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Abstract

Large language models (LLMs) have led to001
breakthroughs in language tasks, yet the inter-002
nal mechanisms that enable their remarkable003
generalization and reasoning abilities remain004
opaque. This lack of transparency presents005
challenges such as hallucinations, toxicity, and006
misalignment with human values, hindering the007
safe and beneficial deployment of LLMs. This008
survey paper aims to uncover the internal work-009
ing mechanisms underlying LLM functional-010
ity through the lens of explainability. First,011
we review how knowledge is encoded within012
LLMs via mechanistic interpretability tech-013
niques. Then, we summarize how knowledge is014
embedded in LLM representations by leverag-015
ing probing techniques and representation engi-016
neering. Additionally, we investigate the train-017
ing dynamics through a mechanistic perspec-018
tive to explain phenomena such as grokking019
and memorization. Lastly, we explore how the020
insights gained from these explanations can021
enhance LLM performance through model edit-022
ing, improve efficiency through pruning, and023
better align with human values.024

1 Introduction025

Large language models (LLMs) such as GPT-026

4 (OpenAI, 2023), LLaMA-2 (Touvron et al.,027

2023), Claude-3 (AnthropicAI, 2023), and Gem-028

ini (Team et al., 2023) have led to tremendous ad-029

vancements in language understanding and gener-030

ation, achieving state-of-the-art performance in a031

wide array of real-world tasks. Despite their su-032

perior performance across various tasks, the “how”033

and “why” behind their generalization and reason-034

ing abilities are still not well understood. This lack035

of understanding poses several challenges. First,036

LLMs frequently generate hallucinations and fac-037

tually incorrect output, which complicates efforts038

to improve their performance. Second, as LLMs039

become more powerful, problems surrounding po-040

tential toxicity, unfairness, and dishonesty threaten041

to undermine user trust. Therefore, there is an ur- 042

gent need to delve deeper into the inner workings 043

of LLMs to fully address these issues. Gaining 044

insights into how these models operate is a cru- 045

cial step towards developing robust safeguards and 046

ensuring their responsible deployment. 047

In this paper, we provide a systematic overview 048

of the existing literature that uncovers the internal 049

working mechanisms of LLMs using explainability 050

techniques (Figure 1). First, we provide a sum- 051

mary of findings on how knowledge is encoded 052

within the architecture of trained LLMs. The ex- 053

plainability technique, mechanistic interpretability, 054

seems promising in providing such explanation. It 055

focuses on the functionality of each model compo- 056

nent and interprets how models operate at the level 057

of neurons, circuits, and attention heads. Second, 058

we examine how knowledge is encoded internally 059

in intermediate representations. To this end, repre- 060

sentation engineering is adopted to explain specific 061

behavior of the model, such as dishonesty, by an- 062

alyzing hidden representations. Specifically, rep- 063

resentation engineering focuses on identifying pat- 064

terns for certain behaviors through probing-based 065

methods and employs them to mitigate undesired 066

behaviors (Zou et al., 2023). Third, we inspect the 067

model training process to understand the develop- 068

ment of generalization abilities during the training 069

process. Finally, we review how insights from the 070

aforementioned analysis help us improve models 071

in terms of higher performance through model edit- 072

ing, better efficiency through pruning, and better 073

human alignment. 074

Our work differs from existing survey articles 075

on the explainability of LLMs (Zhao et al., 2023; 076

Wu et al., 2024b; Luo and Specia, 2024; Ferrando 077

et al., 2024), which either summarize explainability 078

techniques or discuss their utilities. In contrast, our 079

goal is to review very recent studies that fundamen- 080

tally provide insights into trained LLMs and their 081

dynamic training processes. We focus on works 082
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Figure 1: In this work, we review existing progress on how LLMs work, including: (a) how knowledge is encoded
within model components; (b) what knowledge is encoded in intermediate representations; and (c) how generalization
abilities are achieved during the training process.

that uncover how LLMs function and identify the083

factors that contribute to their reasoning abilities084

via using explainability techniques and monitoring085

the training process. We review the state-of-the-086

art insights on the inner working mechanisms of087

LLMs and explore how these insights can further088

enhance model performance and benefit humans.089

2 How is Knowledge Encoded in Model090

Architectures?091

LLMs are built on extensive training datasets and092

intricate model architectures, which contribute to093

their remarkable emergent abilities (Wei et al.,094

2022). However, the exact mechanisms through095

which these models acquire and process vast096

amounts of knowledge remain unclear. Addition-097

ally, the contributions of individual model com-098

ponents to the overall function have been largely099

unexplored. To fully understand LLMs, recent stud-100

ies have shifted to make use of mechanistic inter-101

pretability (more details are given in Section A at102

the Appendix) to reverse engineer LLMs at a more103

granular level such as neurons and attention heads.104

2.1 Neurons105

Neurons can activate on knowledge and patterns106

within LLMs. They are observed to be polyse-107

mantic, meaning that an individual neuron can108

be activated on multiple unrelated terms (Olah109

et al., 2020a; Bills et al., 2023). This characteristic110

presents a significant challenge in mechanistically111

understanding how models operate. Despite the112

challenge, recent work has explored the underlying113

causes of this polysemantic nature. Two key con-114

cepts have emerged as instrumental in unraveling 115

its formation: Superposition (Olah et al., 2020a) 116

and Monosemanticity (Bricken et al., 2023). 117

2.1.1 Superposition 118

Superposition describes the phenomenon where 119

a feature can be spread across multiple neurons, 120

meanwhile a neuron can also be mixed up with mul- 121

tiple features. Some researchers believe that this 122

mechanism originated from an excessive number of 123

features compared to the number of neurons (Olah 124

et al., 2020a; Elhage et al., 2022). In exploring 125

this concept through a toy example, i.e. a ReLU 126

network, researchers have found that superposition 127

allows for the representation of additional features. 128

However, to mitigate interference, a nonlinear fil- 129

ter needs to be introduced (Elhage et al., 2022). 130

When features are sparse, superposition effectively 131

supports the representation of these features and al- 132

lows computations such as the absolute value func- 133

tion (Elhage et al., 2022). Neurons within models 134

can be either monosemantic or polysemantic. 135

Others argue that polysemanticity arises inci- 136

dentally due to factors encountered during the 137

training process such as regularization and neu- 138

ral noise (Lecomte et al., 2024). Mathematical 139

demonstrations have shown that a constant fraction 140

of feature collisions, introduced through random 141

initialization, can always result in polysemantic 142

neurons, even when the number of neurons exceeds 143

the number of features (Lecomte et al., 2024). 144

Another study investigates polysemanticity 145

through the lens of the “feature capacity”, denoting 146

the fraction of embedding dimensions consumed 147
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by a feature in the representation space (Scherlis148

et al., 2022). By analyzing one-layer and two-layer149

toy models, this work indicates that features are150

represented based on their importance in reduc-151

ing loss. More important features are allocated152

their own dimensions, while the less critical ones153

may be overlooked, and the rest will share embed-154

ding dimensions (Scherlis et al., 2022). Features155

only end up sharing dimensions when assigning156

additional capacity will not result in loss decreas-157

ing (Scherlis et al., 2022). Moreover, the relation-158

ship between superposition and feature importance159

has been demonstrated on LLMs (Gurnee et al.,160

2023). Experiments show that the early layers tend161

to represent many features in superposition, while162

the middle layers include dedicated neurons to rep-163

resent high-level features (Gurnee et al., 2023).164

2.1.2 Monosematicity165

Monosemantic neurons, associated with a single166

concept, are much easier to interpret than poly-167

semantic neurons. Investigating the factors that168

enhance monosemanticity is meaningful to model169

interpretation. A research using toy models reveals170

that changing the loss minimum could improve171

monosemanticity. Such loss minimum usually co-172

exists with negative biases (Jermyn et al., 2022).173

However, in reality building a purely monoseman-174

tic model is infeasible due to the unmanageable175

loss (Bricken et al., 2023). Another line of stud-176

ies seeks to disentangle superposition to reach a177

monosemantic understanding. The spare autoen-178

coder emerges as a promising tool serving this pur-179

pose, aiming to reconstruct sparsely activated di-180

rections that are more interpretable and monose-181

mantic (Cunningham et al., 2023). The method182

utilizes dictionary learning where features are pre-183

defined (Sharkey et al., 2022). The effectiveness184

of this approach largely depends on the compre-185

hensiveness of the pre-defined dictionary. Bricken186

et al. (2023) utilizes it to interpret a one-layer trans-187

former model with a 512-neuron MLP layer. The188

sparse autoencoder is trained on MLP activations189

from 8B data points, with autoencoder sizes rang-190

ing from 512 to 13,100 features. Larger autoen-191

coders are able to achieve finer granularity in in-192

terpreting features, revealing details that cannot be193

discovered at the neuron level. These identified194

features can be used to manipulate the model’s out-195

put, offering new ways to control and understand196

LLMs (Bricken et al., 2023).197
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Figure 2: An illustration of a Transformer circuit, which
is a key concept in mechanistic interpretability.

2.2 Circuits 198

Circuit is one of the core concepts in the field of 199

mechanistic interpretability (see Figure 2). It was 200

originally proposed to reverse engineer vision mod- 201

els, in which individual neurons and their connec- 202

tions are viewed as functional units (Olah et al., 203

2020a). Researchers have found that features in for- 204

mer layers of models act as fundamental units, such 205

as edge detectors. These features are combined 206

through weights to form a circuit unit. This view- 207

point is partially evidenced by a few understandable 208

neuron units (or circuits) performing specific func- 209

tions, such as curve detectors (Cammarata et al., 210

2020) and high-low frequency detectors (Schubert 211

et al., 2021). Several interesting phenomena have 212

been observed in these circuits. For example, sym- 213

metric transformations of basic features, including 214

copying, scaling, flipping, coloring, rotating, can 215

be achieved with basic neurons known as “equiv- 216

ariance” or “motif” (Olah et al., 2020b). 217

Despite rich insights from vision models, trans- 218

former models, with their unique architecture fea- 219

turing attention blocks, present new challenges. To 220

address these, a mathematical framework specif- 221

ically for transformer circuits has also been pro- 222

posed (Elhage et al., 2021). This framework simpli- 223

fies the complex architecture of LLMs by focusing 224

on decoder-only transformer models that have no 225

more than two layers, all made up entirely of atten- 226

tion blocks. Within this toy model, the transformer 227

encompasses input embedding, residual stream, at- 228

tention layers, and output embeddings. Attention 229

layers read information from the residual stream 230

and then write their output back into it. Conse- 231

quently, communication is achieved through read 232

and write operations at the layer level. 233

Each attention head works independently and 234

in parallel, contributing its output to the residual 235
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stream. These heads consist of key, query, out-236

put, and value vectors, represented as WK , WQ,237

WO and WV . There are two types of circuits: i)238

“query-key” (QK) circuits; ii) “output-value” (OV)239

circuits (Elhage et al., 2021), as shown in Figure 2.240

The QK circuits, formed by W T
QWK , play a crucial241

role in determining which previously learned token242

to copy information from (Elhage et al., 2021). It243

is essential for models to recall and retrieve infor-244

mation from earlier context. Conversely, the OV245

circuits, composed of WOWV , determine how the246

current token influences the output logits (Elhage247

et al., 2021).248

The result shows that transformers with no layer249

can model bigram statistics, predicting the next250

token from the source token. Adding one layer251

allows the model to capture both bigram and “skip-252

trigram” patterns. Interestingly, with two layers,253

transformer models give rise to a concept termed as254

“induction head” (Section 2.3 ). These induction255

heads exist in the second layer and beyond. Usually,256

they are composed of heads from their previous257

layer, which is useful in suggesting the next token258

based on the present ones (Elhage et al., 2021).259

A circuit composed of 28 attention heads have260

been identified to enable indirection object identifi-261

cation tasks as well (Wang et al., 2022). And these262

heads route information between heads finally to263

the outputs. Also, Hanna et al. (2024) found a cir-264

cuit that performs greater-than computation on a265

set of MLPs in GPT-2.266

2.3 Attention heads267

A special type of attention head called induction268

head is assumed critical in enabling in-context269

learning abilities within LLMs (Brown et al., 2020),270

due to the co-occurrence of induction heads and271

in-context learning (Olsson et al., 2022). Induction272

heads also refer to a kind of circuits that complete273

the pattern by prefix matching and copying pre-274

viously occurred sequences (Olsson et al., 2022).275

They are composed of two heads: the first atten-276

tion head is from the previous layer attending to277

previous tokens that are followed by the current to-278

ken, which achieves prefix matching and provides279

the attend-to token(the token following current to-280

ken). The second head, i.e. induction head, copies281

the attend-to token and increases its output logits.282

More specifically, this rule means that if models283

have seen similar patterns such as “[A*][B*]” given284

current token “[A]”, these models are able to pre-285

dict “[B]” (Olsson et al., 2022). Despite the single 286

token used in the toy example, long prefix match- 287

ing such as three consecutive tokens has also been 288

observed in related work (Chan et al., 2022). 289

As a result, layers with induction heads pos- 290

sess more powerful in-context learning abilities 291

than simple copying. In addition, multiple em- 292

pirical studies have demonstrated the causal rela- 293

tionships between induction heads and in-context 294

learning abilities by observing the change of in- 295

context learning abilities after manipulating induc- 296

tion heads (Olsson et al., 2022; Chan et al., 2022). 297

Although this theory offers a comprehensive expla- 298

nation of the mechanisms behind transformer mod- 299

els with only two attention layers, further ablation 300

studies are still needed to validate its effectiveness. 301

It is also important to note that this framework is 302

exclusively based on attention heads, without in- 303

corporating MLP layers. 304

A recent study reveals how factual associations 305

are stored and extracted within LLMs (Geva et al., 306

2023). A fact consists of a subject, a relation, and 307

an object. During inferring, the subject will be en- 308

riched with subject-related attributes at the early 309

MLP sublayers. The relation will be propagated to 310

prediction through attention heads. And the predic- 311

tion representation will “query” enriched subject 312

to extract object information (Geva et al., 2023). 313

Moreover, Chughtai et al. (2024) believes that there 314

are also mixed heads containing information from 315

both subject and relation. The subject heads, mixed 316

heads, and relation heads are working additively to 317

elicit the outputs. 318

3 What Knowledge is Encoded in 319

Intermediate Representations? 320

In the previous section, we summarize existing 321

studies on the architectural composition of knowl- 322

edge within LLMs, with a focus on their struc- 323

tural components. We highlight how components 324

of LLMs function differently. In this section, we 325

introduce an in-depth review of the knowledge en- 326

coded by representations of LLMs, including world 327

knowledge and factual knowledge captured within 328

these models. We examine how factors such as the 329

depth of layers and the scale of models influence 330

this encoding process. 331

3.1 Probing World and Factual Knowledge 332

To investigate whether the representations of LLMs 333

encode world knowledge and factual knowledge, 334
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probing techniques offer crucial insights into the335

structure and dynamics of these representations.336

Specifically, probing techniques can identify spe-337

cific directions within the representation space, and338

these directions are essential for understanding cer-339

tain behaviors and the encoding of knowledge (Zou340

et al., 2023; Liu et al., 2023).341

Recent studies have demonstrated that LLMs342

can learn world models and encode them in their343

representations for certain tasks. One study suc-344

cessfully uses a set of non-linear probes to uncover345

world representations within models, specifically346

in the context of the game of Othello (Li et al.,347

2022). It demonstrates models’ ability to track the348

board state, and make predictions without being349

explicitly to do so (Li et al., 2022). Furthermore,350

another work finds that linear representation struc-351

tures can also perform well on predictions, sim-352

ply by altering the expression of the board state at353

each timestamp (Nanda et al., 2023b). The linear354

and non-linear explanations reveal how models per-355

ceive the world naturally, which might be different356

from humans. Additionally, by analyzing repre-357

sentations of spatial datasets, one study reveals the358

model’s ability to learn linear representations of359

space and time across multiple levels (Gurnee and360

Tegmark, 2023).361

LLMs are also capable of encoding factual362

knowledge. Marks and Tegmark (2023) craft self-363

curated true/false datasets to study the geometry364

of representations of true/false statements derived365

from a model’s residual stream. By applying princi-366

pal component analysis (PCA), a clear linear struc-367

ture emerges. The truth directions are leveraged368

to mediate the model’s dishonest behaviors locally.369

Another research avenue explores vectors related370

to toxicity within MLP blocks through singular371

value decomposition (SVD). The identified dimen-372

sions are simply subtracted to efficiently achieve373

mitigation (Lee et al., 2024).374

Function vectors have also been discovered375

within the attention heads of LLMs, which trigger376

the execution of a certain task across diverse inputs.377

For example, Todd et al. (2023) found that these378

function vectors are shown in various in-context379

learning tasks, and can execute related tasks de-380

spite zero-shot inputs. Also, causal interventions381

at the neuron level can help identify the individ-382

ual neurons encoding spatial coordinates and time383

information (Gurnee and Tegmark, 2023).384

Lastly, representations associated with undesir-385

able behaviors of LLMs, such as dishonesty, toxic- 386

ity, hallucinations, can also be extracted. Typically, 387

a direction in the representation space is identified 388

as contributing to a specific behavior. This direc- 389

tion will then be used to adjust the representations 390

so that models’ behaviors can be controlled (Zou 391

et al., 2023). For example, Li et al. (2024) employs 392

this technique to probe and enhance the truthful- 393

ness of models. Azaria and Mitchell (2023) also 394

successfully distinguishes the truthfulness of state- 395

ments by simply training a classifier on model rep- 396

resentations. A recent work has been developed to 397

identify hallucination tokens from the response by 398

integrating a range of classifiers that are trained on 399

each layer from separate hidden parts: MLPs and 400

attention layers (CH-Wang et al., 2023). 401

3.2 Role of Layer Depth and Model Scale 402

The influence of layer depth and model scale on 403

representations has been an interesting research di- 404

rection. Empirically, research shows that a range of 405

knowledge is well trained until the middle layers. 406

For example, Gurnee and Tegmark (2023) demon- 407

strate that space and time representations reach the 408

best quality up to half of the layers in a range of 409

open-source LLMs. Besides, the function vectors 410

with strong causal effects are also collected from 411

the middle layers of LLMs, while the effects are 412

near zero in the deeper layers (Todd et al., 2023). 413

Furthermore, another study shows that different lev- 414

els of concepts are well learned in different layers, 415

where simpler tasks are learned in the early layers 416

while complex tasks can only be well learned in 417

the deeper layers (Jin et al., 2024; Ju et al., 2024). 418

However, the underlying reason why the middle 419

layers perform so well remains unexplored. 420

It is generally believed that more capabilities are 421

gained as the models scale up (Wei et al., 2022). 422

Some recent studies have also supported this hy- 423

pothesis in certain cases. For example, the space 424

and time representations are more precise as the 425

models scale up (Gurnee and Tegmark, 2023). But 426

the inner mechanism leading to better performance 427

when model scales remain unknown. 428

4 How is Generalization Ability Achieved 429

During Training? 430

In the preceding sections, we analyze LLMs in 431

a post-hoc manner, focusing on neurons, connec- 432

tions, attention heads, and representations to under- 433

stand how knowledge is acquired within models. 434
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In this section, we discuss the dynamic training435

process of models to understand how the general-436

ization ability is achieved during the training pro-437

cess. We will particularly examine two important438

phenomena observed in relation to generalization:439

grokking and memorization. Here, grokking in-440

dicates the phenomenon where models suddenly441

improve validation accuracy after overfitting. In-442

vestigating grokking can shed light on how general-443

ization emerges during training. Moreover, examin-444

ing memorization, where models rely on statistical445

patterns rather than causal relationships, can help446

disentangle the roles of generalization versus the447

roles of memorization in model behaviors.448

4.1 Understanding Grokking449

Grokking is a phenomenon in which models sud-450

denly improve their validation accuracy after451

severely overfitting on over-parameterized neural452

networks (Power et al., 2022). The surge in valida-453

tion accuracy is generally interpreted as a gain of454

generalization ability.455

4.1.1 A Data Perspective456

Experiments implemented on a two-layer decoder-457

only transformer network have shown that458

grokking is closely related to factors such as459

data, representations, and regularization. Smaller460

datasets require more optimization steps for461

grokking to occur (Power et al., 2022). Conversely,462

more samples can decrease the number of steps463

needed for generalization (Zhu et al., 2024). The464

minimal amount of data needed for grokking also465

depends on the minimal number of data points re-466

quired to learn a robust representation (Liu et al.,467

2022a). Furthermore, it has been found that gen-468

eralization often coincides with well-structured469

embeddings. Additionally, regularization mea-470

sures can accelerate the onset of grokking, with471

weight decay standing out as particularly effective472

in strengthening generalization capabilities (Liu473

et al., 2022a). A recent study proposes that mas-474

sive datasets in LLMs make grokking less conceiv-475

able (Zhu et al., 2024).476

4.1.2 Weight Norms477

When examining the weight norms of the final lay-478

ers in models that do not use regularization tech-479

niques, a phenomenon, termed as slingshot mecha-480

nism, has been observed. It describes a cyclic be-481

havior during the terminal phase of training, where482

there are oscillations between stable and unstable483

regimes, i.e., training loss spike. The spike co- 484

occurs with a phase where weight norms grow, fol- 485

lowed by a phase of norm plateau. Thilak et al. 486

(2022) point out that grokking, non-trivial feature 487

adaptation, occurs only at the beginning of sling- 488

shots. The appearance of the slingshot effect and 489

grokking can be modulated by adjusting the opti- 490

mizer parameters, especially when using adaptive 491

optimizers such as Adam (Kingma and Ba, 2014). 492

However, it is unclear whether this observation 493

holds universally across various scenarios. 494

Additionally, another concept called the LU 495

mechanism has also been proposed, describing dy- 496

namics between loss and weight norms (Liu et al., 497

2022b). In algorithmic datasets, an L-shaped train- 498

ing loss and a U-shaped test loss reduction con- 499

cerning weight norms are identified, implying an 500

optimal range for initializing weight norms. Nev- 501

ertheless, this finding does not seamlessly transfer 502

to real-world machine learning tasks, where large 503

initialization and small weight decay are often nec- 504

essary. Lyu et al. (2023); Mohamadi et al. (2023) 505

attribute it to a competition between the early-phase 506

implicit bias favoring kernel predictors induced by 507

large initialization and a late-phase implicit bias 508

favoring min-norm/margin predictors promoted by 509

small weight decay. Similarly, Merrill et al. (2023) 510

conclude that this competition manifests a compe- 511

tition between a dense subnetwork in the initial 512

phase and a sparse one after grokking. However, a 513

recent research on deep neural networks believes 514

that feature ranks/linear probing accuracy could be 515

a better indicator of phase transition than weight 516

norm (Fan et al., 2024). 517

4.1.3 Test Loss 518

Double descent captures the pattern where a 519

model’s test accuracy at the log level initially im- 520

proves, then drops due to overfitting, and finally 521

increases again after gaining generalization abili- 522

ties (Nakkiran et al., 2021). This pattern is more 523

noticeable in the test loss. A unified framework 524

has been developed to integrate grokking with dou- 525

ble descent, treating them as two manifestations of 526

the same underlying process (Davies et al., 2023). 527

The framework attributes the transition of general- 528

ization to slower pattern learning, which has been 529

further supported by Kumar et al. (2023). This tran- 530

sition is demonstrated to exist at the level of both 531

epochs and models. 532
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4.2 Memorization533

Memorization often refers to the phenomenon that534

models predict with statistical features rather than535

causal relations. The study using slightly corrupted536

algorithmic datasets with two-layer neural models537

has revealed that memorization can coexist with538

generalization. And memorization can be miti-539

gated by pruning relevant neurons or by regular-540

ization (Doshi et al., 2023). Although different541

regularization methods might not share learning542

goals, they all contribute to better representations.543

And the training process in the study consists of544

two stages: i) the grokking process, ii) the decay of545

memorization learning (Doshi et al., 2023). How-546

ever, the underlying causes behind this process are547

not yet fully understood. Besides, the assumption548

that regularization is the key to this process is under549

debate, especially in light of observing grokking in550

absence of regularization (Kumar et al., 2023). The551

importance of the rate of feature learning and the552

number of necessary features is favored in explana-553

tions, challenging the role of the weight norm (Ku-554

mar et al., 2023).555

Interestingly, a study hypothesizes that memo-556

rization constitutes a phase of grokking (Nanda557

et al., 2023a). The study finds that grokking in-558

cludes three distinct stages: memorization, circuit559

formation, and memorization cleanup (Nanda et al.,560

2023a). The study identifies an algorithm that uti-561

lizes Discrete Fourier Transforms and trigonomet-562

ric identities to achieve modular addition through563

analyzing the model’s weights. The circuits en-564

abling this algorithm seem to evolve in a steady565

manner instead of randomly walking. Varma et al.566

(2023) concludes that the efficiency of memori-567

sation and generalization depends on the size of568

dataset. However, our understanding towards the569

relationship between memorization and grokking570

is still limited.571

5 How to Make Use of The Insights?572

In the preceding three sections, we have explored573

how knowledge is encoded within LLMs (Section574

2), and how this knowledge is encoded in their rep-575

resentations (Section 3). Building on these insights,576

this section emphasizes on how we can leverage577

our in-depth understanding of LLMs to enhance578

their performance through editing, improve their579

efficiency via pruning, and better align them with580

human values and preferences.581

5.1 Model Editing for Better Performance 582

Research has shown that it is possible to edit factual 583

knowledge by modifying the weights of specific 584

neurons in MLPs. One study successfully adopts 585

this approach by altering neural computations re- 586

lated to recall of factual knowledge (Meng et al., 587

2022). Another study expands this method further 588

to allow multiple edits at the same time (Meng 589

et al., 2023). Although these methods are effective 590

for targeted edits, their capabilities on updating 591

relevant knowledge and preventing forgetting still 592

require further investigation (Cohen et al., 2023). 593

Interestingly, a recent study indicates that the 594

paragraphs memorized by a model can be pin- 595

pointed using high-gradient weights in attention 596

heads of the lower layers (Stoehr et al., 2024). 597

This research employs localization techniques to 598

identify specific attention heads, which are then 599

fine-tuned to unlearn the memorized knowledge. 600

This approach holds promise in enhancing privacy 601

protection in large language models, although a 602

comprehensive evaluation is still needed. 603

Besides, facts are also encoded in the representa- 604

tion space, making representation a natural candi- 605

date to edit models’ outputs. So far, most studies fo- 606

cus on modifying representations at inference time, 607

while the influence of permanent modifications has 608

barely been studied. A recent work provides a more 609

precise way to edit model representations to change 610

their output distributions (Hernandez et al., 2023). 611

Instead of only adding the derived vectors into out- 612

put representations, this study directly changes the 613

embedding of a related entity so as to trigger tar- 614

geted outputs. As a result, the position of the mod- 615

ified entity in the embedding space has changed, 616

leading to causal influence on model generations. 617

5.2 Model Pruning for Better Efficiency 618

In contrast to deciphering the inner workings of 619

models, one study examines the differences be- 620

tween pre-training and fine-tuning phases with 621

mechanistic interpretability tools. It reveals that 622

fine-tuning retains all the capabilities learned in 623

the pre-training phase. Transformations between 624

pre-training and fine-tuning stem from “wrappers” 625

in MLPs learned on top of models. Interestingly, 626

these wrappers can be eliminated by pruning a few 627

neurons or retraining on an unrelated downstream 628

task (Jain et al., 2023). This discovery sheds light 629

on potential safety concerns associated with current 630

alignment approaches. 631
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Different from pruning neurons, the idea of rep-632

resentation engineering, that is directly manipu-633

lating representations without the need for opti-634

mization or additional labeled data, has also been635

demonstrated effective in model pruning. Some636

work attempts to fine-tune models with represen-637

tation engineering and achieves a comparable and638

even better performance than state-of-the-art fine-639

tuning techniques (Wu et al., 2024a,c). One work640

employs forward passes from two topics and de-641

rives their difference vectors, which are used in in-642

ference time without additional fine-tuning (Turner643

et al., 2023). Wu et al. (2024a) also demonstrates644

the feasibility of fine-tuning models through editing645

representations. Unlike conventional parameter-646

efficient fine-tuning (PEFT), representation editing647

focuses on learning an additional group of train-648

able parameters to modify representations directly649

other than models’ parameters. And the trainable650

parameters have been reduced to a factor of 32 com-651

pared to that of LoRA (Hu et al., 2021; Wu et al.,652

2024a). Another approach utilizes the distributed653

alignment search of Geiger et al. (2024) to find a654

set of linear subspace implementing interventions.655

This method outperforms most PEFT models on a656

range of tasks (Wu et al., 2024c).657

5.3 Model Alignment to Human Values658

From the mechanistic perspective, practical appli-659

cations tend to evaluate model alignments with660

different tools. Inspired by induction heads, a re-661

cent work measures bias scores of attention heads662

in pre-trained LLMs, focusing on specific stereo-663

types. It implemented a method to ensure the ac-664

curacy of identifying biased heads by comparing665

the changes of attention score between biased and666

regular heads. Through masking identified biased667

heads, the study effectively reduces the gender bias668

encoded in the model (Yang et al., 2023). Besides,669

another work localizes attention heads that are re-670

sponsible to lie with linear probing and activation671

patching. A set of intentionally designed prompts is672

used to instruct LLMs to be dishonest. Meanwhile,673

linear probes are trained to classify true/false acti-674

vations of heads. Then, the selected activations are675

patched with those of honest behaviors to observe676

the changes of outputs. Multiple attention heads677

across five layers are causally located in Campbell678

et al. (2023).679

Recently, representation engineering has680

emerged as a promising avenue for detecting biases681

within embedding space. A notable study suggests 682

that MLPs operate on token representations to 683

alter the distribution of output vocabulary (Geva 684

et al., 2022). After reverse engineering MLPs, it is 685

believed that the output from each feed-forward 686

layer can be seen as sub-updates to output 687

vocabulary distributions, essentially promoting 688

certain high-level concepts. This insight has 689

been used effectively to mitigate toxicity levels 690

in LLMs (Geva et al., 2022). Another line of 691

work finds multiple representation vectors within 692

MLPs that encourage models’ undesired behaviors. 693

These vectors are decomposed using singular value 694

decomposition, allowing researchers to pinpoint 695

specific dimensions that contribute to toxicity (Lee 696

et al., 2024). 697

6 Conclusions and Looking Beyond 698

In this paper, we explore techniques to uncover the 699

inner workings of LLMs through an explainability 700

lens. We provide a systematic overview of how ex- 701

plainability techniques can reveal the architectural 702

composition of knowledge within LLMs and the 703

encoding of knowledge in their internal represen- 704

tations. Furthermore, we inspect training dynam- 705

ics through a mechanistic perspective to explain 706

phenomena like “grokking” that can explain gen- 707

eralization abilities of LLMs. Lastly, we reviewed 708

how insights from these explainability analyses can 709

enhance LLM performance through model editing, 710

improve efficiency via pruning, and better align 711

models with human preferences. 712

Although there is some preliminary progress in 713

uncovering the inner workings of LLMs, looking 714

beyond, there exist several critical challenges and 715

opportunities. First, LLMs have encoded a vast 716

amount of real-world knowledge into their archi- 717

tectures and parameters. However, current research 718

has only revealed a small fraction of the encoded 719

knowledge. Future efforts should focus on devel- 720

oping scalable techniques that can effectively an- 721

alyze and interpret the intricate knowledge struc- 722

tures embedded within LLMs. Second, LLMs have 723

demonstrated remarkable reasoning abilities that 724

exhibit human-like cognitive abilities. However, 725

our current understanding of how these high-level 726

reasoning abilities emerge from the interplay of 727

architectural components and training dynamics is 728

limited. More efforts are needed to reveal the intri- 729

cate mechanisms that give rise to these advanced 730

reasoning capabilities. 731
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Limitations732

In this paper, we intend to integrate available tech-733

niques that enable us to learn the inner workings of734

LLMs. Despite the valuable perspectives provided,735

our study has several limitations. First, we do not736

explore the complete landscape of relevant XAI737

methods for understanding LLMs, due to space con-738

straints. Other techniques like concept-based expla-739

nations, example-based explanations, and counter-740

factual explanations may also provide some useful741

insights into the inner workings of LLMs. These742

methods could potentially uncover additional as-743

pects or offer complementary viewpoints that are744

not covered by the mechanistic interpretability and745

representation engineering approaches discussed746

in this paper. Furthermore, while we try to provide747

a comprehensive overview of the current state-of-748

the-art, the field of explainable AI for LLMs is749

rapidly evolving. New techniques, theories, and750

findings may emerge that could reshape or extend751

our understanding of how LLM works. Continuous752

monitoring and incorporating these developments753

will be crucial to maintaining a comprehensive and754

up-to-date perspective on this topic.755
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A Mechanistic Interpretability1157

Mechanistic interpretability refers to the process1158

of zooming into neural networks to understand the1159

underlying components and mechanisms that drive1160

their behaviors, also known as reverse engineer-1161

ing (Olah et al., 2020a). Just as the microscope1162

revealed the world of cells, looking inside neu-1163

ral networks provides a glimpse into rich inner1164

structures of models. This approach diverges from1165

conventional interpretability methods that aim to1166

explain the overall behaviors through features, neu-1167

ral activations, data instances etc. Instead, it draws1168

inspiration from other fields, such as neuroscience1169

and biology, to investigate individual neurons and1170

their connections. By tracking each neuron and1171

weight, an intricate picture emerges on how neural1172

networks operate through interconnected “circuits”1173

that implement meaningful algorithms. On this1174

delicate scale, neural networks become approach-1175

able systems rather than black boxes. Neurons1176

play an understandable role and their circuits of1177

connections implement factual relationships about1178

the world. We can thus observe the step-by-step1179

construction of high-level concepts, such as circle1180

detectors, animal faces, cars, and logical opera-1181

tions (Olah et al., 2020a). In essence, zooming1182

into the micro-level mechanics of LLMs enables1183

deeper comprehension of their macro-level behav-1184

iors. Such mechanistic perspective represents a1185

paradigm shift in interpretability towards unpack-1186

ing the causal factors that drive model outputs.1187

A.1 Role in the General XAI Field1188

Mechanistic interpretability in XAI represents a1189

paradigm shift towards a deeper and more fun-1190

damental understanding of deep neural network1191

(DNN) models (Zhao et al., 2023).1192

• Global versus Local Interpretation: Mechanis-1193

tic interpretability diverges from the traditional1194

local focus of XAI, which concentrates on ex-1195

plaining specific predictions made by deep learn-1196

ing models, e.g., feature attribution techniques.1197

Instead, it adopts a global approach, aiming to1198

comprehend DNN models as a whole through the1199

lens of high-level concepts and circuits.1200

• Post-hoc Analysis versus Intrinsic Design:1201

Mechanistic interpretability aims to decipher the1202

complexities inherent in pre-trained DNN mod-1203

els in a post-hoc way. This contrasts with efforts1204

to create models that are mechanistically inter-1205

pretable by design (Friedman et al., 2023).1206

• Model-Specific versus Model-Agnostic: Un- 1207

like some XAI methods such as LIME (Ribeiro 1208

et al., 2016) and SHAP (Lundberg and Lee, 1209

2017), which are model-agnostic, mechanistic 1210

interpretability is a model-specific explanation. 1211

It requires tailor-made designs for each distinct 1212

LLM, analyzing their unique characteristics. 1213

• White-box versus Black-box: Mechanistic in- 1214

terpretability aligns with white-box analysis, re- 1215

quiring direct access to a model’s internal pa- 1216

rameters and activations. This is in contrast to 1217

black-box XAI tools such as LIME and SHAP, 1218

which operate solely based on the model’s inputs 1219

and outputs. 1220

In summary, mechanistic interpretability in XAI is 1221

a critical approach to gain a profound understand- 1222

ing of DNN models. It emphasizes a global and 1223

post-hoc perspective, focusing on model-specific, 1224

white-box analysis to decipher the inner workings 1225

and intrinsic logic of complex AI systems. This 1226

approach is pivotal to advance transparency and 1227

build trust for LLMs, especially in high-stake sce- 1228

narios where grasping “why” behind AI systems is 1229

as crucial as the decisions themselves. 1230

A.2 Why Mechanistic Interpretability? 1231

The question naturally arises: Why has XAI re- 1232

search on LLMs moved towards the more special- 1233

ized domain in mechanistic interpretability? Ex- 1234

ploring this shift can shed light on the evolving 1235

needs and challenges in this field. In this section, 1236

we attempt to look through several factors that we 1237

believe have played a major role in steering the 1238

shift. 1239

Alignment Requirement. In the age of LLMs, 1240

the standards for model performance have become 1241

more rigorous, not just in terms of accuracy but 1242

also in addressing crucial social concerns like dis- 1243

honesty and fairness. Under this circumstance, the 1244

challenge of aligning LLMs with our values and 1245

expectations has become a pressing concern, one 1246

that demands a deep understanding and effective 1247

control of these models. To tackle these challenges, 1248

mechanistic interpretability stands out as a promis- 1249

ing approach, offering a way to understand the 1250

underlying workings of these models. 1251

Understanding Reasoning Capability. The field 1252

of XAI in machine learning has made significant 1253

progress with techniques designed to provide valu- 1254

able insights to end users, such as feature attri- 1255

butions (Ribeiro et al., 2016) and example-based 1256
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explanations (Koh and Liang, 2017). These tech-1257

niques have been proven to be quite effective in1258

computer vision tasks, where the demands for com-1259

plex alignment were less strict. However, as LLMs1260

become more sophisticated, their reasoning capabil-1261

ity has transformed from mere pattern recognition1262

to a form of complex, human-like cognition. This1263

advancement in LLMs’ reasoning abilities renders1264

traditional XAI methods obsolete and less compe-1265

tent in interpreting their behaviors.1266

Understanding Inner Working of LLMs. More-1267

over, alongside the strong reasoning abilities of1268

LLMs, their notorious deep and intricate architec-1269

tures are raising new concerns. Since the inner1270

workings of these models are multifaceted and in-1271

tricate, new challenges in explaining models at the1272

structure level have emerged. Conventional global1273

interpretability techniques, which are adept at un-1274

covering the high-level knowledge acquired in dif-1275

ferent components of models, fall short when pro-1276

viding sights into the functions and the evolution of1277

knowledge within these models. This issue is fur-1278

ther confounded as LLMs scale aggressively, mak-1279

ing neuron-level and layer-level insights increas-1280

ingly insufficient. This complexity highlights the1281

urgent need for innovative approaches that enable1282

us to zoom in models and provide more in-depth,1283

mechanistic understandings at various levels.1284

Alternatively, mechanistic interpretability aims1285

to unravel the inner workings of LLMs, providing1286

insights into the “how” and “why” behind their1287

decision-making processes. Specifically, mechanis-1288

tic interpretability focuses on the causal relation-1289

ships and underlying mechanisms within models.1290

This not only is more suited to the advanced nature1291

of LLMs, but is also crucial to ensure transparency,1292

trust, and reliability in their applications.1293

A.3 Mechanistic Interpretability Theories1294

Most of the current work on mechanistic inter-1295

pretability is based on vision models, and some1296

recent work has begun to investigate Transformer1297

models. In this section, we introduce some core1298

concepts and pivotal phenomenons in the field of1299

mechanistic interpretability. Since LLMs are too1300

complicated to analyze locally, simple yet artifi-1301

cial models are purposely designed to investigate1302

their characteristics and internal mechanisms. We1303

will introduce the main assumptions and observa-1304

tions made under this setting, including circuits,1305

induction heads, superposition, polysemanticity,1306

and monosemanticity. 1307

B Mechanistic Interpretability v.s. 1308

Representation Engineering 1309

In this section, we provide further discussion on 1310

different explanation scales of two techniques. Fur- 1311

ther, we provide our understanding towards their 1312

Explanability Scale. These two techniques ex- 1313

plain LLMs at opposite scales. 1314

• Micro-scale: Mechanistic interpretability fo- 1315

cuses on dissecting the intricate inner workings 1316

of LLMs at the neuron and circuit levels. It aims 1317

at illustrating how models function and process 1318

certain tasks with subnetworks. 1319

• Macro-scale: Representation engineering places 1320

representations, rather than neurons or circuits, 1321

as the central unit of analysis. The goal is to 1322

understand and control cognitive behaviors by 1323

studying their manifestations in learned represen- 1324

tation spaces. 1325

Roles in XAI. Two techniques are providing multi- 1326

faceted perspectives in the field of XAI. Represen- 1327

tation engineering embodies how well embeddings 1328

capture the essence of data. Good representations 1329

are crucial to making accurate predictions. The 1330

visualization of representation can also implicitly 1331

demonstrate the quality of learning. On the other 1332

hand, through the lens of mechanistic interpretabil- 1333

ity, we can investigate relations between models’ 1334

abilities like generalization and training dynamics. 1335

Examining the evolution of models from initializa- 1336

tion to generalization, we can reveal characteristics 1337

of generalization, such as sparsity. These character- 1338

istics could serve as benchmarks for what consti- 1339

tutes “good learning”. Apart from that, mechanistic 1340

interpretability is known to explain individual func- 1341

tional components and potentially improve model 1342

performance in the future. 1343

Potential to Alignment. At the current stage, both 1344

techniques have witnessed preliminary applications 1345

in LLM alignment. Mechanistic interpretability 1346

plays a crucial role in locating knowledge or biases 1347

at the level of attention heads, while representation 1348

engineering is primarily employed in targeting un- 1349

desired behaviors at the level of layers. Despite 1350

the distinct focus of each approach within models, 1351

both have proven effective in identifying biases 1352

and highlighting practical steps for improvement. 1353

However, they are still incompetent in uncovering 1354

rudimentary causes behind these biases. 1355

14



C Research Challenges1356

In this section, we outline the research challenges1357

that deserve future efforts from the community.1358

C.1 The Validity of Existing Theories1359

While theories that attempt to explain the mecha-1360

nisms behind the capabilities of transformer models1361

are promising, their empirical support is not defini-1362

tive. For example, understanding induction heads1363

is key to explain transformer models because they1364

are recognized as foundations for in-context learn-1365

ing abilities. However, as highlighted by Olsson1366

et al. (2022), defining what exactly an induction1367

head is remains somewhat elusive. Similarly, the1368

proposition of a mathematical framework to ex-1369

plain circuits inside a simplified network opens1370

up an interesting avenue of research. Although1371

Lieberum et al. (2023) conclude that circuit anal-1372

ysis is feasible on LLMs, this theoretical frame-1373

work has not been thoroughly tested with empirical1374

studies. Besides, these theoretical models rely on1375

idealized assumptions such as superposition and1376

often lack ground truth. This further complicates1377

the task of validating these theories.1378

C.2 The Curse of Dimensionality1379

Another challenge is that the parameters we can1380

explain are much less than a third of all parameters1381

in LLMs. These explanations focus on compo-1382

nents of attention heads, and although dictionary1383

learning helps to partially understand polysemantic1384

neurons, there is still a vast territory that remains1385

unexplored. The rest majority of these model pa-1386

rameters are tied to MLP layers, which are notori-1387

ously difficult to fully comprehend (Olsson et al.,1388

2022). Their compositions are more complicated1389

than those of attention layers, making the analysis1390

process considerably more arduous and perplex-1391

ing. For instance, Geva et al. (2021) believes that1392

the output of MLPs is a composition of memories1393

including textual patterns and output distributions.1394

Meng et al. (2022) attempt to modify MLPs to1395

edit factual knowledge in LLMs. However, the ef-1396

fectiveness of editing has been put into doubt by1397

another work (Hase et al., 2023).1398

C.3 Evaluation of Concepts and Circuits1399

A key challenge in mechanistic interpretability is1400

validating and ensuring the accuracy of proposed1401

conceptual explanations and functional circuits.1402

Unlike straightforward metrics in machine learn-1403

ing to assess predictions, interpretation evaluation 1404

lacks clear ground truth. As noted in Chan et al. 1405

(2022), we are short of tools to measure the degree 1406

to which explanations interpret the relevant phe- 1407

nomenon. Existing ad-hoc ablation methods, i.e. 1408

standard zero and mean ablations, are neither uni- 1409

versal nor scalable. Exploring measurements from 1410

various angles, such as causal scrubbing, which 1411

involves randomly sampling inputs to patch acti- 1412

vations without disturbing the input distribution, 1413

could enrich our evaluation dimensions. More- 1414

over, manual inspections are challenging in iden- 1415

tifying circuits within LLMs. Our understanding 1416

of automatically discovering these circuits is still 1417

developing (Conmy et al., 2023). Heterogeneous 1418

mechanistic explanations can be generated in net- 1419

works trained on simple tasks such as modular ad- 1420

ditions (Zhong et al., 2023). This suggests that 1421

even in seemingly simple scenarios, the outcomes 1422

of circuit analysis can be uncertain. Additionally, 1423

different models learned on similar tasks might 1424

learn same family of circuits, but the precise cir- 1425

cuits learned by individual networks are not the 1426

same (Chughtai et al., 2023). 1427

C.4 Conflicted Explanations 1428

There are other observations in understanding ob- 1429

servations, such as neural collapse (Papyan et al., 1430

2020), yet there is a notable gap in understanding 1431

how these observations are interconnected. The 1432

root causes of these observations often lead to con- 1433

flicting viewpoints. For example, Gromov (2023) 1434

suggests that grokking might be triggered by the 1435

learning of a new feature. Unfortunately, the leap in 1436

generalization could be too subtle to notice without 1437

a hierarchical model (Gromov, 2023). On the other 1438

hand, there is some debate around linking grokking 1439

with generalization (Levi et al., 2023). Moreover, 1440

a significant limitation of these studies is their fo- 1441

cus on arithmetic datasets instead of real-world 1442

datasets, which casts doubt on how broadly these 1443

findings can be applied. To fully understand the 1444

generalization of models and reconcile these con- 1445

flicting views, a holistic examination of how these 1446

observations relate to each other and their impact 1447

on training dynamics across models is essential. 1448
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