai et al. (2021) consider a centralized setting where the central controller can 096 determine the actions taken by both the leader and the follower, and Zhao et al. (2023) assume the follower is omniscient in the sense that the follower always plays the best response policy, which is 098 similar to our setting. They show that when the follower is perfectly rational, the regret of the leader exhibits different scenarios depending on the relationship between the leader's and the follower's 100 rewards. Besides, Kao et al. (2022) assume that the leader and follower are cooperative and design a 101 decentralized algorithm for both the leader and follower, under the tabular setting. Zhong et al. (2023) 102 study online and offline RL for the leader, assuming the follower's reward function is known, and thus 103 the best response of the follower is known to the leader. Our work is more related and comparable 104 to Chen et al. (2023). In particular, Chen et al. (2023) extensively studied Markov Stackelberg 105 games in the context of general function approximation. They proposed an algorithm framework, which is provably sample efficient under assumptions that the follower is bounded rational and either 106 myopic or farsighted. However, they constructed confidence sets for the response model and leader's 107 value function and introduced optimistic planning (Auer et al., 2008) to update the leader's policies.

108 Such a method involves joint planning of the leader's policy and value function, and the follower's 109 quantal response model, so the planning steps become computationally intractable, which means the 110 algorithm is very hard to be implemented in practice. In this paper, we propose our PES algorithm 111 to overcome this drawback. Instead of using tedious optimistic planning, we exploit the benign 112 property of the Shannon entropy function to recover the follower's reward function via his policy. After estimating the reward function, we execute the planning step by solving the "greedy" policy. 113 Compared with Chen et al. (2023), our algorithm is not only easy-to-implement but also easier to 114 show theoretical guarantee. 115

116 Online RL with General Function Approximation. Recently, various works propose RL algo-117 rithms in the context of general function approximation (Jiang et al., 2017; Sun et al., 2019; Jin et al., 2021; Xiong et al., 2022; Liu et al., 2024a). Among these works, Our work is most relevant to Jin 118 et al. (2021); Xiong et al. (2022); Liu et al. (2024a). Specifically, Jin et al. (2021); Xiong et al. (2022) 119 introduce the Multi-agent decoupling coefficient that characterizes the exploration difficulty of the 120 Markov Decision Process (MDP) problems. In Section 5, we introduce similar notions of decoupling 121 coefficient for learning the leader's optimal policy. In particular, we introduce two versions of the 122 decoupling coefficient that capture the complexity of the leader's Bellman error and the follower's 123 quantal response error. Besides, Liu et al. (2024a) proposed an easy-to-implement RL algorithm 124 framework named Maximize to Explore (MEX) and instantiating MEX on the 2-player zero-sum 125 game setting. However, their algorithm framework can not be easily instantiated in MSG, because the 126 follower's Bellman error is not accessible in our setting, since either the follower's reward function 127 or his realized rewards remains unknown.

128 129

130 131

3 Preliminaries

Notation For a measurable space X, we use $\Delta(X)$ to denote the set of probability measure on X. For an integer $n \in \mathbb{N}$, we use [n] to denote the set $\{1, ..., n\}$. For a random variable X, we use $\mathbb{E}[X]$ and Var [X] to denote its expectation and variance respectively. For two functions f(x) and g(x), we denote f(x) = O(g(x)) if there is a constant C s.t. $f(x) \leq C \cdot g(x), \forall x \in \text{Dom}(f) \cap \text{Dom}(g)$ and we use $\tilde{O}(\cdot)$ to omit all the logarithmic terms. For two functions $f, g : \mathcal{A} \to \mathbb{R}$, we denote $\langle f, g \rangle_{\mathcal{A}} = \sum_{a \in \mathcal{A}} f(a) \cdot g(a)$.

138 139

3.1 Leader-Follower Markov Games

Problem Settings. A leader-follower Markov Game is between two players, referred to as the leader and the follower, respectively (also called principal and agent in other literature). These two leaders will interact within an episode of *H* steps and the states of the game evolve according to a Markov transition kernel. Let *S* be the state space, and let \mathcal{A} and \mathcal{B} be the action sets of the leader and follower, respectively. Let $P = \{P_h : S \times \mathcal{A} \times \mathcal{B} \to \Delta(S)\}_{h \in [H]}$ denotes the transition kernels of the *H* steps, and let $u = \{u_h : S \times \mathcal{A} \times \mathcal{B} \to [0, 1]\}_{h \in [H]}$ and $r = \{r_h : S \times \mathcal{A} \times \mathcal{B} \to [0, 1]\}_{h \in [H]}$ be the leader and follower's reward functions of *H* steps, respectively.

147 In contrast to a classic Markov game, the leader-follower game features an additional "communication 148 stage": before the beginning of the game, where the leader announces a policy $\pi = {\pi_h : S \to \Delta(\mathcal{A})}_{h \in [H]}$ and the follower adopts a response policy $v^{\pi} = {v_h^{\pi} : S \to \Delta(B)}_{h \in [H]}$ according to a 149 150 response model: $\pi \to v^{\pi}$. Then the two players play the joint policy (π, v^{π}) and generate a trajectory 151 $\{s_h, a_h, b_h\}_{h \in [H]}$. In particular, at step any step $h \in [H]$, the leader and follower observe the current state $s_h \in S$, take actions $a_h \sim \pi_h(\cdot|s_h)$ and $b_h \sim v_h^{\pi}(\cdot|s_h)$, receive rewards $u_h(s_h, a_h, b_h)$ and 152 $r_h(s_h, a_h, b_h)$ respectively, and the environment moves to a new state $s_{h+1} \sim P_h(\cdot | s_h, a_h, b_h)$. Here, 153 we could assume the initial state s_1 is sampled from a fixed distribution $\rho_0 \in \Delta(S)$ and the game 154 terminates after s_{H+1} is generated. At last, we define $\Pi = \Pi_1 \times \Pi_2 \times \cdots \times \Pi_H$, where $\Pi_h = \Delta(\mathcal{A})$, as 155 the domain of the leader's policy π . 156

157 **Quantal Response Model.** In the above discussion, we mentioned that after the leader announces 158 its policy π , the follower will choose its policy v^{π} according to this context. We feature this 159 process as quantal response models: $\pi \to v^{\pi}$. In this paper, we mainly discuss the boundedly 160 rational and myopic follower, where the "myopic" means the follower only tries to maximize his 161 expected immediate reward and the "boundedly rational" means the follower considers other factors (represented as a regularization term) when maximizing his rewards. We define the quantal response policy of the follower with respect to π , denoted by v^{π} as the solution to an entropy regularized policy optimization problem:

165 166

177

$$\upsilon_h^{\pi}(\cdot|s) = \arg\max_{\nu_h} \left\{ \mathbb{E}^{\pi_h,\nu_h} \left[r_h(s_h, a_h, b_h) | s_h = s \right] + \frac{1}{\eta} \mathcal{H}(\nu_h(\cdot|s)) \right\}, \forall s \in \mathcal{S},$$
(3.1)

where $\mathbb{E}^{\pi_h, \nu_h}[\cdot|s_h = s]$ means we take expectation with respect to (π_h, ν_h) . Here \mathcal{H} is a strongly convex regularization function and $\eta > 0$ is a parameter. In order to solve the corresponding problem directly and give a closed-form solution of the follower's policy in equation (3.1), we further assume the regularization function \mathcal{H} is the Shannon entropy of the follower's policy. Here we don't rule out the possibility of using other regularization functions, and consider such extension as our future work.

Stackelberg Equilibrium. When the follower adopts the response model v, the goal of the leader is to find the optimal π^* that maximizes its expected total rewards when the follower's response model is v^{π} , i.e.,

 $\pi^{\star} \in \arg\max_{\pi} J(\pi), \qquad J(\pi) = \mathbb{E}^{\pi} \left[\sum_{h \in [H]} u_h(s_h, a_h, b_h) \right].$ (3.2)

Here \mathbb{E}^{π} denotes the expectation over the trajectory $\{s_h, a_h, b_h\}_{[h \in H]}$ generated by the joint policy (π, v^{π}, P) and the maximization in (3.2) is over all policies of the leader. The optimal leader's policy π^* and its response v^{π^*} constitutes a Stackelberg (Markov perfect) equilibrium. That is, Stackelberg equilibrium characterizes the leader's optimal policy, when the follower adopts a particular response model that maps each a leader's policy π to a follower's policy v^{π} .

184 185 3.2 Online Stackelberg Game

186 In this paper, we consider the learning problem of the leader in the online setting. That is, without any 187 prior knowledge about the reward functions u and r and transition model P, the leader aims to learn 188 π^* by repeatedly playing the same game with a follower and adaptively gathering data, where the 189 follower adopts the response model v^{π} . Specifically, the leader adaptively constructs a sequence of 190 policies $\{\pi^t\}_{t>1}$ where π^t is the policy in the t-th episode. The leader's data consists of the trajectories and bandit feedback of the follower's reward generated by playing the game. In particular, when 191 leader adopts π^t , the follower adopts v^{π^t} and they generate a trajectory $\{s_h^t, a_h^t, b_h^t\}_{h \in [H]}$. The 192 leader observes this trajectory as well the bandit feedback of her reward, i.e., $\{u_h(s_h^t, a_h^t, b_h^t)\}_{h \in [H]}$. 193 Based on the data generated before the t-th episode, the leader constructs π^t by a learning algorithm 194 and uses it to generate new data. Here a key assumption of our setting is that the leader does not 195 know the follower's realized rewards or the reward function, which is realistic but also the source of 196 the major technical challenge. 197

To evaluate the performance of the learning algorithm, we use the notion of sample complexity. Let $\epsilon \in (0, 1)$ be the desired error level, the sample complexity is defined as the smallest integer T_{ϵ} such that the algorithm constructs an ϵ -optimal policy $\hat{\pi}$ after T_{ϵ} episodes, where $\hat{\pi}$ satisfies $J(\pi^*) - J(\hat{\pi}) \le \epsilon$. Specifically, the performance is measured by the regret, which is as

$$\operatorname{Reg}(T) = \sum_{t=1}^{T} \left(J(\pi^*) - J(\pi^t) \right).$$
(3.3)

206

208

4 Algorithm Framework: Planning After Estimation

4.1 FORMULATE STACKELBERG GAMES VIA REINFORCEMENT LEARNING

Formulate Stackelberg games into Bilevel Optimization. First, we recall the quantal response policy of the follower v^{π} could be viewed as the solution to an entropy regularized policy optimization problem, which is given by equation (3.1). Thus, we could write the maximization of the leader's reward as a bilevel optimization problem:

213
214
$$\pi = \underset{\pi \in \Pi^H}{\arg \max} J(\pi), \qquad J(\pi) = \mathbb{E}^{\pi} \left[\sum_{h \in [H]} u_h(s_h, a_h, b_h) \right], \tag{4.1}$$

215
$$v_h^{\pi}(\cdot|s) = \underset{v_h}{\arg\max} G_h(\pi, v), \qquad G_h(\pi, v) = \{\mathbb{E}^{\pi_h, v_h} [r_h(s, a_h, b_h)|s] + 1/\eta \cdot \mathcal{H}(v_h(\cdot|s))\}, \forall s \in S\}$$

where the leader's problem is in the upper level: for each leader's policy π , we find the follower's optimal policy v^{π} induced by π , and then find the optimal π^{\star} that maximizes the leader's reward.

Leader's Value Functions. Let $U_h^{\pi} : S \times \mathcal{A} \times B \to \mathbb{R}$ and $W_h^{\pi} : S \to \mathcal{B}$ to be the leader's action-value (U) function and state-value (W) function under policy π , which are defined as:

$$U_{h}^{\pi}(s_{h}, a_{h}, b_{h}) = u_{h}(s_{h}, a_{h}, b_{h}) + \mathbb{E}^{P} \left[W_{h+1}^{\pi}(s_{h+1}) | s_{h}, a_{h}, b_{h} \right]$$

= $u_{h}(s_{h}, a_{h}, b_{h}) + (P_{h} W_{h+1}^{\pi})(s_{h}, a_{h}, b_{h}),$ (4.2)

(4.3)

 $W_{h}^{\pi}(s_{h}) = \mathbb{E}^{\pi, \upsilon^{\pi}} [U_{h}^{\pi}(s_{h}, a_{h}, b_{h})] = \left\langle U_{h}^{\pi}(s_{h}, \cdot, \cdot), \pi_{h} \otimes \upsilon_{h}^{\pi}(\cdot, \cdot|s_{h}) \right\rangle_{\pi \times \mathcal{B}},$

226

219 220 221

where the expectation in equation (4.3) is taken w.r.t. $a_h \sim \pi_h(\cdot|s_h, b_h), b_h \sim \upsilon_h^{\pi}(\cdot|s_h)$. Here we define $P_h W(s, a, b) = \sum_{s' \in S} P_h(s'|s, a, b) W(s')$ and define $\pi_h \otimes \upsilon_h^{\pi}(a, b|s) = \pi_h(a|s, b) \cdot \upsilon_h^{\pi}(b|s)$

for $\forall h \in [H]$.

Intuitively, U_h^{π} and W_h^{π} are counterparts of the *Q*-function and *V*-function in standard RL, respectively. That is, $W_h^{\pi}(s)$ is equal to the expected total rewards starting from $s_h = s$ and the two players follow π and v^{π} . Thus, the total reward of the leader is given by $J(\pi) = \mathbb{E}_{s_1 \sim \rho_0}[W_1^{\pi}(s_1)]$, where ρ_0 is the initial state distribution. For simplicity, we consider the case when the initial state s_1 is fixed.

Bellman Equation By (4.1), we notice that, since the follower is myopic, his response policy at each step *h* could be computed separately, which means v_h^{π} depends on π only through π_h . As a result, to find the optimal policy π^* , it only suffices to optimize π_h at each step separately in (4.3), which leads to the following Bellman optimal equation for $\{U_h^*, W_h^*, \pi^*\}_{h \in [H]}$:

 $U_{h}^{\star}(s_{h}, a_{h}, b_{h}) = u_{h}(s_{h}, a_{h}, b_{h}) + P_{h}W_{h+1}^{\star}(s_{h}, a_{h}, b_{h}),$ $W_{h}^{\star}(s_{h}) = \max_{\pi_{h}(\cdot|s_{h})\in\Delta(\mathcal{A})} \left\{ \left\langle U_{h}^{\star}(s_{h}, \cdot, \cdot), \pi_{h} \otimes v_{h}^{\pi}(\cdot, \cdot|s_{h}) \right\rangle \right\},$ (4.4)

and π_h^{\star} is the optimal policy that achieves the maximum in (4.4). In other words, π^{\star} is the "greedy" policy with respect to U^{\star} and the quantal response mapping $\pi \to v^{\pi}$.

Recovering Standard MDPs. A special case of this leader-follower game is when \mathcal{B} is a singleton. In this situation, this game reduces to a standard MDP, because $b_h = b$ is fixed and v^{π} degenerates into $\delta(b)$ for any $\pi \in \Pi$. Then we can recover the classical Bellman equation in (4.4). Thus, estimating u and P is the same as in standard RL.

247 248

4.2 MODEL ESTIMATION AND GREEDY PLANNING

According to the discussion in Section 4.1, we know that once the leader knows reward functions *u* and *r*, and the transition kernel *P*, then they can solve equation (4.4) to find the optimal policy π^* . In the online setting, we need to approximately solve equation (4.4) using online data $\{\pi^t, \{s_h^t, a_h^t, b_h^t, u_h^t\}_{h \in [H]}\}_{t \in [T]}$. From the leader's perspective, there are two types of unknown quantities: (i) the follower's response model ν^{π} , which depends on the follower's reward function $r = \{r_h\}_{h \in H}$; (ii) the leader's reward function $u = \{u_h\}_{h \in [H]}$ and the transition kernel $P = \{P_h\}_{h \in H}$.

255 Estimate the Response Model. To deal with the unknown quantities relevant to the follower, we 256 need to consider how his policy v^{π} involves with leader's value function U, W. A natural way to 257 tackle this is via estimating the response model $\pi \to v^{\pi}$. In general, it is an intractable task since 258 it means we need to estimate a functional mapping from $\Delta(\mathcal{A})$ to $\Delta(\mathcal{B})$. A promising approach to 259 address this challenge is to directly estimate the follower's reward function through his announced policy, instead of estimating the complicated response model. This approach is equivalent to solving 260 an *inverse optimization problem* v^{π} shown in equation (4.1). That is, given a solution (the follower's 261 policy) of the optimization problem, could we recover the parameter (the follower's reward function) 262 of this problem? This kind of inverse problem is usually ill-posed. However, thanks to the benign 263 property of the Shannon entropy, we could write the follower's policy in closed form: 264

 $\begin{aligned}
& v_h^{\pi}(b_h|s_h) = \exp\left(\eta \cdot (A_h^{\pi}(s_h, b_h))\right), \qquad A_h^{\pi}(s_h, b_h) = r_h^{\pi}(s_h, b_h) - V_h^{\pi}(s_h), \quad (4.5) \\
& r_h^{\pi}(s, b) = \mathbb{E}_{a \sim \pi}[r(s, a, b)] = \langle \pi_h(\cdot|s, b), r_h(s, \cdot, b) \rangle_{\mathcal{A}}, \\
& V_h^{\pi}(s_h) = 1/\eta \cdot \log\left(\sum_{b \in \mathcal{B}} \exp(\eta \cdot r_h^{\pi}(s_h, b))\right).
\end{aligned}$

Here $V_h^{\pi}(s)$ is a normalizing constant ensuring $v_h^{\pi}(\cdot|s) \in \Delta(\mathcal{B})$, and $\eta > 0$ is a parameter. By this closed-form solution, we know the inverse optimization problem of estimating *r* is well-posed and

270 can be solved simply via maximum likelihood estimation (MLE). In particular, we can view v^{π} as a 271 statistical model with parameter r, and equation (4.5) enables us to compute the likelihood function 272 when observing data $\{\pi_h^t, s_h^t, b_h^t\}_{t \in [T]}$. 273

To this end, we approximate r using a function class $\mathcal{F}_r = \{r^{\theta} : S \times \mathcal{A} \times \mathcal{B} \to [0, 1]\}_{\theta \in \Theta}$, where θ 274 is a parameter with respect to r and Θ is the parameter space. We further assume the realizability 275 condition on reward function r: 276

Assumption 1 ((Realizability of Reward Function)). There exists $\theta^* \in \Theta$ such that $r^{\theta^*} = r$. 277

278 Then, we can estimate $r_h^{\star} = r_h^{\theta^{\star}}$ by using the negative log-likelihood loss: 279

$$L_{h,1}^{t}(\theta_{h}) = -\sum_{i=1}^{t-1} \log v_{h}^{\pi^{i},\theta}(b_{h}^{i} \mid s_{h}^{i}) = -\sum_{i=1}^{t-1} \eta \cdot A_{h}^{\pi^{i},\theta}(s_{h}^{i}, b_{h}^{i}).$$
(4.6)

where v_h^{π,θ_h} and A_h^{π,θ_h} are defined in equation (4.5) with r_h replaced by $r_h^{\theta_h}$. Let $\theta = \{\theta_h\}_{h \in [H]}$, we further define $v^{\pi,\theta} = \{v_h^{\pi_h,\theta_h}\}_{h \in [H]}$. 283 284 285

Estimate the Value Function. To deal with the unknown quantities relevant to the leader, we try to estimate her value function. We let $\theta^{\star} = \{\theta_h^{\star}\}_{h \in [H]}$ where θ_h^{\star} is the parameter of r_h , then we have:

$$U_{h}^{\star}(s_{h}, a_{h}, b_{h}) = u_{h}(s_{h}, a_{h}, b_{h}) + P_{h}W_{h+1}^{\star}(s_{h}, a_{h}, b_{h}),$$
$$W_{h}^{\star}(s_{h}) = \max_{\pi_{h}(\cdot|s_{h})\in\Delta(\mathcal{A})} \left\{ \left\langle U_{h}^{\star}(s_{h}, \cdot, \cdot), \pi_{h} \otimes v_{h}^{\pi, \theta^{\star}}(\cdot, \cdot|s_{h}) \right\rangle \right\}$$

291 and W_{h+1}^{\star} appears in the above Bellman equation. As a result, instead of estimating u_h alone, we aim 292 to estimate $U_h^{\star} = u_h + P_h W_{h+1}^{\star}$, which is known as the Bellman target in online RL. The estimation of 293 this target is well-studied in the literature. We can either use model-based or model-free approaches. 294 In this paper, we exploit the model-free approach to minimize our assumptions on the function class 295 of the leader's reward function and transition kernel. 296

To this end, we approximate U^* using a function class $\mathcal{U} = \mathcal{U}_1 \times \mathcal{U}_2 \times \cdots \times \mathcal{U}_H$, where $\mathcal{U}_h \subset$ $(S \times \mathcal{A} \times \mathcal{B} \to \mathbb{R})$. To simplify our discussion, we introduce two types of Bellman operator $\{\mathbb{T}_{h}^{\star,\theta}\}_{h\in[H],\theta\in\Theta}$, which is common in the literature (Perolat et al., 2015; Jin et al., 2022):

$$\mathbb{T}_{h}^{*,\theta}U(s_{h},a_{h},b_{h}) = u_{h}(s_{h},a_{h},b_{h}) + \mathbb{E}_{s_{h+1}\sim P_{h}(\cdot|s_{h},a_{h},b_{h})}[(T_{h+1}^{*,\theta}U_{h+1})(s_{h+1})],$$

where $T_{h}^{*,\theta}(U_{h})(s_{h}) = \max_{\pi_{h}\in\Delta(\mathcal{A})} \left\langle U_{h}(s_{h},\cdot,\cdot),\pi_{h}\otimes v_{h}^{\pi,\theta}(\cdot,\cdot|s_{h})\right\rangle.$

The corresponding Bellman error is defined as:

$$l_{h}^{i}(U_{h}^{\prime}, U_{h+1}, \theta)(s_{h}^{i}, a_{h}^{i}, b_{h}^{i}, s_{h+1}^{i}) = (U_{h}^{\prime} - u_{h})(s_{h}^{i}, a_{h}^{i}, b_{h}^{i}) - T_{h+1}^{*,\theta}U_{h+1}(s_{h+1}^{i}).$$
(4.7)

Then, we estimate U_h^{\star} by minimizing the Bellman error, and the loss function is defined as

$$L_{h,2}^{t}(U,\theta) = \sum_{i=1}^{t-1} l_{h}^{i}(U_{h}, U_{h+1}, \theta_{h+1})^{2} - \inf_{U' \in \mathcal{U}_{h}} \sum_{i=1}^{t-1} l_{h}^{i}(U', U_{h+1}, \theta_{h+1})^{2}.$$
 (4.8)

Greedy Planning after Estimation. After identifying the loss functions we use to bound the two types of unknown quantities that are mentioned in Section 4.2, we propose Planning after 312 Estimation (PES, Algorithm 1) for solving online Stackelberg Games in the context of general 313 function approximations. We first give a generic algorithm framework and then compare our 314 algorithm with other concurrent works. 315

Algorithm 1 Planning after Estimation (PES)

1: Initial: $\mathcal{D} = \emptyset$.

280 281 282

286

297

298

303

304 305 306

307 308

310

311

316

317

318 2: for $t = 1, 2, \dots, T$ do

319 Calculate $U^t, \theta^t = \arg \max_{U, \theta} \left(W_1^{U, \theta}(s_1) - \eta_1 \sum_{h=1}^H L_{h, 1}^t(\theta_h) - \eta_2 \sum_{h=1}^H L_{h, 2}^t(U_h, \theta_h) \right).$ 3: 320 Execute $\pi^t = \arg \max_{\pi \in \Pi} \left\langle U_1^t(s_1, \cdot, \cdot), \pi_1 \otimes v_1^{\pi, \theta^t}(\cdot, \cdot \mid s_1) \right\rangle_{\mathcal{A} \times \mathcal{B}}.$ 321 4: Collect data $D_t = \{D_h^t\}_{h \in [H]}$ with $D_h^t = (s_h^t, a_h^t, b_h^t, u_h^t, \pi_h^t)$, and update $\mathcal{D} = \mathcal{D} \cup D_t$. 322 5: 323 6: end for

324 In each episode $t \in [T]$, the agent first estimates the value function U^t and reward function θ^t using 325 historical data $\{D^s\}_{s \in [t-1]}$ by maximizing a composite objective given in Algorithm 1. Specifically, 326 in order to achieve exploiting history knowledge while encouraging exploration, the agent considers 327 the composite objective that sums: (a) the negative log-likelihood loss $L_{h,1}^{t}(\theta^{t})$, which represents 328 the exploitation of the agent's current knowledge of the follower's policy; (b) the Bellman error 329 $L_{h,2}^t(U^t, \theta^t)$, which represents the exploitation of the agent's current knowledge on the Bellman 330 target; (c) the expected total return of the optimal policy associated with our chosen (U^t, θ^t) , i.e., 331 $W_1^{U^t, \theta^t}$, which represents exploration for a higher return. With tuning parameters η_1, η_2 , the agent 332 balances the weight put on the tasks of exploitation and exploration. 333

Then the agent predicts π^t via the optimal policy associated with the solved (U^t, θ^t) , execute π^t to 334 collect data $D_t = \{(s_h^t, a_h^t, b_h^t, u_h^t, \pi_h^t)_{h \in [H]}\}$, and update the loss function $L_{h,1}^t, L_{h,2}^t$. 335

Comparison with Optimistic Planning (Chen et al., 2023) The algorithm proposed in Chen et al. (2023) first built a confidence set $C_{\mathcal{U},\Theta}$ for (U^*, θ^*) , and then predicts π via optimal policy with solved (U^t, θ^t) . We could formulate their estimation and planning steps as:

$$(U^{t}, \theta^{t}) = \arg \max_{(U,\theta) \in C_{\mathcal{U},\Theta}(\beta)} \left\langle U_{1}(s_{1}, \cdot, \cdot), \pi_{1} \otimes \upsilon_{1}^{\pi,\theta}(\cdot, \cdot \mid s_{1})) \right\rangle_{\mathcal{A} \times \mathcal{B}},$$
$$\pi^{t}(s_{h}) = \arg \max_{\pi \in [\Delta(\mathcal{A})]^{H}} \left\langle U_{1}^{t}(s_{1}, \cdot, \cdot), \pi_{1} \otimes \upsilon_{1}^{\pi,\theta^{t}}(\cdot, \cdot \mid s_{1}) \right\rangle_{\mathcal{A} \times \mathcal{B}}.$$

343 344

345

346

347

348 349

336

> The most important difference between our PES algorithm and their optimistic planning algorithm is that they need to solve a *constrained optimization* problem inside the complicated confidence set, which is often intractable in practice. The reason is that the confidence set $C_{\mathcal{U},\Theta}$ is coupled. Intuitively, it can be written as

$$C_{\mathcal{U},\Theta} = \{ (U,\theta) \colon \theta \in C_{\Theta}, U \in C_{\mathcal{U}}(\theta) \}.$$

350 Here C_{Θ} a confidence set for θ^{\star} , constructed by the MLE loss in (4.6) for estimating θ^{\star} , and $C_{\mathcal{U}}(\theta)$ is 351 a confidence for U^{\star} based on the Bellman error in (4.7), which involves a parameter θ . Instead, PES 352 only needs to maximize a composite objective, i.e. solve an unconstrained optimization problem, 353 which is not only tractable but also easy to implement in practice.

We need to highlight that PES is not a Lagrangian duality of the constrained optimization objectives 355 within data-dependent level-sets proposed by Chen et al. (2023) or any other optimistic planning 356 algorithm that could potentially solve this task. In fact, PES could fix the parameter choice η_1, η_2 across each episode t. Thus η_1, η_2 is independent of data and predetermined, which contrasts 358 Lagrangian methods that involve an inner loop of optimization for the dual variables.

359 360 361

362

363 364

375

357

5 **REGRET ANALYSIS FOR PES ALGORITHM**

5.1 GENERAL FUNCTION APPROXIMATION

It is well known that RL with function approximation is intractable without any further assumptions 365 (Krishnamurthy et al., 2016; Weisz et al., 2021). Therefore, it is common to make additional 366 assumptions over the function class in the literature on general function approximation in MDPs, 367 especially for the realizability and completeness assumptions (Wang et al., 2020; Jin et al., 2021; 368 Dann et al., 2021). 369

Value Function Approximation. As MSG could be seen as an extension of MDPs, the generalized 370 realizability and completeness assumptions are also adopted in this work. 371

Assumption 2 (Realizability of Value Function). For the Stackelberg equilibrium, it holds that 372 $U_h^{\star} \in \mathcal{U}_h$. Moreover, for any $\pi \in \Pi$ and any $\theta \in \Theta$, it holds that $U_h^{\pi,\theta} \in \mathcal{U}_h$, where we define 373 374

$$U_h^{\pi,\theta}(s,a,b) = u_h(s,a,b) + P_h W_{h+1}^{\pi,\theta}, \qquad W_h^{\pi,\theta}(s) = \left\langle U_h^{\pi,\theta}(s,\cdot,\cdot), \pi_h \otimes v_h^{\pi,\theta}(\cdot,\cdot \mid s) \right\rangle_{\mathcal{A} \times \mathcal{B}}.$$

376 **Assumption 3** (Completeness of Value Function). For any $U \in \mathcal{U}, \pi \in \Pi$, and $\theta \in \Theta$, we have $\mathbb{T}_{h}^{\pi,\theta}U \in \mathcal{U}_{h}$. That is, the Bellman operator $\mathbb{T}_{h}^{\pi,\theta}$ is closed with respect to \mathcal{U} . 377

378 In the previous subsection, we introduced the Bellman errors in equation (4.7). However, our regret 379 analysis is more related to the squared Bellman errors. Such phenomena have been well studied in the 380 literature of single-agent setting (Dann et al., 2021) and multiple-agent setting (Xiong et al., 2022). 381 Following Xiong et al. (2022), here we define the decoupling coefficient to capture the hardness of 382 our learning problem.

Definition 1 (Multi-agent Decoupling Coefficient). Given a two-player Stackelberg Game M, a function class \mathcal{F} and a set of probability measure ϱ , the decoupling coefficient $d(\mathcal{M}, \mathcal{F}, \varrho)$ is the smallest real number d such that for any $\mu > 0$ and any $\{\rho^t\}_{t \in [T]} \subseteq \varrho$, we have

386

383

384

389

390 391

392 393

396

397

398 399

400 401

402 403

407

408

422

Then we identify the Bellman residual class $G_L = \{U_h - \mathbb{T}_h^{*,\theta}U_{h+1}, U_h \in \mathcal{U}_h, U_{h+1} \in \mathcal{U}_{h+1}, \theta \in \Theta, h \in [H]\}$ and the decoupling coefficient $d_1 = d(\mathcal{M}, G_L, \varrho_1)$ to capture the complexity of leader's Bellman error, where

 $\sum_{t=1}^{H} \sum_{s=1}^{T} \mathbb{E}^{\rho^{t}} \left[f^{t}(s_{h}, a_{h}, b_{h}) \right] \leq \mu \cdot \sum_{t=1}^{H} \sum_{s=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}^{\rho^{i}} \left[(f^{t}(s_{h}, a_{h}, b_{h}))^{2} \right] + \frac{d}{4\mu}.$

$$\rho_1 = \{ \rho \in \Delta(\mathcal{S} \times \mathcal{A} \times \mathcal{B}) : \rho = \mathbb{P}^{\pi}((s_h, a_h, b_h) = (\cdot, \cdot, \cdot)) \}.$$

is the measure set generated by any $(\pi, v^{\pi}, P), \forall \pi \in \Pi$. 394

Follower's Policy Approximation. Here we still use the decoupling coefficient to capture the complexity of quantal response error. We identify the reward residual class $G_F = \{r_h^{\theta} - r_h, \theta \in$ $\Theta, h \in [H]$ and the decoupling coefficient $d_2 = d(\mathcal{M}, G_F, \varrho_2)$, where

$$\varrho_2 = \{ \mathbb{P}^{\pi}(a_h = \cdot \mid \cdot, \cdot) \delta_{(s_h, b_h)}(\cdot, \cdot) - \mathbb{P}^{\pi}((a_h, b_h) = (\cdot, \cdot) \mid \cdot) \delta_{(s_h)}(\cdot), \forall \pi \in \Pi \},$$

and we define $\mathbb{P}^{\pi}(a_h, b_h | s_h) = \mathbb{P}^{\pi}(a_h | b_h, s_h) \cdot \upsilon_h^{\pi}(b_h | s_h)$, and $\delta_{(s_h, b_h)}$ is the probability measure that assigns 1 to the pair (s_h, b_h) .

To simplify the notation, we denote the integral operator \mathcal{T}_{h}^{π} as

$$\mathcal{T}_{h}^{\pi}(r)(s_{h}, b_{h}) = \langle \pi_{h}(\cdot \mid s_{h}, b_{h}), r(s_{h}, \cdot, b_{h}) \rangle - \langle \pi_{h} \otimes v_{h}^{\pi}(\cdot, \cdot \mid s_{h}), r(s_{h}, \cdot, \cdot) \rangle.$$
(5.1)

404 Then by the definition of ρ_2 , for any $\pi \in \Pi$, $h \in [H]$, there exists one probability measure $\rho \in \rho_2$ 405 such that $\mathcal{T}_{h}^{\pi}(r)(s_{h}, b_{h}) = \mathbb{E}^{\rho}[r(s_{h}, b_{h})]$ and vice versa. 406

5.2 Bounds for the Decoupling Coefficient.

Here we provide several examples whose decoupling coefficient is provably small. 409

410 Linear MSG The first example is the MSG with linear function approximation, which is generalized 411 from the definition of linear Markov Game in Xie et al. (2020)

412 Definition 2 (Linear MSG). We say a Markov Stackelberg game is linear, if there exists a feature 413 $\begin{array}{l} map \ \phi(s,a,b) \in \mathbb{R}^d \ such \ that \ for \ any \ (s,a,b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}, \ s' \in \mathcal{S}, \ and \ h \in [H], \ it \ holds \ that \\ u_h(s,a,b) = \phi(s,a,b)^\top \varphi_h^\star, \ P_h(s'|s,a,b) = \phi(s,a,b)^\top \mu_h(s') \ and \ r_h(s,a,b) = \phi(s,a,b)^\top \theta_h^\star, \ for \ holds \ holds$ 414 415 some unknown $\varphi_h^{\star}, \mu_h(\cdot), \theta_h^{\star} \in \mathbb{R}^d$ satisfying $\max\{\|\theta_h^{\star}\|, \|\mu_h\|, \|\varphi_h^{\star}\|\} \le \sqrt{d}$ 416

417 We have the following upper bound for the decoupling coefficient:

418 **Proposition 1.** For a d-dimensional MSG with the function class $\mathcal{U}_h = \{(\phi_h^\top \varphi_h) : \|\varphi_h\| \le (H - \varphi_h)\}$ 419 $(h+1)\sqrt{d}$ and $\mathcal{F}_h^r = \{(\phi_h^\top \theta_h) : \|\theta_h\| \le \sqrt{d}\}$ and $\|\phi(s, a, b)\| \le 1, \forall (s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}$, then 420 we have 421

$$d_1, d_2 \le 2dH \cdot (2 + \ln(2HT)).$$

Generalized Linear MSG We consider a MSG with generalized linear function approximation. 423

Definition 3 (Generalized Linear MSG). We say an MSG is generalized linear, if there exists a 424 feature map $\phi(s, a, b) \in \mathbb{R}^d$ such that for any $(s, a, b) \in S \times \mathcal{A} \times \mathcal{B}$, $s' \in S$, and $h \in [H]$, it 425 holds that $u_h(s, a, b) = \sigma(\phi(s, a, b)^\top \varphi_h^\star)$, $P_h(s'|s, a, b) = \sigma(\phi(s, a, b)^\top \mu_h(s'))$ and $r_h(s, a, b) = \sigma(\phi(s, a, b)^\top \mu_h(s'))$ 426 $\sigma(\phi(s, a, b)^{\top}\theta_{h}^{\star})$, for some unknown $\varphi_{h}^{\star}, \mu_{h}(\cdot), \theta_{h}^{\star} \in \mathbb{R}^{d}$, where σ is differentiable and strictly increasing. We further assume that $\sigma' \in (c_{1}, c_{2})$ for some $c_{1}, c_{2} \in \mathbb{R}$. 427 428

Proposition 2. For a d-dimensional MSG with the function class $\mathcal{U}_h = \{\sigma(\phi_h^\top \varphi_h) : \|\varphi_h\| \leq$ 429 $(H-h+1)\sqrt{d} \text{ and } \mathcal{F}_h^r = \{\sigma(\phi_h^\top \theta_h) : \|\theta_h\| \le \sqrt{d} \} \text{ and } \|\phi(s,a,b)\| \le 1, \forall (s,a,b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}, \forall (s,a,b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{A} \times \mathcal{B}, \forall (s,a,b) \in \mathcal{S} \times \mathcal{A} \times \mathcal$ 430 then we have 431

$$d_1, d_2 \le 2 \cdot c_2^2 / c_1^2 \cdot dH \cdot (2 + \ln(2HT))$$

5.3 Theoretical Guarantee.

Then we can get the following theorem for the PES algorithm.

Theorem 1. If we choose $\eta_1 = \eta_2 = 1/\sqrt{T}$, then for any $\delta \in (0, 1/3)$ with probability at least $1 - 3\delta$, the Algorithm 1 achieves a regret

$$Reg(T) \le \left(H(\beta_1 + \beta_2) + 4C_{\eta}^2 d_1 + 16(C_0 + C_1)^2 d_2\right)\sqrt{T} + O(H\log(H/\delta)),$$
(5.2)

where $C_{\eta} = O(\eta^{-1} + B_A)$, $B_A = 2(\eta^{-1}\log(|\mathcal{B}|) + 1)$, $C_1 = \eta^2 \exp(2\eta B_A)(2 + \eta B_A \cdot \exp(2\eta B_A))/2$, and β_1 and β_2 are defined in Lemma 7 and 8 respectively.

Here we provide a proof sketch for Theorem 1 and defer the detailed proof in Appendix B.

Step 1. At first, we decompose the regret into two terms: one is from the estimation error between $(U^{\star}, \theta^{\star})$ and (U^{t}, θ^{t}) ; the other is from the approximation error when we execute the greedy policy to generate π^t , i.e. the difference between $W^{U^{\bar{t}},\theta^t}$ and W^{π^t} .

Step 2. To bound the estimation error, we first notice that (U^t, θ^t) maximizes of the loss function defined in Algorithm 1. Thus, we could upper bound this error with the difference between the loss functions. By lemma 7 and 8, we could bound the difference of $L_{h,1}^t$ and $L_{h,2}^t$, respectively.

Step 3. To bound the approximation error, we introduce the performance difference lemma proposed by Chen et al. (2023), which decompose the approximation error into the expected Bellman residuals and the expected estimation error of the follower's policy.

Step 4. By the decoupling coefficient assumption, we could transfer the errors that we get in Step 3 into terms relevant to Step 2. By choosing the right kind of η_1, η_2 , we could get the regret bound.

The main difference between our algorithm and other concurrent works is that our algorithm not only circumvents the intractable optimistic planning, but also achieves $\tilde{O}(\sqrt{T})$ -regret guarantee with simplest hyper-parameter choice: $\eta_1 = \eta_2 = 1/\sqrt{T}$, which means our algorithm is easy-to-implement and does not need to tune or search the best hyper-parameter.

CASE STUDY: REINFORCEMENT LEARNING WITH HUMAN FEEDBACK

Our algorithm can also be applied to the Reinforcement Learning with Human Feedback (RLHF) setting by formulating the RLHF as a turn-based Stackelberg game. Specifically, given the initial distribution ρ and the prompt $x \sim \rho$, the Large Language Model (leader) generates two outputs $a = (y_1, y_2)$ as the action, and the human agent's (follower) action is binary, $y_1 \succ y_2$ or $y_1 \prec y_2$, indicating which output the human prefers. We denote b = 1 if $y_1 \succ y_2$ and b = 0 if $y_1 \prec y_2$. Finally, the leader observes the human's preference and collects the data (x, a, b). Define the reward function $R(x, y) \in [0, 1]$ over the outputs, and the leader's and follower's reward functions are given by

$$u(x, a, b) = R(x, y_1) + R(x, y_2), \forall b \in \{0, 1\}.$$

$$r(x, a, b = 1) = R(x, y_1) - R(x, y_2),$$

$$r(x, a, b = 0) = R(x, y_2) - R(x, y_1).$$

We can simplify the notation u(x, a, b) as u(x, a) since it is not dependent on the preference b. Using the reward model above, the quantal response of the follower is given by

$$\mathbb{P}(b=1 \mid x, a) \propto \exp(\eta \cdot r(x, a, b=1)) \propto \exp(\eta \cdot (R(x, y_1) - R(x, y_2)))$$
$$\mathbb{P}(b=0 \mid x, a) \propto \exp(\eta \cdot r(x, a, b=0)) \propto \exp(\eta \cdot (R(x, y_2) - R(x, y_1))),$$

which is exactly the Bradley-Terry model (Bradley & Terry, 1952) in the previous RLHF literature (Rafailov et al., 2024; Liu et al., 2024b; Xiong et al., 2024; Cen et al., 2024).

The objective of the leader is to maximize the human's reward with a KL regularization:

$$\max_{\pi} J(u,\pi) := \mathbb{E}_{x \sim \rho, a \sim \pi(\cdot \mid x)} [u(s,a)] - \beta \mathbb{D}_{\mathrm{KL}} [\pi \parallel \pi_{\mathrm{ref}}],$$

where π_{ref} is the reference policy that usually trains with supervised fine-tuning, and the parameter β controls the deviation between the output policy π and the reference policy.

We parameterize the reward function R(x, y) using a function class $\{R^{\theta}(x, y)\}_{\theta \in \Theta}$. Note that the preference feedback is only dependent on the difference $R(x, y_1) - R(x, y_2)$, hence the reward R^* is only identifiable up to a global shift. Hence, we can construct a base policy π_{base} and consider the following reward function class

$$\{R_{\theta}: \mathbb{E}_{x \sim \rho, a \sim \pi_{\text{base}}}[R_{\theta}(x, y)] = 0\}$$

Now we apply our PES algorithm to the RLHF setting. The pseudo-code is shown in Algorithm 2. The corresponding reward function of the follower and the leader are denoted as $u^{\theta}(x, a)$ and $r^{\theta}(x, a, b)$. We also denote the ground-truth reward function and the optimal policy as R^*, u^*, r^* and π^* respectively. Now in each episode $t \in [T]$, the agent first estimates the reward function θ^t using the historical data $\{D^s\}_{s \in [t-1]} = \{x^s, a^s, b^s, \pi^s\}_{s \in [t-1]}$ by maximizing $\max_{\pi} J(u^{\theta^t}, \pi) - \eta_1 L^t(\theta)$, where

$$L^{t}(\theta) = -\sum_{i=1}^{t-1} \left[b^{i} \log(\sigma(\eta \cdot r^{\theta}(x^{i}, a^{i}, b^{i}))) \right]$$

is the cross-entropy loss, and $\sigma(z) = 1/(1 + \exp(-z))$ is the sigmoid function. Then the agent predicts π^t via the optimal policy associated with θ^t , and executes π^t to collect data D_t . The regret $\operatorname{Reg}(T)$ then can be defined as Equation 3.3.

1: I	nitial: $\mathcal{D} = \emptyset$.
2: f	for $t = 1, 2, \cdots, T$ do
3:	Calculate $\theta^t = \arg \max_{\theta} \left(\max_{\pi} J(u^{\theta^t}, \pi) - \eta_1 L^t(\theta) \right).$
4:	Execute $\pi^t = \arg \max_{\pi \in [\Delta(\mathcal{A})]^H} J(u^{\theta^t}, \pi).$
5:	Collect data D_t with $D_t = (s^t, a^t, b^t, \pi^t)$, and update $\mathcal{D} = \mathcal{D} \cup D_t$.
6: e	nd for

Now we can get the following theoretical result for the RLHF setting.

Theorem 2. If we choose $\eta_1 = 1/\sqrt{T}$, then with probability at least $1 - \delta$, the Algorithm 2 achieves a regret

$$Reg(T) \le 2\sqrt{T}\log\frac{|\mathcal{R}|}{\delta} + 2\cdot(3+e^2)^2\eta^{-2}d\kappa\exp(2/\beta)\sqrt{T},$$
(6.1)

where \mathcal{R} is the reward hypothesis function class, $\kappa = \sup_{x,y} \frac{\pi_{\text{base}}(y|x)}{\pi_{\text{ref}}(y|x)}$, and d is the multi-agent decoupling coefficient in Definition 1 with

$$\mathcal{F} = \{ f : f(x, (y_1, y_2), b) = (R(x, y_1) - R(x, y_2)) - (R^*(x, y_1) - R^*(x, y_2)) \}$$
$$\rho = \{ \rho \in \mathbb{P}^{\pi}(a_h = \cdot, x \sim \rho), \forall \pi \in \Pi \}.$$

The result above shows that the PES algorithm framework can handle the RLHF setting as a special case, and the resulting PES-RLHF algorithm is similar to the online version of RPO (Liu et al., 2024b), and the reward-based version of VPO (Cen et al., 2024). Moreover, compared to Cen et al. (2024), we only relies on the decoupling coefficient of the reward function class, rather than the stronger linear assumption. Compared to Liu et al. (2024b), they study offline setting with the coverage assumption and pessimism principle, so the first exploration term max $_{\pi} J(u^{\theta^{t}}, \pi)$ changes the sign (Liu et al., 2024b).

CONCLUSION

In this paper, we propose an easy-to-implement RL algorithm, Planning after Estimation (PES) to efficiently solve MSG in the context of general function approximation. Compared to the other concurrent works, our algorithm circumvents intractable optimistic planning, which involves joint planning of the leader's policy, value function, and the follower's quantal response model. In the theoretical analysis, we prove that with a set of simple hyper-parameter choices, PES achieves a sub-linear $\tilde{O}(d_c\sqrt{T})$ -regret with general function approximation, where d_c is the decoupling coefficient and T is the number of episodes. At last, we apply PES to the RLHF setting by formulating the RLHF as a turn-based Stackelberg game to demonstrate the efficacy of our algorithm ...

540 References

544

550

561

562

563

566

576

- Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
 bandits. Advances in neural information processing systems, 24, 2011.
- Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement learning. *Advances in neural information processing systems*, 21, 2008.
- Yu Bai, Chi Jin, Huan Wang, and Caiming Xiong. Sample-efficient learning of stackelberg equilibria
 in general-sum games. *Advances in Neural Information Processing Systems*, 34:25799–25811, 2021.
- Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.
- Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence of natural policy gradient methods with entropy regularization. *Operations Research*, 70(4): 2563–2578, 2022.
- Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale
 Schuurmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified
 approach to online and offline rlhf. *arXiv preprint arXiv:2405.19320*, 2024.
 - Siyu Chen, Mengdi Wang, and Zhuoran Yang. Actions speak what you want: Provably sampleefficient reinforcement learning of the quantal stackelberg equilibrium from strategic feedbacks. *arXiv preprint arXiv:2307.14085*, 2023.
- Ludek Cigler and Boi Faltings. Reaching correlated equilibria through multi-agent learning. In 10th
 Conference on Autonomous Agents and Multiagent Systems AAMAS, 2011.
- 567 Christoph Dann, Mehryar Mohri, Tong Zhang, and Julian Zimmert. A provably efficient model-free
 568 posterior sampling method for episodic reinforcement learning. Advances in Neural Information
 569 Processing Systems, 34:12040–12051, 2021.
- Subha Ghosh and Debashis De. E 2 m 3: energy-efficient massive mimo-miso 5g hetnet using stackelberg game. *The Journal of Supercomputing*, 77(11):13549–13583, 2021.
- 573 Xiuli He, Ashutosh Prasad, Suresh P Sethi, and Genaro J Gutierrez. A survey of stackelberg
 574 differential game models in supply and marketing channels. *Journal of Systems Science and*575 *Systems Engineering*, 16:385–413, 2007.
- Baihe Huang, Jason D Lee, Zhaoran Wang, and Zhuoran Yang. Towards general function approximation in zero-sum markov games. *arXiv preprint arXiv:2107.14702*, 2021.
- ⁵⁷⁹ Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contextual decision processes with low bellman rank are pac-learnable. In *International Conference on Machine Learning*, pp. 1704–1713. PMLR, 2017.
- 583 Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl 584 problems, and sample-efficient algorithms. *Advances in neural information processing systems*, 585 34:13406–13418, 2021.
- Chi Jin, Qinghua Liu, and Tiancheng Yu. The power of exploiter: Provable multi-agent rl in large state spaces. In *International Conference on Machine Learning*, pp. 10251–10279. PMLR, 2022.
- Hsu Kao, Chen-Yu Wei, and Vijay Subramanian. Decentralized cooperative reinforcement learning
 with hierarchical information structure. In *International Conference on Algorithmic Learning Theory*, pp. 573–605. PMLR, 2022.

- Ali Keyhani. Leader-follower framework for control of energy services. *IEEE Transactions on Power*
- Systems, 18(2):837–841, 2003.

- Joewie J. Koh, Guohui Ding, Christoffer Heckman, Lijun Chen, and Alessandro Roncone. Co-operative control of mobile robots with stackelberg learning. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7985–7992, 2020. doi: 10.1109/IROS45743.2020.9341376.
- Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Pac reinforcement learning with rich observations. Advances in Neural Information Processing Systems, 29, 2016.
- Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran Yang,
 and Zhaoran Wang. Maximize to explore: One objective function fusing estimation, planning,
 and exploration. *Advances in Neural Information Processing Systems*, 36, 2024a.
- Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi Guo, Yingxiang Yang, Jose Blanchet, and Zhaoran Wang. Provably mitigating overoptimization in rlhf: Your sft loss is implicitly an adversarial regularizer. *arXiv preprint arXiv:2405.16436*, 2024b.
- Julien Perolat, Bruno Scherrer, Bilal Piot, and Olivier Pietquin. Approximate dynamic programming
 for two-player zero-sum markov games. In *International Conference on Machine Learning*, pp. 1321–1329. PMLR, 2015.
- Julien Perolat, Florian Strub, Bilal Piot, and Olivier Pietquin. Learning Nash Equilibrium for
 General-Sum Markov Games from Batch Data. In Aarti Singh and Jerry Zhu (eds.), Proceed-*ings of the 20th International Conference on Artificial Intelligence and Statistics*, volume 54
 of Proceedings of Machine Learning Research, pp. 232–241. PMLR, 20–22 Apr 2017. URL
 https://proceedings.mlr.press/v54/perolat17a.html.
- Haifeng Qiu, Wei Gu, Lu Wang, Guangsheng Pan, Yinliang Xu, and Zhi Wu. Trilayer stackelberg game approach for robustly power management in community grids. *IEEE Transactions on Industrial Informatics*, 17(6):4073–4083, 2021. doi: 10.1109/TII.2020.3015733.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 Finn. Direct preference optimization: Your language model is secretly a reward model. Advances in Neural Information Processing Systems, 36, 2024.
- Pier Giuseppe Sessa, Maryam Kamgarpour, and Andreas Krause. Efficient model-based multi-agent reinforcement learning via optimistic equilibrium computation. In Kamalika Chaudhuri, Stefanie
 Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 19580–19597. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr. press/v162/sessa22a.html.
- Ankur Sinha, Pekka Malo, Anton Frantsev, and Kalyanmoy Deb. Multi-objective stackelberg game between a regulating authority and a mining company: A case study in environmental economics. In 2013 IEEE Congress on Evolutionary Computation, pp. 478–485, 2013. doi: 10.1109/CEC. 2013.6557607.
- Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
 rl in contextual decision processes: Pac bounds and exponential improvements over model-free approaches. In *Conference on learning theory*, pp. 2898–2933. PMLR, 2019.
- Heinrich Von Stackelberg. *Market structure and equilibrium*. Springer Science & Business Media, 2010.
- Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general value
 function approximation: Provably efficient approach via bounded eluder dimension. *Advances in Neural Information Processing Systems*, 33:6123–6135, 2020.
- Gellért Weisz, Philip Amortila, and Csaba Szepesvári. Exponential lower bounds for planning in mdps with linearly-realizable optimal action-value functions. In *Algorithmic Learning Theory*, pp. 1237–1264. PMLR, 2021.
- Qiaomin Xie, Yudong Chen, Zhaoran Wang, and Zhuoran Yang. Learning zero-sum simultaneous move markov games using function approximation and correlated equilibrium. In *Conference on learning theory*, pp. 3674–3682. PMLR, 2020.

648 649 650	Wei Xiong, Han Zhong, Chengshuai Shi, Cong Shen, and Tong Zhang. A self-play posterior sampling algorithm for zero-sum markov games. In <i>International Conference on Machine Learning</i> , pp. 24496–24523. PMLR, 2022.
651 652 653 654	Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang. Iterative preference learning from human feedback: Bridging theory and practice for rlhf under kl-constraint. In <i>Forty-first International Conference on Machine Learning</i> , 2024.
655 656	Tong Zhang. <i>Mathematical analysis of machine learning algorithms</i> . Cambridge University Press, 2023.
657 658 659 660	Geng Zhao, Banghua Zhu, Jiantao Jiao, and Michael Jordan. Online learning in stackelberg games with an omniscient follower. In <i>International Conference on Machine Learning</i> , pp. 42304–42316. PMLR, 2023.
661 662 663	Han Zhong, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Can reinforcement learning find stackelberg-nash equilibria in general-sum markov games with myopically rational followers? <i>Journal of Machine Learning Research</i> , 24(35):1–52, 2023.
665	
667	
668	
670	
671	
672	
673	
674	
675	
676	
677	
678	
679	
680	
681	
682	
684	
605	
886	
687	
688	
689	
690	
691	
692	
693	
694	
695	
696	
697	
698	
699	
700	
701	

702 A TECHNICAL LEMMAS

Lemma 1. Let Z_t be a sequence of random variables, where each Z_t may depend on the previous observations $S_{t-1} = [Z_1, ..., Z_{t-1}] \in \mathbb{Z}^{t-1}$. Furthermore, we define a filtration $\{\mathcal{F}_t = \sigma(S_t)\}$, which is also the natural filtration of $\{Z_t\}$. Consider a sequence of real-valued random (measurable) functions $\xi_1(S_1), ..., \xi_T(S_T)$. Let $\tau \leq T$ be a stopping time so that $\mathbb{I}(t \leq \tau)$ is measurable in S_t . We have

$$\mathbb{E}_{\mathcal{S}_T} \exp\left(\sum_{t=1}^{\tau} \xi_i - \sum_{t=1}^{\tau} \ln \mathbb{E}_{Z_t \mid \mathcal{S}_{t-1}} e^{\xi_t}\right) = 1.$$

Proof. This proof is a revised version of Lemma 13.1 in Zhang (2023). We prove this lemma by induction. When T = 0, the equality apparently holds. We then assume that the claim holds at T - 1 for some $T \ge 1$. Now we will prove the equation at time T using the induction hypothesis.

First we define $\tilde{\xi}_t = \xi_t \mathbb{I}(t \le \tau)$ and notice that $\tilde{\xi}_t$ is measurable in S_t so we have

 $\mathbb{E}_{\mathcal{S}_{T}} \exp\left(\sum_{t=1}^{\tau} \xi_{t} - \sum_{t=1}^{\tau} \ln \mathbb{E}_{Z_{t} \mid \mathcal{S}_{t-1}} e^{\xi_{t}}\right)$

 $=\mathbb{E}_{S_{T}} \exp\left(\sum_{t=1}^{T} \tilde{\xi}_{t} - \sum_{i=1}^{T} \ln \mathbb{E}_{Z_{t}|S_{t-1}} e^{\tilde{\xi}_{t}}\right)$ $=\mathbb{E}_{S_{T-1}} \left[\exp\left(\sum_{t=1}^{T-1} \tilde{\xi}_{t} - \sum_{i=1}^{T-1} \ln \mathbb{E}_{Z_{t}|S_{t-1}} e^{\tilde{\xi}_{t}}\right) \mathbb{E}_{Z_{T}|S_{T-1}} \exp\left(\tilde{\xi}_{T} - \ln \mathbb{E}_{Z_{t}|S_{t-1}} e^{\tilde{\xi}_{T}}\right)\right]$ $=\mathbb{E}_{S_{T-1}} \left[\exp\left(\sum_{t=1}^{T-1} \tilde{\xi}_{t} - \sum_{i=1}^{T-1} \ln \mathbb{E}_{Z_{t}|S_{t-1}} e^{\tilde{\xi}_{t}}\right)\right]$ $=\mathbb{E}_{S_{T-1}} \left[\exp\left(\sum_{t=1}^{\min(\tau, T-1)} \tilde{\xi}_{t} - \sum_{i=1}^{\min(\tau, T-1)} \ln \mathbb{E}_{Z_{t}|S_{t-1}} e^{\tilde{\xi}_{t}}\right)\right]$

$$=\mathbb{E}_{\mathcal{S}_{T-1}}\left[\exp\left(\sum_{t=1}^{\min(\tau,T-1)}\xi_t - \sum_{i=1}^{\min(\tau,T-1)}\ln\mathbb{E}_{Z_t|\mathcal{S}_{t-1}}e^{\xi_t}\right)\right]$$

=1,

where the third equality exploits the fact that $\mathbb{E}_{Z_T^{(y)}} \exp\left(\tilde{\xi}_T - \ln \mathbb{E}_{Z_t | S_{t-1}} e^{\tilde{\xi}_T}\right) = 1$; and the last equality is because we could treat $\min(\tau, T-1)$ as a stopping time no more than T-1 and we could use the induction hypothesis.

Lemma 2 (Martingale exponential inequality). For a sequence of real-valued random variables $\{X_t\}_{t \leq T}$ adapted to a filtration $\{\mathcal{F}_t\}_{t \leq T}$, the following holds with probability at least $1 - \delta$, for $\forall t \in [T]$,

$$-\sum_{s=1}^{t} X_s \leq \sum_{s=1}^{t} \ln \mathbb{E} \left[e^{-X_s} | \mathcal{F}_{s-1} \right] + \ln \frac{1}{\delta}.$$

743 And also

$$\sum_{s=1}^{t} X_s \leq \sum_{s=1}^{t} \ln \mathbb{E} \left[e^{X_s} | \mathcal{F}_{s-1} \right] + \ln \frac{1}{\delta}.$$

Proof. It only suffices to show the case when $\{\xi_i\}_{i=1}^T$ is a finite case. The statement implies the original lemma by pushing $T \to +\infty$. Let

$$U_{\tau} = -\sum_{s=1}^{\tau} X_s - \sum_{s=1}^{\tau} \ln \mathbb{E}_{\mathcal{S}_t} e^{-X_s}$$

where τ is some stopping time. By Lemma 1 we have $\mathbb{E}(\exp^{U_{\tau}}) = 1$. (In this case, we apply $Z_s = \xi_s = -X_s$ in Lemma 1). Now we define the stopping time τ as

$$\tau = \min\left(T, \min\left(n : U_n \ge -\ln\delta\right)\right)$$

756 Then it follows that

$$\mathbb{P}\left(\exists n: U_{\tau} \ge -\ln\delta\right) \le \mathbb{E}\left[e^{U_{\tau}+\ln\delta}\right] = \delta\mathbb{E}\left[e^{U_{\tau}}\right] = \delta.$$

where the first inequality is by the famous Markov Inequality.

By considering the complementary event, we know with probability at least $1 - \delta$, the following inequality holds for any $t \in [T]$

$$-\sum_{s=1}^{t} X_s \leq \sum_{s=1}^{t} \ln \mathbb{E}\left[e^{-X_s} |\mathcal{F}_{s-1}\right] + \ln \frac{1}{\delta}.$$

Lemma 3 (Freedman's inequality). Let $\{X_t\}_{t \leq T}$ be any sequence of real-valued random variables adapted to filtration $\{\mathcal{F}_t\}_{t \leq T}$. If $|X_t| \leq R$ almost surely, then for any $\eta \in (0, \frac{1}{2R}]$ it holds that with probability at least $1 - \delta$,

$$\sum_{t=1}^{T} X_t \leq \sum_{t=1}^{T} \mathbb{E}(X_t | \mathcal{F}_{t-1}) + \eta \sum_{t=1}^{T} \operatorname{Var} \left[X_t | \mathcal{F}_{t-1} \right] + \frac{\ln \frac{1}{\delta}}{\eta}.$$

Furtheremore, we have

$$\sum_{t=1}^{T} \mathbb{E}(X_t | \mathcal{F}_{t-1}) \leq \sum_{s=1}^{T} X_s + \eta \sum_{s=1}^{T} \operatorname{Var} \left[X_s | \mathcal{F}_{s-1} \right] + \frac{\ln \frac{1}{\delta}}{\eta}.$$

Proof. For any random variable X we assume $|X| \le R$ almost surely, and let $X' = X - \mathbb{E}X$. We then get $|X'| \le 2R$ almost surely, and we have

781
782
783
784
785
786
787

$$\ln \mathbb{E} \left[e^{\lambda X} \right] = \lambda \mathbb{E} X + \ln \mathbb{E} e^{\lambda X'}$$

$$\leq \lambda \mathbb{E} X + \mathbb{E} e^{\lambda X' - 1}$$

$$= \lambda \mathbb{E} X + \lambda^2 \mathbb{E} \left[\frac{e^{\lambda X' - \lambda X' - 1}}{(\lambda X')^2} (X')^2 \right]$$

$$\leq \lambda \mathbb{E} X + \lambda^2 \phi(\lambda 2R) \operatorname{Var} [X],$$

where $\phi(x) = \frac{e^x - x - 1}{x^2}$; the first inequality uses $\ln x \le x - 1$; the second inequality exploits the fact that $\phi(x)$ is non-decreasing. Then, we consider the Taylor expansion: $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, and we have

791
792
793
$$\phi(x) = \sum_{n=2}^{\infty} \left(\frac{x^{n-2}}{n!}\right) \le \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n.$$

For any $\lambda \in (0, \frac{1}{2R}]$, we could get a finite upper bound for $\ln \mathbb{E}\left[e^{\lambda X}\right]$:

$$\ln \mathbb{E}\left[e^{\lambda X}\right] \le \lambda \mathbb{E}X + \lambda^2 \frac{1}{2} \sum_{n=0}^{\infty} (\lambda R)^n \operatorname{Var}\left[X\right] = \lambda \mathbb{E}X + \frac{\lambda^2 \operatorname{Var}\left[X\right]}{2(1 - \lambda R)}.$$
(A.1)

Similar to Lemma 2, we let

$$V_{\tau}(\lambda) = \lambda \sum_{s=1}^{\tau} X_s - \sum_{s=1}^{\tau} \ln \mathbb{E}_{\mathcal{S}_t} e^{\lambda X_s},$$

where τ is some stopping time. By Lemma 1 we have $\mathbb{E}(\exp^{V_{\tau}(\lambda)}) = 1$. (In this case, we apply $Z_s = \xi_s = X_s$ in Lemma 1). Now we define the stopping time τ as

$$\tau = \min\left(T, \min\left(n : V_n(\lambda) \ge -\ln\delta\right)\right).$$

Then it follows that

$$\mathbb{P}\left(\exists n: V_{\tau}(\lambda) \geq -\ln \delta\right) \leq \mathbb{E}\left[e^{V_{\tau}(\lambda) + \ln \delta}\right] = \delta \mathbb{E}\left[V_{\tau}(\lambda)\right] = \delta,$$

where the first inequality is by the famous Markov Inequality.

By considering the complementary event, we know with probability at least $1 - \delta$, the following inequality holds

$$\sum_{s=1}^{T} X_s \leq \frac{1}{\lambda} \left(\sum_{s=1}^{T} \ln \mathbb{E} \left[e^{\lambda X_s} | \mathcal{F}_{s-1} \right] + \ln \frac{1}{\delta} \right).$$

Then we take $\lambda = \eta \in (0, \frac{1}{2R}]$ and use equation (A.1) to prove the original statement:

By letting $X'_s = -X_s$, we could easily get

$$\sum_{t=1}^{T} \mathbb{E}(X_t | \mathcal{F}_{t-1}) \le \sum_{s=1}^{T} X_s + \eta \sum_{s=1}^{T} \operatorname{Var}\left[X_s | \mathcal{F}_{s-1}\right] + \frac{\ln \frac{1}{\delta}}{\eta}.$$

Lemma 4 (Elliptical Potential Lemma). Let $\{x_s\}_{s \in [k]}$ be a sequence of vectors with $x_s \in \mathcal{V}$ for some Hilbert space \mathcal{V} . Let Λ_0 be a positive definite matrix and define $\Lambda_k = \Lambda_0 + \sum_{s=1}^k x_s x_s^{\mathsf{T}}$. Then it holds that

$$\sum_{s=1}^{k} \min\left\{1, \|x_s\|_{\Lambda_s^{-1}}\right\}^2 \le 2\ln\left(\frac{\det(\Lambda_{K+1})}{\det(\Lambda_0)}\right).$$

Proof. This proof mainly follows Lemma 11 in Abbasi-Yadkori et al. (2011). By simple calculation, we have

$$\det(\Lambda_k) = \det(\Lambda_{k-1} + x_k x_k^{\mathsf{T}}) = \det(\Lambda_{k-1}) \det(I + \Lambda_{k-1}^{-\frac{1}{2}} x_k (\Lambda_{k-1}^{-\frac{1}{2}} x_k)^{\mathsf{T}})$$
$$= \det(\Lambda_{k-1}) (1 + ||x_{n-1}||_{\Lambda_{k-1}^{-1}}^2) = \det(\Lambda_0) \prod_{s=1}^k \left(1 + ||s_s||_{\Lambda_{s-1}^{-1}}^2\right),$$

where we use the fact that all eigenvalues of a matrix of the form $I + xx^{\top}$ are 1 except one eigenvalue, which is $1 + ||x||_2^2$ and which corresponds to the eigenvector x. Using $\log(1 + t) \le t$, we can bound $\log(\det(\Lambda_k))$ by

$$\log \det(\Lambda_k) \leq \log \det(\Lambda_0) + \sum_{s=1}^k \|x_s\|_{\Lambda_{s-1}^{-1}}^2.$$

Combining $x \le 2\log(1+x)$ when $x \in [0, 1]$, we get

$$\sum_{s=1}^{k} \min\left(1, \|x_s\|_{\Lambda_{s-1}^{-1}}^2\right) \le 2 \sum_{t=1}^{n} \log\left(1 + \|x_s\|_{\Lambda_{s-1}^{-1}}^2\right) = 2 \ln\left(\frac{\det(\Lambda_k)}{\det(\Lambda_0)}\right).$$

Lemma 5. (Lemma G.2 of Chen et al. (2023)) We consider a fixed policy π and Let \tilde{Q} be an estimate of Q^{π} . We define a V-function \tilde{V} and an advantage function \tilde{A} by letting

$$\tilde{V}_h(s) = \frac{1}{\eta} \log \left(\sum_{b \in \mathcal{B}} \exp(\eta \cdot \tilde{Q}_h(s, b)) \right), \qquad \tilde{A}_h(s, a) = \tilde{Q}_h(s, b) - \tilde{V}_h(s).$$

Furthermore, we define a follower's policy \tilde{v} be letting $\tilde{v}_h(b|s) = \exp(\eta \cdot \tilde{A}_h(s, b))$. Then we have

$$\mathbb{D}_{\mathbb{H}}\left(\upsilon^{\pi},\tilde{\upsilon}\right) \geq \frac{\eta^{2}}{8(1+\eta B_{A})^{2}} \cdot \left\langle\upsilon^{\pi},(\tilde{A}-A)^{2}\right\rangle_{\mathcal{B}}.$$

where $B_A = 2 (\eta^{-1} \log |\mathcal{B}| + 1)$.

Lemma 6. For any $h \in [H]$ and $(s_h, b_h) \in S \times B$, using the same notation as in Lemma 5, we have $A_{h}^{\pi}(s_{h}, b_{h}) - \tilde{A}_{h}(s_{h}, b_{h}) = (\mathbb{E}_{s_{h}, b_{h}} - \mathbb{E}_{s_{h}}) \left[Q_{h}(s_{h}, b_{h})^{\pi} - \tilde{Q}_{h}(s_{h}, b_{h}) \right] + \frac{1}{n} \mathrm{KL} \left(v_{h}^{\pi} \| \tilde{v}_{h} \right).$

Proof. This proof mainly follows Lemma G.4 in Chen et al. (2023). At first, we notice the fact that

$$\frac{1}{\eta}\mathcal{H}(\upsilon_h^{\pi}) = -\frac{1}{\eta}\left\langle\upsilon_h^{\pi}, \log\upsilon_h^{\pi}\right\rangle_{\mathcal{B}} = -\left\langle\upsilon_h^{\pi}, Q_h^{\pi}(s_h, b_h) - V_h^{\pi}(s_h)\right\rangle_{\mathcal{B}},\tag{A.2}$$

$$\frac{1}{\eta}\mathcal{H}(\tilde{v}_h) = -\frac{1}{\eta}\left\langle \tilde{v}_h^{\pi}, \log \tilde{v}_h \right\rangle_{\mathcal{B}} = -\left\langle \tilde{v}_h, \tilde{Q}_h(s_h, b_h) - \tilde{V}_h(s_h) \right\rangle_{\mathcal{B}}.$$
(A.3)

Then we could write the difference of V-functions as

 $V_h^{\pi}(s_h) - \tilde{V}_h(s_h)$

$$= \left\langle v_h^{\pi}, V_h^{\pi}(s_h) \right\rangle_{\mathcal{B}} - \left\langle \tilde{v}_h, \tilde{V}_h(s_h) \right\rangle_{\mathcal{B}}$$

$$= \left\langle v_h^{\pi}, Q_h^{\pi}(s_h, b_h) \right\rangle_{\mathcal{B}} + \frac{1}{\eta} \mathcal{H}(v_h^{\pi}) - \left\langle \tilde{v}_h, \tilde{Q}_h(s_h, b_h) \right\rangle_{\mathcal{B}} - \frac{1}{\eta} \mathcal{H}(\tilde{v}_h)$$
880

$$= \left\langle v_h^{\pi}, Q_h^{\pi}(s_h, b_h) - \tilde{Q}_h(s_h, b_h) \right\rangle_{\mathcal{B}} + \left\langle v_h^{\pi} - \tilde{v}_h, \tilde{Q}_h(s_h, b_h) \right\rangle_{\mathcal{B}}$$

 $-\left\langle v_h^{\pi}, Q_h^{\pi}(s_h, b_h) - V_h^{\pi}(s_h) \right\rangle_{\mathcal{B}} + \left\langle \tilde{v}_h, \tilde{Q}_h(s_h, b_h) - \tilde{V}_h(s_h) \right\rangle_{\mathcal{B}},$

where the first equality exploits the fact that $V_h(s_h)$ is constant w.r.t. $b_h \in \mathcal{B}$ and v_h^{π}, \tilde{v}_h are probability distributions on \mathcal{B} ; the second equality is by equation (A.2); the last equality is by simple algebraic tricks.

Then, by direct calculation and omitting (s_h, b_h) for Q_h^{π}, \tilde{Q}_h and (s_h) for V_h, \tilde{V}_h , we have

$$-\left\langle v_{h}^{\pi}, Q_{h}^{\pi} - V_{h}^{\pi} - (\tilde{Q}_{h} - \tilde{V}_{h})\right\rangle_{\mathcal{B}} = \left\langle v_{h}^{\pi} - \tilde{v}_{h}, \tilde{Q}_{h}\right\rangle_{\mathcal{B}} - \left\langle v_{h}^{\pi}, Q_{h}^{\pi} - V_{h}^{\pi}\right\rangle_{\mathcal{B}} + \left\langle \tilde{v}_{h}, \tilde{Q}_{h} - \tilde{V}_{h}\right\rangle_{\mathcal{B}}$$

where we use the fact $\langle v_h^{\pi}, \tilde{V}_h \rangle_{\mathcal{B}} = \langle \tilde{v}_h, \tilde{V}_h \rangle_{\mathcal{B}}$, since \tilde{V}_h is a constant w.r.t. $b_h \in \mathcal{B}$. Therefore, we can write $V_h^{\pi}(s_h) - \tilde{V}_h(s_h)$ as

$$\begin{split} &V_{h}^{\pi}(s_{h}) - \tilde{V}_{h}(s_{h}) \\ &= \left\langle v_{h}^{\pi}, \mathcal{Q}_{h}^{\pi}(s_{h}, b_{h}) - \tilde{\mathcal{Q}}_{h}(s_{h}, b_{h}) \right\rangle_{\mathcal{B}} - \left\langle v_{h}, \mathcal{Q}_{h}^{\pi}(s_{h}, b_{h}) - V_{h}^{\pi}(s_{h}) - (\tilde{\mathcal{Q}}_{h}(s_{h}, b_{h}) - \tilde{V}_{h}(s_{h})) \right\rangle_{\mathcal{B}} \\ &= \left\langle v_{h}^{\pi}, \mathcal{Q}_{h}^{\pi}(s_{h}, b_{h}) - \tilde{\mathcal{Q}}_{h}(s_{h}, b_{h}) \right\rangle_{\mathcal{B}} - \left\langle v_{h}, A_{h}^{\pi}(s_{h}, b_{h}) - \tilde{A}_{h}(s_{h}, b_{h}) \right\rangle_{\mathcal{B}} \\ &= \left\langle v_{h}^{\pi}, \mathcal{Q}_{h}^{\pi}(s_{h}, b_{h}) - \tilde{\mathcal{Q}}_{h}(s_{h}, b_{h}) \right\rangle_{\mathcal{B}} - \frac{1}{\eta} \mathrm{KL} \left(v_{h}^{\pi} \| \tilde{v}_{h} \right)_{\mathcal{B}}. \end{split}$$

We notice the fact that KL $(v_h^{\pi} \| \tilde{v}_h) = \eta \langle v_h^{\pi}, A_h^{\pi}(s_h, b_h) - \tilde{A}_h(s_h, b_h) \rangle_{h \in \mathcal{B}}$. At last, we could get

$$A_h^{\pi}(s_h, b_h) - \tilde{A}_h(s_h, b_h) = \left(\mathbb{E}_{s_h, b_h} - \mathbb{E}_{s_h}\right) \left[Q_h^{\pi}(s_h, b_h) - \tilde{Q}_h(s_h, b_h)\right] + \frac{1}{\eta} \mathrm{KL}\left(v_h^{\pi} \| \tilde{v}_h\right).$$

Lemma 7. We define a distance ρ_1 on Θ by letting

$$\rho_1(\theta, \tilde{\theta}) := \max_{\pi \in \Pi, s_h \in \mathcal{S}, h \in [H]} \left\{ D_{\mathrm{H}} \left(v_h^{\pi, \theta}(\cdot | s_h), v_h^{\pi, \tilde{\theta}}(\cdot | s_h) \right), (1+\eta) \left\| r_h^{\pi, \theta} - r_h^{\pi, \tilde{\theta}} \right\|_{\infty} \right\}.$$
(A.4)

Let $N_{\rho_1}(\theta, \epsilon)$ be the ϵ -covering number of Θ with respect to the distance ρ_1 . For any $\delta \in (0, 1)$, we set $\beta_1 = 2\ln(H \cdot \mathcal{N}(\Theta, T^{-1})/\delta) + 8$. For $\forall \theta \in \Theta, \forall h \in [H]$,

$$\sum_{i=1}^{t-1} \mathbb{E}^{\pi^{i}} \operatorname{Var}_{s_{h}}^{\pi^{i},\theta^{\star}} \left[r_{h}^{\pi^{i},\theta}(s_{h},b_{h}) - r_{h}^{\pi^{i},\theta^{\star}}(s_{h},b_{h}) \right] \leq 4C_{\eta}^{2} (L_{h,1}^{t}(\theta) - L_{h,1}^{t}(\theta^{\star})) + \beta,$$

where we define

$$\operatorname{Var}_{s_h}^{\pi,\theta}[Z] = \operatorname{Var}^{\pi,\theta}[Z|s_h] = \mathbb{E}^{\pi_h, \upsilon_h^{\pi,\theta}} [(Z - \mathbb{E}^{\pi_h, \upsilon_h^{\pi,\theta}}[Z|s_h])^2 |s_h],$$
$$C_\eta = \frac{1}{\eta} + B_A, B_A = 2(\eta^{-1} \log |\mathcal{B}| + 1).$$

Proof. We first exploit Lemma 2 with $X_t^h = \frac{1}{2}(\log v_h^{\pi_i,\theta}(s_h^t|b_h^t) - \log v_h^{\pi_i,\theta^*}(s_h^t|b_h^t))$. We choose filtration to be $\mathcal{F}_{h;t-1}\{X_i^h : i \in [t-1]\}$. Let $\mathcal{N}_{\rho_1}(\Theta, \epsilon)$ be the covering number for the ϵ -covering net of Θ with respect to norm ρ_1 defined in A.4. Let Θ_{ϵ} be the ϵ -covering net of Θ . By Lemma 2, w.p. at least $1 - \delta$, for a fixed $\theta \in \Theta_{\epsilon}$ and a fixed $h \in [H]$, we have

$$\begin{split} \sum_{t=1}^{t-1} X_t^h &= \frac{1}{2} (L_{h,1}^t(\theta^\star) - L_{h,1}^t(\theta)) \\ &\stackrel{(a)}{\leq} \sum_{t=1}^{t-1} \log \mathbb{E}(e^{X_t} | \mathcal{F}_{t-1}) + \frac{1}{\delta} \\ &\stackrel{(b)}{=} \sum_{i=1}^{t-1} \log \mathbb{E}^{\pi^i} \left[\sqrt{\frac{\upsilon^{\pi_i,\theta}(\cdot|s_h)}{\upsilon^{\pi_i,\theta^\star}(\cdot|s_h)}} \right] + \frac{1}{\delta} \\ &\stackrel{(c)}{\leq} - \sum_{i=1}^{t-1} \mathbb{E}^{\pi^i} \left[\mathbb{D}_{\mathbb{H}}^2 \left(\upsilon^{\pi_i,\theta}(\cdot|s_h), \upsilon^{\pi_i,\theta^\star}(\cdot|s_h) \right) \right] + \frac{1}{\delta} \end{split}$$

where the first equality is by the definition of $L_{h,1}^t$; (a) is by Lemma 2; (b) is by the definition of X_t ; (c) is by the fact that $\log(x) \le x - 1$ and the definition of Hellinger distance.

By taking union bound on $\theta \in \Theta_{\epsilon}$ and $h \in [H]$, we have for any $\theta \in \Theta$, any $h \in [H]$, with probability at least $1 - \delta$, for $\forall t \in [T]$

$$\frac{1}{2}(L_{h,1}^{t}(\theta^{\star}) - L_{h,1}^{t}(\theta)) \leq -\sum_{i=1}^{t-1} \mathbb{E}^{\pi^{i}} \left[\mathbb{D}_{\mathbb{H}}^{2} \left(\upsilon^{\pi_{i},\theta}(\cdot|s_{h}), \upsilon^{\pi_{i},\theta^{\star}}(\cdot|s_{h}) \right) \right] + \frac{\log \left(H\mathcal{N}_{\rho}(\Theta, \epsilon) \right)}{\delta}.$$
(A.5)

On the other hand, by the definition of ρ_1 in equation (A.4), for any $\theta, \tilde{\theta} \in \Theta$, we have

$$\begin{aligned} \left| \mathbb{D}_{\mathbb{H}}^{2} \left(\boldsymbol{\upsilon}_{h}^{\pi,\theta}, \boldsymbol{\upsilon}_{h}^{\pi,\theta^{\star}} \right) - \mathbb{D}_{\mathbb{H}}^{2} \left(\boldsymbol{\upsilon}_{h}^{\pi,\tilde{\theta}}, \boldsymbol{\upsilon}_{h}^{\pi,\theta^{\star}} \right) \right| \\ \stackrel{(a)}{=} \left| \mathbb{D}_{\mathbb{H}} \left(\boldsymbol{\upsilon}_{h}^{\pi,\theta}, \boldsymbol{\upsilon}_{h}^{\pi,\theta^{\star}} \right) + \mathbb{D}_{\mathbb{H}} \left(\boldsymbol{\upsilon}_{h}^{\pi,\tilde{\theta}}, \boldsymbol{\upsilon}_{h}^{\pi,\theta^{\star}} \right) \right| \cdot \left| \mathbb{D}_{\mathbb{H}} \left(\boldsymbol{\upsilon}_{h}^{\pi,\theta}, \boldsymbol{\upsilon}_{h}^{\pi,\theta^{\star}} \right) - \mathbb{D}_{\mathbb{H}} \left(\boldsymbol{\upsilon}_{h}^{\pi,\tilde{\theta}}, \boldsymbol{\upsilon}_{h}^{\pi,\theta^{\star}} \right) \right| \\ \stackrel{(b)}{\leq} 2\mathbb{D}_{\mathbb{H}} \left(\boldsymbol{\upsilon}_{h}^{\pi,\tilde{\theta}}, \boldsymbol{\upsilon}_{h}^{\pi,\theta} \right) \\ \stackrel{(c)}{\leq} 2\rho_{1}(\theta,\tilde{\theta}), \end{aligned}$$

where (a) is by the fact that $a^2 - b^2 = (a+b)(a-b) \le |a+b||a-b|$; (b) is by the fact that $D_{\mathbb{H}}(\cdot, \cdot) \le 1$; (c) is by the definition of ρ_1 . Then noting that $L_{h,1}^t(\theta) = -\sum_{i=1}^t \eta A_h^{\pi^i, \theta}(s_h^i, b_h^i)$, for any $\theta, \tilde{\theta} \in \Theta$, we have

$$\begin{split} \left| L_{h,1}^{t}(\theta) - L_{h,1}^{t}(\tilde{\theta}) \right| &\leq \eta T \max_{i \in [t-1]} \left| A_{h}^{\pi^{i},\theta}(s_{h}^{i}, b_{h}^{i}) - A_{h}^{\pi^{i},\tilde{\theta}}(s_{h}^{i}, b_{h}^{i}) \right| \\ &\leq 2\eta T \max_{i \in [t-1]} \left\| r_{h}^{\pi^{i},\theta} - r_{h}^{\pi^{i},\tilde{\theta}} \right\|_{\infty} \\ &\leq 2T \cdot \rho_{1}(\theta,\tilde{\theta}), \end{split}$$

where the second inequality uses the fact that $\left| \left(V_{h}^{\pi,\theta} - V_{h}^{\pi,\tilde{\theta}} \right)(s_{h}) \right| \leq \left\| r_{h}^{\pi,\theta} - r_{h}^{\pi,\tilde{\theta}} \right\|_{\infty}$; and the last inequality is by the definition of ρ_{1} . Therefore, all the error terms in $\mathbb{D}^{2}_{\mathbb{H}}(\cdot, \cdot), L_{h,1}^{t}(\theta^{\star})$ and $L_{h,1}^{t}(\theta)$ induced by ϵ -net could be bounded by $2T\epsilon$. By adding an extra $4T\epsilon$ in equation (A.5), we have for all $\theta \in \Theta, h \in [H], t \in [T], \text{ w.p. } 1 - \delta$,

969
970
971

$$\frac{1}{2}(L_{h,1}^{t}(\theta^{\star}) - L_{h,1}^{t}(\theta)) \leq -\sum_{i=1}^{t-1} \mathbb{E}^{\pi^{i}} \left[\mathbb{D}_{\mathbb{H}}^{2} \left(\upsilon^{\pi_{i},\theta}(\cdot|s_{h}), \upsilon^{\pi_{i},\theta^{\star}}(\cdot|s_{h}) \right) \right] + \frac{\log \left(H\mathcal{N}_{\rho}(\Theta, \epsilon) \right)}{\delta} + 4T\epsilon.$$
(A.6)

In the rest of the proof we take $\epsilon = \frac{1}{T}$ and let $\beta_1 = 2\log(HN_{\rho}(\Theta, T^{-1})/\delta) + 8$. By Lemma 5, we have

$$8\mathbb{D}_{\mathbb{H}}^{2}\left(\upsilon^{\pi_{i},\theta}(\cdot|s_{h}),\upsilon^{\pi_{i},\theta^{\star}}(\cdot|s_{h})\right) \geq \left(\frac{\eta}{1+\eta B_{A}}\right)^{2} \cdot \left\langle\upsilon_{h}^{\pi,\theta^{\star}},\left(A_{h}^{\pi,\theta}-A_{h}^{\pi,\theta^{\star}}\right)^{2}\right\rangle$$
$$\geq \left(\frac{\eta}{1+\eta B_{A}}\right)^{2} \cdot \mathbb{E}_{s_{h}}^{\pi,\theta^{\star}}\left(A_{h}^{\pi,\theta}-A_{h}^{\pi,\theta^{\star}}\right)^{2}$$
$$\geq \left(\frac{\eta}{1+\eta B_{A}}\right)^{2} \cdot \mathbb{E}_{s_{h}}^{\pi,\theta^{\star}}\left((\mathbb{E}_{s_{h},b_{h}}^{\pi,\theta^{\star}}-\mathbb{E}_{s_{h}}^{\pi,\theta^{\star}})[r_{h}^{\pi,\theta}-r_{h}^{\pi,\theta^{\star}}]\right)^{2}$$
$$= \left(\frac{\eta}{1+\eta B_{A}}\right)^{2} \cdot \operatorname{Var}_{s_{h}}^{\pi^{i},\theta^{\star}}[r_{h}^{\pi,\theta}(s_{h},b_{h})-r_{h}^{\pi,\theta^{\star}}(s_{h},b_{h})],$$

> where the second inequality is by Jensen's inequality of x^2 ; the last inequality is by Lemma 6; the last equality is by the definition of $\operatorname{Var}_{s_h}^{\pi^i,\theta}(\cdot)$. Therefore, by letting $C_{\eta} = \frac{1}{n} + B_A$ and insert the above result back to equation (A.6), we have

$$\sum_{i=1}^{t-1} \mathbb{E}^{\pi^{i}} \operatorname{Var}_{s_{h}}^{\pi^{i},\theta^{\star}} \left[r_{h}^{\pi^{i},\theta}(s_{h},b_{h}) - r_{h}^{\pi^{i},\theta^{\star}}(s_{h},b_{h}) \right] \le 4C_{\eta}^{2} (L_{h,1}^{t}(\theta) - L_{h,1}^{t}(\theta^{\star})) + \beta.$$

Lemma 8. Let $\mathcal{F}_h = U_h \times U_{h+1} \times \Theta$, we define the following distance on for $f, \tilde{f} \in \mathcal{F}_h$:

$$\rho_2(f, \tilde{f}) := \max_{h \in [H]} \left\{ \left\| U_h - \tilde{U}_h \right\|_{\infty}, \left\| T_{h+1}^{\star, \theta} U(h+1)(\cdot) - T_{h+1}^{\star, \tilde{\theta}} \tilde{U}(h+1)(\cdot) \right\|_{\infty} \right\}.$$
(A.7)

Let $N_{\rho_2}(\theta, \epsilon)$ be the ϵ -covering number of \mathcal{F} with respect to the distance ρ_2 . For any $\delta \in (0, 1)$, we set $\beta_2 = 4H^2 \ln(\frac{HN_{\rho_2}(\mathcal{F},\epsilon)}{\delta}) + 5$. For $\forall \{f_h^t\}_{h \in [H], t \in [T]} \subseteq \mathcal{F}$

$$L_{h,2}^{t-1}(f_h^{\star}) - L_{h,2}^{t-1}(f_h^t) \le -\frac{1}{2} \sum_{i=1}^{t-1} \mathbb{E}^{\pi^i} \left[\left(U_h - \mathbb{T}_{h+1}^{*,\theta^t} U_{h+1} \right) (s_h, a_h, b_h)^2 \right] + \beta_2.$$

Proof. At first we verify our loss l_h^t satisfies generalized Bellman completeness and boundedness, which is defined as follows:

Assumption 4. The function $l : \mathcal{U}_h \times \mathcal{U}_{h+1} \times \Theta \times (S \times \mathcal{A} \times \mathcal{B} \times \mathbb{R} \times S) \rightarrow \mathbb{R}$ satisfies:

1. (Generalized Bellman Completeness) There exists a functional operator $\mathcal{P}_h : \mathcal{H}_{h+1} \to \mathcal{H}_h$ such that for any $(U_h, U_{h+1}, \theta) \in \mathcal{H}_h \times \mathcal{H}_{h+1} \times \Theta$ and $D_h = (s_h, a_h, b_h, s_{h+1}) \in (\mathcal{S} \times \mathcal{A} \times \mathcal{B} \times \mathbb{R} \times \mathcal{S}).$

$$l(U_h, U_{h+1}, \theta; D_h) - l(\mathcal{P}_h U_{h+1}, U_{h+1}, \theta; D_h) = \mathbb{E}_{s_{h+1} \sim \mathbb{P}_h}(|s_h, a_h, b_h|) \left[l(U_h, U_{h+1}, \theta; D_h) \right],$$

where we require $\mathcal{P}_h U_{h+1}^{\star} = U_h^{\star}$ and that $\mathcal{P}_h U_{h+1} \in \mathcal{H}_h$ for any $U_{h+1} \in \mathcal{U}_{h+1}$ and $h \in [H]$;

2. (Boundedness) It holds that $|l(U_h, U_{h+1}, \theta; D_h)| \leq B_l$ for some $B_l > 0$ and for any $(U_h, U_{h+1}, \theta) \in$ $\mathcal{H}_h \times \mathcal{H}_{h+1} \times \Theta$ and $D_h = (s_h, a_h, b_h, s_{h+1}) \in (\mathcal{S} \times \mathcal{A} \times \mathcal{B} \times \mathbb{R} \times \mathcal{S}).$

First we verify the Generalized Bellman Completeness:

$$l_h^t(U_h, U_{h+1}, \theta; D_h^t) - \mathbb{E}_{s_{h+1} \sim \mathbb{P}_h(\cdot|s_h, a_h, b_h)} \left[l_h^t(U_h, U_{h+1}, \theta; D_h) \right]$$

 $l_{h}^{\star}(U_{h}, U_{h+1}, \theta; D_{h}^{\star}) - \mathbb{E}_{s_{h+1} \sim \mathbb{P}_{h}(\cdot|s_{h}, a_{h}, b_{h})} [\iota_{h}(U_{h}, U_{h+1}, \theta, D_{h})] = [(U_{h} - u_{h})(s_{h}, a_{h}, b_{h}) - T^{\star,\theta}(s_{h+1})] - [U_{h}(s_{h}, a_{h}, b_{h}) - \mathbb{T}^{\star,\theta}_{h+1}(U_{h+1})] - \mathbb{T}^{\star,\theta}(U_{h+1}) - T^{\star,\theta}(U_{h+1})(s_{h+1})]$

$$= \mathbb{T}_{h+1}^{*,\circ}(U_{h+1}) - T^{*,\circ}(U_{h+1})(s_{h+1})$$

$$= (\mathbb{E}_{s_{h+1} \sim \mathbb{P}(\cdot | s_h, a_h, b_h)} [T^{\star, \theta}(U_{h+1})(s_{h+1})] - u_h)(s_h, a_h, b_h) - T^{\star, \theta}(U_{h+1})(s_{h+1}).$$

Therefore, the operator \mathcal{P}_h is $\mathbb{E}_{s_{h+1} \sim \mathbb{P}(\cdot|s_h, a_h, b_h)}[T^{\star, \theta}(\cdot)(s_{h+1})]$ and the generalized Bellman com-pleteness holds. To check boundedness, we only need to notice that $u_h \in [0, 1], \forall h \in [H]$, so $|l_h^t(U_h, U_{h+1}, \theta; D_h^t)| \le H, \forall h \in [H]$. Then we generalize the proof of Proposition 5.1 in Liu et al. (2024a) to show our wanted result.

1029 We define the random variables $X_{h,f}^t$ as

$$X_{h,f}^{t} = l_{h}^{t} (U_{h}, U_{h+1}, \theta; D_{h}^{t})^{2} - l_{h}^{t} (\mathcal{P}_{h} U_{h+1}, U_{h+1}, \theta; D_{h}^{t})^{2}.$$
(A.8)

For any $f = (U_h, U_{h+1}, \theta) \in \mathcal{U}_h \times \mathcal{U}_{h+1} \times \Theta$ and the operator \mathcal{P}_h is defined as above. We first show $X_{h,f}^t$ is an unbiased estimator of the discrepancy function $d_h^t(U_h, U_{h+1}; D_h^t)^2$, which is defined as

$$d_h^t(f; D_h^t) = \mathbb{E}_{s_{h+1} \sim \mathbb{P}_h(\cdot|s_h, a_h, b_h)} [l_h^t(f; D_h^t)] = U_h - \mathbb{T}_h^{\star, \theta}(U_{h+1}).$$

1037 For simplicity we also let $f_{\mathcal{P}} = (\mathcal{P}_h U_{h+1}, U_{h+1}, \theta)$ Consider that

$$l_{h}^{t}(f; D_{h}^{t})^{2} = \left(l_{h}^{t}(f; D_{h}^{t}) - l_{h}^{t}(f_{\mathcal{P}}; D_{h}^{t}) + l_{h}^{t}(\mathcal{P}_{h}U_{h+1}, U_{h+1}, \theta; D_{h}^{t})\right)^{2}$$

= $\left(d_{h}^{t}(f; D_{h}^{t}) + l_{h}^{t}(f_{\mathcal{P}}; D_{h}^{t})\right)^{2}$
= $\left(d_{h}^{t}(f; D_{h}^{t})\right)^{2} + l_{h}^{t}(f_{\mathcal{P}}; D_{h}^{t})^{2} + 2d_{h}^{t}(f; D_{h}^{t}) \cdot l_{h}^{t}(f_{\mathcal{P}}, \theta; D_{h}^{t}),$ (A.9)

where the second equality is by the generalized Bellman completeness. Exploiting the completeness again, we have

1045
1046

$$\mathbb{E}_{s_{h+1}\sim\mathbb{P}_h(\cdot|s_h,a_h,b_h)} \left[d_h^t(f;D_h^t) \cdot l_h^t(f_{\mathcal{P}};D_h^t) \right]$$
1047
1048
1048
1049
1050

$$\mathbb{E}_{s_{h+1}\sim\mathbb{P}_h(\cdot|s_h,a_h,b_h)} \left[l_h^t(\mathcal{P}_h U_{h+1}, U_{h+1}, \theta; D_h^t) \right]$$
1050

$$\mathbb{E}_{s_{h+1}\sim\mathbb{P}_h(\cdot|s_h,a_h,b_h)} \left[d_h^t(f;D_h^t) - l_h^t(f;D_h^t) \right]$$
1050

$$=0.$$

1051 Inserting the result back to A.9, we have

$$\mathbb{E}_{s_{h+1} \sim \mathbb{P}_h(\cdot|s_h, a_h, b_h)}[X_{h,f}^t] = d_h^t(f; D_h^t)^2.$$
(A.10)

1055 Then for each time step *h*, we define the filtration $\{\mathcal{F}_{h,t}\}_{t=1}^{T}$ with

$$\mathcal{F}_{h,t} = \sigma \left(\sum_{s=1}^{k} \sum_{h=1}^{H} D_h^s \right),$$

1060 where $D_h^t = \{s_h^t, a_h^t, b_h^t, u_h^t, s_{h+1}^t\}$. From the previous arguments, we can derive that

$$\mathbb{E}[X_{h,f}^t \mid \mathcal{F}_{h,t-1}] = \mathbb{E}\left[\mathbb{E}_{s_{h+1}\sim\mathbb{P}_h(\cdot\mid s_h, a_h, b_h)}[X_{h,f}^t]|\mathcal{F}_{h,t-1}\right] = \mathbb{E}^{\pi^t}\left[d_h^t(f; D_h^t)^2\right],\tag{A.11}$$

$$\operatorname{Var}\left[X_{h,f}^{t} \mid \mathcal{F}_{h,t-1}\right] \leq \mathbb{E}[X_{h,f}^{t}]^{2} \mid \mathcal{F}_{h,t-1}] \leq B_{l}^{2} \mathbb{E}[X_{h,f}^{t} \mid \mathcal{F}_{h,t-1}] = B_{l}^{2} \mathbb{E}^{\pi^{t}}[d_{h}^{t}(f;D_{h}^{t})^{2}], \quad (A.12)$$

where \mathbb{E}^{π^t} means the data D_h^t is generated by measure $(\pi^t, \upsilon_h^{\pi^t}, P_h)$. By Lemma 3, $(|X_{h,f}^t| \le B_l^2)$ and we set $\eta = \frac{1}{2B_l^2}$), for any fixed $h \in [H], t \in [T], U \in \mathcal{U}$, we have

$$\begin{aligned} \left| \sum_{s=1}^{t-1} \mathbb{E}[X_{h,f}^{s} \mid \mathcal{F}_{h,t-1}] - \sum_{s=1}^{t-1} X_{h,f}^{s} \right| &\leq \frac{1}{2B_{l}^{2}} \sum_{s=1}^{t-1} \operatorname{Var}\left[X_{h,f}^{s} \mid \mathcal{F}_{h,s-1} \right] + 2B_{l}^{2} \log(\frac{1}{\delta}) \\ &\leq \frac{1}{2} \sum_{s=1}^{t-1} \mathbb{E}^{\pi^{s}} \left[d_{h}^{s}(f; D_{h}^{s})^{2} \right] + 2B_{l}^{2} \log(\frac{1}{\delta}). \end{aligned}$$

Rearranging the above terms, we can get

1078
1079
$$-\sum_{s=1}^{t-1} X_{h,f}^s \le -\frac{1}{2} \mathbb{E}^{\pi^t} [d_h^t(f; D_h^t)^2] + 2B_l^2 \log(\frac{1}{\delta}).$$

By the definition of $X_{h,f}^t$ and the loss function $L_{h,2}^t$ in (4.8), we have

$$\sum_{s=1}^{t-1} X_{h,f}^{s} = \sum_{s=1}^{k-1} l_{h}^{s} (f; D_{h}^{s})^{2} - \sum_{s=1}^{k-1} l_{h}^{s} (\mathcal{P}_{h} U_{h+1}, U_{h+1}, \theta; D_{h}^{s})^{2}$$

$$\leq \sum_{s=1}^{k-1} l_{h}^{s} (f; D_{h}^{s})^{2} - \inf_{U_{h}^{'} \in \mathcal{U}_{h}} l_{h}^{s} (U_{h}^{'}, U_{h+1}, \theta; D_{h}^{s})^{2}$$

$$= L_{h,2}^{t} (f).$$

1088
$$= L_{h,2}^{i}$$

Then we can derive that, for any fixed $h \in [H], t \in [T], f \in \mathcal{U}_h \times \mathcal{U}_{h+1} \times \Theta$.

$$-L_{h,2}^{t}(f) \leq -\frac{1}{2} \mathbb{E}^{\pi^{t}} \left[d_{h}^{t}(f; D_{h}^{t})^{2} \right] + 2H^{2} \log(\frac{1}{\delta}).$$
(A.13)

Then we consider $L_{h,2}^t(f^{\star})$. We first define the random variables $Y_{h,f}^t$ as

$$Y_{h,f}^{t} = l_{h}^{t} (U_{h}, U_{h+1}^{\star}, \theta^{\star}; D_{h}^{t})^{2} - l_{h}^{t} (f^{\star}; D_{h}^{t})^{2}$$

Similarly, we could show

1099
1100
$$\mathbb{E}_{s_{h+1} \sim \mathbb{P}_h(\cdot | s_h, a_h, b_h)}[Y_{h,f}^t] = (d_h^t(U_h, U_{h+1}^{\star}, \theta^{\star}; D_h^t))^2.$$
1101

Under the filtration
$$\{\mathcal{F}_{h,t}\}_{t=1}^T$$
, we can derive that

1103
1104

$$\mathbb{E}[Y_{h,f}^t \mid \mathcal{F}_{h,t-1}] = \mathbb{E}^{\pi^t} [d_h^t (U_h, U_{h+1}^\star, \theta^\star; D_h^t)^2],$$
1105
1105
1106

$$\mathbb{V}ar \left[Y_{h,f}^t \mid \mathcal{F}_{h,t-1}\right] \le B_l^2 \mathbb{E}^{\pi^t} [d_h^t (U_h, U_{h+1}^\star, \theta^\star; D_h^t)^2].$$

By Lemma 3, $(|Y_{h,f}^t| \le B_l^2 \text{ and we set } \eta = \frac{1}{2B_l^2})$, for any fixed $h \in [H], t \in [T], f \in \mathcal{F}$, we have

 $-\sum_{s=1}^{t-1} Y_{h,f}^s \leq -\frac{1}{2} \sum_{s=1}^{t-1} \mathbb{E}^{\pi^s} [d_h^s(U_h, U_{h+1}^{\star}, \theta^{\star}; D_h^t)^2] + 2B_l^2 \log(\frac{1}{\delta}) \leq 2B_l^2 \log(\frac{1}{\delta}).$

By the definition of $Y_{h,f}^t$ and the loss function $L_{h,2}^t$ in (4.8), we have

$$-\sum_{s=1}^{t-1} Y_{h,f}^s = \sum_{s=1}^{k-1} l_h^s (f^*; D_h^s)^2 - \sum_{s=1}^{k-1} l_h^s (U_h, U_{h+1}^*, \theta^*; D_h^s)^2.$$

Since such inequality holds for any $U_h \in \mathcal{U}_h$, we have

$$L_{h,2}^{t}(f^{\star}) = \sup_{U_{h} \in \mathcal{U}_{h}} \left(-\sum_{s=1}^{t-1} Y_{h,f}^{s}\right) \le 2B_{l}^{2} \log(\frac{1}{\delta}).$$

Combining the above result with (A.13), for any fixed $h \in [H], t \in [T], f \in \mathcal{F}$, we have

1124
1125
1126
1126
1127

$$L_{h,2}^{t}(f^{\star}) - L_{h,2}^{t}(f) \leq -\frac{1}{2} \sum_{s=1}^{t-1} \mathbb{E}^{\pi^{s}} [U_{h}^{s}(s_{h}, a_{h}, b_{h}) - \mathbb{T}^{\star, \theta^{s}}(U_{h+1}^{s})(s_{h}, a_{h}, b_{h})] + 4H^{2} \log(\frac{1}{\delta}). \quad (A.14)$$
1127

Then we generalize this result on a ϵ -net \mathcal{F}_{ϵ} of \mathcal{F} . By taking union bound over all $h \in [H], \tilde{f} \in \mathcal{F}_{\epsilon}$ and a $\tilde{f}^{\star} \in \Theta_{\epsilon}$ such that $\rho_2(f^{\star}, \tilde{f}^{\star}) \leq \epsilon$, with probability $1 - \delta$ we have for any $t \in [T]$

$$L_{h,2}^t(\tilde{f}^\star) - L_{h,2}^t(\tilde{f})$$

$$\leq -\frac{1}{2}\sum_{s=1}^{t-1}\mathbb{E}^{\pi^s}\left[\tilde{U}_h^s(s_h, a_h, b_h) - \mathbb{T}^{\star, \tilde{\theta}^s}(\tilde{U}_{h+1}^s)(s_h, a_h, b_h)\right] + 4H^2\log(\frac{H\mathcal{N}_{\rho_2}(\mathcal{F}, \epsilon)}{\delta}).$$

(A.15)

 $\left|L_{h,2}^t(\tilde{f}^\star) - L_{h,2}^t(f^\star)\right|$

By the definition of ρ_2 , we know

$$= \left| \sum_{s=1}^{t} \left[(\tilde{U}_{h} - u_{h}^{s})(s_{h}^{s}, a_{h}^{s}, b_{h}^{s}) - T_{h+1}^{\star, \tilde{\theta}}(s_{h+1}^{s}) \right] - \left[U_{h}(s_{h}^{s}, a_{h}^{s}, b_{h}^{s}) - T_{h+1}^{\star, \theta}(U_{h+1}) \right] \right|$$

$$\leq \left| \sum_{s=1}^{t} \left[(\tilde{U}_{h} - U_{h})(s_{h}^{s}, a_{h}^{s}, b_{h}^{s}) - (T_{h+1}^{\star, \tilde{\theta}} - T_{h+1}^{\star, \theta})(s_{h+1}^{s}) \right] \right|$$

1143
1144
$$\leq t \left(\left\| \tilde{U}_h - U_h \right\|_{\infty} + \left\| T_{h+1}^{\star,\tilde{\theta}} - T_{h+1}^{\star,\theta} \right\|_{\infty} \right)$$

$$\leq 2T\rho_2(f,\tilde{f}).$$

Similarly we could get

$$\begin{aligned} \left| L_{h,2}^{t}(\tilde{f}) - L_{h,2}^{t}(f) \right| &\leq 2T\rho_{2}(f,\tilde{f}), \\ \left| [\tilde{U}_{h}^{s} - \mathbb{T}^{\star,\tilde{\theta}^{s}}(\tilde{U}_{h+1}^{s})](s_{h}, a_{h}, b_{h}) - [U_{h}^{s} - \mathbb{T}^{\star,\theta^{s}}(U_{h+1}^{s})](s_{h}, a_{h}, b_{h}) \right| &\leq 2\rho_{2}T(f,\tilde{f}). \end{aligned}$$

Then we could generate equation (A.15) from \mathcal{F}_{ϵ} to \mathcal{F} only paying an extra cost of $5T\epsilon$. By setting $\epsilon = 1/T$, for any $h \in [H], t \in [T], f \in \mathcal{F}$, with probability $1 - \delta$ we have

$$L_{h,2}^t(f^{\star}) - L_{h,2}^t$$

$$\leq -\frac{1}{2} \sum_{s=1}^{t-1} \mathbb{E}^{\pi^{s}} \left[(U_{h}^{s} - \mathbb{T}^{\star, \theta^{s}}(U_{h+1}^{s}))(s_{h}^{s}, a_{h}^{s}, b_{h}^{s}) \right] + 4H^{2} \ln(\frac{HTN_{\rho_{2}}(\mathcal{F}, \epsilon)}{\delta}) + 5.$$

Let $\beta_2 = 4H^2 \ln(\frac{HTN_{\rho^2}(\mathcal{F}, \epsilon)}{\delta}) + 5$, then we are done.

Lemma 9. (Lemma B.2 in (Chen et al., 2023)) For any fixed policy π and a fixed s_1 , let \tilde{v} be an estimate of the quantal response v^{π} and let \tilde{U} and \tilde{W} be estimates of U^{π} and W^{π} respectively. Based on \tilde{U} and \tilde{W} , we can estimate $J(\pi)$ by $\tilde{W}(s_1)$. Then the error of these estimators can be bounded as follows:

$$\tilde{W}(s_1) - J(\pi) \le \sum_{h=1}^H \mathbb{E}\left[\tilde{U}_h(s_h, a_h, b_h) - (\mathbb{T}_h^{\pi, \tilde{\nu}} \tilde{U}_{h+1})\right] + H \sum_{h=1}^H \mathbb{E}\left[\left\| (\upsilon_h^{\pi} - \tilde{\upsilon})(\cdot | s_h) \right\|_1\right].$$

- 0

where we define

$$\mathbb{T}_{h}^{\pi,\theta}U(s_{h},a_{h},b_{h}) = u_{h}(s_{h},a_{h},b_{h}) + \mathbb{E}_{s_{h+1}\sim P_{h}(\cdot|s_{h},a_{h},b_{h})}[(T_{h+1}^{\pi,\theta}U_{h+1})(s_{h+1})],$$
$$T_{h}^{\pi,\theta}(U_{h})(s_{h}) = \left\langle U_{h}(s_{h},\cdot,\cdot),\pi_{h}\otimes\upsilon_{h}^{\pi,\theta}(\cdot,\cdot\mid s_{h})\right\rangle.$$

Furthermore, by $\mathbb{T}_{h}^{\pi,\tilde{\nu}}\tilde{U}_{h+1}) \leq \mathbb{T}_{h}^{\star,\tilde{\nu}}\tilde{U}_{h+1})$, we have

$$\tilde{W}(s_1) - J(\pi) \le \sum_{h=1}^{H} \mathbb{E}\left[\tilde{U}_h(s_h, a_h, b_h) - (\mathbb{T}_h^{\star, \tilde{\nu}} \tilde{U}_{h+1})\right] + H \sum_{h=1}^{H} \mathbb{E}\left[\left\|(v_h^{\pi} - \tilde{v})(\cdot | s_h)\right\|_1\right].$$

Lemma 10. (Lemma B.1 in (Chen et al., 2023)) We consider a fixed policy π and let \tilde{r} be an estimate of r. We define a V-function \tilde{V} and an advantage function \tilde{A} by letting

$$\tilde{V}_h(s) = \frac{1}{\eta} \log \left(\sum_{b \in \mathcal{B}} \exp(\eta \cdot \tilde{r}_h^{\pi}(s, b)) \right), \qquad \tilde{A}_h(s, a) = \tilde{r}_h^{\pi}(s, b) - \tilde{V}_h(s)$$

Furthermore, we define a follower's policy \tilde{v} be letting $\tilde{v}_h(b|s) = \exp(\eta \cdot \tilde{A}_h(s,b))$. Then the difference between $\tilde{\upsilon}$ and υ^{π} can be bounded by

 $\frac{H}{\sum m \left[\left\| \prod_{i \in \mathcal{I}} \pi_{i} - \pi_{i} \left(\left\| g_{i} \right) \right\| \right] \right]}$

1184
$$H \sum_{h=1} \mathbb{E} \left[\left\| \boldsymbol{v}_h^{\pi} - \tilde{\boldsymbol{v}}(\cdot|\boldsymbol{s}_h) \right\|_1 \right]$$
1185

1186
1187
$$\leq C_0 \sum_{h=1}^{H} \mathbb{E}\left[\left|\mathcal{T}_h^{\pi}(\tilde{r}_h - r_h)\right|\right] + C_1 \sum_{h=1}^{H} \mathbb{E}\left[\mathcal{T}_h^{\pi}(\tilde{r}_h - r_h)^2\right],$$

where C_1 is defined as

and \mathcal{T}_{h}^{π} has been defined in equation (5.1).

Proof of Theorem 1 B

At first, we could decompose the regret into two terms:

$$\operatorname{Reg}(T) = \sum_{t=1}^{T} W_{1}^{U^{*},\theta^{*}}(s_{1}) - W_{1}^{\pi^{t}}(s_{1})$$

$$\leq \underbrace{\sum_{t=1}^{T} \left(W_{1}^{U^{*},\theta^{*}}(s_{1}) - W_{1}^{U^{t},\theta^{t}}(s_{1}) \right)}_{I_{1}} + \underbrace{\sum_{t=1}^{T} \left(W_{1}^{U^{t},\theta^{t}}(s_{1}) - W_{1}^{\pi^{t}}(s_{1}) \right)}_{I_{2}}.$$

 $C_1 = \frac{\eta^2 \exp(2\eta B_A)}{2} \left(2 + \eta B_A \cdot 2\eta B_A\right),$

By the definition of U^t , θ^t in algorithm 1, we have

$$W_{1}^{U^{t},\theta^{t}}(s_{1}) - \eta_{1} \sum_{h=1}^{H} L_{h,1}^{t}(\theta_{h}^{t}) - \eta_{2} \sum_{h=1}^{H} L_{h,2}^{t}(U_{h}^{t},\theta_{h}^{t})$$

$$\geq W_{1}^{U^{*},\theta^{*}}(s_{1}) - \eta_{1} \sum_{h=1}^{H} L_{h,1}^{t}(\theta_{h}^{*}) - \eta_{2} \sum_{h=1}^{H} L_{h,2}^{t}(U_{h}^{*},\theta_{h}^{*}),$$

$$\geq W_1^{U^*,\theta^*}(s_1) - \eta_1 \sum_{h=1}^H L_{h,1}^t(\theta_h^*) - \eta_2 \sum_{h$$

which implies that

$$W_1^{U^*,\theta^*}(s_1) - W_1^{U^t,\theta^t}(s_1) \le \eta_1 \sum_{h=1}^H (L_{h,1}^t(\theta_h^*) - L_{h,1}^t(\theta_h^t)) + \eta_2 \sum_{h=1}^H (L_{h,2}^t(U_h^*,\theta_h^*) - L_{h,1}^t(U_h^t,\theta_h^t)).$$

By the lemma 7, set $\beta_1 = 2 \ln N_{\rho}(\Theta, 1/T)/\delta + 8$ with the distance ρ defined in Lemma 7, and let $C_{\eta} = \eta^{-1} + B_A, B_A = 2(\eta^{-1} \log |\mathcal{B}| + 1)$, then with probability at least $1 - \delta$,

$$\sum_{h=1}^{H} (L_{h,1}^{t}(\theta_{h}^{*}) - L_{h,1}^{t}(\theta_{h}^{t}))$$

$$\leq \frac{-1}{4C_{\eta}^{2}} \sum_{h=1}^{H} \sum_{i=1}^{t} \mathbb{E}^{\pi^{i}} \operatorname{Var}_{s_{h}}^{\pi^{i},\theta^{*}} \left[r_{h}^{\pi^{i},\theta^{t}}(s_{h},b_{h}) - r_{h}^{\pi^{i},\theta^{*}}(s_{h},b_{h}) \right] + H\beta_{1}.$$
(B.1)

For the variance term, we have:

$$\mathbb{E}^{\pi^{i}} \operatorname{Var}_{s_{h}}^{\pi^{i},\theta^{*}} \left[r_{h}^{\pi^{i},\theta^{t}}(s_{h},b_{h}) - r_{h}^{\pi^{i},\theta^{*}}(s_{h},b_{h}) \right]$$

$$= \mathbb{E}^{\pi^{i}} \operatorname{Var}^{\pi^{i},\theta^{*}} \left[r_{h}^{\pi^{i},\theta^{t}}(s_{h},b_{h}) - r_{h}^{\pi^{i},\theta^{*}}(s_{h},b_{h}) |s_{h} \right]$$

$$\stackrel{(a)}{=} \mathbb{E}^{\pi^{i}} \mathbb{E}^{\pi^{i},\theta^{*}} \left[\left((r_{h}^{\pi^{i},\theta^{t}} - r_{h})^{\pi^{i},\theta^{*}}(s_{h},b_{h}) - \mathbb{E}^{\pi^{i},\theta^{*}} \left[(r_{h}^{\pi^{i},\theta^{t}} - r_{h}^{\pi^{i},\theta^{*}})(s_{h},b_{h}) |s_{h} \right] \right)^{2} |s_{h} \right]$$

$$\stackrel{(b)}{=} \mathbb{E}^{\pi^{i}} \left[\left(\mathcal{T}_{h}^{\pi^{i}}(r_{h}^{\theta^{t}} - r_{h}^{*}) \right)^{2} (s_{h},b_{h}) \right],$$

where (a) follows from the definition of $\operatorname{Var}_{s_h}^{\pi,\theta}(\cdot)$, and (b) follows from the definition of $\mathcal{T}_h^{\pi}(\cdot)$. Insert the last term back to equation (B.1), we have:

1240
1241
$$\sum_{h=1}^{H} (L_{h,1}^{t}(\theta_{h}^{*}) - L_{h,1}^{t}(\theta_{h}^{t})) \leq \frac{-1}{4C_{\eta}^{2}} \sum_{h=1}^{H} \sum_{i=1}^{t-1} \mathbb{E}^{\pi^{i}} [\mathcal{T}_{h}^{\pi^{i}}(r_{h}^{\theta^{i}} - r_{h}^{*})^{2}] + H\beta_{1}$$

1242 By Lemma 8, set $\beta_2 = 4H^2 \ln(\frac{HN_{\rho_2}(\mathcal{F},\epsilon)}{\delta}) + 5$ with the distance ρ_2 defined in Lemma 8, we have 1244 $\sum_{i=1}^{H} (L_{h,2}^t(U_{h,i}^*,\theta_{h,i}^*) - L_{h,2}^t(U_{h,i}^t,\theta_{h,i}^t)) \leq -\frac{1}{2} \sum_{i=1}^{H} \sum_{j=1}^{t-1} \mathbb{E}^{\pi i} \left[\left(U_{h,j} - \mathbb{T}_{i+1}^{*,\theta^t} U_{h+1} \right) (s_{h,j},a_{h,j},b_{h,j})^2 \right] + H\beta_2.$ (B.

$$\sum_{h=1}^{\infty} (L_{h,2}^{t}(U_{h}^{*},\theta_{h}^{*}) - L_{h,2}^{t}(U_{h}^{t},\theta_{h}^{t})) \leq -\frac{1}{2} \sum_{h=1}^{\infty} \sum_{i=1}^{\infty} \mathbb{E}^{\pi^{i}} \left[\left(U_{h} - \mathbb{T}_{h+1}^{*,\theta^{i}} U_{h+1} \right) (s_{h},a_{h},b_{h})^{2} \right] + H\beta_{2}.$$
(B.2)

We then have

$$\begin{split} I_{1} &\leq \sum_{t=1}^{T} \left(\eta_{1} \sum_{h=1}^{H} (L_{h,1}^{t}(\theta_{h}^{*}) - L_{h,1}^{t}(\theta_{h}^{t})) + \eta_{2} \sum_{h=1}^{H} (L_{h,2}^{t}(U_{h}^{*},\theta_{h}^{*}) - L_{h,2}^{t}(U_{h}^{t},\theta_{h}^{t})) \right) \\ &\leq \eta_{1} \cdot \left(-\frac{1}{4C_{\eta}^{2}} \sum_{t=1}^{T} \sum_{h=1}^{H} \sum_{i=1}^{t-1} \mathbb{E}^{\pi^{i}} [\mathcal{T}_{h}^{\pi^{i}}(r_{h}^{\theta^{t}} - r_{h}^{*})^{2}] + HT\beta_{1} \right) \\ &+ \eta_{2} \cdot \left(-\frac{1}{2} \sum_{t=1}^{T} \sum_{h=1}^{H} \sum_{i=1}^{t-1} \mathbb{E}^{\pi^{i}} \left[\left(U_{h} - \mathbb{T}_{h+1}^{*,\theta^{t}} U_{h+1} \right) (s_{h}, a_{h}, b_{h})^{2} \right] + HT\beta_{2} \right) \end{split}$$
(B.3)

To bound I_2 , we exploit Lemma 9 and Lemma 10,

$$I_{2} \stackrel{(a)}{\leq} \sum_{t=1}^{T} \sum_{h=1}^{H} \mathbb{E}^{\pi^{t}} \left[(U_{h}^{t})(s_{h}, a_{h}, b_{h}) - \mathbb{T}_{h+1}^{*, \theta^{t}} U_{h+1}^{t}(s_{h+1}) \right] + H \sum_{h=1}^{H} \mathbb{E}^{\pi_{t}} \left[\left\| (\tilde{v}_{h} - v_{h}^{\pi})(\cdot|s_{h}) \right\|_{1} \right] \quad (B.4)$$

$$\stackrel{(b)}{\leq} \sum_{t=1}^{T} \sum_{h=1}^{H} \mathbb{E}^{\pi^{t}} \left[(U_{h}^{t})(s_{h}, a_{h}, b_{h}) - \mathbb{T}_{h+1}^{*, \theta^{t}} U_{h+1}^{t}(s_{h+1}) \right]$$

$$+ \sum_{t=1}^{T} \sum_{h=1}^{H} C_{0} \cdot \mathbb{E}^{\pi^{t}} \left[|\mathcal{T}_{h}^{\pi^{t}}(r_{h}^{\theta^{t}} - r_{h}^{*})(s_{h}^{t}, b_{h}^{t})| \right]$$

$$+ \sum_{t=1}^{T} \sum_{h=1}^{H} C_{1} \cdot \mathbb{E}^{\pi^{t}} \left[\mathcal{T}_{h}^{\pi^{t}}(r_{h}^{\theta^{t}} - r_{h}^{*})^{2}(s_{h}^{t}, b_{h}^{t}) \right] \quad (B.5)$$

Where (a) is from Lemma 9, (b) is by Lemma 10, and Notice that $X_t^h = |\mathcal{T}_h^{\pi^t} (r_h^{\theta^t} - r_h^*) (s_h^t, b_h^t)| \le 1$, by Lemma 3 (setting $\eta = \frac{1}{2}$), we have

$$\sum_{t=1}^{T} \mathbb{E}^{\pi^{t}} \left[X_{t}^{h} \right] \leq \sum_{t=1}^{T} X_{t} + \frac{1}{2} \operatorname{Var}^{\pi^{t}} \left[X_{t}^{h} | \mathcal{F}_{t-1} \right] + 2 \log \frac{1}{\delta}$$

$$\sum_{t=1}^{T} \mathbb{E}^{\pi^{t}} \left[X_{t}^{h} \right] \leq \sum_{t=1}^{T} X_{t}^{h} + \frac{1}{2} \operatorname{Var}^{\pi^{t}} \left[X_{t}^{h} \right] + 2 \log \frac{1}{\delta}$$

$$\sum_{t=1}^{S} X_{t}^{h} + \frac{1}{2} \mathbb{E}^{\pi^{t}} \left[(X_{t}^{h})^{2} \right] + 2 \log \frac{1}{\delta}$$

$$\sum_{t=1}^{S} X_{t}^{h} + \frac{1}{2} \mathbb{E}^{\pi^{t}} \left[(X_{t}^{h})^{2} \right] + 2 \log \frac{1}{\delta}$$

$$\sum_{t=1}^{S} X_{t}^{h} + \frac{1}{2} \mathbb{E}^{\pi^{t}} \left[(X_{t}^{h})^{2} \right] + 2 \log \frac{1}{\delta}$$

$$\sum_{t=1}^{S} X_{t}^{h} + \frac{1}{2} \mathbb{E}^{\pi^{t}} \left[X_{t}^{h} \right] + 2 \log \frac{1}{\delta},$$

$$\sum_{t=1}^{S} X_{t}^{h} + \frac{1}{2} \mathbb{E}^{\pi^{t}} \left[X_{t}^{h} \right] + 2 \log \frac{1}{\delta},$$

$$\sum_{t=1}^{S} X_{t}^{h} + \frac{1}{2} \mathbb{E}^{\pi^{t}} \left[X_{t}^{h} \right] + 2 \log \frac{1}{\delta},$$

where (a) is by the property of conditional variance; (b) is by $Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$; (c) is by the fact that $0 \le X_t \le 1$. Hence, we get

By taking a union bound over all $h \in [H]$, we know for any $h \in [H]$, with probability $1 - \delta$,

1294
1295
$$\sum_{t=1}^{T} \mathbb{E}^{\pi^{t}} \left[X_{t}^{h} \right] \leq 2 \sum_{t=1}^{T} X_{t}^{h} + 4 \log \frac{H}{\delta}.$$

Summing over $h \in [H]$ and considering $X_t^h = |\mathcal{T}_h^{\pi^t}(r_h^{\theta^t} - r_h^*)(s_h^t, b_h^t)|$, we get $\sum_{i=1}^{T} \sum_{j=1}^{H} \mathbb{E}^{\pi^{t}} \left[|\mathcal{T}_{h}^{\pi^{t}}(r_{h}^{\theta^{t}} - r_{h}^{*})(s_{h}^{t}, b_{h}^{t})| \right] \leq 2 \sum_{i=1}^{T} \sum_{j=1}^{H} |\mathcal{T}_{h}^{\pi^{t}}(r_{h}^{\theta^{t}} - r_{h}^{*})(s_{h}^{t}, b_{h}^{t})| + 4H \log \frac{H}{\delta}.$ Similarly, we could also get $\sum_{k=1}^{T} \sum_{k=1}^{H} \mathbb{E}^{\pi^{t}} \left[|\mathcal{T}_{h}^{\pi^{t}}(r_{h}^{\theta^{t}} - r_{h}^{*})(s_{h}^{t}, b_{h}^{t})|^{2} \right] \leq 2 \sum_{k=1}^{T} \sum_{k=1}^{H} |\mathcal{T}_{h}^{\pi^{t}}(r_{h}^{\theta^{t}} - r_{h}^{*})(s_{h}^{t}, b_{h}^{t})|^{2} + 4H \log \frac{H}{\delta}.$ Inserting the above result beck to equation (B.5), we have $I_{2} \leq \sum_{i=1}^{t} \sum_{h=1}^{n} \mathbb{E}^{\pi^{t}} \left[(U_{h}^{t})(s_{h}^{t}, a_{h}^{t}, b_{h}^{t}) - \mathbb{T}_{h+1}^{*, \theta^{t}} U_{h+1}^{t}(s_{h+1}^{t}) \right]$ + $\sum_{l=1}^{I} \sum_{l=1}^{H} 2C_0 \cdot \left[|\mathcal{T}_h^{\pi^t} (r_h^{\theta^t} - r_h^*) (s_h^t, b_h^t)| \right]$ + $\sum_{i=1}^{T} \sum_{t=i}^{H} 2C_1 \cdot \left[\mathcal{T}_h^{\pi^t} (r_h^{\theta^t} - r_h^*)^2 (s_h^t, b_h^t) \right] + O(H \log(H/\delta)).$ Then using the fact that $|\mathcal{T}_h^{\pi^t}(r_h^{\theta^t} - r_h^*)^2(s_h^t, a_h^t, b_h^t)| \le |\mathcal{T}_h^{\pi^t}(r_h^{\theta^t} - r_h^*)(s_h^t, a_h^t, b_h^t)|$, we can further have $I_{2} \leq \sum_{i=1}^{I} \sum_{t=1}^{H} \mathbb{E}^{\pi^{t}} \left[(U_{h}^{t})(s_{h}, a_{h}, b_{h}) - \mathbb{T}_{h+1}^{*, \theta^{t}} U_{h+1}^{t}(s_{h+1}) \right]$ + $\sum_{l=1}^{I} \sum_{h=1}^{H} 2(C_0 + C_1) \cdot \left[|\mathcal{T}_h^{\pi^t}(r_h^{\theta^t} - r_h^*)(s_h^t, b_h^t)| \right] + O(H \log(H/\delta)).$

Furthermore, using decoupling-coefficient assumption 1 with the definition of d_1 and d_2 , we can get

$$I_{2} \leq \mu_{1} \cdot \sum_{t=1}^{T} \sum_{h=1}^{H} \sum_{i=1}^{t-1} \mathbb{E}^{\pi^{i}} \left[(U_{h} - \mathbb{T}_{h+1}^{*,\theta^{i}} U_{h+1}) (s_{h}, a_{h}, b_{h})^{2} \right] + \frac{d_{1}}{\mu_{1}}$$

$$+2(C_0+C_1)\cdot\mu_2\sum_{t=1}^T\sum_{h=1}^H\sum_{i=1}^{t-1}[\mathcal{T}_h^{\pi^t}((r_h^{\theta^t}-r_h^*)(s_h^i,b_h^i))^2]+2(C_0+C_1)\cdot\frac{d_2}{\mu_2}\\+\mathcal{O}(H\log(H/\delta)).$$

At last, we exploit the Lemma 3 again, and with probability at least $1 - \delta$, we have

$$I_{2} \leq \mu_{1} \cdot \sum_{t=1}^{T} \sum_{h=1}^{H} \sum_{i=1}^{t-1} \mathbb{E}^{\pi^{i}} \left[(U_{h} - \mathbb{T}_{h+1}^{*,\theta^{t}} U_{h+1})(s_{h}, a_{h}, b_{h})^{2} \right] + \frac{d_{2}}{\mu_{1}} \\ + 4(C_{0} + C_{1}) \cdot \mu_{2} \sum_{t=1}^{T} \sum_{h=1}^{H} \sum_{i=1}^{t-1} \mathbb{E}^{\pi^{i}} \left[\mathcal{T}_{h}^{\pi^{i}} ((r_{h}^{\theta^{t}} - r_{h}^{*}))^{2} \right] + 2(C_{0} + C_{1}) \cdot \frac{d_{1}}{\mu_{2}} \\ + O(H \log(H/\delta)).$$
(B.6)

Now note that $\eta_1 = \eta_2 = 1/\sqrt{T}$, and by choosing $\mu_1 = \frac{\eta_1}{4C_{\eta}^2}$, $\mu_2 = \frac{\eta_2}{8(C_0+C_1)}$, combining (B.3), and (B.6), with probability at least $1 - 3\delta$, we can have

 $\operatorname{Reg}(T) = I_1 + I_2$

1345
1346
1347
$$\leq \frac{1}{\sqrt{T}} \cdot HT \cdot (\beta_1 + \beta_2) + \frac{d_1}{\mu_1} + 2(C_0 + C_1) \cdot \frac{d_2}{\mu_2} + O(H\log(H/\delta))$$
1347

1348
$$= \sqrt{T}H(\beta_1 + \beta_2) + 4C_n^2 d_1 \sqrt{T} + 16(C_0 + C_1)^2 d_2 \sqrt{T} + O(H\log(H/\delta))$$

1349
$$= \left(H(\beta_1 + \beta_2) + 4C_{\eta}^2 d_1 + 16(C_0 + C_1)^2 d_2 \right) \sqrt{T} + O(H\log(H/\delta))$$

1350 C Proof of Decoupling Coefficient Bounds

We mainly generalize the proof of Proposition 1-3 in Xiong et al. (2022) in this section.

Proof of Proposition 1. We first note that the completeness assumption is satisfied in linear MSG case whose proof can be found in Huang et al. (2021); Chen et al. (2023). Now we consider two arbitrary vector $\omega_h, \omega_{h+1} \in \mathbb{R}^d$ whose norms are bounded $H\sqrt{d}$. We define a function $\tilde{U} \in \mathcal{U}$ such that $\tilde{U}_h = \phi^{\top} \omega_h$ and $\tilde{U}_{h+1} = \phi^{\top} \omega_{h+1}$. Furthermore more we take arbitrary $\theta = \{\theta_h\}_{h \in H} \subset \mathbb{R}^d$ such that $\|\theta_h\| \le \sqrt{d}$. Then we could find $r = \{r_h\}_{h \in [H]} \subseteq \mathcal{F}_r$ and $r_h = \phi(s, a, b)^{\top} \theta_h, \forall h \in$ [H], $(s, a, b) \in S \times \mathcal{A} \times \mathcal{B}$. Then by Assumption 3, we can find some $U \in \mathcal{U}$ and the corresponding vector $\omega_h(U) \in \mathbb{R}^d$ such that $\|\omega_h(U)\| \le H\sqrt{d}$ and $\mathbb{T}_h^{*,\theta}(\phi(s, a, b)^{\top} \omega_{h+1}) = \phi(s, a, b)^{\top} \omega_h(U) =$ $U_h \in \mathcal{U}_h$. Therefore, we have

$$l_h(\tilde{U},\theta,s,a,b) = \tilde{U}_h(s,a,b) - \mathbb{T}_h^{*,\theta}(\tilde{U}_{h+1}) = \phi(s,a,b)^\top (\omega_h - \omega_h(U)) = \phi(s,a,b)^\top \Delta_h(U,\tilde{U})$$

1364 where $\Delta_h(U, \tilde{U}) \in \mathbb{R}^d$ and $\|\Delta_h\| \le 2H\sqrt{d}$.

For any $\{\rho^s\}_{s\in[t]} \subset \varrho_1$, i.e. we take any sequence of the leader and follower's joint policies $\{(\pi^s, \nu^{\pi^s, \theta^s})\}_{s\in[t]} \subset \Pi$, we denote as $\phi_h^s = \mathbb{E}^{\rho^s}[\phi(s_h, a_h, b_h)]$ and denote $\Phi_t^h = \lambda I + \sum_{s=1}^t E^{\rho^s}[\phi(s_h, a_h, b_h)\phi(s_h, a_h, b_h)^{\top}]$, where $\lambda \ge 1$ is a tuning parameter. We further have

$$\mathbb{E}^{\rho^s}\left[l_h^t(\tilde{U}^t,\theta^t,s_h^t,a_h^t,b_h^t)\right] - \mu \sum_{s=1}^{t-1} \mathbb{E}^{\rho^s}\left[l_h^t(\tilde{U}^t,\theta^t,s_h^t,a_h^t,b_h^t)^2\right]$$

$$=\Delta_h(\tilde{U}^t, U_t)^\top \phi_h^t - \mu \Delta_h(\tilde{U}^t, U_t)^\top \sum_{s=1}^{t-1} \mathbb{E}^{\rho^s} \left[\phi(s_h^s, a_h^s, b_h^s) \phi(s_h^s, a_h^s, b_h^s)^\top \right] \Delta_h(\tilde{U}_t, U_t)$$

1374 1375 1376

1378

1382

1362 1363

$$\leq \Delta_h(\tilde{U}^t, U_t)^\top \phi_h^t - \mu \Delta_h(\tilde{U}^t, U_t)^\top \Phi_{t-1}^h \Delta_h(\tilde{U}_t, U_t) + 4\mu \lambda H^2 d$$

$$\leq \frac{1}{4\mu} (\phi_h^t)^{\top} (\Phi_{t-1}^h)^{-1} \phi_h^t + 4\mu \lambda H^2 d$$

where the first inequality uses Jensen's inequality and $\|\Delta_h(\tilde{U}_t, U_t)\| \le 2H\sqrt{d}$ and the second inequality exploits the fact that

$$a^{\mathsf{T}}b \leq (\|a\|_{\Phi_{t-1}^{h}} \|b\|_{(\Phi_{t-1}^{h})^{-1}}) \leq \frac{1}{2} (\|a\|_{\Phi_{t-1}^{h}}^{2} + \|b\|_{(\Phi_{t-1}^{h})^{-1}}^{2})$$

1384 Summing over $t \in [T]$ and $h \in [H]$, we have

$$\sum_{t=1}^{T} \sum_{h=1}^{H} \left(\mathbb{E}^{\rho^{s}} [l_{h}(\tilde{U}^{t}, \theta^{t}, s_{h}^{t}, a_{h}^{t}, b_{h}^{t})] - \mu \sum_{s=1}^{t-1} \mathbb{E}^{\rho^{s}} [l_{h}(\tilde{U}^{t}, \theta^{t}, s_{h}^{t}, a_{h}^{t}, b_{h}^{t})^{2}] \right)$$

$$\leq \sum_{h=1}^{H} \left(\frac{\ln(\det(\Phi_{T}^{h})) - d \ln \lambda}{2\mu} + 4\mu\lambda dH^{2}T \right)$$

$$\leq \left(\frac{dH \ln(1 + \frac{T}{d\lambda})}{2\mu} + 4\mu\lambda dH^{3}T \right)$$

where the first inequality exploit Lemma 4 and the second inequality uses

$$\ln \det(\Phi_T^h) \le d \ln \frac{\operatorname{tr}(\Phi_T^t)}{d}, \quad \text{where } \operatorname{tr}(\Phi_T^h) \le \lambda d + T$$

By setting $\lambda = \min\{1, \frac{1}{\mu^2 H^2 T}\}$, we have

$$d_1 \le 2dH(2 + \ln(2HT))$$

1402 Similarly, for d_2 , notice we could still write

$$m_h(\tilde{\theta}, s, a, b) = r_h^{\tilde{\theta}}(s, b) - r_h(s, b) = \phi(s, a, b)^\top (\tilde{\theta}_h - \theta_h) = \phi(s, a, b)^\top \delta_h(\tilde{\theta}, \tilde{\theta})$$

1397 1398 1399

1400

1401

1403

1394

Then we could repeat the above process to generate the similar bound. Another way to get an upper bound for d_2 is to write $r_h^{\tilde{\theta}}(s, b) - r_h(s, b)$ as a bilinear form and then use the classical decoupling coefficient results on this class. The readers could see Dann et al. (2021); Chen et al. (2023) for reference.

1409Proof of Proposition 2. We first note that the completeness assumption is also satisfied in generalized
linear MSG (Huang et al., 2021; Chen et al., 2023). Similarly, we consider two arbitrary vector
 $\omega_h, \omega_{h+1} \in \mathbb{R}^d$ whose norms are bounded $H\sqrt{d}$. We define a function $\tilde{U} \in \mathcal{U}$ such that $\tilde{U}_h = \phi^\top \omega_h$
and $\tilde{U}_{h+1} = \phi^\top \omega_{h+1}$. Furthermore more we take arbitrary $\theta = \{\theta_h\}_{h \in H} \subset \mathbb{R}^d$ such that $\|\theta_h\| \le \sqrt{d}$.
Then we could find $r \in \mathcal{F}_r$ and $r_h = \sigma(\phi(s, a, b)^\top \theta_h), \forall h \in [H], (s, a, b) \in S \times \mathcal{A} \times \mathcal{B}$. Then
by Assumption 3, we can find some $U \in \mathcal{U}$ and the corresponding vector $\omega_h(U) \in \mathbb{R}^d$ such that
 $\|\omega_h(U)\| \le H\sqrt{d}$ and $\mathbb{T}_h^{*,\theta}(\phi(s, a, b)^\top \omega_{h+1}) = \phi(s, a, b)^\top \omega_h(U) = U_h \in \mathcal{U}_h$. Therefore, we have

 $l_h(\tilde{U}, \theta, s, a, b) = \tilde{U}_h(s, a, b) - \mathbb{T}_h^{*, \theta}(\tilde{U}_{h+1}) = \sigma(\phi^\top \omega_h) - \sigma(\phi^\top \omega_h(U))$

By the Lipschitz condition we have

$$c_1 \left| \phi^{\top} \Delta_h(U, \tilde{U}) \right| \le \left| l_h(\tilde{U}, \theta, s, a, b) \right| \le c_2 \left| \phi^{\top} \Delta_h(U, \tilde{U}) \right|$$

1421 where $\Delta_h(U, \tilde{U}) \in \mathbb{R}^d$ and $||\Delta_h|| \le 2H\sqrt{d}$.

For any $\{\rho^s\}_{s\in[t]} \subset \varrho_1$, i.e. we take sequence of $\{\pi^s\}_{s\in[t]} \subset \Pi$, we let $\phi_h^s = \mathbb{E}^{\rho^s} [\phi(s_h, a_h, b_h)]$ and let $\Phi_t^h = \lambda I + \sum_{s=1}^t E^{\rho^s} [\phi(s_h, a_h, b_h)\phi(s_h, a_h, b_h)^{\top}]$, where $\lambda \ge 1$ is a tuning parameter. We further have

$$\mathbb{E}^{\rho^{s}}\left[l_{h}^{t}(\tilde{U}^{t},\theta^{t},s_{h}^{t},a_{h}^{t},b_{h}^{t})\right] - \mu \sum_{s=1}^{t-1} \mathbb{E}^{\rho^{s}}\left[l_{h}^{t}(\tilde{U}^{t},\theta^{t},s_{h}^{t},a_{h}^{t},b_{h}^{t})^{2}\right]$$

$$\leq c_2 \left| \Delta_h(\tilde{U}^t, U_t)^\top \phi_h^t \right| - \mu c_1^2 \Delta_h(\tilde{U}^t, U_t)^\top \sum_{s=1}^{t-1} \mathbb{E}^{\rho^s} \left[\phi(s_h^s, a_h^s, b_h^s) \phi(s_h^s, a_h^s, b_h^s)^\top \right] \Delta_h(\tilde{U}_t, U_t)$$

$$\leq c_2 \Delta_h (\tilde{U}^t, U_t)^\top \phi_h^t - \mu c_1^2 \Delta_h (\tilde{U}^t, U_t)^\top \Phi_{t-1}^h \Delta_h (\tilde{U}_t, U_t) + 4\mu c_1^2 \lambda H^2 d$$

$$\leq \frac{c_2^2}{4\mu c_1^2} (\phi_h^t)^\top (\Phi_{t-1}^h)^{-1} \phi_h^t + 4\mu c_1^2 \lambda H^2 d$$

Summing over $t \in [T]$ and $h \in [H]$, we have

$$\begin{split} &\sum_{t=1}^{T}\sum_{h=1}^{H} \left(\mathbb{E}^{\rho^{s}} \left[l_{h}(\tilde{U}^{t}, \theta^{t}, s_{h}^{t}, a_{h}^{t}, b_{h}^{t}) \right] - \mu \sum_{s=1}^{t-1} \mathbb{E}^{\rho^{s}} \left[l_{h}(\tilde{U}^{t}, \theta^{t}, s_{h}^{t}, a_{h}^{t}, b_{h}^{t})^{2} \right] \right) \\ &\leq \sum_{h=1}^{H} c_{2}^{2} \left(\left(\frac{\ln(\det(\Phi_{T}^{h})) - d\ln\lambda}{2\mu c_{1}^{2}} + 4\mu\lambda c_{1}^{2}dH^{2}T \right) \right) \\ &\leq dH c_{2}^{2} \left(\frac{\ln(1 + \frac{T}{d\lambda})}{2\mu c_{1}^{2}} + 4\mu c_{1}^{2}\lambda H^{2}T \right) \end{split}$$

By setting $\lambda = \min\{1, \frac{1}{\mu^2 c_1^2 H^2 T}\}$, we have

$$d_1 \le 2\frac{c_2^2}{c_1^2}dH(2 + \ln(2HT))$$

1452 Similarly, for d_2 , notice we could still write

$$m_h(\tilde{\theta}, s, a, b) = r_h^{\tilde{\theta}}(s, b) - r_h(s, b) = \phi(s, a, b)^\top (\tilde{\theta}_h - \theta_h) = \phi(s, a, b)^\top \delta_h(\tilde{\theta}, \tilde{\theta})$$

Then we could repeat the above process to generate the upper bound. Similarly, another way to get an upper bound for d_2 is to exploit Lipschitz condition to upper and lower bound $r_h^{\tilde{\theta}}(s,b) - r_h(s,b)$ by two bilinear forms and then use the classical decoupling coefficient results on this class. The readers could see Dann et al. (2021); Chen et al. (2023) for reference.

PROOF OF THEOREM 2 D

Proof. At first, we could decompose the regret into three terms:

 $\operatorname{Reg}(T) = \sum_{i=1}^{I} J(\pi^*) - J(\pi^t)$ $=\underbrace{\sum_{t=1}^{T} \left(\mathbb{E}_{x \sim \rho, a \sim \pi^*} [u^*(x, a)] - \mathbb{E}_{x \sim \rho, a \sim \pi^t} [u^{\theta^t}(x, a)] \right)}_{I_1}$ $+\underbrace{\sum_{t=1}^{T} \left(\mathbb{E}_{x \sim \rho, a \sim \pi^{t}} \left[u^{\theta^{t}}(x, a) \right] - \mathbb{E}_{x \sim \rho, a \sim \pi^{t}} \left[u^{*}(x, a) \right] \right)}_{I_{2}}$ $-\underbrace{\sum_{t=1}^{T} \beta \cdot \left(\mathbb{D}_{\mathrm{KL}}(\pi^* \parallel \pi_{\mathrm{ref}}) - (\mathbb{D}_{\mathrm{KL}}(\pi^t \parallel \pi_{\mathrm{ref}})) \right)}_{t=1}.$ First, we compute the upper bound of I_1 . By the definition of π^t and θ^t , we can get $\mathbb{E}_{x \sim \rho, a \sim \pi^*(\cdot \mid x)} [u^*(x, a)] - \beta \mathbb{D}_{\mathrm{KL}} [\pi^* \parallel \pi_{\mathrm{ref}}] - \eta_1 L^t(\theta^*)$ $\leq \mathbb{E}_{x \sim \rho, a \sim \pi^{t}(\cdot|x)} \left[u^{\theta^{t}}(x, a) \right] - \beta \mathbb{D}_{\mathrm{KL}} \left[\pi^{t} \parallel \pi_{\mathrm{ref}} \right] - \eta_{1} L^{t}(\theta^{t}),$ which is equivalent to $\mathbb{E}_{x \sim \rho, a \sim \pi^*} [u^*(x, a)] - \mathbb{E}_{x \sim \rho, a \sim \pi^t} [u^{\theta^t}(x, a)]$ $\leq \beta \mathbb{D}_{\mathrm{KL}}[\pi^* \parallel \pi_{\mathrm{ref}}] - \beta \mathbb{D}_{\mathrm{KL}}[\pi^t \parallel \pi_{\mathrm{ref}}] + \eta_1 \cdot \left(L^t(\theta^*) - L^t(\theta^t) \right).$ Now we introduce the Lemma 2 and Lemma 4 in Cen et al. (2024) to further bound the cross-entropy loss: **Lemma 11** (Lemma 2 and 4 in Cen et al. (2024) when $0 \le R(x, y) \le 1$). The following inequality holds with probability at least $1 - \delta$ that $L^{t}(\theta^{*}) - L^{t}(\theta^{t}) \leq -(3 + e^{2})^{-2} \eta^{2} \sum_{i=1}^{t-1} \mathbb{E}_{x \sim \rho, a \sim \pi^{i}} \left[\left| \delta^{*}(x^{t}, a^{t}) - \delta^{t}(x^{t}, a^{t}) \right|^{2} \right] + 2 \log \left(\frac{|\mathcal{R}|}{\delta} \right),$ where $\delta^*(x, a) = R^*(x, y_1) - R^*(x, y_2), \ \delta^t(x, a) = R^{\theta^t}(x, y_1) - R^{\theta^t}(x, y_2).$ Then, we compute the upper bound of I_2 . $I_2 = \sum_{t=1}^{I} \left(\mathbb{E}_{x \sim \rho, a \sim \pi^t} \left[u^{\theta^t}(x, a) \right] - \mathbb{E}_{x \sim \rho, a \sim \pi^t} \left[u^*(x, a) \right] \right)$

$$=2\sum_{t=1}^{1}\left(\mathbb{E}_{x\sim\rho,y\sim\pi^{t}}\left[R^{\theta^{t}}(x,y)\right]-\mathbb{E}_{x\sim\rho,y\sim\pi^{t}}\left[R^{*}(x,y)\right]\right)$$

$$-2\sum^{1}$$

1507
1508
1509

$$-2\sum_{t=1}^{T} \left(\mathbb{E}_{x \sim \rho, y \sim \pi_{\text{base}}} [R^{\theta^{t}}(x, y)] - \mathbb{E}_{x \sim \rho, y \sim \pi_{\text{base}}} [R^{*}(x, y)] \right)$$

1510
1511
$$\leq 2 \sum_{t=1}^{T} \left(\mathbb{E}_{x \sim \rho, y_1 \sim \pi^t, y_2 \sim \pi_{\text{base}}} \left[\delta^t(x, y_1, y_2) - \delta^*(x, y_1, y_2) \right] \right).$$

By Multi-agent Decoupling Coefficient, we can further derive

 $I_2/2 \le \mu \cdot \sum_{t=1}^T \sum_{i=1}^{t-1} \left(\mathbb{E}_{x \sim \rho, y_1 \sim \pi^i, y_2 \sim \pi_{\text{base}}} \left[(\delta^t(x, y_1, y_2) - \delta^*(x, y_1, y_2))^2 \right] \right) + \frac{d}{4\mu}$

$$\leq \mu \cdot \sup_{x,y,i} \frac{\pi_{\text{base}}(y \mid x)}{\pi^{i}(y \mid x)} \cdot \sum_{t=1}^{T} \sum_{i=1}^{t-1} \left(\mathbb{E}_{x \sim \rho, y_{1} \sim \pi^{i}, y_{2} \sim \pi^{i}} \left[(\delta^{t}(x, y_{1}, y_{2}) - \delta^{*}(x, y_{1}, y_{2}))^{2} \right] \right) + \frac{d}{4\mu}$$

$$= \mu \cdot \sup_{x,y,i} \frac{\pi_{\text{base}}(y \mid x)}{\pi^{i}(y \mid x)} \cdot \sum_{t=1}^{r-1} \sum_{i=1}^{r-1} \left(\mathbb{E}_{x \sim \rho, a \sim \pi^{i}} \left[(\delta^{t}(x, a) - \delta^{*}(x, a))^{2} \right] \right) + \frac{d}{4\mu}.$$

1523 Note that

$$-\frac{\pi_{\text{base}}(y \mid x)}{\pi^{i}(y \mid x)} = \frac{\pi_{\text{base}}(y \mid x)}{\pi_{\text{ref}}(y \mid x)} \cdot \frac{\pi_{\text{ref}}(y \mid x)}{\pi^{i}(y \mid x)} = \kappa \cdot \frac{\pi_{\text{ref}}(y \mid x)}{\pi^{i}(y \mid x)}$$

1529 Then by $\pi^{i}(y \mid x) \propto \pi_{ref}(y \mid x) \exp(R^{i}(x, y)/\beta)$ in Rafailov et al. (2024), we can derive $|\log \pi^{i}(y \mid x)|$ 1530 $x) - \log \pi^{ref}(y \mid x)| \le 2||R^{i}(x, \cdot)/\beta||_{\infty} \le 2/\beta$ (Cen et al. (2022), Appendix A.2), then $\frac{\pi_{ref}(y|x)}{\pi^{i}(y|x)} \le \exp(2/\beta)$. Then

$$\sup_{x,y,i} \frac{\pi_{\text{base}}(y \mid x)}{\pi^{i}(y \mid x)} = \kappa \exp(2/\beta)$$

1535 Now we sum over I_1 , I_2 and I_3 . Thus, we can get

$$\begin{aligned} \operatorname{Reg}(T) &= I_{1} + I_{2} + I_{3} \\ &= \sum_{t=1}^{T} \left(\eta_{1} \cdot \left(L^{t}(\theta^{*}) - L^{t}(\theta^{t}) \right) \right) + I_{2} \\ &\leq -(3 + e^{2})^{-2} \eta_{1} \cdot \eta^{2} \cdot \sum_{t=1}^{T} \sum_{i=1}^{t-1} \mathbb{E}_{x \sim \rho, a \sim \pi^{i}} \left[\left| \delta^{*}(x^{t}, a^{t}) - \delta^{t}(x^{t}, a^{t}) \right|^{2} \right] + 2\eta_{1} T \log \left(\frac{|\mathcal{R}|}{\delta} \right) \\ &+ 2\mu \cdot \kappa \cdot \exp(2/\beta) \cdot \sum_{t=1}^{T} \sum_{i=1}^{t-1} \left(\mathbb{E}_{x \sim \rho, a \sim \pi^{i}} \left[\left(\delta^{t}(x, a) - \delta^{*}(x, a) \right)^{2} \right] \right) + \frac{d}{2\mu}. \end{aligned}$$

Now we choose $\eta_1 = 2\mu\kappa \exp(2/\beta) \cdot (3 + e^2)^2 \cdot \eta^{-2} = 1/\sqrt{T}$, then the inequality above will become

 $\operatorname{Reg}(T) \le 2\sqrt{T}\log\frac{|\mathcal{R}|}{\delta} + 2 \cdot (3 + e^2)^2 \eta^{-2} d\kappa \exp(2/\beta)\sqrt{T}.$